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The design of a composite control system for nonlinear singularly perturbed systems using model predictive control (MPC)
is described. Specifically, a composite control system comprised of a ‘‘fast’’ MPC acting to regulate the fast dynamics and a
‘‘slow’’ MPC acting to regulate the slow dynamics is designed. The composite MPC system uses multirate sampling of the
plant state measurements, i.e., fast sampling of the fast state variables is used in the fast MPC and slow-sampling of the slow
state variables is used in the slow MPC. Using singular perturbation theory, the stability and optimality of the closed-loop
nonlinear singularly perturbed system are analyzed. A chemical process example which exhibits two-time-scale behavior is
used to demonstrate the structure and implementation of the proposed fast–slow MPC architecture in a practical setting.
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Introduction

Time-scale multiplicity is a common feature of many
chemical processes and plants of industrial interest and usu-
ally arises due to the strong coupling of physico-chemical
phenomena, like slow and fast reactions, occurring at dispar-
ate time-scales. In addition to this, the dynamics of control
actuation and measurement sensing systems very often adds
a fast-dynamics layer in the closed-loop system. The analysis
and controller design problems for multiple-time-scale sys-
tems are usually addressed within the mathematical frame-
work of singular perturbations (e.g., Ref. 1). Within this
framework, a variety of explicit controller design methods
have been primarily developed for both linear and nonlinear
singularly perturbed systems, ranging from optimal control 1

to geometric control (e.g., Refs. 2 and 3) and Lyapunov-based
control.4

Over the last 25 years, model predictive control (MPC)
has emerged as an important control technology for indus-
trial process control due to its ability to provide optimal con-
trol solutions accounting explicitly for input and state con-
straints. In MPC, an optimization problem is solved in real-

time which takes advantage of a process model to obtain an

optimal control input (piecewise constant) trajectory which

minimizes an objective function subject to state and input

constraints. Once the optimal input trajectory is computed,

the first step is implemented by the actuators, and the rest of

the trajectory is discarded and the optimization is repeated in

the next sampling step. Over the last 15 years, significant

efforts have been made in the development of MPC formula-

tions with certain stability guarantees (see, for example, Ref.

5). Pertaining to the present work is the method proposed in

Ref. 6 where a Lyapunov-based MPC (LMPC) design was

proposed which incorporates a Lyapunov function-based

constraint in the first move of the MPC optimization prob-

lem to guarantee the closed-loop stability. This LMPC

design inherits the stability properties of a pre-existing Lya-

punov-based explicit controller and has an explicitly charac-

terized stability region. In the context of MPC of singularly

perturbed systems, most of the efforts have been dedicated

to linear systems 7 or to MPC of specific classes of two-

time-scale processes.8,9 In a recent work,10 we studied MPC

for nonlinear singularly perturbed systems where MPC is

used only in the slow time-scale and the fast dynamics are

assumed to be stabilizable by a ‘‘fast’’ explicit controller.

Finally, in another recent set of papers,11,12 MPC of two-

time-scale processes described by nonlinear singularly
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perturbed systems in nonstandard form (i.e., systems in

which the separation of slow and fast state variables is not

explicit in the original coordinates and a coordinate change

should be used to obtain a singularly perturbed system in

standard form) was addressed; in these works the fast dy-

namics are also assumed to be stabilizable by a fast explicit

controller.
This work focuses on MPC of nonlinear singularly per-

turbed systems in standard form where the separation
between the fast and slow state variables is explicit. Specifi-
cally, a composite control system comprised of a ‘‘fast’’
MPC acting to regulate the fast dynamics and a ‘‘slow’’
MPC acting to regulate the slow dynamics is designed. The
composite MPC system uses multirate sampling of the plant
state measurements, i.e., fast sampling of the fast state varia-
bles is used in the fast MPC and slow-sampling of the slow
state variables is used in the slow MPC as well as in the fast
MPC. Using singular perturbation theory, the stability and
optimality of the closed-loop nonlinear singularly perturbed
system are analyzed. The proposed fast–slow MPC design
does not require communication between the two MPCs, and
thus, it can be classified as decentralized in nature. A chemi-
cal process example which exhibits two-time-scale behavior
is used to demonstrate the structure and implementation of
the fast–slow MPC architecture in a practical setting. Exten-
sive simulations are carried out to assess the performance
and computational efficiency of the fast–slow MPC system.

Preliminaries

Notation. The operator |�| is used to denote Euclidean norm
of a vector and the symbol Xr is used to denote the set Xr: ¼
{x [ Rnx: V(x) � r} where V is a positive definite scalar func-
tion. For any measurable (with respect to the Lebesgue measure)
function w: R�0 ! Rl, kwk denotes ess.sup.|w(t)|, t � 0. A func-
tion c:R�0 ! R�0 is said to be of class K if it is continuous,
nondecreasing, and is zero at zero. A function b: R�0 � R�0 !
R�0 is said to be of class KL if, for each fixed t, the function
b(�,t) is of class K and, for each fixed s, the function b(s, �) is
nonincreasing and tends to zero at infinity. The symbol diag(v)
denotes a matrix whose diagonal elements are the elements of
vector v and all the other elements are zeros.

Class of nonlinear singularly perturbed systems

In this work, we focus on nonlinear singularly perturbed
systems in standard form with the following state-space
description

_x ¼ f ðx; z; �; us;wÞ; xð0Þ ¼ x0
� _z ¼ gðx; z; �; uf ;wÞ; zð0Þ ¼ z0

(1)

where x [ Rn and z [ Rm denote the vector of state variables, e
is a small positive parameter, w [ Rl denotes the vector of
disturbances and us [ U ( Rp and uf [ V ( Rq are two sets of
manipulated inputs. The sets U and V are nonempty convex
sets which are defined as follows

U :¼ fus;iðtÞ : jus;iðtÞj�umax
s;i ; i 2 ½1; p�g

V :¼ fuf ;jðtÞ : juf ;jðtÞj�umax
f ;j ; j 2 ½1; q�g (2)

where umax
s;i and umax

f ;j are positive real numbers, specifying the
input constraints. The disturbance vector is assumed to be
absolutely continuous and bounded, i.e., W: ¼ {w(t) [ Rl: |w(t)|
� h} where h is a positive real number. Because the small

parameter e multiplies the time derivative of the vector z in the
system of Eq. 1, the separation of the slow and fast variables in
Eq. 1 is explicit, and thus, we will refer to the vector x as the
slow states and to the vector z as the fast states. We assume
that the vector fields f and g are sufficiently smooth in Rn �
Rm � [0, e) � Rp � Rl and Rn � Rm � [0, e) � Rq � Rl,
respectively, for some e [ 0, and that the origin is an
equilibrium point of the unforced nominal system (i.e., system
of Eq. 1 with us ¼ 0, uf ¼ 0, and w ¼ 0).

