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a  b  s  t  r  a  c  t

This  work  focuses  on model  predictive  control  of nonlinear  singularly  perturbed  systems.  A  composite
control  system  using  multirate  sampling  (i.e.,  fast  sampling  of  the  fast  state  variables  and  slow  sampling
of  the  slow  state  variables)  and  consisting  of a “fast”  feedback  controller  that  stabilizes  the  fast  dynamics
and  a  model  predictive  controller  that  stabilizes  the  slow  dynamics  and  enforces  desired  performance
objectives  in  the  slow  subsystem  is  designed.  Using  stability  results  for  nonlinear  singularly  perturbed
systems,  the  closed-loop  system  is  analyzed  and  sufficient  conditions  for stability  are  derived.  A large-
scale nonlinear  reactor-separator  process  network  which  exhibits  two-time-scale  behavior  is  used  to
demonstrate  the  controller  design  including  a  distributed  implementation  of  the  predictive  controller.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Chemical processes and plants are characterized by nonlin-
ear behavior and strong coupling of physico-chemical phenomena
occurring at disparate time-scales. Examples include fluidized cat-
alytic crackers, distillation columns, biochemical reactors as well
as chemical process networks in which the individual processes
evolve in a fast time-scale and the network dynamics evolve in a
slow time-scale. Singular perturbation theory provides a natural
framework for modeling, analysis, order reduction and controller
design for nonlinear two-time-scale processes (e.g., [1,2]). Within
this framework, methods for controller design based on optimal
control (e.g., [3]), geometric control (e.g., [1,2]) and Lyapunov-based
control [4] have been developed.

Model predictive control (MPC) is a practically important con-
trol framework which can be used to design and coordinate control
systems and can explicitly handle input and state constraints. MPC
utilizes a model to predict the future evolution of the plant at
each sampling time according to the current state over a given
prediction horizon. MPC  utilizes these predictions in an on-line
optimization framework to obtain an optimal control input tra-
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jectory which minimizes an objective function subject to state
and input constraints. To reduce the dimensionality and com-
putational burden of the optimization problem, optimization is
performed over the set of piecewise constant trajectories with fixed
sampling time and finite prediction horizon. Once the optimiza-
tion problem is solved, only the first step of the optimal input is
implemented by the actuators, the rest of the trajectory is dis-
carded and the optimization is repeated in the next sampling
step (e.g., [5,6]). In [7],  a Lyapunov-based MPC  (LMPC) design was
proposed by incorporating a Lyapunov function based constraint
in the MPC  optimization problem to guarantee the closed-loop
stability. This LMPC design inherits the stability properties of a
pre-existing Lyapunov-based controller and has an explicitly char-
acterized stability region. In the context of control of large-scale
process networks within a centralized MPC  framework, the com-
putational complexity of MPC  may  increase significantly with the
increase of the number of state variables and manipulated inputs.
Moreover, a centralized control system for large-scale systems
may  be difficult to organize and maintain and is vulnerable to
potential process faults. To overcome these issues, distributed
MPC  (DMPC) can be utilized. In a DMPC framework, optimal
input trajectories are obtained by solving a number of lower-
dimension MPC  problems compared to the fully centralized MPC
(see, e.g., [8–10]). In the context of MPC  of singularly perturbed
systems, most of the efforts have been dedicated to linear sys-
tems [11] or to MPC  of specific classes of two-time-scale processes
[12,13].
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This work focuses on model predictive control of nonlinear sin-
gularly perturbed systems in standard form where the separation
between the fast and slow state variables is explicit. A composite
control system using multirate sampling (i.e., fast sampling of the
fast state variables and slow sampling of the slow state variables)
and consisting of a “fast” feedback controller that stabilizes the fast
dynamics and a model predictive controller that stabilizes the slow
dynamics and enforces desired performance objectives in the slow
subsystem is designed. Using stability results for nonlinear singu-
larly perturbed systems, the closed-loop system is analyzed and
sufficient conditions for stability are derived. A large-scale nonlin-
ear reactor-separator process network is used to demonstrate the
application of the method including a distributed implementation
of the predictive controller.

2. Preliminaries

2.1. Notation

The operator |· | is used to denote Euclidean norm of a vector
and the symbol �r is used to denote the set �r := {x ∈ Rnx : V(x) ≤ r}
where V is a positive definite scalar function. For any measurable
(with respect to the Lebesgue measure) function w : R≥0 → Rl , ||w||
denotes ess.sup.|w(t)|, t ≥ 0. A function � : R≥0 → R≥0 is said to be
of class K if it is continuous, nondecreasing, and is zero at zero. A
function  ̌ : R≥0 × R≥0 → R≥0 is said to be of class KL if, for each fixed
t, the function ˇ(· , t) is of class K and, for each fixed s, the function
ˇ(s, ·) is nonincreasing and tends to zero at infinity.

