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Reinforcement learning (RL) offers a promising route to fast, nonlinear feedback control for complex process
systems; however, its deployment is hindered by the lack of formal stability guarantees and sensitivity to model-
plant mismatch under constraints. This paper proposes a stability and robustness-oriented RL-based control
framework for nonlinear constrained processes by explicitly integrating Lyapunov-based decision rules into
the RL closed loop and importing an offset-free approach from model predictive control (MPC). The RL policy
is treated as a performance-seeking candidate controller that is supervised by a Lyapunov-certified fallback
controller: at each sampling instant, the learned candidate input is evaluated against a Lyapunov condition, and
any violating proposal is rejected in favor of a stabilizing backup input, yielding Lyapunov-certified practical
stability under sample-and-hold implementation. To mitigate steady-state offsets and enhance robustness to
disturbances and mismatches, the state available to the learning agent is augmented with online-estimated
uncertainty/disturbance variables in the spirit of offset-free MPC, enabling the policy/value function to
condition its decisions on the magnitude of uncertainty rather than overfitting nominal dynamics. The proposed
architecture is demonstrated using two representative RL methods—an HJB-based value-critic approach and
a TD3-based actor-critic approach—both deployed under the same Lyapunov-supervisory switching logic.
Simulation studies on nonlinear chemical process control problems show that the proposed RL-based control
framework preserves the low online computational cost while enforcing Lyapunov stability and improving
robustness under disturbances, thereby advancing RL toward reliable process control deployment.

1. Introduction designs that retain formal stability properties under network imperfec-

tions such as sensor data losses (Munoz de la Penia and Christofides,

Advanced control has played a central role in improving safety,
efficiency, and product quality in modern process systems. Among
existing approaches, model predictive control (MPC) has become a
mature and widely deployed paradigm due to its explicit handling of
multivariable interactions, input and output constraints, and economic
objectives (Qin and Badgwell, 2003). In particular, nonlinear MPC
and its variants have demonstrated strong performance in complex
chemical and energy processes where nonlinearities and constraints
are unavoidable (Rawlings et al., 2020). Despite this success, MPC
requires solving a constrained finite-horizon optimal control problem
online at each sampling instant, which can be computationally demand-
ing for nonlinear models, long horizons, and large-scale architectures,
potentially limiting achievable sampling rates in fast or safety-critical
applications (Rawlings et al., 2020). A significant body of work in
the process control community has therefore focused on scalable and
stability-oriented MPC formulations, including Lyapunov-based MPC

2008), and distributed MPC frameworks for nonlinear process systems
subject to asynchronous and delayed measurements (Liu et al., 2010;
Christofides et al., 2013). Economic MPC further expands the scope
by directly optimizing economic performance, but may exacerbate
online computational requirements due to nonquadratic objectives and
nonlinear constraints (Ellis et al., 2014).

These considerations motivate growing interest in computationally
efficient advanced control strategies, where most of the computational
burden is shifted offline and online implementation reduces to evalu-
ating an explicit feedback law. Reinforcement learning (RL) naturally
fits this paradigm: an RL controller can be trained offline (from data
and/or simulators) to produce a policy, often parameterized by function
approximators such as neural networks, that can be evaluated online
with minimal overhead (Sutton and Barto, 2018; Lillicrap et al., 2015;
Faria et al., 2022; Nian et al., 2020). It is also noted that, for complex
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industrial processes, RL typically requires a large number of interaction
samples and therefore relies heavily on representative simulators for
offline training. Moreover, when MPC can be solved to (near-)global
optimality using the same underlying model, an RL-based controller
trained on that model is not expected to outperform such an MPC
benchmark (Nian et al., 2020). Beyond computational efficiency, RL
offers additional advantages for nonlinear process control, including
reduced reliance on high-fidelity first-principles models, the ability to
optimize long-horizon and nonstandard objectives directly from inter-
action data, and the capability to leverage historical plant or simulation
data via offline RL to improve performance without repeated online
trial-and-error (Sutton and Barto, 2018; Levine et al., 2020; Faria et al.,
2022).

Despite these appealing features, deploying RL controllers in safety-
critical process systems remains challenging. A central issue is robust-
ness: learned policies can be sensitive to distribution shift caused by
model-plant mismatch, unmodeled disturbances, measurement noise,
and operating-condition changes, and performance may degrade when
the closed-loop system visits regions insufficiently represented in train-
ing data (Dulac-Arnold et al., 2019; Morimoto and Doya, 2005). While
robust RL and robust Markov decision process formulations provide
principled ways to reason about uncertainty, they often introduce
conservatism and can be difficult to calibrate for nonlinear continuous-
time plants with hard operating constraints (Nilim and El Ghaoui, 2005;
Iyengar, 2005). Equally important, standard RL objectives do not ex-
plicitly enforce closed-loop stability or constraint satisfaction, and safe
exploration is inherently difficult when constraint violations are unac-
ceptable; consequently, providing verifiable stability/safety guarantees
for neural-network policies remains an active research area and is a
key reason why real-plant RL deployments are still relatively limited in
the process industries (Garcia and Fernandez, 2015; Berkenkamp et al.,
2017; Chow et al., 2018; Dulac-Arnold et al., 2019).

A promising route to address these limitations is to leverage es-
tablished advanced control theory as a backbone for RL design and
deployment. In particular, Lyapunov-based MPC provides construc-
tive mechanisms to ensure stability and constraint satisfaction for
nonlinear constrained systems (Mhaskar et al.,, 2006), including ex-
tensions that retain stability properties under communication network
imperfections such as measurement/data losses (Muiioz de la Pefa
and Christofides, 2008). Likewise, offset-free MPC formulations in-
corporate disturbance/mismatch estimation into the prediction model
to mitigate steady-state offsets and improve robustness in tracking
problems (Pannocchia, 2015; Pannocchia et al., 2015). These MPC
concepts can be embedded into RL in multiple ways (e.g., as safety
filters/shields, training regularizers, or offset-free state augmentation),
and recent work has begun to demonstrate practically implementable
RL controllers by explicitly leveraging offset-free MPC structures and
stability-oriented MPC ideas (Hassanpour et al., 2024a,b; Khodaverdian
et al., 2025a). Nevertheless, robustness-oriented stability analysis for
RL closed loops under general uncertainty/disturbances remains com-
paratively underdeveloped, leaving an important gap between emerg-
ing stability-guaranteed RL designs and broad deployment in realistic
process settings (Dulac-Arnold et al., 2019; Garcia and Fernandez,
2015).

Therefore, in this paper, we propose a stability and robustness-
oriented RL framework for nonlinear constrained process systems by
explicitly integrating Lyapunov-based decision rules into the RL closed
loop and importing the offset-free method from MPC. The key idea is to
treat the RL policy as a performance-seeking candidate controller that
is supervised by a Lyapunov-certified fallback controller. Specifically,
at each sampling instant, we first compute the RL action and check the
stability condition; if the RL decision fails this condition, we switch
to the fallback controller that is designed to satisfy the Lyapunov
requirement so that the implemented control action always preserves
the desired stability property. In parallel, to mitigate steady-state offsets
and sensitivity to model-plant mismatch, we augment the learning state
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with disturbance/mismatch variables (estimated online) in the spirit of
offset-free MPC, enabling the RL policy to recognize the magnitude of
uncertainty and compensate for it rather than overfitting to nominal
dynamics. We demonstrate the application of this architecture using
two representative RL methods, namely an HJB-based value-critic RL
and a TD3-based actor-critic RL, by conditioning the learned value/pol-
icy on the augmented variables and deploying them under the same
Lyapunov-supervisory switching logic. The resulting approach retains
the low online computational cost of neural-network feedback while
providing a systematic mechanism to enforce Lyapunov stability and
improve robustness under disturbances, thereby moving RL closer to
reliable deployment in process control applications.