With respect to the control problem formulation, we
assume that the fast states z are sampled continuously and
their measurements are available for all time t (for example,
variables for which fast sampling is possible usually include
temperature, pressure and hold-ups) while the slow states x
are sampled synchronously and are available at time instants
indicated by the time sequence {tk�0} with tk ¼ t0 þ kD, k
¼ 0,1,… where t0 is the initial time and D is the measure-
ment sampling time of the slow states (for example, slowly
sampled variables usually involve species concentrations).
The set of manipulated inputs uf is responsible for stabilizing
the fast dynamics of Eq. 1 and for this set the control action
is assumed to be computed every Df, while the set of manip-
ulated inputs us is evaluated every Ds and is responsible for
stabilizing the slow dynamics and enforcing a desired level
of optimal closed-loop performance. The relationship
between D, Ds, and Df will be discussed later.

Two-time-scale decomposition

The explicit separation of slow and fast variables in the
system of Eq. 1 allows decomposing it into two separate
reduced-order systems evolving in different time-scales. To
proceed with such a two-time-scale decomposition and to
simplify the notation of the subsequent development, we will
first address the issue of controlling the fast dynamics.
Because there is no assumption that the fast dynamics of Eq.
1 are asymptotically stable, we assume the existence of a
fast MPC law uf that renders the fast dynamics asymptoti-
cally stable in a sense to be made precise in Assumption 2
later. In contrast to previous approaches to uf controller
design (e.g., Ref. 1), we focus on the design of a feedback
control law that does not modify the open-loop equilibrium
manifold for the fast dynamics. This is in contrast to our
previous work 10 where the fast feedback uf modifies the
equilibrium manifold for the fast dynamics in the closed-
loop system. This implies that when we set e ¼ 0 in the
singularly perturbed system of Eq. 1 to derive the slow
subsystem uf ¼ 0, and the resulting slow subsystem takes
the form

dx

dt
¼ f ðx; z; 0; us;wÞ (3a)

0 ¼ gðx; z; 0; 0;wÞ (3b)

Assumption 1 below is a standard requirement in singularly
perturbation theory (please see, for example Ref. 1) and it is
made to ensure that the system of Eq. 1 has an isolated
equilibrium manifold for the fast dynamics. On this manifold, z
can be expressed in terms of x and w using an algebraic
expression; note that g(x, z, 0, 0, w) is in this case independent
of the expression of the fast feedback control law uf. This
assumption does not pose any significant limitations in practical
applications but it is a necessary one in the singular perturbation
framework to construct a well-defined slow subsystem.
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Assumption 1. The equation g(x, z, 0, 0, w) ¼ 0 possesses
a unique root

z ¼ ~gðx;wÞ (4)

with the properties that g~: Rn � Rl ! Rm and its partial
derivatives @~g

@x ;
@~g
@x are sufficiently smooth.

Using z ¼ g~(x, w), we can rewrite Eq. 3 as follows

dx

dt
¼ f ðx; ~gðx;wÞ; 0; us;wÞ ¼: fsðx; us;wÞ (5)

We will refer to the subsystem of Eq. 5 as the slow subsystem.
Introducing the fast time scale s ¼ t

e and the deviation
variable y ¼ z � g~(x, w), we can rewrite the nonlinear singu-
larly perturbed system of Eq. 1 as follows

dx

ds
¼ ef ðx; yþ ~gðx;wÞ; e; us;wÞ

dy

ds
¼ gðx; yþ ~gðx;wÞ; e; uf ;wÞ � e

@~g

@w
_w

� e
@~g

@x
f ðx; yþ ~gðx;wÞ; e; us;wÞ

(6)

Setting e ¼ 0, we obtain the following fast subsystem

dy

ds
¼ gðx; yþ ~gðx;wÞ; 0; uf ;wÞ (7)

where x and w can be considered as ‘‘frozen’’ to their initial
values.

Slow-fast subsystem stabilizability assumptions

We assume that there exists a Lyapunov-based sufficiently
smooth control law hs(x) ¼ [hs1(x) … hsp(x)]

T with us,i ¼ hsi(x),
i ¼ 1,…,p, which renders the origin of the nominal closed-loop
slow subsystem of Eq. 5 asymptotically stable while satisfying
the input constraints for all the states x inside a given stability
region. Such an explicit controller can be designed using Lya-
punov-based control techniques.13,14 Using converse Lyapunov
theorems,15,13,14 this assumption implies that there exist func-
tions as,i(�), i ¼ 1,2,3 of class K and a continuously differentia-
ble Lyapunov function Vs(x) for the nominal closed-loop slow
subsystem that satisfy the following inequalities

as;1ðjxjÞ � VsðxÞ � as;2ðjxjÞ
@VsðxÞ
@x

ðfsðx; hsðxÞ; 0ÞÞ � � as;3ðjxjÞ
hsðxÞ 2 U

(8)

for all x [ Ds ( Rn where Ds is an open neighborhood of the
origin. We denote the region Xqs ( Ds as the stability region
of the closed-loop slow subsystem under the Lyapunov-based
controller hs(x). By continuity, the smoothness property
assumed for the vector fields fs(x, us, w) and taking into
account that the manipulated inputs us,i, i ¼ 1,…,p, and the
disturbance w are bounded in convex sets, there exists a
positive constant Ms such that

jfsðx; us;wÞj � Ms (9)

for all x [ Xqs, us [ U, and w [ W. In addition, by the
continuous differentiable property of the Lyapunov function
Vs(x) and the smoothness property assumed for the vector field
fs(x,us,w), there exist positive constants Lx and Lws

such that

@Vs

@x
fsðx; us;wÞ � @Vs

@x
fsðx0; us;wÞ

����
���� � Lxjx� x0j

@Vs

@x
fsðx; us;wÞ � @Vs

@x
fsðx; us;w0Þ

����
���� � Lws

jw� w0j
(10)

for all x,x
0
[ Xqs, us [ U, and w, w

0
[ W.