2.2. Class of nonlinear singularly perturbed systems

In this work, we focus on nonlinear singularly perturbed systems
in standard form with the following state-space description:

ẋ = f (x, z, �, us, w), x(0) = x0

�ż = g(x, z, �, uf , w), z(0) = z0
(1)

where x ∈ Rn and z ∈ Rm denote the vector of state variables, � is a
small positive parameter, w ∈ Rl denotes the vector of disturbances
and us ∈ U ⊂ Rp and uf ∈ V ⊂ Rq are two sets of manipulated inputs.
The sets U and V are nonempty convex sets which are defined as
follows:

U:={us,i(t) : |us,i(t)| ≤ umax
s,i

, i ∈ [1,  p]}
V :={uf,j(t) : |uf,j(t)| ≤ umax

f,j
, j ∈ [1,  q]} (2)

where umax
s,i

and umax
f,j

are positive real numbers, specifying the input
constraints. The disturbance vector is assumed to be absolutely con-
tinuous and bounded, i.e., W:={w(t) ∈ Rl : |w(t)| ≤ �} where � is a
positive real number. Since the small parameter � multiplies the
time derivative of the vector z in the system of Eq. (1),  the separa-
tion of the slow and fast variables in Eq. (1) is explicit, and thus, we
will refer to the vector x as the slow states and to the vector z as
the fast states. We  assume that the vector fields f and g are locally
Lipschitz in Rn × Rm × [0, �̄) × Rp × Rq × Rl for some �̄  > 0 and that
the origin is an equilibrium point of the unforced nominal system
(i.e., system of Eq. (1) with us = 0, uf = 0 and w = 0).

With respect to the control problem formulation, we  assume
that the fast states z are sampled continuously and their measure-
ments are available for all time t (e.g., variables for which fast
sampling is possible usually include temperature, pressure and
hold-ups) while the slow states x are sampled synchronously and
are available at time instants indicated by the time sequence {tk≥0}
with tk = t0+ k�,  k = 0, 1, . . . where t0 is the initial time and � is
the sampling time (e.g., slowly sampled variables usually involve
species concentrations). The set of manipulated inputs uf is respon-
sible for stabilizing the fast dynamics of Eq. (1) and for this set the

control action is assumed to be computed continuously, while the
set of manipulated inputs us is evaluated at each sampling time tk
and is responsible for stabilizing the slow dynamics and enforcing
a desired level of optimal closed-loop performance.

2.3. Two-time-scale system decomposition

The explicit separation of the slow and fast variables in the
system of Eq. (1) allows decomposing it into two separate reduced-
order systems evolving in different time-scales. To proceed with
such a two-time-scale decomposition and in order to simplify the
notation of the subsequent development, we will first address the
issue of stability of the fast dynamics. Since there is no assump-
tion that the fast dynamics of Eq. (1) are asymptotically stable, we
assume the existence of a “fast” feedback control law uf = p(x, z)
that renders the fast dynamics asymptotically stable in a sense to
be made precise in Assumption 2 below. Substituting uf = p(x, z) in
Eq. (1) and setting � = 0 in the resulting system, we  obtain:

dx

dt
= f (x, z, 0, us, w) (3a)

0 = g(x, z, 0, p(x, z), w) (3b)

Assumption 1. The equation g(x, z, 0, p(x, z), w) = 0 possesses a
unique root

z = ĝ(x, w) (4)

with the properties that ĝ : Rn × Rl → Rm and its partial derivatives
(∂ĝ/∂x), (∂ĝ/∂w) are locally Lipschitz.

Assumption 1 is a standard requirement in singularly perturba-
tion theory (see e.g., [3])  and it is made to ensure that the system
has an isolated equilibrium manifold for the fast dynamics. On this
manifold, z can be expressed in terms of x and w using an algebraic
expression. This assumption does not pose any practical limita-
tion in the process example below but it is a necessary one in the
singular perturbation framework to construct a well-defined slow
subsystem.

Using z = ĝ(x, w), we can re-write Eq. (3) as follows:

dx

dt
= f (x, ĝ(x, w), 0, us, w)  =: fs(x, us, w) (5)

We will refer to the subsystem of Eq. (5) as the slow subsystem.
Introducing the fast time scale � = (t/�) and the deviation

variable y = z − ĝ(x, w), we  can rewrite the nonlinear singularly
perturbed system of Eq. (1) as follows:

dx

d�
= �f (x, y + ĝ(x, w),  �, us, w)

dy

d�
= g(x, y + ĝ(x, w), �, uf , w)  − �

∂ĝ

∂w
ẇ

− �
∂ĝ

∂x
f (x, y + ĝ(x, w), �, us, w)

(6)

Setting � = 0, we obtain the following fast subsystem:

dy

d�
= g(x, y + ĝ(x, w),  0, uf , w) (7)

where x and w can be considered as “frozen” to their initial val-
ues. Below we  state our assumption on the stabilization of the fast
subsystem:

Assumption 2. There exists a feedback control law uf = p(x, z) =
p(x, y + ĝ(x, w)) ∈ V where p(x, z) is a locally Lipschitz vector func-
tion of its arguments, such that the origin of the closed-loop fast
subsystem:

dy

d�
= g(x, y + ĝ(x, w),  0, p(x, y + ĝ(x, w)), w) (8)
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is globally asymptotically stable, uniformly in x ∈ Rn and w ∈ Rl , in
the sense that there exists a class KL function ˇy such that for any
y(0) ∈ Rm:

|y(t)| ≤ ˇy

(
|y(0)|, t

�

)
(9)

for t ≥ 0.