2. Preliminaries
2.1. Notation

The transpose of a vector x, the set of real numbers, set difference,
functions, and piecewise-constant functions with period 4 are denoted
by xT, R, 2,\€2,, f(-), and S (4) respectively, where both f and S are
arbitrary notations. The initial instance of time (i.e., where t = 0) is
denoted 7, whereas arbitrary reference instances of time are denoted 7.
A function « : [0,a) = [0, o) is said to be of class-K if it is continuous,
strictly increasing, and satisfies a(0) = 0.

2.2. Class of systems

This paper considers nonlinear first-order ordinary differential equa-
tion (ODE) systems of the form:

x = F(x,u) (@]

The state vector x = [xl,xz, ,xn]T € R" collects all relevant process
state variables and is assumed to be measured at fixed sampling instants
1, as is standard for sampled-data state feedback control. The control
input vector u = [u,,uz, ,um]T € R™ represents all control actions
applied to the process. In practice, actuator limitations impose hard
bounds on the inputs. The set of admissible control actions is defined
as follows:
u= [ul,uz, ,um]T
U:=queR" ui,min < u; < ui,max CcR” (2)
Vi=12,...,m

We employ the deviation-variable form of the system so that the origin
is an equilibrium of the open-loop nominal model, i.e., F(0,0) = 0
without loss of generality. We further assume that the state evolves in
a domain D c R” containing the origin (e.g., the operating region of
interest) and that F(.,-) is sufficiently smooth nonlinear vector function
on DxU.

In practice, the true process may be affected by unmodeled dynam-
ics, parametric mismatch, and unknown disturbances. We represent
these effects by the perturbed system

x = F(x,u) + Wi(x,t) 3)

where W : D xR — R” denotes an unknown disturbance/model-
plant mismatch term that may be time-varying. We assume that W
belongs to a known bounded disturbance set and is uniformly bounded
in magnitude by a constant W, ,, > 0 over the region of interest:

W= { WD W D] < Wy V(x.1) € DXRY )]

Unless otherwise stated, all controller design and stability analysis in
this paper are carried out with respect to the nominal model Eq. (1);
the perturbed dynamics Eq. (3) are introduced only to represent the
actual process behavior and the associated model-plant mismatch.
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2.3. Stabilizability assumption

The core assumptions that ensure stabilizability are collectively
referred to as the stabilizability assumption. The stabilizability as-
sumption consists of two main assumptions, stated with respect to the
nominal model Eq. (1) (i.e., without explicitly accounting for the un-
known disturbance term W (x, ) in Eq. (3)). The first is that we assume
the existence of a sufficiently smooth explicit feedback control law that
renders the origin of the nominal system Eq. (1) exponentially stable.
This controller is referred to as the reference stabilizing controller, or
reference controller, as a shorthand, and is of the form:

D:R">U (5)
u(x) =@ (x) (6)
The second is the assumption that there exists a sufficiently smooth
Lyapunov function V (x) defined on a region where the associated
stabilizing controller produces admissible inputs, i.e., u = ®(x) € U,

which, when applied to the closed-loop nominal system under the
reference controller, satisfies the following inequalities:

o X <V () <o Ix? (7a)
W) (k.0 (x)) < 3 Ix]? (7b)
ox
|$ <y lx| (7¢)
pe
>0Vie{l1,2,3,4) (7d)

for all x in an open neighborhood of the origin, denoted D.

The remaining parts of the stabilizability assumption are derived
from the sufficiently smooth assumption for the system dynamics men-
tioned earlier. This implies Lipschitz continuity for V (x), @ (x), and
F (x,® (x)). Additionally, because @ (x) is bounded (due to the presence
of constraints on the control action since u € U), when x is bounded
within a level set Q, ={x|V( < p}CD,we have that F (x, @ (x))
is bounded for all x € 2, and u € U. Also, we note that the product
of two continuously differentiable functions yields a function that is at
least continuously differentiable. Thus, the stabilizability assumption
implies the existence of positive constants M, L, L’ that ensure, for
all x,x’ € 2, and u € U, that the following inequalities are satisfied:

|F (su) = F (v < Ly [x = x| (8a)
|F (x,u)] < My (8b)
WV () v ()

— Few - ——F (" u)| <L |x =¥ (80

2.4. Lyapunov-based model predictive control

The stability assumption can be applied to MPC to yield the
Lyapunov-based MPC (LMPC) that solves for optimal control while
ensuring closed-loop stability (Mhaskar et al., 2006).

t+NA
J =u(r:_r}9i&) /rk LE®,u®) dr (92)
st. X(0)=F&@®),u(®) (9b)
ueU, Vtelt,t,+NA) 9c)
x(t) = x (t;) (9d)
V(% (1) u (1) <V (% (1) @ (% (1)) (9¢)

In this formulation, the optimization takes place over a horizon of
length N4, with A denoting the controller’s sampling period and N
the horizon’s sampling step count. This formulation uses sample-and-
hold control, as continuous-time control is infeasible for real-world
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processes. For simplicity, the sampling interval for both the controllers
and state measurements is treated as equivalent. Eq. (9a) denotes
an arbitrary cost as a function of the control actions and estimated
states over the horizon. Eq. (9b) represents the process dynamics,
which are used for numerical integration during optimization to pre-
dict how the states of the closed-loop system evolve over the hori-
zon. Eq. (9d) enforces an initialization step where the sensor readings
are used as a ground truth initial state, and Eq. (9¢) enforces the control
bounds. Eq. (9¢) denotes the stability constraint; the implementation of
the stabilizability assumption. This constraint ensures that the system is
at least as stabilizing as the reference controller. An alternative form is
provided:

V(% () u(t)) < —aV (2(1,)) (10)

This formulation uses the properties of the Lyapunov function from Sec-
tion 2.3 as opposed to using the reference controller. Using a positive
constant a to control the strength of this constraint, this formulation
allows for stability guarantees without needing to directly apply the
reference controller.

Remark 1. LMPC does not pose constraints on the form of the cost
function. Although this paper will use a quadratic cost function, other
formulations are supported. Economic MPC is one such modification
that can enable enhanced cost-efficiency of processes in a manner that
supports time-varying economics (Ellis et al., 2014; Khodaverdian et al.,
2025b).

Remark 2. Eq. (9e) is only applied at 7, because this formulation is
a receding horizon LMPC, where only the first control input from the
solution is applied. After applying the first solution for one sampling
interval, the LMPC problem is re-solved. This approach relaxes the con-
straints of the optimization problem, allowing for faster solutions, but
comes at the cost of marginally reduced accuracy of the cost-optimal
trajectory.

Remark 3. Consider an LMPC formulation that satisfies the design
above. We consider two cases of this LMPC: one with a long horizon
and one with a short horizon. The long-horizon case is used purely for
reference of what the truly optimal behavior would be (MPC optimal
control action calculation improves with increased horizon length), as
this case would take longer to calculate than the sampling interval,
thereby making it infeasible for real-time control. The short-horizon
case is a suboptimal solution relative to the long-horizon LMPC that
is, however, faster to solve in real-time. This short-horizon LMPC can
thus be used as a fallback controller as a means to enforce the stability
guarantees for the closed-loop system at the expense of poor cost
optimality.