Assumption 2. There exists a feedback control law uf ¼
p(x)y [ V where p(x) is a sufficiently smooth vector function
of its argument, such that the origin of the closed-loop fast
subsystem

dy

ds
¼ gðx; yþ ~gðx;wÞ; 0; pðxÞy;wÞ (11)

is globally asymptotically stable, uniformly in x [ Rn and w [
Rl, in the sense that there exists a class KL function by such
that for any y(0) [ Rm

jyðtÞj � by jyð0Þj; t
e

� �
(12)

for t � 0.
This assumption implies that there exist functions af,i(�), i

¼ 1,2,3 of class K and a continuously differentiable Lyapu-
nov function Vf(y) for the nominal closed-loop fast subsys-
tem that satisfy the following inequalities

af;1ðjyjÞ � VfðxÞ � af;2ðjyjÞ
@VfðxÞ
@y

ðgðx; yþ ~gðx;wÞ; 0; pðxÞy;wÞÞ � �af;3ðjyjÞ
pðxÞy 2 V

(13)

for all y [ Df ( Rm where Df is an open neighborhood of the
origin. We denote the region Xqf ( Df as the stability region
of the closed-loop fast subsystem under the nonlinear
controller p(x)y.

By continuity, the smoothness property assumed for the vec-
tor fields g(x,y,0,uf,w) and taking into account that the manipu-
lated inputs uf,j, j ¼ 1,…,q, and the disturbance w are bounded
in convex sets, there exists a positive constant Mf such that

jgðx; y; 0; uf ;wÞj � Mf (14)

for all y [ Xqf, uf [ V, and w [W. In addition, by the continuous
differentiable property of the Lyapunov function Vf(x) and the
smoothness property assumed for the vector field g(x,y,0,uf,
w), there exist positive constants Ly and Lwf

such that

@Vf

@y
gðx; y; 0; uf ;wÞ � @Vf

@y
gðx; y0; 0; uf ;wÞ

����
���� � Lyjy� y0j

@Vf

@y
gðx; y; 0; uf ;wÞ � @Vf

@y
gðx; y; 0; uf ;w0Þ

����
���� � Lwf

jw� w0j
(15)

for all y,y
0
[ Xqf, uf [ V, and w, w

0
[ W.

Fast-Slow MPC Design

The singular perturbation framework of Eq. 1 can be used
to develop composite control systems where an MPC is used
in the fast time scale and another MPC is used in the slow
time-scale. A schematic of the proposed composite fast–slow
MPC architecture is shown in Figure 1. In this case, a conven-
ient way from a control problem formulation point of view is
to design a fast-MPC that uses feedback of the deviation vari-
able y in which case uf is only active in the boundary layer
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(fast motion of the fast dynamics) and becomes nearly zero in
the slow time-scale. In this case, there is no need for commu-
nication between the fast MPC and the slow MPC (please see
Remark 2 later). Specifically, referring to the singularly per-
turbed system of Eq. 6, the cost can be defined as

J ¼ Js þ Jf ¼
Z ts

0

xTð~sÞQsxð~sÞ þ uTs ð~sÞRsusð~sÞ
� �

d~s

þ
Z tf

0

yTð~sÞQfyð~sÞ þ uTf ð~sÞRfufð~sÞ
� �

d~s ð16Þ

where Qs, Qf, Rs, Rf are positive definite weighting matrices,
and ts and tf are the prediction horizons for the parts of the cost
focusing on the slow and fast subsystems, respectively.

Lyapunov-based slow MPC formulation

Referring to the slow subsystem of Eq. 5, we use the
LMPC proposed in6 which guarantees practical stability of
the closed-loop system and allows for an explicit characteri-
zation of the stability region to compute us. The LMPC is
based on the Lyapunov-based controller hs(x). The controller
hs(x) is used to define a stability constraint for the LMPC
controller which guarantees that the LMPC controller inher-
its the stability and robustness properties of the Lyapunov-
based controller hs(x). The LMPC controller is based on the
following optimization problem

min
us2SðDsÞ

Z NsDs

0

½~xTð~sÞQs~xð~sÞ þ uTs ð~sÞRsusð~sÞ�d~s (17a)

s:t: _~xð~sÞ ¼ fsð~xð~sÞ; us; 0Þ (17b)

usð~sÞ 2 U (17c)

~xð0Þ ¼ xðtkÞ (17d)

@VsðxÞ
@x

fsðxðtkÞ; usð0Þ; 0Þ � @VsðxÞ
@x

fsðxðtkÞ; hsðxðtkÞÞ; 0Þ
(17e)

where S(Ds) is the family of piece-wise constant functions with
sampling period Ds, Ns is the prediction horizon, x(tk) is the
state measurement obtained at tk, x~ is the predicted trajectory
of the nominal system with us, the input trajectory computed
by the LMPC of Eq. 17. The optimal solution to this
optimization problem is denoted by u�s (~s|tk), and is defined
for ~s [[0,Ns Ds). Note that in the MPC of Eq. 17, the control
action is calculated every Ds which is the sampling interval of
the slow states (i.e., D ¼ Ds).

The optimization problem of Eq. 17 does not depend on
the uncertainty and guarantees that the system in closed-loop
with the LMPC controller of Eq. 17 maintains the stability

properties of the Lyapunov-based controller. The constraint
of Eq. 17e guarantees that the value of the time derivative of
the Lyapunov function at the initial evaluation time of the
LMPC is lower or equal to the value obtained if only the
Lyapunov-based controller hs(x) is implemented in the
closed-loop system in a sample-and-hold fashion. This is the
constraint that allows proving that the LMPC inherits the
stability and robustness properties of the Lyapunov-based
controller. The manipulated inputs of the closed-loop slow
subsystem under the LMPC controller are defined as follows

usðtÞ ¼ u�s ðt� tkjtkÞ; 8t 2 ½tk; tkþ1Þ (18)

The main property of the LMPC controller is that the origin of
the closed-loop system is practically stable for all initial states
inside the stability region Xqs for a sufficient small sampling
time Ds and disturbance upper bound h. The main advantage of
LMPC approaches with respect to Lyapunov-based control is
that optimality considerations can be explicitly taken into
account (as well as constraints on the inputs and the states6) in
the computation of the control action within an online
optimization framework.

Proposition 1 (c.f.6,16). Consider the slow subsystem of
Eq. 5 in closed-loop under the LMPC of Eq. 18 based on a
Lyapunov-based controller hs(x) that satisfies the conditions
of Eq. 8. Let ews

[ 0, Ds [ 0 and qs [ qss [ 0, h[ 0 satisfy
the following constraint

� as;3ða�1
s;2 ðqssÞÞ þ LxMsDs þ Lws

h � �ews
=Ds (19)

There exists a class KL function bx and a class K function cx
such that if x(0) [ Xqs, then x(t) [ Xqs for all t � 0 and

jxðtÞj � bxðjxð0Þj; tÞ þ cxðq�s Þ (20)

with q�s ¼ max{Vs(x(t þ Ds)):Vs(x(t)) � qss}.