2.4. Lyapunov-based controller

We  assume that there exists a Lyapunov-based locally Lips-
chitz control law h(x) = [h1(x) . . . hp(x)]T with us,i = hi(x), i = 1, . . .,  p,
which renders the origin of the nominal closed-loop slow subsys-
tem asymptotically stable while satisfying the input constraints
for all the states x inside a given stability region. The construc-
tion of such explicit stabilizing control laws can be readily done
using Lyapunov techniques for specific classes of nonlinear sys-
tems, particularly input-affine nonlinear systems; the reader may
refer to [16] for results and references in this area. Using converse
Lyapunov theorems [14–16],  this assumption implies that there
exist functions ˛i(·), i = 1, 2, 3, 4 of class K and a continuously differ-
entiable Lyapunov function V(x) for the nominal closed-loop slow
subsystem that satisfy the following inequalities:

˛1(|x|) ≤ V(x) ≤ ˛2(|x|)
∂V(x)

∂x
(fs(x, h(x), 0)) ≤ −˛3(|x|)

h(x) ∈ U

(10)

for all x ∈ D ⊆ Rn where D is an open neighborhood of the origin.
We denote the region �	 ⊆ D as the stability region of the closed-
loop slow subsystem under the Lyapunov-based controller h(x);
�	 is typically taken to be a level set of V(x). By continuity, the
local Lipschitz property assumed for the vector fields fs(x, us, w)
and taking into account that the manipulated inputs ui, i = 1, . . .,  p,
and the disturbance w are bounded in convex sets, there exists a
positive constant M such that

|fs(x, us, w)| ≤ M (11)

for all x ∈ �	 , us ∈ U, and w ∈ W .  In addition, by the continuous dif-
ferentiable property of the Lyapunov functionV(x) and the Lipschitz
property assumed for the vector field fs(x, us, w), there exist posi-
tive constants Lx and Lw such that∣∣∣∣∂V

∂x
fs(x, us, w) − ∂V

∂x
fs(x′, us, w)

∣∣∣∣ ≤ Lx|x − x′|∣∣∣∣∂V

∂x
fs(x, us, w) − ∂V

∂x
fs(x, us, w′)

∣∣∣∣ ≤ Lw|w − w′|
(12)

for all x, x′ ∈ �	 , us ∈ U, and w, w′ ∈ W .

2.5. Lyapunov-based MPC  formulation

The longer sampling time of the slow state variables allows
utilizing MPC  to compute the control action us. A schematic of
the proposed control system structure is shown in Fig. 1. Specif-
ically, we use the LMPC proposed in [7] which guarantees practical
stability of the closed-loop system and allows for an explicit char-
acterization of the stability region to compute us. The LMPC is based
on the Lyapunov-based controller h(x). The controller h(x) is used to
define a stability constraint for the LMPC controller which guaran-
tees that the LMPC controller inherits the stability and robustness
properties of the Lyapunov-based controller h(x). The LMPC con-
troller is based on the following optimization problem:

min
us ∈ S(�)

∫ Nc�

0

[x̃T (�)Qcx̃(�) + uT
s (�)Rcus(�)]d� (13a)

p(x, z)

MP C

ż = g(x, z, uf , w)

ẋ = f (x, z, us , w)

uf

us

z x

z

x

Fig. 1. A schematic of the proposed control system structure.

s.t. ˙̃x(�) = fs(x̃(�), us, 0) (13b)

us(�) ∈ Us (13c)

x̃(0) = x(tk) (13d)

∂V(x(tk))
∂x

fs(x(tk), us(0), 0) ≤ ∂V(x(tk))
∂x

fs(x(tk), h(x(tk)), 0) (13e)

where S(�) is the family of piece-wise constant functions with sam-
pling period �,  Nc is the prediction horizon, Qc and Rc are positive
definite weight matrices that define the cost, x(tk) is the state mea-
surement obtained at tk, x̃ is the predicted trajectory of the nominal
system with us, the input trajectory computed by the LMPC of Eq.
(13). The optimal solution to this optimization problem is denoted
by u∗

s (�|tk), and is defined for � ∈ [0, Nc�).
The optimization problem of Eq. (13) does not depend on the

uncertainty and guarantees that the system in closed-loop with the
LMPC controller of Eq. (13) maintains the stability properties of the
Lyapunov-based controller. The constraint of Eq. (13e) guarantees
that the value of the time derivative of the Lyapunov function at the
initial evaluation time of the LMPC is lower or equal to the value
obtained if only the Lyapunov-based controller h(x) is implemented
in the closed-loop system in a sample-and-hold fashion. This is the
constraint that allows proving that the LMPC inherits the stability
and robustness properties of the Lyapunov-based controller. The
manipulated inputs of the closed-loop slow subsystem under the
LMPC controller are defined as follows

us(t) = u∗
s (t − tk|tk), ∀t ∈ [tk, tk+1) (14)

The main property of the LMPC controller is that the origin of
the closed-loop system is practically stable for all initial states
inside the stability region �	 for a sufficient small sampling time
� and disturbance upper bound �. The main advantage of LMPC
approaches with respect to the Lyapunov-based controller is that
optimality considerations can be taken explicitly into account (as
well as constraints on the inputs and the states [7])  in the compu-
tation of the controller within an online optimization framework
improving closed-loop performance.

Proposition 1 (cf. [7,17]).  Consider the slow subsystem of Eq. (5) in
closed-loop under the LMPC design of Eq. (14) based on a Lyapunov-
based controller h(x) that satisfies the conditions of Eq. (10). Let �w >
0, � > 0 and 	 > 	s > 0, � > 0 satisfy the following constraint:

−˛3(˛−1
2 (	s)) + LxM� + Lw� ≤ −�w

�
(15)

There exists a class KL function ˇx and a class K function � such that if
x(0) ∈ �	 , then x(t) ∈ �	 for all t ≥ 0 and

|x(t)| ≤ ˇx(|x(0)|, t) + �(	∗) (16)

with 	∗ = max  {V(x(t + �)) : V(x(t)) ≤ 	s}.
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3. Stability analysis

The closed-loop stability of the system of Eq. (1) under the con-
trol of the controller p(x, z) and the LMPC of Eq. (13) is established
in the following theorem under appropriate conditions.