2.5. Offset-free Lyapunov-based model predictive control

The LMPC formulation in Eq. (9) is based on the nominal prediction
model Eq. (1), while the true process may evolve according to Eq. (3)
due to unknown disturbances/model-plant mismatch. Such mismatch
can lead to steady-state offsets when using a purely nominal MPC. To
mitigate this issue, we employ an offset-free MPC structure that aug-
ments the nominal model with additional disturbance states, estimates
them online via an extended Luenberger observer, and then uses these
estimates in the prediction model within the MPC optimization. The
augmented offset-free prediction model is as follows:

(11a)
(11b)

¥ =FGE®@®),u®)+Gyo@)
@) =0

where G, represents the gain matrix of the augmented term and 6(r)
is treated as constant over the prediction horizon. By defining y :=
[%T, éT]T, Eq. (11) can be compactly written as:

F&@,u®)+G,0 @)

1O=Fx®,u®) = 0

12)
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We assume that the state x(¢) is available as a continuous-time mea-
surement. Over the same interval, we employ the extended Luenberger
observer:

FO=FEO,u®)+Gy0(t)+ K, [x(®) — % ()]
8(1) = Ky [x (1) — 2 (1)]

(13a)
(13b)

where K, and K, are constant observer gain matrices. The controller
uses the real x(7,) and @(tk) at time 7,. In deviation-variable coordinates,
we take the tracking setpoint as xg, = 0; under mismatch/distur-
bance, the corresponding steady-state input generally shifts and must
be recomputed online using the disturbance estimate. Specifically,
the offset-free steady-state input ug,(,) is defined as any admissible

solution of the equilibrium condition for the offset-free model:

0="F (Oug (1)) +Go0 (1),  ugyt) €U a4

which is a set of nonlinear algebraic equations in ug,(t,). In imple-
mentation, Eq. (14) can be solved by a standard root-finding method
(e.g., Newton method), warm-started from the previously computed
ug,(t,_;) and followed by projection onto U if nfaeded. To ensure well-
posedness, we assume that for each admissible (¢, ) in a neighborhood
of interest there exists a solution ug(ty) € U to Eq. (14) and that the
input Jacobian of the equilibrium map is nonsingular at the solution,
ie.,

det(%[F 0,u)+ Gy (tk)D (15)

u=ugp, (1)

so that a locally unique and smoothly varying mapping u, = ¥ (0) exists
(by the implicit function theorem). Using the estimates, the offset-free
MPC solves the following optimization at each sampling instant:

) f+N4
J= min, /tk L&), u) dt (16a)
st. X()=F&®,u®)+Gy0 (1), Vt € [ty,t, + N4) (16b)
6@)=0, Vil 1, +NA) (16¢)
ueU, Vt € [ty ty + NA) (16d)
X(ty) = x(ty), 0(ty) = 6(t) (16€)

In Eq. (16), %(r) denotes the nominal predicted state used within the
optimizer, whereas the measured state x(r) evolves according to the
true process Eq. (3). The disturbance estimate (z,) provides an offset-
free correction to the prediction model, enabling improved tracking and
reduced steady-state offsets under bounded disturbances and model-
plant mismatch. Although Eq. (16) addresses steady-state offsets, it does
not explicitly enforce the Lyapunov decrease condition used in Eq. (9).
We therefore define an offset-free Lyapunov-based MPC (OF-LMPC) by
augmenting Eq. (16) with a Lyapunov constraint that is activated only
in an outer region. Let 2, := {x | V(x) < p} C D and fix 0 < pg, < p,
defining Q, ={x | V(x) < pgy ). Define the gate threshold

s € { V(x0w), —aV e | a7

consistent with whether the reference-controller form in Eq. (9¢) or the
aV form in Eq. (10) is adopted. The offset-free LMPC optimization is
of the form:

t+NA
J= ugg&) /tk LE @), u) dt (18a)
st. XO=F&E®O.u®)+Gy0(1,), Vt € [ty,t, + NA) (18b)
6()=0, Vi€t +NA) (18¢)
ueU, Vt € [ty ty + NA) (184d)
x(ty) = x(ty), 0(t,) = 0(t) (18e)
Vix()u(t)) <8 (x(n),  Vx) e\, (18f)

Because x(r,) = x(t;), the Lyapunov constraint Eq. (18f) is eval-
uated at the current estimated state. Enforcing Eq. (18f) only for
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x(t) € 2,\2, = reduces conservativeness inside €, ~while retaining
the Lyapunov-based stabilizing mechanism in the outer region; in prac-
tice, the steady-state target u, () from Eq. (14) is updated online using
9(tk) and can be used wherever a reference input is needed (e.g., for
defining tracking objectives or for constructing the reference controller
@(-) around the current offset-free equilibrium).

Remark 4. If Eq. (15) does not hold globally, then the setpoint-tracking
costs in Eq. (16a) and (18a) can be modified to remove any dependence
on the input-deviation term (i.e., the penalty on u — ug,). In particular,
one may adopt an alternative offset-free tracking cost that penalizes
only state/output deviations (or other suitable terms) while retaining
offset-free performance (Wallace et al., 2016).

Remark 5. In this study, we assume that the process states are
continuously measurable and available to the controller. Therefore,
the controller uses the measured state directly, and the offset-free
observer is used only to estimate the mismatch term 4. In practice,
state measurements may be sampled at a finite rate or may not be
available for all states. In such cases, the offset-free observer in Eq. (13)
can be used as a state estimator, and the offset-free LMPC optimization
in Eq. (16) and (18) can be initialized using the estimated state, i.e., by
replacing the initialization condition with X(7,) = %(¢,).

Remark 6. The Lyapunov constraint Eq. (18f) is evaluated using V (x, u)
computed from the nominal model Eq. (1), rather than from the true
process dynamics Eq. (3). Under unknown disturbance/model-plant
mismatch, this nominal V can be an imperfect surrogate of the true
Lyapunov derivative. If enforced everywhere, the resulting constraint
biases the optimizer toward decisions that are misleading for the true
closed-loop behavior, especially near the origin where the mismatch
can dominate the nominal decrease prediction. For this reason, we ac-
tivate the Lyapunov constraint only in the outer region €,\(2, , where
its role is primarily to provide a stabilizing mechanism that drives the
state into the inner set 2 ), - ONCE the state enters Q e the constraint is
removed to avoid relying on a potentially inaccurate nominal decrease
certificate. In this inner region, the offset-free structure and the MPC
objective are used to achieve improved tracking performance while
reducing steady-state offsets.

Remark 7. We set § = 0 over the prediction horizon, i.e., § is
held constant at its current estimate. This choice is primarily practical:
future real-time process measurements are unavailable beyond 7, so
the controller cannot reliably predict the evolution of the mismatch
within the horizon. This constant-§ assumption is widely adopted in
offset-free MPC implementations (see Wallace et al., 2016; Pannocchia,
2015; Pannocchia et al., 2015; Hassanpour et al., 2024a).

Remark 8. The gain matrix of the augmented term G, is a tuning
parameter. In practice, it is selected (offline) to reduce the overall
estimation error and to ensure convergence of the observer error to
a bounded neighborhood by satisfying the conditions discussed in
Section 4.2.