Lyapunov-based fast MPC formulation

Referring to the fast subsystem of Eq. 7, the fast MPC at
time tk is formulated as follows

min
uf2SðDfÞ

Z NfDf

0

½~yTðŝÞQf~yðŝÞ þ uTf ðŝÞRfufðŝÞ�dŝ (21a)

s:t:
d~y

dŝ
¼ gðxðtkÞ; ~yþ ~gðxðtkÞ; 0Þ; 0; uf ; 0Þ (21b)

uf 2 V (21c)

~yð0Þ ¼ yðtkÞ (21d)

@VfðyÞ
@y

gðxðtkÞ; yðtkÞ þ ~gðxðtkÞ; 0Þ; 0; uf ; 0Þ

� @VfðyÞ
@y

gðxðtkÞ; yðtkÞ þ ~gðxðtkÞ; 0Þ; 0; pðxðtkÞÞyðtkÞ; 0Þ
(21e)

where S(Df) is the family of piece-wise constant functions with
sampling period Df, Nf is the prediction horizon of this MPC,
y(tk) is the state measurement obtained at tk, y~ is the predicted
trajectory of the nominal system with uf, the input trajectory
computed by the LMPC of Eq. 21. The optimal solution to this
optimization problem is denoted by u�f (ŝ|tk), and is defined
for ŝ [ [0,NfDf). Note that in the MPC of Eq. 21, the control

Figure 1. A schematic of the composite control system
using MPC in both the fast and slow time-
scales.
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action is calculated every Df, the fast state z is available every
Df and the slow state x is available every Ds. Note also that we
assume that Ds is an integer multiple of Df.

The manipulated inputs of the closed-loop fast subsystem
under the LMPC controller are defined as follows

uf ðtÞ ¼ u�f ðt� tkjtkÞ; 8t 2 ½tk; tk þ Df Þ (22)

Proposition 2 (c.f.6,16). Consider the fast subsystem of Eq. 7 in
closed-loop under the LMPC of Eq. 22 based on a nonlinear
feedback control law p(x)y that satisfies the conditions of
Eq. 13. Let ewf

[ 0, Df [ 0 and qf [ qfs [ 0, h [ 0 satisfy
the following constraint

� af;3ða�1
f;2 ðqfsÞÞ þ LyMfDf þ Lwf

h � �ewf
=Df (23)

Then, there exists a class KL function by and a class K function
cy such that if y(0) [ Xqf, then y(t) [ Xqf for all t � 0 and

jyðtÞj � by jyð0Þj; t
e

� �
þ cyðq�f Þ (24)

with q�f ¼ max{Vf(y(t þ Df)):Vf(y(t)) � qfs}, uniformly in x [
Xqs and w [ W.

Remark 1. The fast LMPC of Eq. 21 utilizes feedback of the
fast state vector z which is obtained continuously (fast sampling
of the fast states) as well as feedback of the slow states that is
available at tk,tkþ1,… where tkþ1 ¼ tk þ D. Because the fast
MPC has to compute its control action every Df, the measure-
ment x(tk) will be used in the controller of Eq. 21 for all fast
sampling times, Df, within [tk,tk þ D] until a new measurement
of the slow state vector is obtained. Because x is practically
frozen in the boundary layer - time interval in which z changes
a lot but x stays nearly fixed (depending on the value of e),
- the stability of the closed-loop fast subsystem uniformly in
x and w can be proved; please see also17 and next section.

Stability Analysis

The closed-loop stability of the system of Eq. 1 under the
LMPCs of Eqs. 17 and 21 is established in the following
theorem under appropriate conditions.

Theorem 1. Consider the system of Eq. 1 in closed-loop with
uf and us computed by the LMPCs of Eqs. 22 and 18 based on
controllers p(x)y and hs(�) that satisfies the conditions of Eqs.
13 and 8. Let also Assumptions 1 and 2 and the condition of
Eqs. 19 and 23 hold. Then there exist functions bx and by of
class KL, a pair of positive real numbers (d,d) and e*[ 0 such
that if max{|x(0)|,|y(0)|,kwkk, k _wk} � d and e [(0, e*], then

jxðtÞj � bxðjxð0Þj; tÞ þ cxðq�s Þ þ d

jyðtÞj � by jyð0Þj; t
e

� �
þ cyðq�f Þ þ d

(25)

for all t � 0.
Proof: When uf ¼ u�f and us ¼ u�s are determined by the

LMPCs of Eqs. 22 and 18, respectively, the closed-loop sys-
tem takes the following form

_x ¼ f ðx; z; e; u�s ;wÞ; xð0Þ ¼ x0

e _z ¼ gðx; z; e; u�f ;wÞ; zð0Þ ¼ z0
(26)

We will first compute the slow and fast closed-loop
subsystems. Setting e ¼ 0 in Eq. 26 and taking advantage of
the fact that u�f ¼ 0 when e ¼ 0, we obtain

dx

dt
¼ f ðx; z; 0; u�s ;wÞ
0 ¼ gðx; z; 0; 0;wÞ

(27)

Using that the second equation has a unique, isolated solution
z ¼ g~(x, w) (Assumption 1), we can rewrite Eq. 27 as follows

dx

dt
¼ f ðx; ~gðx;wÞ; 0; u�s ;wÞ ¼ fsðx; u�s ;wÞ (28)

According to Proposition 1, the state x(t) of the closed-loop
slow subsystem of Eq. 28 starting from x(0) [ Xqs stays in Xqs

(i.e., x(t) [ Xqs Vt � 0) and satisfies the bound of Eq. 20.
We now turn to the fast subsystem. Using s ¼ t

e and y ¼ z
� g~(x, w), the closed-loop system of Eq. 26 can be written as

dx

ds
¼ ef ðx; yþ ~gðx;wÞ; e; u�s ;wÞ

dy

ds
¼ gðx; yþ ~gðx;wÞ; e; u�f ;wÞ

� e
@~g

@w
_w� e

@~g

@x
f ðx; yþ ~gðx;wÞ; u�s ;wÞ ð29Þ

Setting e ¼ 0, the following closed-loop fast subsystem is
obtained

dy

ds
¼ gðx; yþ ~gðx;wÞ; 0; u�f ;wÞ (30)

According to Proposition 2, the state y(t) of the closed-loop
fast subsystem of Eq. 30 starting from y(0) [ Xqf stays in Xqf