Theorem 1. Consider the system of Eq. (1) in closed-loop with
uf = p(x, z) and us determined by the LMPC of Eq. (13) based on a con-
troller h(·) that satisfies the conditions of Eq. (10). Let also assumptions
1 and 2 and the condition of Eq. (15) hold. Then there exist functions
ˇx and ˇy of class KL, a pair of positive real numbers (ı, d) and �∗ > 0
such that if max{|x(0)|, |y(0)|, ||w||, ||ẇ||} ≤ ı and � ∈ (0, �∗], then,

|x(t)| ≤ ˇx(|x(0)|, t) + �(	∗) + d

|y(t)| ≤ ˇy

(
|y(0)|, t

�

)
+ d

(17)

for all t ≥ 0.

Proof. When uf = p(x, z) and us = u∗
s is determined by the LMPC of

Eq. (13), the closed-loop system takes the following form:

ẋ = f (x, z, �, u∗
s , w), x(0) = x0

�ż = g(x, z, �, p(x, z), w), z(0) = z0
(18)

We will first compute the slow and fast closed-loop subsystems.
Setting �  = 0 in Eq. (18), we obtain:

dx

dt
= f (x, z, 0, u∗

s , w)

0 = g(x, z, 0, p(x, z), w)
(19)

Using that the second equation has a unique, isolated solution z =
ĝ(x, w) (Assumption 1), we can re-write (19) as follows:

dx

dt
= f (x, ĝ(x, w), 0, u∗

s , w) = fs(x, u∗
s , w) (20)

According to Proposition 1, the state x(t) of the closed-loop slow
subsystem of Eq. (20) starting from x(0) ∈ �	 stays in �	 (i.e.,
x(t) ∈ �	 ∀t ≥ 0) and satisfies the bound of Eq. (16).

We now turn to the fast subsystem. Using � = (t/�) and y = z −
ĝ(x, w), the closed-loop system of Eq. (18) can be written as:

dx

d�
= �f (x, y + ĝ(x, w), �, us(x), w)

dy

d�
= g(x, y + ĝ(x, w), �, p(x, y), w) − �

∂ĝ

∂w
ẇ

− �
∂ĝ

∂x
f (x, y + ĝ(x, w), us(x), w)

(21)

Setting �  = 0, the closed-loop fast subsystem is obtained:

dy

d�
= g(x, y + ĝ(x, w), 0, p(x, y), w) (22)

According to Assumption 2, the origin of the system of Eq. (22)
is globally asymptotically stable, uniformly in x ∈ Rn and w ∈ Rl in
the sense that there exists a class KL function ˇy such that for
any y(0) ∈ Rm, the bound of Eq. (9) holds for t ≥ 0. Therefore, the
closed-loop system of Eq. (18) satisfies the assumptions 1, 2 and 3
of Theorem 1 in [18]. Thus, there exist functions ˇx and ˇy of class
KL, positive real numbers (ı, d) (note that the existence of ı such
that |x(0) | ≤ ı implies that x(0) ∈ �	 follows from the smoothness
of V(x)), and �∗ > 0 such that if max{|x(0)|, |y(0)|, ||w||, ||ẇ||} ≤ ı and
� ∈ (0, �∗], then, the bounds of Eq. (17) hold for all t ≥ 0. �

Remark 1. We  note that the class of nonlinear systems of Eq. (1)
can be generalized to include: (a) us in the g vector field (i.e., the
manipulated inputs that are used to control the slow subsystem
affect directly the fast dynamics) and (b) uf in the f vector field
(i.e., the manipulated inputs that are used to control the fast sub-
system affect directly the slow dynamics). Such a generalization
would simply require that us, which is computed by the MPC  and

is piecewise continuous in time, is passed through an appropri-
ate filter to become absolutely continuous (see also Theorem 1 and
Remark 1 in [18]); this generalization is not pursued here in order to
avoid complicating further the notation. We  also note that instead
of using the LMPC of Eq. (13) other MPC  schemes including dis-
tributed MPC  schemes can be used to control the slow subsystem
and they will inherit the stability properties of Theorem 1 as long
as these MPC  schemes satisfy the conditions of Proposition 1.

4. Application to a nonlinear large-scale process network

4.1. Process description and control system design

The process considered in this study is a reactor-distillation
process network, shown in Fig. 2 (see also [2]). It consists of a con-
tinuously stirred tank reactor (CSTR), a distillation tower including
a reboiler and a condenser, and a recycle loop. A set of elementary
exothermic reactions in series takes place in the reactor of the form

A
k1→B

k2→C, in which A is the reactant, B is the desired product and C is
the by-product. The reactor is fed with a fresh feed of pure species
A at flowrate F0. The outlet of the reactor is fed into the distillation
tower, where most of the reactant A is separated overhead and recy-
cled back to the CSTR, and most of the product and the by-product
leave the system through stream Bt. There are three heat/coolant
inputs, labeled as Q1, Q2, and Q3, that are assigned to the CSTR, the
condenser, and the reboiler, respectively. The flow rates of streams
F, D and Bt are regulated by three valves, labeled as V1, V2, and V3,
respectively. The dynamic equations describing the behavior of the
process are obtained through material and energy balances under
standard modeling assumptions. Specifically, the dynamic model
of the CSTR is as follows:

ṀR = F0 + D − F (23a)