2.6. Reinforcement learning

Reinforcement learning (RL) studies how an agent selects actions
using a policy r to interact with an environment so as to maximize
cumulative reward. At each sampling instant, the agent observes the
state s, applies an action a = x(s), receives a reward r(s,a), and
transitions to a successor state s’. Collected transitions are commonly
stored in a replay buffer
D= {(spanris)}n, 19

which is used to train function approximators in an off-policy manner.
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A key concept is the value function, which quantifies long-term per-
formance under a policy. The state-value function satisfies the Bellman
equation

V() =r(s,m(s)+yV7" (s) (20)

where 0 < y < 1. Equivalently, many RL algorithms learn the action-
value function Q(s, a), which evaluates state-action pairs and supports
policy improvement. In discrete settings, classical updates include the
on-policy SARSA and off-policy Q-learning equations,

Q(s,a) < Q(s,a)+a [r+ yQ(s'.d') - Q(s,a)] (21)
0(s,0) = Q(s,@)+a|r+ymaxQ (s',d') - O (s, a) (22)

with learning rate « > 0. For continuous-state and continuous-action
control problems, modern actor-critic methods parameterize both a
policy (actor) and a value function (critic), enabling direct policy
optimization while leveraging replay data for sample-efficient learning.

3. Robust and stable reinforcement learning design and imple-
mentation

This section presents the proposed reinforcement learning (RL)
design and implementation framework for nonlinear process control
under unknown disturbances and model-plant mismatch. The key idea
is to integrate an offset-free augmentation into the RL formulation: the
extended Luenberger observer Eq. (13) estimates a structured mismatch
state 6 online, and the controller is conditioned on the corresponding
augmented state 7 := [xT, éT]T. Although the RL policy uses the
measured state x(t), é(tk) estimates disturbance/mismatch from the
observer and helps the policy adjust its action under mismatch. This
enables the learned policy to adapt its action to the inferred disturbance
realization and mitigates steady-state offsets that commonly arise when
learning and deploying based on nominal models.

Building on this offset-free augmentation, we develop two comple-
mentary RL realizations: (i) a robust Hamilton-Jacobi-Bellman (HJB)-
based value-critic approach that learns a differentiable value function
over # and induces a feedback policy via the HJB stationarity condition,
and (ii) a robust TD3-based actor-critic approach that is trained and
deployed entirely in closed loop, using the augmented state 7 (through
the observer estimate ) to account for disturbance realizations during
online interaction. To ensure closed-loop stability and safe deployment,
the resulting RL actions are further protected by a stabilizing shield
composed of provably stabilizing controllers, which overrides the RL
decision whenever a predefined stability/safety condition is violated.
These components yield a robust and stable RL framework suitable for
real-time implementation.

3.1. Robust hamilton—Jacobi-Bellman-based RL design

Hamilton-Jacobi-Bellman (HJB)-based reinforcement learning for-
mulates the control problem as solving a stationary HJB optimality
equation (Zhu et al., 2025; Wang et al., 2025). To handle unknown
disturbances/model-plant mismatch in a manner consistent with the
offset-free framework in Section 2.5, we perform the value-based design
on the observer-conditioned augmented state 7 := [xT, éT]T, where
6(t,) is the disturbance estimate provided by the extended Luenberger
observer Eq. (13).

In this framework, the optimal value function is defined using the
augmented state as follows:

o0
v (;?):m(i?{/ r(x(o),u(r) dT} 23)
u(- t
and it satisfies the stationary HJB condition

*
minH(;?,u,v*)=min{r<;2,u>+"aLAF(;g,u)}=o (24)
u u X
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Consequently, the optimal policy is the action that minimizes this
Hamiltonian at each augmented state:
7* (p)=argmin H (f,u,V?*) (25)
u
In closed-loop implementation, the policy is evaluated using (t;) :=
[x(T, @(zk)T]T, where 0(1,) is obtained from Eq. (13).
To ensure a fair comparison between LMPC and RL, the instanta-

neous cost r in the RL formulation is chosen to match the quadratic
stage cost used in LMPC,

r(g,u)=L(x,u)= xTWxx + uTVVuu (26)

so that the Hamiltonian can be written as

*
H (7,u,V*) =x"Wx+u Wu+ 6()1{ F(p,u) 27)
X
When the augmented dynamics are input-affine,
F(pwy=Ff(+&(@) u (28)

the HJB condition Eq. (24) can be solved under the stationarity condi-

tions (Lewis et al., 2012) to yield the feedback law:
(s

=g EeT T

This expression replaces the nominal state with the observer-

conditioned augmented state and uses the corresponding input matrix

g(7) induced by the offset-free augmentation.

Since the exact optimal value function V*(#¢) is not available in
closed form, we introduce a differentiable critic network V,,(7) pa-
rameterized by neural network weights w. The critic is trained to
minimize the mean-squared residual of the augmented HJB equation
evaluated at sampled augmented states {7 (t,-)}ilil. Specifically, the

(29

training objective and the weight update are given by
N

£ = 3 (r(# ) m (2 0))

i=1

’ <a;)/;7> (2 (1)) F (2 (1) m (;?(t,)))) (30a)
W w=ay Vi £w) (30b)

where L£(w) denotes the loss function and «,, is the learning rate that
determines the step size of gradient descent.

Finally, by embedding the disturbance/mismatch information into
the augmented state 7 through the online estimate f(r,) provided
by Eq. (13), the resulting HJB-RL policy becomes explicitly condi-
tioned on the disturbance realization inferred from measurements. As
a result, the learned critic V,,(?) and the induced policy z(7?) adapt
the control action according to §, providing offset-free correction and
mitigating steady-state offsets under bounded model-plant mismatch.
In this sense, the observer-conditioned augmented-state formulation
upgrades a nominal HJB-RL design into a robust H/B-RL methodology
that systematically accounts for structured disturbances via online dis-
turbance estimation and feedback on 2. Algorithm 1 summarizes this
proposed training procedure, where ¢, denotes an exploration-noise
term (e.g., Gaussian noise) whose magnitude can be scheduled/de-
cayed and bounded, and clip(-) enforces the admissible input set U
by saturating the tentative action to the componentwise input limits.
The replay buffer D stores transition data (sy, a;, ry, sy, ). Finally, up-
date_every specifies the number of environment steps between two
consecutive critic-parameter updates, and N is the mini-batch size used
when sampling from D.

Remark 9. The optimal control policy obtained from the HJB condi-
tion does not explicitly account for stability constraints. To enhance the
accuracy of the approximated optimal value function, the neural net-
work performance could be further improved by incorporating stability
criteria in the training process; however, this aspect is not within the
scope of the present study.
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Algorithm 1 Robust HJB-RL training with offset-free augmented state

1: Initialize critic V,,(?) with random parameters w

2: Initialize replay buffer D

3: Initialize process and observer states, set iteration counter k < 0
4: while not converged do

5:  Update observer Eq. (13) using measurements and obtain 4(t,)
Form augmented estimate 7(t;) < [x"(#,), 9T(tk)]T

Select action with exploration: u; « clip(7,,(#(1})) + €;)

Apply u, to the process and obtain next measurement at 7,
Update observer and form p(t;,)

10:  Store (7(ty),uy, Z(tyyy)) in D

11:  if k mod update_every =0 then

12: Sample mini-batch from D

13: Compute HJB residuals: R ;(w) = (2, m(Z) +
V;?Vw()?j)TF (2 m0(£))

14: Update w by minimizing % Zji | R (w)?

15:  end if

16: k<« k+1
17: end while

3.2. Robust TD3-RL design

TD3-RL, combined with an offset-free structure, has been explored
as a candidate robust RL design. This approach was first proposed
by Hassanpour et al. (2024a,b) and was reported to outperform offset-
free MPC in the studied cases; however, the method does not provide
an explicit closed-loop stability guarantee, and the potential reduction
in online computational time relative to solving MPC optimizations is
not explicitly highlighted or quantified. Therefore, in this study, we
design the robust TD3-RL based on the offset-free TD3-RL proposed
by Hassanpour et al. (2024a,b) and further modify it with the shield
layer to guarantee the closed-loop stability.