(i.e., y(t) [ Xqf Vt � 0) and satisfies the bound of Eq. 24.
Therefore, using similar arguments to the proof of Theorem 1
in,17 we have that there exist functions bx and by of class KL,
positive real numbers (d,d) (note that the existence of d such
that |x(0)| � d and |y(0)| � d imply that x(0) [ Xqs and y(0) [
Xqf follows from the smoothness of Vs(x) and Vf(y)), and e*[
0 such that if max{|x(0)|,|y(0)|,kwk,k _wk} � d and e [(0, e*],
then, the bounds of Eq. 25 hold for all t � 0. n

Remark 2. Referring to the composite fast–slow MPC
architecture of Figure 1, we note that it can find an interpre-
tation in the context of distributed MPC architectures.18,19,20

While conventional distributed MPC design where one MPC
could manipulate uf and another MPC could manipulate us
would normally require the use of communication between the
fast MPC and the slow MPC to coordinate their actions,21,22

the fast-slow MPC architecture of Figure 1 takes advantage
of the two-time-scale system property to design a fast-MPC
that uses feedback of the deviation variable y in which case
uf is only active in the boundary layer (fast motion of the fast
dynamics) and becomes nearly zero in the slow time-scale. As
a result, there is no need for communication between the fast
MPC and the slow MPC; in this sense, the control structure
of Figure 1 can be classified as decentralized. This point dem-
onstrates that accounting for time-scale multiplicity can lead
to simplification in the communication strategy of distributed
MPCs. Such a two-time-scale DMPC architecture takes
advantage of the time-scale separation in the process model
and yields near optimal performance in a sense to be pre-
cisely defined in the next section.

Near Optimality

In this section, we establish that the finite-time cost of the
closed-loop singularly perturbed system of Eq. 26 under the
fast-slow MPCs, converges to the corresponding cost
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computed on the basis of the fast and slow subsystems. It
should be emphasized that the finite-time analysis of the
closed-loop system optimality relies on the practical closed-
loop system stability established in the previous section. We
note that after the fast and slow states enter their correspond-
ing final invariant set, we can only guarantee boundedness
of the closed-loop system states but not eventual conver-
gence to the origin. Therefore, the integral of the closed-
loop cost over the infinite-time interval is infinite. As a con-
sequence, we focus on near-optimality over a finite-time
interval.

We assume w ¼ 0 and define the finite-time interval [0,tI],
where tI is the time needed for the state of the closed-loop
system of Eq. 26 starting from the initial condition (x(0),z(0))
that satisfies the conditions of Theorem 1 to enter an invariant
set containing the origin in which x(tI) [ Xqss and y(tI) [ Xqfs .
Referring to the system of Eq. 26 with w ¼ 0, the finite-time
cost in the time interval [0,tI] is defined as follows

J ¼ Js þ Jf ¼
Z tI

0

xTð�sÞQsxð�sÞ þ u�
T

s ð�sÞRsu
�
s ð�sÞ

h i
d�s

þ
Z tI

0

yTð�sÞQfyð�sÞ þ u�
T

f ð�sÞRfu
�
f ð�sÞ

h i
d�s (31)

where Qs,Rs,Qf,Rf are appropriate matrices defined in the
formulation of Eqs. 17 and 21. We now define the trajectory of
the closed-loop slow subsystem under the slow LMPC

_̂x ¼ fsðx̂; u�s ; 0Þ; x̂ð0Þ ¼ x0 (32)

for t [ [0,tI], and the corresponding cost is defined as follows

J�s ¼
Z tI

0

x̂Tð�sÞQsx̂ð�sÞ þ u�
T

s ð�sÞRsu
�
s ð�sÞ

h i
d�s (33)

Similarly, we define the trajectory of the closed-loop fast
subsystem under the fast LMPC

dŷ

ds
¼ gðx; ŷþ ~gðx; 0Þ; 0; u�f ; 0Þ; ŷð0Þ ¼ y0 (34)

and the corresponding cost is defined as follows

J�f ¼
Z tb

0

ŷT
�s
e

� �
Qf ŷ

�s
e

� �
þ u�

T

f

�s
e

� �
Rfu

�
f

�s
e

� �	 

d�s (35)

where tb O(e). We now state the main result of this section.
Theorem 2. Consider the closed-loop system of Eq. 26

under the slow and fast LMPCs of Eqs. 17 and 21, respec-
tively, and its corresponding slow and fast subsystems of
Eqs. 32 and 34. Let tI be the time needed for the state of the
closed-loop system of Eq. 26 starting from the initial condi-
tion (x(0),z(0)) satisfying the conditions of Theorem 1 to
enter an invariant set containing the origin in which x(tI) [
Xqss and y(tI) [ Xqfs. Then, J ! J�s þ J�f as e ! 0.

Proof. We exploit closeness of solutions results and com-
bine them with optimality results to prove that the two-time-
scale LMPC is near-optimal in the sense that the cost function
associated with the full closed-loop system approaches the
sum of the optimal costs of the reduced subsystems when e
! 0. Using the closed-loop stability results of Eq. 25, we can
obtain time tI which is the time needed for the state of the
closed-loop system of Eq. 26 starting from (x(0),z(0)) satisfy-
ing the conditions of Theorem 1 to enter an invariant set con-

taining the origin in which x(tI) [ Xqss and y(tI) [ Xqfs. Using
the bound of Eq. 25 and similar arguments to the ones in the
proof of Tikhonov’s theorem (see Theorem 9.1 in Ref. 23),
there exists e0 [(0, e

*] such that Ve [(0, e0]

xðtÞ ¼ x̂ðtÞ þ OðeÞ; 8t 2 ½0; tI� (36)

yðtÞ ¼ ŷ
t

e

� �
þOðeÞ; 8t 2 ½0; tI� (37)

and

u�s ðxðtÞÞ ¼ u�s ðx̂ðtÞÞ þ OðeÞ; 8t 2 ½0; tI�

u�f ðxðtÞ; yðtÞÞ ¼ u�f ðx̂ðtÞ; ŷðteÞÞ þ OðeÞ; 8t 2 ½0; tI�
(38)

From the estimates of Eqs. 36, 37, and 38, it can be concluded
that there exists a positive real number N such that Eq. 31
yields

J ¼
Z tI

0

xTð�sÞQsxð�sÞ þ u�
T

s ðxð�sÞÞRsu
�
s ðxð�sÞÞ

h i
d�s

þ
Z tI

0

yTð�sÞQfyð�sÞ þ u�
T

f ðxð�sÞ; yð�sÞÞRfu
�
f ðxð�sÞ; yð�sÞÞ

h i
d�s

¼
Z tI

0

x̂Tð�sÞQsx̂ð�sÞ þ u�
T

s ðx̂ð�sÞÞRsu
�
s ðx̂ð�sÞÞ

h i
d�s

þ
Z tb

0

ŷT
�s
e

� �
Qf ŷ

�s
e

� �
þu�

T

f x̂ð�sÞ; ŷ �s
e

� �� �	

� Rfu
�
f x̂ð�sÞ; ŷ �s

e

� �� �

d�sþ �Ne

¼ J�s þ J�f þ �Ne ð39Þ
Thus, as e ! 0, we have that J ! J�s þ J�f .