ẋA,R = F0(1 − xA,R) + D(xA,0 − xA,R)
MR

− k1e−E1/RT xA,R (23b)

ẋB,R = −F0xB,R + D(xB,0 − xB,R)
MR

+ k1e−E1/RT xA,R − k2e−E2/RT xB,R

(23c)

ḢL,R = F0(HL,F0 − HL,R) + D(HL,0 − HL,R)
MR

+ Q1

MR
− k1e−E1/RT xA,R
Hr1 − k2e−E2/RT xB,R
Hr2 (23d)

The dynamic model of the condenser is as follows:

Ṁ0 = V̄  − R − D (24a)

ẋi,0 = V̄

M0
(yi,1 − xi,0) (24b)

ḢL,0 = V̄

M0
(HV,1 − HL,0) + Q2

M0
(24c)

where i = A, B, C. The dynamic model of the distillation column is as
follows:

ẋi,j = 1
Mj

[V̄(yi,j+1 − yi,j) + R(xi,j−1 − xi,j)], 1 ≤ j  < f (25a)

ḢL,j = V̄

Mj
(HV,j+1 − HV,j) + R

Mj
(HL,j−1 − HL,j), 1 ≤ j < f (25b)

ẋi,f = 1
Mf

[V̄(yi,f +1 − yi,f ) + R(xi,f −1 − xi,f ) + F(xi,R − xi,f )], j = f

(25c)
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Fig. 2. Chemical process network schematic.

ḢL,f = V̄

Mf
(HV,f +1 − HV,f ) + R

Mf
(HL,f −1 − HL,f )

+ F

Mf
(HL,R − HL,f ), j = f (25d)

ẋi,j = 1
Mj

[V̄(yi,j+1 − yi,j) + (R + F)(xi,j−1 − xi,j)], f < j ≤ N (25e)

ḢL,j = V̄

Mj
(HV,j+1 − HV,j) + R + F

Mj
(HL,j−1 − HL,j), f < j ≤ N (25f)

where i = A, B, C and N is the number of column stages. Finally, the
dynamic model of the reboiler is as follows:

ṀN+1 = R + F − V̄ − Bt (26a)

ẋi,N+1 = 1
MN+1

[(R + F)(xi,N − xi,N+1) − V̄(yi,N+1 − xi,N+1)] (26b)

ḢL,N+1 = R + F

MN+1
(HL,N − HL,N+1) − V̄

MN+1
(HV,N+1 − HL,N+1) + Q3

MN+1

(26c)

where i = A, B, C. The definitions of the process parameters and their
nominal values are given in Tables 1 and 2, respectively.

The model of the CSTR assumes perfect mixing and spatially
uniform heat conduction. Both reactions in the reactor are first-
order elementary reactions. The composition of species C can be
computed by the following relationship, xA,R + xB,R + xC,R = 1. For the
derivation of the dynamic model of the multicomponent distilla-
tion, we apply stage-by-stage methods and batch rectification. To
apply this approach, we assume vapor–liquid equilibrium in each
stage, perfect mixing of liquid and vapor in each stage, negligible

vapor holdup, constant-molar-liquid holdup, Mj, on each stage, and
adiabatic process for the entire distillation process. In this work, the
thermodynamic properties of the mixtures are obtained by assum-
ing ideal behavior in both liquid phase and vapor phase. Specifically,
the enthalpy of each species in vapor state is described by the fol-
lowing expression:

hV,i = ho
V,i + CPV ,i(T − T0)

Table 1
Process variables.

F0, D, F, R, V̄ , B Effluent flow rates
F̃0, D̃, F̃ , R̃, Ṽ , B̃ Steady-state values of effluent flow rates
xi,R Species composition in the CSTR
xi,j Species composition in the distillation tower
MR , M0, MM+1 Liquid hold-up in each vessel
CPV ,i Heat capacity of each species at vapor phase
˛i Relative volatilities of each species

Hr1, 
Hr2 Heat of reactions 1 and 2
HV,R Enthalpy of mixture in the CSTR
HV,j Enthalpy of gas mixture
HL,j Enthalpy of liquid mixture
HL,F0 Enthalpy of feed input
k1, k2 Reaction coefficient
E1,E2 Activation energy
Q1, Q2, Q3 External heat/coolant inputs to each vessel

Table 2
Parameter values.


Hr1 2500 [J/mol] 
Hr2 5500 [J/mol]
E1 9500 [J/mol] E2 12,000 [J/mol]
k1 2.4 [1/s] k2 4.0 [1/s]
F0, F̃0 100 [mol/s] HL,F0 61.06 [J/mol]
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Table  3
Process parameters.

A B C

CpV ,i [J/mol K] 1.86 2.01 2.00


HVap
i

[J/mol] 83.333 86.111 85.556

ho
V,i

[J/mol] 283.889 369.844 394.444

˛i 5.5 1.2 1.0

where T0 is the reference temperature and its value is 373.15 K, ho
V,i

is the enthalpy of a species at the reference temperature and CPV ,i

is the heat capacity of a species and is assumed to be a constant.
The derivation of the enthalpy of a vapor mixture and the enthalpy
of a liquid mixture, based on above assumptions, is given by:

HV =
A,B,C∑

i

yih
0
V,i + (T − T0)

A,B,C∑
i

yiCpV ,i

HL =
A,B,C∑

i

xi(h
0
V,i − 
HVap

i
) + (T − T0)

A,B,C∑
i

xiCpV ,i

(27)

If the enthalpy of a liquid mixture is known, we  can obtain the
temperature using the following expression:

T =
HL −

A,B,C∑
i

xi(h0
V,i

− 
HVap
i

)

A,B,C∑
i

xiCpV ,i

+ T0

Furthermore, the enthalpy of the vapor mixture can be obtained by
substituting the computed temperature value back into Eq. (27). For
ideal liquid–vapor mixture, Raoult’s law determines the relation-
ship between the vapor phase molar composition and the liquid
phase molar composition of each species. In this model, we  assume
that the vapor pressure of each species, or the relative volatility of
each species, is a constant. Hence, the following equation, based
on Raoult’s law, can be used to compute the vapor phase molar
composition, once the liquid phase molar composition is known:

yi = ˛ixi

A,B,C∑
k

˛kxk

For the other thermodynamic parameters, one can refer to
Table 3 for their nominal values. The distillation tower has a total of
15 trays, and the reactor outlet is fed into tray 12. The entire process
network has a total of 57 states which consist of the compositions of

Table 7
Initial steady state values of the states of CSTR, reboiler and condenser.

MR 1300 [mol] xA,R 0.763
M0 1125 [mol] xA,0 0.806
MN+1 1425 [mol] xA,N+1 0.00159
xB,R 0.210 HL,R 1.966 × 102 [J/mol]
xB,0 0.176 HL,0 2.047 × 102 [J/mol]
xB,N+1 0.800 HL,N+1 3.880 × 102 [J/mol]

A, B, and C in the reactors, column stages, reboiler and condenser, as
well as the enthalpy in each of the vessels. The desired (final) oper-
ating point of the process, corresponding to the seven steady-state
manipulated input values, F̃, Ṽ , B̃, R̃, D̃, Q̃1, Q̃2, and Q̃3 (Table 4), is
given in Table 5.

The goal of the controller is to drive the system from the initial
stable operating point to the desired operating point. The initial
steady-state values for the manipulated inputs and the states of the
CSTR, reboiler and condenser are given in Tables 6 and 7, respec-
tively. Before proceeding with the control design, we note that via
extensive simulation we  have verified that the process exhibits
two-time-scale behavior (see Fig. 12)  owing to the use of large
recycle, D, relative to the feed input, F0, which motivates defining
� = F̃o/D̃ = 0.056. However, several of the process states exhibit
dynamic behavior in both fast and slow time scales, and thus, the
explicit separation of the process model states into fast and slow
ones in a way  that it is consistent with the standard singularly per-
turbed model form of Eq. (1) is not a feasible task in this particular
application. For this reason, instead of separating the states into fast
and slow ones, we  divide the manipulated inputs into the ones that
regulate critical fast states and the ones that regulate the process
state in the slow time-scale. Specifically, we define the following
dimensionless manipulated inputs, u1 = F/F̃ ,  u2 = V̄/Ṽ ,  u3 = Bt/B̃t ,
u4 = D/D̃,  u5 = Q1/Q̃1, u6 = Q2/Q̃2 and u7 = Q3/Q̃3. Through exten-
sive simulations, we  found that the manipulated inputs, u1, u2, u3
and u4 can be used to control the liquid hold-ups (fast dynamics),
and u5, u6 and u7 can be used to control the process state in the
slow time-scale; see Remark 2 below for a detailed discussion and
simulations on this issue.

With respect to control design, we propose to design a control
system that utilizes proportional control to compute the inputs
associated with the fast dynamics and MPC  to compute the inputs
associated with the slow dynamics. Specifically, four different pro-
portional controllers are used to regulate each of the flow rates, F,
D, V̄ , and B with respect to the final steady-state input values in
Table 4 and the steady-state liquid holdups in Table 5:

u1 = F

F̃
= 1 − kc1(M̃R − MR) (28a)

Table 4
Final steady-state manipulated input values.

Q̃1 2.85 × 105 [J/s] Q̃2 −1.93 × 105 [J/s] Q̃3 2.31 × 105 [J/s] F̃ 1880 [mol/s]
Ṽ 2070  [mol/s] B̃t 100 [mol/s] D̃ 1780 [mol/s] R̃ 290 [mol/s]

Table 5
Final steady-state values of the states of CSTR, reboiler and condenser.

M̃R 1100 [mol] M̃0 1050 [mol] M̃N+1 1200 [mol]
x̃A,R 0.897 x̃A,0 0.948 x̃A,N+1 0.00666
x̃B,R 0.0965 x̃B,0 0.0505 x̃B,N+1 0.916
H̃L,R 1.849 × 102 [J/mol] H̃L,0 1.952 × 102 [J/mol] H̃L,N+1 3.826 × 102 [J/mol]

Table 6
Initial steady-state manipulated input values.

Q1 3.58 × 105 [J/s] Q2 −2.00 × 105 [J/s] Q3 2.335 × 105 [J/s] F 1880 [mol/s]
V  2070 [mol/s] Bt 100 [mol/s] D 1780 [mol/s] R 290 [mol/s]
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Fig. 3. Sequential DMPC architecture manipulating u5, u6 and u7.

u2 = V̄

Ṽ
= 1 − kc2(M̃N+1 − MN+1) (28b)

u3 = B

B̃
= 1 − kc3(M̃0 − M0) (28c)

u4 = D

D̃
= 1 − kc4(M̃0 − M0) (28d)

in which kc1, kc2, kc3 and kc4 are all equal to 0.0001. The controllers
of Eq. (28) utilize feedback of the hold-ups that can be sampled fast
and can stabilize the liquid hold-up levels of the CSTR, the reboiler
and the condenser. Note that the effluent flow rate of the vapor
mixture V̄ is also regulated by a pressure valve. When the pressure
inside the reboiler goes down, the rate of liquid evaporation rises
and therefore, the flow rate V̄ goes up. In this example, we do not
consider the pressure effect in the process model and assume that
V̄ is controllable and is directly related to the liquid holdup of the
reboiler.