TD3-RL (Twin Delayed Deep Deterministic Policy Gradient) is an
off-policy actor-critic reinforcement learning algorithm designed for
continuous-action control problems, and it is widely used in appli-
cations such as robotics and process control where the manipulated
inputs are continuous-valued. Compared with DDPG, TD3 improves
training stability and performance through three key modifications:
(i) twin critic networks are used and the minimum of their estimates
is taken to mitigate Q-value overestimation, (ii) the policy (actor) is
updated less frequently than the critics to reduce the impact of policy
updates on volatile value function estimates, and (iii) target policy
smoothing is employed by adding clipped noise to the target action to
suppress exploitation of function-approximation errors. By leveraging
replay buffers and target networks, TD3 typically achieves improved
sample efficiency in continuous control tasks.

We first generate an offline dataset by running an offset-free LMPC
in closed loop under unknown disturbances, where an offset-free ob-
server is executed online to estimate the mismatch/disturbance state
6 and the LMPC incorporates this estimate in its prediction model to
mitigate steady-state offsets; at each sampling instant 7,, the LMPC
optimization is solved and the first control move is implemented in
a sample-and-hold fashion over [7,1,,;). From these trajectories, we
store transition tuples

Nogr—1

Dy 1= {(sk’ak=rk’sk+l)} >

k=0 Nogp 1= |Dyggl (31)

where the learning state includes both the process deviation state and
the observer-based disturbance estimate

s = [x@T, 0] (32)

ay is the applied LMPC control input, r, is the instantaneous reward
consistent with the control objective, and s, is the future state after
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one sampling interval. Using D¢, we train a feedforward neural net-
work (FNN) policy 7., (s) to approximate the LMPC feedback law via
supervised imitation and use this behavior-cloned policy to initialize
the actor for the subsequent RL stage; we then pretrain the twin critic
networks using only the offline buffer while keeping the actor fixed at
(or close to) its cloned initialization, and finally perform an additional
offline refinement stage where the actor is updated using a TD3-BC
objective on the offline buffer. After critic-only pretraining, the actor
is refined on D, ; using a weighted combination of a TD3 policy
objective and a behavior-cloning regularizer (TD3-BC), where the TD3
term encourages actions that maximize the estimated value under the
learned twin critics {le N Qw}

Nogr =1

Z min(Qwl (1 ”¢(5k))v 0,, (515 7r¢(sk))) (33)

off k=0

1

Lyps (@) = -

while the cloning term penalizes deviation from the LMPC-mimicking
teacher policy 7,

Nogg =1
Lo = 5= 2 roto0) = mawan(o0) 34)
of k=0

The final actor objective is the convex combination

Loctor () = (1 — ) Lops($) + a Lc(P)

where « controls the strength of imitation regularization (typically re-
duced over training so that the policy can depart from the teacher when
doing so improves the critic-evaluated return); since all updates in this
section rely exclusively on D prior to deployment, the procedure is
offline from the standpoint of closed-loop operation and yields an actor-
critic initialization that closely follows the stabilizing LMPC behavior
while substantially reducing the exploration burden of the subsequent
online stage

a € [0,1] (35)

3.3. Shielded online implementation

Gerold and Lucia (2025) proposes an adaptive robust model pre-
dictive shielding framework, where a predictive safety check filters
the RL action and replaces unsafe proposals with an offline-trained
approximate robust NMPC backup policy. In contrast, we employ a
Lyapunov-based supervision layer that certifies the learned candidate
via the contractive condition V(x,u) < S(x), and switch to LMPC
and a stabilizing reference controller when the condition is violated.
Fig. 1 illustrates the proposed shielded online implementation, which
combines a learned controller with a supervision layer. In the closed
loop, the process is affected by unknown disturbances, W in Eq. (3),
while sensors provide real-time feedback. An observer runs in parallel
to estimate not only the process state but also a slowly varying distur-
bance/mismatch term, denoted by 4. This estimate provides a compact
representation of uncertainty that is directly used by the control layer.

At each sampling instant, the control layer generates a candidate
input using the available online information (measured/estimated state
and ). The primary controller is an online-updated RL policy @,
trained to approximate the LMPC input-output mapping using the same
conditioning variables and a cost-aligned objective, with the goal of
retaining LMPC-like performance while avoiding online optimization;
however, online learning may occasionally produce degraded policies
due to limited data, nonstationarity, or distribution shift, especially
during early stages of deployment.

To improve practical robustness, we introduce a computationally
efficient fallback learned policy implemented as a feedforward neural
network (FNN) &gy, trained offline to imitate the offset-free LMPC.
Since @p\y can be evaluated with negligible computational cost, it
serves as a reliable baseline when online updates temporarily degrade
the RL policy. In operation, the controller first compares the predicted
Lyapunov time-derivative of the RL proposal and the FNN proposal
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Fig. 1. Closed-loop structure with a Lyapunov-based shield layer. A learning-based policy block selects a candidate input u; (from either the RL policy or the
fast-learned FNN policy) using the measured state x and the disturbance/mismatch estimate § provided by the observer. A safety check evaluates the Lyapunov
condition V(x,uL) < S(x); if satisfied, u; is applied to the actuator, otherwise the controller switches to a model-based fallback input uz. The actuator drives the
process subject to an external disturbance W, while the sensor and observer close the feedback loop.

under the current information, and selects the more contractive one
as the learned candidate.

Instead of directly applying the learned candidate, a Lyapunov-
based shield (gate) is inserted between the learned policy and the
actuator. Consistent with the stability condition used in the LMPC
design, the gate checks whether the candidate input satisfies the chosen
Lyapunov decrease requirement, e.g., of the form in Eq. (9¢) or Eq. (10).
If the check is satisfied, the candidate is accepted; otherwise, the gate
rejects the learned candidate and switches to a model-based fallback
input computed by a short-horizon LMPC, which enforces the same
Lyapunov condition but calculated by the nominal model while still
optimizing the online cost.

To further guarantee that a valid control signal can always be
issued, the fallback pathway is complemented by a final failsafe layer.
If the LMPC fallback is unavailable or fails to return an input that
satisfies the Lyapunov condition, a stabilizing reference controller @&(-)
(as in Section 2.3) is applied. Overall, the architecture prioritizes
learned performance when the candidate is certified as safe, while
preserving stability-oriented behavior via systematic switching to the
LMPC fallback and the reference controller when needed. The complete
shield-layer decision logic is summarized in Algorithm 2.

Beyond online deployment, the same structure supports online
training. During operation, closed-loop data are stored and periodically
used to refine the RL policy. Importantly, the shield remains active
throughout data collection and policy updates, so performance can
improve over time while the closed-loop system continues to operate
under the same Lyapunov-based supervision. The presence of the offline
FNN surrogate further reduces the risk that online training temporarily
degrades the closed-loop behavior.