Remark 3. Most of the literature on control of singularly
perturbed systems (e.g., [10]) deals with systems in which the
manipulated input (or input vector), u, is decomposed into two
components, us and uf, (i.e., u ¼ us þ uf) and continuous (not
sample-and-hold) implementation of the control action on the
process (i.e., singularly perturbed system) is assumed. This for-
mulation for the manipulated inputs and the control action
implementation, however, is not general enough to deal with
MPC as the method used for feedback design. Specifically, MPC
implementation should be done in a sample-and-hold fashion,
and moreover, different sampling times should be utilized by the
manipulated inputs used to control the fast and slow dynamics,
respectively. In particular, the manipulated inputs used to con-
trol the fast dynamics, uf, should use a small sampling time,
while the manipulated inputs used to control the slow dynamics,
us, could use a larger sampling time. Such a difference in sam-
pling times would not have been possible in the standard singu-
larly perturbed control problem formulation where continuous
implementation of manipulated inputs is assumed.

Chemical Process Example

In this section, we consider a chemical process example to
demonstrate the structure and implementation of the proposed
fast–slow MPC architecture in a practical setting. The chemi-
cal process consists of a network of two continuously stirred
tank reactors (CSTRs) and one flash tank separator with
recycle. Specifically, fresh feed of species A goes into CSTR
1 through stream F0. An elementary reaction (r1) A ! B
takes place inside CSTR 1. The outlet of CSTR 1 is fed into
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CSTR 2, where a second reaction takes place (r2) B þ C !
D and produces the desired product D; note that r2 does not
take place in CSTR 1 because catalyst is not added in CSTR
1. Another stream F4 supplies reactant C into CSTR 2 contin-
uously. All leftover materials from CSTR 2 enter a flash sepa-
rator where most of the reactants are being recycled back to
CSTR 1. The dynamic equations describing the behavior of
the process, obtained through material and energy balances
under standard modeling assumptions, are given below

V1

dCA1

dt
¼ F0CA0 þ FrCAr � F1CA1 � k1e

�E1=RT1CA1V1

(40a)

V1

dCB1

dt
¼ FrCBr � F1CB1 þ k1e

�E1=RT1CA1V1 (40b)

V1

dCC1

dt
¼ FrCCr � F1CC1 (40c)

V1

dCD1

dt
¼ FrCDr � F1CD1 (40d)

qmcpmV1

dT1
dt

¼ F0qmAcpmATA0 þ FrqmcpmT3 � F1qmcpmT1

þ ð�DHr1Þk1e�E1=RT1CA1V1 þ Q1 ð40eÞ

V2

dCA2

dt
¼ F1CA1 � F2CA2 � k1e

�E1=RT2CA2V2 (40f)

V2

dCB2

dt
¼ F1CB1 � F2CB2 þ k1e

�E1=RT2

CA2V2 � k2e
�E2=RTCB2CC2V2 ð40gÞ

V2

dCC2

dt
¼ F1CC1 þ F4CC0 � F2CC2 � k2e

�E2=RT2CB2CC2V2

(40h)

V2

dCD2

dt
¼ F1CD1 � F2CD2 þ k2e

�E2=RT2CB2CC2V2 (40i)

qmcpmV2

dT2
dt

¼ F1qmcpmT1 þ F4qmccpmcTC0

� F2qmcpmT2 þ ð�DHr1Þk1e�E1=RT2CA2V2

þ ð�DHr2Þk2e�E2=RT2CB2CC2V2 þ Q2 ð40jÞ

V3

dCA3

dt
¼ F2CA2 � F3CA3 � FrCAr (40k)

V3

dCB3

dt
¼ F2CB2 � F3CB3 � FrCBr (40l)

V3

dCC3

dt
¼ F2CC2 � F3CC3 � FrCCr (40m)

V3

dCD3

dt
¼ F2CD2 � F3CD3 � FrCDr (40n)

qmcpmV3

dT3
dt

¼ F2qmcpmðT2 � T3Þ �
XA;B;C;D
i

FrCirH
vap
i þ Q3 (40o)

where the definitions of the the process variables and their
assigned values are shown in Table 1 and Table 2, respectively.

The models of the CSTRs and of the separator are devel-
oped under the assumptions that the liquid hold-up level of
all tanks is fixed and the relative volatility of each species is
constant. The following algebraic equations govern the molar
composition of different species at the recycle stream

xAr ¼ aACA3

aACA3 þ aBCB3 þ aCCC3 þ aDCD3

xBr ¼ aBCB3

aACA3 þ aBCB3 þ aCCC3 þ aDCD3

xCr ¼ aCCC3

aACA3 þ aBCB3 þ aCCC3 þ aDCD3

xDr ¼ aDCD3

aACA3 þ aBCB3 þ aCCC3 þ aDCD3

where xir, i ¼ A, B, C, D represents the molar composition of
species A, B, C, and D, respectively. Each of the tanks has an
external heat input that is used as manipulated input, labeled as
Q1, Q2, and Q3. In this example, the liquid holdup V2 in the
catalytic reactor CSTR 2 is significantly smaller than the
liquid holdup in CSTR 1, V1, and the flash separator V3.

Taking this into account, the process model of Eq. 40 can
be converted into the standard singularly perturbed form by
dividing Eqs. 40f–40j by V1 and defining e ¼ V2

V1
to derive

the following state-space model

_x ¼ f ðx; z; e;Q1;Q3;wsÞ; xð0Þ ¼ x0

e _z ¼ gðx; z; e;Q2;wf Þ; zð0Þ ¼ z0
(41)

where the fast state z ¼ [CA2 CB2 CC2 CD2 T2] and the slow state
x consists of the rest of the state variables. With respect to the
manipulated input decomposition, Q1 and Q3 enter the slow
process states, x, and will be regulated by the slow MPC, and Q2

enters the fast process states, z, and will be regulated by the fast
MPC. Finally, we define the following deviation variables z ¼ z
� zset and x ¼ x � xset, where zset and xset are the desired (final)
steady-state values and are defined in Table 3.