The control of the slow dynamics involves the application of
MPC. Three MPC  strategies are applied and compared in this study.
Specifically, a centralized LMPC which calculates all the inputs in
one optimization problem, a sequential distributed MPC  (DMPC)
in which the control inputs are calculated by distributed optimiza-
tion problems in sequence, and an iterative DMPC in which the
control inputs are evaluated by parallel distributed optimization
problems solved in an iterative fashion. For more discussion on the
sequential and iterative DMPC, refer to [19]. We  define the term
evaluation number to indicate the number of evaluations for the
optimization problem solved in each controller at each sampling
time. For instance, an evaluation number of one implies that there
is no information sharing between the controllers, and each one
of them returns the manipulated input values after the end of one
evaluation.

Three distributed LMPCs are designed for both DMPC control
strategies. In both strategies, LMPC 1 determines the input Q1, LMPC
2 determines the input Q2, and LMPC 3 determines the input Q3.
Schematics of the sequential and iterative DMPC architectures for
this process are shown in Figs. 3 and 4, respectively. In order to
formulate each of the optimization problems of the DMPCs (see

Process

LMPC 1

LMPC 2

LMPC 3

Sensors

x

x

u7

u6

u5

ui

ui

Fig. 4. Iterative DMPC architecture manipulating u5, u6 and u7.

[19]), the following feedback laws are used as the reference control
laws in the design of the three LMPCs:

u5 = Q1

Q̃1
= 1 + kc5(T̃1 − T1) (29a)

u6 = Q2

Q̃2
= 1 + kc6(T̃2 − T2) (29b)

u7 = Q3

Q̃3
= 1 + kc7(T̃2 − T3) (29c)

where kc5 = 0.008, kc6 = 0.0002, kc7 = 0.0002, T̃1 = 360.25, T̃2 =
367.97 and T̃3 = 421.72. In the design of the LMPCs, a quadratic
Lyapunov function V(x) = xTPx where P is an identity matrix used to
put even weights on the different states. Through extensive sim-
ulations, we  found this Lyapunov function choice to be a good
one in terms of control performance and ease of controller imple-
mentation. In the simulations, the inputs associated with the slow
dynamics are subject to the following constraints:

0.9 ≤ u5 ≤ 1.3, 0.9 ≤ u6 ≤ 1.2, 0.9 ≤ u7 ≤ 1.2.

4.2. Simulation results

The simulations were performed in Microsoft Visual Studio by
a Core2 Quad Q6600 computer. The total process evaluation time
for each run is 3000 s. Four different cases are studied here. The
first one applies the centralized LMPC scheme. The second case is
for the sequential DMPC approach. In the third and fourth case
study, the iterative DMPC scheme with one evaluation and two
evaluations are used. Two different prediction horizons are used
for each of the MPC  methods, N = 1 and N = 2. Only the first input
value from the output of the optimization problems is implemented
following a receding horizon scheme. The sampling time of the
optimization problems is � = 30 s, and as a result, the total num-
ber of sampling times along one simulation is 100. By assumption,
all state measurements are available to the MPC  controllers at each
sampling time and are available continuously to the proportional
controllers. The numerical method that is used to integrate the pro-
cess is explicit Euler with a fixed time step of 0.1 s and the LMPC
optimization problems are solved using the open source interior
point optimizer Ipopt [20].

The cost function used in each MPC  scheme is as follows:

J =
∫ tk+N

tk

[
xT (t)Qcx(t) + UT

2 (t)RciU2(t)
]

dt

where tk is time when the controller is evaluated and UT
2 = [u5 −

1 u6 − 1 u7 − 1]. The weighting matrix Qc is a diagonal matrix with
its diagonal element Qc,i = 1/xset,i, where xset,i is the steady state
value of the corresponding state variable. The weighting matrix
Rc2 is also a diagonal matrix with Rc2 = 10, 000I3×3 where I3×3 is the
identity matrix of dimension 3 × 3.

Fig. 5 shows the trajectories of the Lyapunov function V(x) under
the different control schemes. Based on these trajectories, it can be
seen that all MPC  strategies stabilize the closed-loop system and
give very close results in terms of trajectories of V(x). The corre-
sponding trajectories of the inputs Q1, Q2 and Q3 (i.e., u5, u6 and u7)
are shown in Figs. 6–8.

Next, we investigate the instantaneous closed-loop perfor-
mance at each sampling time measured by xT (tk)Qcx(tk) +∑2

i=1UT
i

(tk)RciUi(tk), k = 0, 1, . . . under the centralized LMPC and
the two DMPC schemes where UT

1 = [u1 − 1 u2 − 1 u3 − 1 u4 − 1]
and Rc1 = 10, 000I4×4 where I4×4 is the identity matrix of dimen-
sion 4 × 4. The results are shown in Fig. 9. We  note that in this
cost we also include the control inputs used for the fast dynam-
ics in order to have a comprehensive comparison. From Fig. 9,
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Fig. 5. Trajectories of V(x) under the centralized LMPC (◦), the sequential DMPC (∗),
and the iterative DMPC with one evaluation (�) and with two evaluations (×).
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Fig. 6. Trajectories of the input Q1 (i.e., u5) under the centralized LMPC (◦), the
sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with two
evaluations (×).
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Fig. 7. Trajectories of the input Q2 (i.e., u6) under the centralized LMPC (◦), the
sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with two
evaluations (×).
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Fig. 8. Trajectories of the input Q3 (i.e., u7) under the centralized LMPC (◦), the
sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with two
evaluations (×).