Remark 10. When comparing the learned policies in the first stage
of the shield (i.e., @y, versus the offline FNN surrogate ®@pyy), we
evaluate the Lyapunov time-derivative using the offset-free prediction
model Eq. (11) and denote it by V,;(x, u). In contrast, when assessing the
Lyapunov condition for the LMPC fallback (and the stabilizing reference
controller @), we compute V(x,u) using the nominal model Eq. (1).
This choice is consistent with the stabilizability assumption and the
stability guarantees established in Section 4, which are derived with
respect to the nominal dynamics. The use of V; is solely for selecting
between the two learned candidates to improve practical setpoint-
tracking performance. Since the FNN is trained to imitate the offset-free
LMPC feedback map, evaluating its contraction using the offset-free

Algorithm 2 Shielded online implementation (constraint-enforced
switching)
1: for k=0,1,2,... do
2:  Measure/estimate x(z,) (and 9(tk) if used); compute V (x(t;))
3:  Compute proposals: ug; « @gy (x(7)) € U, upny < Pean(x(ty)) €
U
4. Form g Dy (x(1)),
arg Ming ¢ (o, dpn ) I:/(x, D(x)
5 if V(x(1p)) < pgy OF V(x(1), up) < S(x(t;)) then
6: Apply u(ty) < uy,
7:  else
8
9

- where

Dy (x) S

Compute uy \pc(ty)
if V(). upmpe () < S(x(1,,)) then

Apply u(ty) < upypc(ty)
11: else
12: Apply failsafe u(r,) « @(x(1;))
13: end if
14:  end if
15:  Hold u(t) = u(t)) for all 1 € [t;, 1, + 4)
16: end for

model typically provides a more faithful prediction of its tracking
behavior than using the nominal model, whose mismatch-induced bias
can lead to overly conservative or misleading comparisons.

Remark 11. The above two RL realizations are selected as complemen-
tary representatives for implementing the proposed shielded, offset-free
framework. For the model-free branch, we start from DDPG since
it is a classic deterministic actor—critic method for continuous-action
control and has been widely adopted as a baseline in continuous-
time/continuous-input process systems; we then adopt TD3 as a gener-
ally more reliable and more stable improvement over DDPG in practice.
This choice is further supported by prior studies that successfully
combine TD3-RL with offset-free augmentation by including the mis-
match/disturbance estimate in the RL state (e.g., (Hassanpour et al.,
2024a,b)). For the model-based branch, we include the HJB-based
value—critic approach as a representative realization because the offset-
free mechanism continuously estimates and compensates for model—
plant mismatch, so the effective prediction model improves over time;
consequently, the HJB-residual training and the induced feedback pol-
icy can become progressively better aligned with the true closed-loop
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behavior. Moreover, HJB/value-function based RL has been studied and
applied in chemical process control (e.g., (Wang et al., 2025; Zhu et al.,
2025)), motivating it as a practical model-based counterpart to the
model-free TD3 branch.

Remark 12. In Algorithm 2, an LMPC fallback failure refers to sit-
uations where the LMPC action cannot be computed reliably within
the current control interval. Typical causes include: (i) solver failure
(e.g., infeasibility, non-convergence, or numerical issues) and (ii) ex-
ceeding the prescribed computational time limit, i.e., the solve time
is longer than the sampling period A. In either case, the LMPC solu-
tion is not safely deployable at the current sampling time, and the
shield triggers the final failsafe by applying the stabilizing reference
controller.

Remark 13. The proposed architecture does not assume that the
learned policies (the online RL policy and the offline FNN surrogate) are
stabilizing by themselves, nor does it require that the RL training explic-
itly enforces the Lyapunov decrease condition used in the supervisory
layer. Instead, the learned policies are treated as performance-oriented
candidate controllers that may occasionally violate the Lyapunov gate.
In our application studies, the learned policies nevertheless generate
a substantial fraction of actions that satisfy the Lyapunov condition;
however, even if one were to incorporate this condition directly into
training (e.g., via reward penalties or critic regularization), there is still
no guarantee that a learned policy will satisfy it at every time step.
Therefore, rigorous closed-loop stability/ultimate-boundedness guaran-
tees stem from the supervisory shield: a learned candidate is applied
only if it passes the Lyapunov-based gate, and otherwise the con-
troller switches to the model-based LMPC fallback and, if needed, the
stabilizing reference controller. Consequently, the closed-loop inherits
the stability properties established for the LMPC/reference controller
under sample-and-hold implementation and bounded mismatch, while
learning primarily serves to improve performance and reduce the online
optimization burden.

4. Closed-loop stability guarantees of the proposed reinforcement
learning-based controller

In this section, the closed-loop stability guarantees of the proposed
reinforcement learning-based controller are demonstrated under the
shielded online implementation.

4.1. Closed-loop stability

For a continuous-time implementation of the reference feedback,
the stabilizability assumption in Section 2.3 implies exponential stabil-
ity of the origin for the nominal model. In practice, however, controllers
are implemented digitally (sample-and-hold) and the plant may be
subject to bounded model-plant mismatch/disturbances. Consequently,
the closed-loop behavior is characterized in terms of practical stability
and ultimate boundedness, i.e., convergence to (and invariance of) a
neighborhood of the origin. Let D c R” be an open neighborhood of
the origin on which Eq. (7b) and (7c) hold, and pick p > 0 such that
the sublevel set Q, := {x € D : V(x) < p} satisfies 2, C D. The analysis
is restricted to trajectories with x(¢;) € £, and to inequalities enforced
on £,

Before addressing the uniformly bounded disturbance case, we first
consider the case where the mismatch/disturbance is vanishing. Con-
sider the true process Eq. (3) under the continuous-time reference
feedback u = @(x), i.e., x = F(x,®(x)) + W(x,t). Along its trajectories,
V(x) = % (F(x, D(x)) + Wi(x, t)) <—c |x|? + ¢y |x| [W(x,1)| (36)
where Eq. (7b) and (7c) were used. If, in addition, the mismatch is
vanishing in the sense that there exists a nonnegative function 6(¢) with
6(t) = 0 as t — oo such that

[W(x,0] <6(t) |x], V(x,1) € 2,xR (37)
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then
V(x) < —(e3 = c8(0) |x|* (38)

Therefore, there exists a finite time T to such that 6() < § <
2—3 for all + > T, which implies V(x) —(e3—c48) Ix]* < O for

all x Q,\{0} and all + > T. In other words, once the vanishing

P
<

mismatch becomes sufficiently small, V' is negative definite on 2,, and
the closed-loop inherits the same exponential decay mechanism as in
the nominal case. This case reflects a common practical situation where
the model we construct is relatively accurate near the setpoint steady
state. Hence, as the state converges toward the setpoint, the model-
plant mismatch diminishes, and the closed-loop behavior approaches
that of the nominal exponentially stable system.

We now turn to the more general and practically relevant case
in which the mismatch/disturbance is only known to be uniformly
bounded (not necessarily vanishing). In this case, a strict decrease of V'
cannot be guaranteed globally, but one can establish practical stability
and ultimate boundedness with an explicit ultimate bound, as stated
next.

Theorem 1. Consider the true process Eq. (3) under the reference feedback
u = d(x):

x=F(x, &)+ W (x,0) (39)

Let 2, C D be the sublevel set defined above. Suppose the stabilizability
assumption for the nominal model Eq. (1) holds on @, with a continuously
differentiable Lyapunov function V(x) and constants c,,c,,cs,c, satisfy-
ing Eq. (7). Assume the disturbance is uniformly bounded as in Eq. (4),
Le, |W(x,0)| < Wy for dll (x,t) € ,XR. Let r > 0 be such that the ball
{x | Ix| < r} is contained in 2,.