Table 1. Process Variables

Ci1, i ¼ A,B,C D Concentration of different species at CSTR-1
Ci2, i ¼ A,B,C D Concentration of different species at CSTR-2
Ci3, i ¼ A,B,C D Concentration of different species at CSTR-3
Cir, i ¼ A,B,C D Concentration of different species at Fr

Tj, i ¼ 1,2,3,r Temperatures of CSTR-1,2,3
TA0,TC0 Temperatures of stream F0 and F4

V1, V2 and V3 Vessel volume of CSTR-1,2 and separator
qm, qmA and qmC Density of the mixture, species A and C
cm, cmA and cmC Heat capacity of the mixture, species A and C
D Hr1

and D Hr2
Heat of reaction r1 and r2

k1, and k2 Reaction coefficients of r1 and r2
E1, and E2 Activation energy of r1 and r2
Hvap

i , i ¼ A,B,C,D Enthalpy of vaporization of different species

Table 2. Process Values

V1 4.0 m3 V2 0.2 m3

V3 3.0 m3 TA0 298.15 K
TC0 298.15 K CA0 2 kmol m�3

CC0 2 kmol m�3 F0 0.04 m3 s�1

F4 0.05 m3 s�1 Fr 1.8 m3 s�1

qm 900.0 kg m�3 qmA 950.0 kg m�3

qmC 870.0 kg m�3 cpm 0.231 kcal kg�1 K�1

cpmA 0.214 kcal kg�1 K�1 cpmC 0.251 kcal kg�1 K�1

DHr1
5.4 � 101 kcal mol�1 DHr2

9.98 � 101 kcal mol�1

k1 3.35 � 103 s�1 k2 5.25 � 104 m3 kmol�1 s�1

E1 1.04 � 104 kcal kmol E2 4.0 � 103 kcal kmol
R 1.987 kcal kmol�1 K�1 Hvap

A 100 kcal kmol�1

Hvap
B 110 kcal kmol�1 Hvap

C 120 kcal kmol�1

Hvap
D 120 kcal kmol�1
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Controller synthesis

In this section, we synthesize three control schemes: (a) a
centralized LMPC architecture, (b) an MPC architecture that
uses a fast explicit controller and a slow LMPC,10 and (c)
the composite fast–slow LMPC architecture introduced in
this article, shown in Figure 2. All controller designs have
the same objective to drive the system from an initial
steady-state to a final steady-state; both are stable steady-
states and are defined in Table 3. In the context of the cen-
tralized LMPC, the manipulated input vector is defined as u
¼ [u1 u2 u3]

T ¼ [Q1 � Qset
1 Q2 � Qset

2 Q3 � Qset
3 ]T for all

LMPC synthesis and their constraints are chosen to be

3:2e3 kcal � u1 � 6:0e3 kcal

� 5:5e3 kcal � u2 � �2:8e3 kcal

2:0e3 kcal � u3 � 4:0e3 kcal

We consider the following objective function in the centra-
lized LMPC design

Jc ¼
Z tI

0

½�xTð�sÞQc1�xð�sÞ þ �zTð�sÞQc2�zð�sÞ þ uTð�sÞRcuð�sÞ�d�s
(42a)

where Qc1 and Qc2 are weighting matrices and their diagonal
values are defined as the reciprocal of the average of the initial
and final steady-state values of the states they are associated
with, and Rc ¼ diag([1.0e � 8 1.0e � 8 1.0e � 10]) is also a
weighting matrix. With respect to the Lyapunov constraint,
three different proportional controllers are implemented as h(x)

u1 ¼ k1ðTset
1 � T1Þ (43a)

u2 ¼ k2ðTset
2 � T2Þ (43b)

u3 ¼ k3ðTset
3 � T3Þ (43c)

where Tset1 , Tset2 , and Tset3 are the final steady-state temperatures
of each vessel and k1, k2, and k3 are constant coefficients and
are chosen to be �60, 50, and 30, respectively. All diagonal
elements of the weighting matrices of the Lyapunov function
V ¼ xTP1x þ zTP2 z are chosen to be unity.

To synthesize the slow LMPC and the composite fast-
slow LMPC schemes, we first split the set of manipulated
inputs u into us ¼ [u1 u3] and uf ¼ [u2]. Following from Eq.
17, the slow time-scale objective function Js in this example
is chosen to be

Js ¼
Z tI

0

�xTð�sÞQc1�xð�sÞ þ uTs ð�sÞRsusð�sÞ
� �

d�s (44)

where Rs has the same values as in Rc for the same input
variables. To solve for Eq. 17c, the nonlinear algebraic equation
g(x, w) has to be solved at each slow sampling time when the
slow state measurements are available. The Lyapunov based
controller hs(x) in the slow LMPC design implements the same

proportional control law as in Eqs. 43a,c. To complete the
synthesis of the slow LMPC scheme, we assign the slow LMPC
to regulate the heat inputs Q1 and Q3 and assign the proportional
controller Eq. 43b to regulate the heat input Q2.

Finally, we use the following objective function Jf for the
fast LMPC

Jf ¼
Z tI

0

yTð�sÞQc2yð�sÞ þ uTf ð�sÞRfufð�sÞ
� �

ds (45)

where Rf ¼ 1.0e � 8 and y is defined as y ¼ z � g(x,w). The
formulation of fast LMPC requires that the nonlinear function
g(x,w) has to be solved at the end of each fast sampling time
where the slow state measurements are available. The controller
p(x)y appeared on the Lyapunov constraint at Eq. 21e is
designed to be a control law of the form p(x)y ¼ k4(g(x,w)� T2)
where k4 ¼ 25. Together with the slow LMPC design, this
completes the synthesis of the composite fast-slow LMPC.

Closed-Loop Results

The simulations are performed in Cþþ programming
environment by a Core2 Quad Q6600 computer. The simula-
tion time for each run is 510 seconds. We study the closed-
loop system stability and performance of each of the MPC
schemes, and by comparison, we evaluate the characteristics
of the composite fast-slow LMPC design in terms of stabil-
ity, optimality and control action evaluation time.