we  see that as the simulation time approaches 1000 s, the instan-
taneous closed-loop performance given by the different control
schemes is nearly the same. This is because under the different con-
trol schemes, the closed-loop system state is driven to the same
desired steady-state. From Fig. 9 (especially from the first half of
the simulation: 0 < t < 500 s), we can also see that the centralized
control scheme gives the best performance and as the iteration
number increases, the performance given by the iterative DMPC
converges to the one given by the centralized control scheme. This
property of the iterative DMPC is not guaranteed for general non-
linear systems but it is found to hold for this specific simulation
study.

In the last set of simulations, attention is given to the evalu-
ation time of the three MPC  schemes, as shown in Fig. 10 (N = 1)
and in Fig. 11 (N = 2). Because of the different structures of the two
DMPC architectures, it is important to note that the total evalua-
tion time required for the sequential DMPC in one sampling time
is the sum of the evaluation times of the three LMPCs; on the
other hand, the total evaluation time required for the iterative
DMPC with one evaluation in one sampling time is the maxi-
mum  evaluation time among all the three LMPCs. Both figures
clearly demonstrate that the iterative DMPC with one evaluation
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Fig. 9. The costs of the closed-loop system under the centralized LMPC (◦), the
sequential DMPC (∗), and the iterative DMPC with one evaluation (�) and with two
evaluations (×).
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Fig. 10. The total evaluation time needed for each evaluation of each MPC method.
Centralized LMPC (solid line with ∗), sequential DMPC (dashed line with ◦), and
iterative DMPC with one evaluation (dotted line with �). The prediction horizon
N  = 1.

Fig. 11. The total evaluation time needed for each evaluation of each MPC method.
Centralized LMPC (solid line with ∗), sequential DMPC (dashed line with ◦), and
iterative DMPC with one evaluation (dotted line with �). The prediction horizon
N  = 2.

has the smallest total evaluation time compared with the other
MPC schemes, and the sequential DMPC requires more evaluation
time than the centralized LMPC in this set of simulations. In Fig. 10,
the average evaluation time of the iterative DMPC with one eval-
uation over the entire simulation is 1.70 s, which is about 70% of
the average time needed for the centralized LMPC and 2.6 times
faster than the average time needed for the sequential DMPC. Sim-
ilarly, in Fig. 11,  the average total evaluation time of the iterative
DMPC with one evaluation along the simulation is 4.25 s, which is
about 63% of the average time needed for the centralized LMPC and
2.3 times faster than the average time needed for the sequential
DMPC.

Remark 2. To justify the use of u1, u2, u3 and u4 to control the
liquid hold-ups that exhibit fast dynamic behavior, we carried out
a set of simulations of the closed-loop system under the fast pro-
portional controls used to manipulate u1, u2, u3 and u4 and the
centralized MPC  used to manipulate u5, u6 and u7. Fig. 12 shows the
evolution of a measure of the liquid hold-ups (	f(t)) which exhibit
fast dynamics initially (fast time-scale) and the evolution of a mea-
sure of the compositions (	s(t)) which exhibit dynamics in a slow
time-scale, thereby confirming our choice to use fast acting feed-

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

ρ s,ρ
f

Fig. 12. Evolution of a measure of the liquid hold-ups (	f(t); + symbol) and evolution
of  a measure of the compositions (	s(t); o symbol).

back to regulate the liquid hold-ups. In Fig. 12,  the measures 	s(t)
and 	f(t) are defined as follows:

	s(t) =

A,B,C∑
i

15∑
j

(xi,j − x̃i,j)
2 +

A,B,C∑
i

(xi,R − x̃i,R)2

max((xi,j − x̃i,j)
2, (xi,R − x̃i,R)2)

(30a)

	f (t) = (Mo − M̃o)
2 + (MN+1 − M̃N+1)

2 + (MR − M̃R)
2

max((Mo − M̃o)
2
, (MN+1 − M̃N+1)

2
, (MR − M̃R)

2
)

(30b)

5. Conclusions

This work focused on model predictive control of a class of
nonlinear singularly perturbed systems. The motivation for this
work is provided by broad classes of large-scale process net-
works that involve coupled variables that evolve in disparate (fast
and slow) time scales. For such process networks, direct applica-
tion of model predictive control to compute the control actions
for all manipulated inputs leads to very high-order optimization
problems that may  not be solvable in real-time. Instead, we pro-
posed a control system using multirate sampling (i.e., fast sampling
of easy-to-measure fast-evolving variables and slow sampling of
slow-evolving variables) and consisting of an explicit feedback con-
troller that stabilizes the fast dynamics and a model predictive
controller that stabilizes the slow dynamics and enforces desired
performance objectives in the slow subsystem. In this way, the
model predictive controller solves an optimization problem with
a substantially smaller number of decision variables, and thus,
it requires less computational time. Sufficient conditions under
which the closed-loop system stability, accounting for multirate
sampling and sample-and-hold implementation of the predictive
controller, is guaranteed were provided. The applicability and
effectiveness of the proposed control system was illustrated via
a large-scale nonlinear reactor-separator process network which
exhibits two-time-scale behavior and the computational effec-
tiveness of distributed predictive control implementation was
demonstrated.
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