Fix any 6 € (0, 1) and define

Cy Wmax k- &) . (1- 0)63 Cy C I/Vmax
=S lm g J20 T8 k=2 2 T
c; 0 | 2c, 3 Ve 0

(40)

2./20r), then for every initial
4 2

condition satisfying |x(ty)| < k~'r, the solution of Eq. (39) exists for all
t > t,, remains in Q,, and there exists a finite time t| > t, such that

If u < k7'r (equivalently W,,, <

(41a)
(41b)

Ix()] < kexp(=y(t —10)) |x(t)|,
[x(1)] < b,

fy<t<t
t>1

In particular, the origin of the nominal model is practically stable for the
perturbed closed-loop system and the trajectories are ultimately bounded
with ultimate bound b. (see Khalil and Grizzle (2002, Thm. 4.10) and Khalil
and Grizzle (2002, Lem. 4.8))

Proof. Along trajectories of Eq. (39),

aV (x)
ox
aV (x)
ox

Vi(x)= (F (x, D(x)) + W (x,1))

aV (x)
ox

<

F (x, ®(x)) + | |W (x,1)]

<-c |x|2 +cy [x] Winax (42)

where Eq. (7b) and (7¢) and |W (x,1)| < W, Were used (on Q,). For
any fixed 6 € (0, 1),

=3 x> + ¢4 x| Winay = =(1 = 0)e3 [xI? = (8e3 x> = ¢ |x] Wiy )
<-(1=0)cs x>, VIx|>u (43)

with u defined in Eq. (40). Define a;(s) = c¢;5%, ay(s) = c,s%, and
a5(s) = (1 — B)cys%, which are class-K functions on [0, 7]. Then Eq. (43)
gives V' < —as(||x|) for all ||x|| > u. Applying (Khalil and Grizzle,

2002, Thm. 4.10) on the domain {x : [|x]| < r} C @, yields practical
stability/ultimate boundedness.
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Moreover, the explicit bounds Eq. (41) follow from (Khalil and
Grizzle, 2002, Lem. 4.8) by viewing W as an additive perturbation with
& = W Which yields k,y,b as in Eq. (40). The condition y < klr
ensures the relevant balls are contained in {x : [|lx|| < r} C 2, so the
corresponding trajectories remain in Q,. []

The demonstration characterizes the effect of bounded (or vanish-
ing) mismatch under a continuous-time reference feedback u = @(x). In
our implementation, however, the applied input is piecewise constant
and is taken as the first decision returned by the LMPC at each sampling
instant. We therefore next provide a sampled-data stability charac-
terization for the true process under the sample-and-hold application
of the LMPC input, showing forward invariance of 2, and ultimate
boundedness to a (possibly inflated) inner level set.

Theorem 2. Consider the true process Eq. (3) under the sample-and-hold
implementation of the first LMPC input:

x(t) = F (x(0),u(ty)) + W (x(0),1), tE€ [ty 1, + 4) 44

where u(t)) is the first control input vector returned by the LMPC prob-
lem Eq. (9), and the LMPC prediction model is the nominal model Eq. (1).
Assume  Section 2.3  holds for the nominal model on
Q, = {xeR"|V(x) <p} C D, and the disturbance satisfies W € W
in Eq. (4) on Q,. Assume W (x,1) is measurable in t and locally Lipschitz
in x on D, so that Eq. (44) admits a unique Carathéodory solution. Assume
the bounds || F(x,u)|| < My on 2, x U and the Lipschitz bound Eq. (8c)
hold on 2, x U (with constant L ). Suppose the LMPC enforces at each
sampling instant t, either Eq. (9¢) or Eq. (10), and choose a = Z—Z
Let 0 < p, < p and define the one-step inflated level

Pumin :=sup {V (x(t, + D) || x(t,) € R, , W €W, Eq. (44) holds on [t,,1, + 4)}
(45)

Assume p; < pin < p. If there exists a constant e, > 0 such that

[p
—ap; + L; (MF+VVmax)A + C4< C_ + (MF+Wmax)A> Wmax < —€y
1

(46)
then the closed-loop trajectory starting from any x(t,) € £, satisfies:
(1) For any sampling instant 1 with x(t;) € Q,\Q2, ,
V (x(0),u(ty)) < —e,, Vi€ [ty 1, + 4) 47
(2) There exists a finite time t, > t, such that
xnew, c, Vi1, (48)

In particular, Q, is forward invariant and the closed-loop is ulti-
mately bounded.

Proof. Fix any sampling instant 7, and any ¢ € [1,,7, + 4). Along
Eq. (44),

V (x(0), u(ty)) = w (F (x(0), u(t)) + W (x(2), z)) (49)

Add and subtract WF (x(tk), u(tk)) to split the derivative into three
terms. Using the Lipschitz bound Eq. (8c), the gradient bound Eq. (7¢),
and the disturbance bound ||W (x,1)|| < W,,.x, We obtain

aV (x(ty)) F

V (x(@),u(ty)) < L JIx(0)—x@)ll+ e

(%), ut)) +e4 IXON Wipa

(50)
Next, by Eq. (44) and the bounds [|F(x,u)|| < My on 2, x U and
(IW (x, )|l < Wpax On 2, the sample-and-hold state increment satisfies

t t
Ix) = x0ll < [ sl de < [ (IFG.utol -+ 1w o, 0l ) de
Tk

Tk
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S(Mp+ WA (51)

and therefore ||x(®)|| < |[x( )l + (Mp + W04 If x(1,) € Q,,\Q,,S,
then ||x(t)|l < +/p/c; and V(x(t,)) > p,. Moreover, depending on
which Lyapunov constraint is enforced at 7,: (i) under Eq. (9e), the
reference-controller decrease Eq. (7b) gives WF(x(tk),u(tk)) <
—esllx@I? < —Z—;V(x(tk)) < —ap; (ii) under Eq. (10), we have directly

‘WL;"‘))F(x(tk),u(tk)) < —aV(x(t})) < —ap,. Substituting these bounds
yields, for all 7 € [t,, 1, + 4),

V (x(0),u(ty)) < —aps+L.(Mp +Wmax)A+c4<, [2+My +WmaX)A>VVmax
(52)

so Eq. (46) implies Eq. (47).

For Item 2, when x(t;) € Q‘,\Qpl, Item 1 implies V < —¢, on
[te. 7, + 4), so V strictly decreases on that interval. When x(¢,) €
Q, , the definition Eq. (45) together with p; < py, < p implies
X)) €2,  C 2, Therefore, Q, is forward invariant. Finally, since
V < —e, whenever x(t,) € 2,\2, , the Lyapunov level at sampling
instants decreases until the trajectory reaches €, in finite time at
some sampling instant 7. Once x(f;+) € 2, , the definition Eq. (45)
implies x(tx,) € £, ., and inductively the trajectory remains in £,
thereafter, establishing Eq. (48). [

n

As seen in the proposed constraint-enforced switching framework,
the control law operates by conditionally selecting which control signal
is applied to the actuators. In addition to the online-updated RL policy,
we include an offline-trained feedforward neural network (FNN) as a
computationally efficient surrogate of the Lyapunov-contractive MPC.
The FNN provides a reliable baseline when online learning temporarily
degrades performance. At each sampling instant, the controller first se-
lects a learned candidate by comparing the predicted Lyapunov decrease
of the online RL policy and the FNN surrogate, and then applies the
Lyapunov-based constraint enforcer. The closed-loop stability/ultimate-
boundedness guarantees are inherited from the Lyapunov gate and the
LMPC/reference-controller fallback, rather than from intrinsic stability
properties of the learned policies.

Despite neither the online RL policy nor the FNN surrogate hav-
ing an a priori stability guarantee, the stability guarantees for the
LMPC shown in Theorem 2 also guarantee stability for the modified
framework via the constraint enforcer

Theorem 3. Consider the true process Eq. (3) under sample-and-hold
control with sampling period A:

x(t) = F (x(0),uty)) + W (x(0),1),

Assume Section 2.3 holds on 2, := {x | V(x) < p} C D and the disturbance
satisfies W € W in Eq. (4) on Q,. Assume W (x,1) is measurable in t and
locally Lipschitz in x on D, so that Eq. (53) admits a unique Carathéodory
solution.