For all simulation studies, we use the same prediction hori-
zon N ¼ 1. The fast and slow state measurements are
assumed to be available at every three seconds (D ¼ 3 sec) to
all LMPC controllers, and the temperature measurement (T2)
is assumed to be continuously available to the proportional
controller used in the slow LMPC design that utilizes a fast
proportional controller. The initial time where all state meas-
urements are available is t ¼ 0 sec. The sampling times of
the centralized LMPC, slow LMPC and fast LMPC are Dc ¼
15 sec, Ds ¼ 15 sec, and Df ¼ 3 sec, respectively; note that
the measurement sampling time D is equal to Df. For each
LMPC scheme, only the first step from the computed optimal
input trajectory of the optimization problems is implemented
in each sampling time following a receding horizon scheme.
The manipulated input regulated by the proportional

Table 3. Initial Steady-State and Final Steady-State
Manipulated Input Values

Initial steady state (unit kcal)
Qint

1 ¼ 3.2e3 Qint
2 ¼ �3.7e3 Qint

3 ¼ 3.5e3

Final steady-state (unit kcal)
Qset

1 ¼ 5.2e3 Qset
2 ¼ �4.7e3 Qset

3 ¼ 2.8e3

Figure 2. Diagram of chemical process example and
fast-slow MPC architecture.
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controller, in the slow LMPC scheme that is combined with a
fast proportional controller, is also implemented in a sample-
and-hold fashion and its sampling time is denoted as DP

f .
The numerical method that is used to integrate the full pro-

cess model (i.e., singularly perturbed system with e [ 0) is
explicit Euler with a fixed time step equal to 0.001 sec; this
time step value was chosen to ensure stable numerical integra-
tion and sufficient accuracy. However, the numerical integra-
tion of the slow subsystem used in the slow LMPC scheme
was carried out with explicit Euler with time step 0.1 sec
because the slow subsystem is e-independent. The numerical
integration of the fast subsystem used in the fast LMPC
scheme was carried out with explicit Euler with time step
0.001 sec owing to its fast dynamics. The optimization prob-
lems of each LMPC scheme are solved using the open source

interior point optimizer Ipopt. The Hessian is approximated
by Quasi-Newton’s method. Regarding the termination criteria
and the maximum number of iterations, the values used by all
simulations are 10�3 and 150, respectively.

The closed-loop performance of all LMPC schemes is
illustrated in Figures 3 and 4. The trajectories of the slow
LMPC scheme with the fast proportional controller in Figure
3 are evaluated based on Eq. 42a for the purpose of compar-
ison. The performance costs in both figures clearly indicate
that both the centralized LMPC and the fast-slow LMPC
schemes stabilize the closed-loop process asymptotically to
the steady state. We also note that both the fast LMPC and
the slow LMPC in the composite fast-slow MPC design are
able to stabilize the fast and slow dynamics of the singularly
perturbed system asymptotically (Figure 4). On the other
hand, under the setting of DP

f ¼ 1 s, the slow LMPC scheme
using a fast explicit controller is not able to drive the
closed-loop system to the steady state. It causes oscillations
of the closed-loop system around the steady state, which
contributes to the increase of the performance cost with
increasing simulation time (Figure 3). This problem can be
resolved if the sampling time for the fast proportional con-
troller is reduced to 0.001 seconds; specifically, Figure 3
shows that in this case the oscillations diminish and the
closed-loop system converges to the final steady state gradu-
ally with a performance cost that is higher than the one of
the centralized LMPC. Finally, it is important to note that
we can not directly compare the optimal performance of the
centralized LMPC scheme and that of the composite fast-
slow LMPC scheme since they utilize different cost func-
tions; see also remark 4 below.

Figures 5 and 6 show the simulation results comparing the
computational speed between the centralized LMPC and the
composite fast-slow LMPC. Since the explicit separation
between the fast and slow dynamics reduces the dimension
of the process dynamic model and allows increasing the step
of numerical integration of the slow subsystem as well as
reduces the number of manipulated inputs for the slow
LMPC and the fast LMPC, the composite fast-slow LMPC
computes the control action significantly faster compared to
the centralized LMPC. Specifically, the results in Figures 5
and 6 indicate that the fast LMPC needs on average one

Figure 3. Performance cost of each controller design
based on Eq. 42a: the centralized LMPC
design (dotted-solid line with plus), the slow
LMPC design (dashed line with circles) with
the fast proportional controller using DP

f ¼ 1
s, and the slow LMPC design (solid line with
asterisks) with the fast proportional controller
using DP

f ¼ 0.001 s.

Figure 4. Fast-slow LMPC performance: (a) perform-
ance cost, Jf, of the fast LMPC, (b) perform-
ance cost, Js, of the slow LMPC and (c) over-
all cost, J.

Figure 5. The total evaluation time needed for each
evaluation of the control action by the cen-
tralized LMPC design (dashed-dotted line
with plus) and by the fast LMPC of the fast-
slow LMPC design (dashed line with circles).
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second for the control action evaluation at each fast sam-
pling time, and compared to the centralized LMPC, it is at
least five times faster on average. Similarly, the slow LMPC
is at least five times faster on average in evaluating its con-
trol actions at each slow sampling time compared to the
time needed for the centralized LMPC.

Remark 4. We note that in theorem 2 we establish that
when the singular perturbation parameter is sufficiently
small (but not zero), the value of the cost J computed on the
basis of the singularly perturbed system under the proposed
fast–slow LMPC design converges to the sum of the costs of
the fast and slow closed-loop subsystems (e ¼ 0) under the
same fast–slow LMPC design. This is an important point
that establishes the well-posedness of the fast–slow MPC
design for small e. The reason we present the centralized
LMPC application in the example is to compare the compu-
tational times between a brute-force design that neglects
time-scale separation (centralized LMPC) and a design that
accounts for time-scale separation (proposed fast–slow
LMPC design). Even if we use J ¼ Js þ Jf (the cost used in
the fast–slow LMPC design) in the centralized LMPC, the
resulting MPC still does not account for the time-scale sepa-
ration and the resulting controller structure is different, and
thus, a comparison of the centralized LMPC with the pro-
posed fast–slow LMPC design would not be consistent.

Conclusions

In this work, we focused on the theoretical development
of a composite fast-slow LMPC architecture for nonlinear
singularly perturbed systems in standard form and its appli-
cation to a chemical process which consists of two continu-
ous stirred tank reactors and a flash separator with recycle.
The proposed fast-slow MPC design is decentralized in na-
ture and enforces stability and near-optimality in the closed-
loop singularly perturbed system provided the singular per-
turbation parameter is sufficiently small. Extensive simula-
tions were carried out to compare the proposed architecture
with existing centralized LMPC techniques from computa-
tional time and closed-loop performance points of view.
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Figure 6. The total evaluation time needed for each
evaluation of the control action by the central-
ized LMPC design (dashed-dotted line with
plus) and by the slow LMPC of the fast-slow
LMPC design (dotted line with asterisks).
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