Let @y : R" — U be an RL controller satisfying @y (x) € U for all
x, and let @pyy @ R" — U be an offline FNN surrogate policy satisfying
Dpnn(x) € U for all x.

Fix 0 < p,, < p and define

1 E [ty 1y + 4) (53)

s e { V(xow), —av ) } (54)

consistent with whether Eq. (9¢) or Eq. (10) is used.
Define the learned candidate policy @, by selecting between @y, and

@y based on the predicted Lyapunov decrease:
@ (x) € argmin

Dee{Prr, NN}
Use the following constraint enforcer:

V(x, <I>C(x)) (55)

1) @ (x (1)) <8 (x (1)) (56)
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where @\ \pc is defined by

_ Joumee (%) s V(% (1) s uimee (1)) <8 (x (7))
Prvee (1) = . 57
@ (x (1)), IV (x(te) umee (1)) > S (x (1))
and always returns an input in U.
Assume the following outer-region decay property holds: there exist
constants 0 < p; < p and ¢,, > 0 such that for any sampling instant 1,
with x(t;) € 2,\2, , whenever the applied input satisfies

V (x(tp), u(ty) < S (x(tp)) (58)
the sample-and-hold trajectory satisfies
V (x(®),uty) < —€,  VEE [t 1, +4) (59)

In particular, when u(t,) = u;\pc(ty) is the first input returned by the

LMPC and the LMPC enforces Eq. (58) at t,, Theorem 2 (Item 1) provides

sufficient conditions for Eq. (59).
Define the inner level

Pin = Inax{ps, psw} (60)

Define the one-step worst-case Lyapunov level:

Prin i=sup {V (x(t, + ) |l x(t,) € R, , W €W, Eq.(53)holds on [t,,1, + 4)}
(61)

Assume the invariance-feasibility condition

Pin < Proin < P (62)

Then for any x(t)) € £, the closed-loop trajectory under Eq. (56)
satisfies:
1. Forward invariance (hence boundedness): for all t > t), x(t) €
Q,, and thus by Eq. (7), ||x(1)|| < y/p/c; for all t > .

2. Ultimate boundedness with explicit bound: there exists a finite
time t| >ty such that

x()€EQyx CQ, Vi>1 (63)
Consequently, again using Eq. (7a), x| < 4/p),, /) forallt > 1,.

Moreover, at any sampling instant with V(x(t;)) < p,, we have

”x(tk)” < V psw/Cl'

Proof. Fix any sampling instant 7.

(1) Forward invariance of Q,. Assume x(1) € 2, i.e., V(x(t)) <
p.

If V(x(t,) > p;p, then V(x(ty)) > pg, and V(x(t,)) > p,. By the
constraint enforcer Eq. (56), the applied input satisfies V' (x(t,), u(t;)) <
S(x(tp). Since x(t;) € 2,\2, , the outer-region decay property Eq. (59)
gives

V(x(),u(ty) < —€,,  V1E 1.ty + 4)

so V strictly decreases on [, 7, + 4) and thus V (x(r)) < V(x(t,)) < p for
all 1 € [ty, 1, + 4).

If V(x(t;)) < piy, then by the definition Eq. (61) and the assumption
p;in < p, we have V(x(t; + 4)) < pr’;in < p, hence x(1,,|) € Qp:m C 2,
Therefore, in both cases, whenever x(t;) € 2, we obtain x(t;,,) € 2,.
By induction over k, £, is forward invariant, and the bound ||x(*)|| <
v/p/c, follows from Eq. (7a).

(2) Ultimate boundedness. Whenever V (x(z,)) > p;,, the argument
above yields V' < —¢,, on [t,,1,+4), so V strictly decreases on that inter-
val. Hence, after finitely many sampling instants there exists 7,+ such
that ¥V (x(t;+)) < p;,. For this sampling instant, the definition Eq. (61)
implies V' (x(tjx 1)) < p:ﬂn.

We now show that once V (x(t;)) < ”;in for some j, then V (x(z;,,)) <
pr. . If V(x(t;)) < pj, then QV(X(,j)) c Q, and Eq. (61) implies

Vi(x(t;) < p;in. If instead p;, < V(x(1))) < pX. , then V(x(t;)) > p,

min’
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and V(x(t;)) > pew> SO the enforcer gives I'/(x(tj),u(tj)) < S(x(@)) and
the outer-region decay property yields V (x(z), u(t ) < —e,on i1 +4),
hence V(x(1;,))) < V(x(t;)) < p*. .

Therefore V (x(1)) < p:ﬂn holds for all sufficiently large k, and the
corresponding continuous-time statement Eq. (63) follows. The norm
bound follows from Eq. (7a). [

Remark 14. The alternate form of the stability constraint from Eq. (10)
does not explicitly use the reference controller, but still requires it
to exist due to the Lyapunov function needing to satisfy Eq. (7). A
consequence of using this form is that ¢ must be defined by the user.
An excessively small a risks being overpowered by the sample-and-
hold and disturbance terms in Eq. (46) (e.g., L\.(Mp + W, )4 and
cs(\p/er + (Mg + W) Way), Whereas an excessively large a risks
the solution being infeasible due to the control bounds.

Remark 15. The proof demonstrates stability guarantees for any such
interval in which the stability constraints are enforced. As presented
in Eq. (9), this implies that stability guarantees do not exist beyond the
first sampling interval; hence, the receding horizon approach would
functionally satisfy the stability guarantees but is not guaranteed to
optimize with respect to a trajectory that satisfies these guarantees for
all points beyond the first sampling interval.

Remark 16. The RL-based controller has no stability guarantees alone,
hence why every case eventually reforms to be in terms of the reference
controller, as the reference controller’s existence and use are solely for
the enforcement and satisfaction of stability guarantees.

Remark 17. The ultimate bound size can be reduced if a certified
backup controller is also enforced inside the switching region. Specif-
ically, when V(x(t;)) < p, (hence [|x(t) )|l < /psw/c1), One may apply
an alternative backup law that satisfies a stronger Lyapunov-decrease
condition under sample-and-hold, e.g., an offset-free constraint of the
form Ve (x(ty), u(ty)) < —aV(x(t;)). This replaces the generic one-step
inflation bound used in Theorem 3 by a tighter inner-region bound
(see Appendix), yielding a smaller ultimate invariant set; under con-
stant matched mismatch, the residual term vanishes and the resulting
ultimate bound coincides with the nominal sample-and-hold bound.

4.2. Offset-free observer error bound

We analyze the extended Luenberger observer Eq. (13) under a
matched structured mismatch assumption consistent with Eq. (11).
Specifically, assume that the true process Eq. (3) satisfies

W (x,1) = Gy 6% (t) (64)

Here, G, € R™” is known and constant and 6*(r) € R? is possibly
time-varying.

Suppose F(:,-) is Lipschitz in x on D uniformly in u, namely there
exists Ly > 0 such that for all x;,x, € D

|F (x1.0) = F (xp.0)| < Ly 31 = )] (65)
Also suppose there exists d,,,, > 0 such that
[6*0)] € dpay, V120 (66)

Assume full-state measurement is available to the observer. Under
sample-and-hold control, the applied input satisfies u(t) = u(t;) for
all + € [t,1;,1). Accordingly, on each interval [r,7,,,) the observer
dynamics are given by Eq. (13) with u(r) replaced by u(z,).

Define the estimation errors

et) 1= e, ", o]

(67)

e (1) 1= x(0) - X(),  ep(t) := 0*(1) - O(1),
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Theorem 4. Consider the true process Eq. (3) with Eq. (64) and the
observer Eq. (13) with full-state measurement implemented under sample-
and-hold input u(t) = u(t) on [ty t,, ). Define

A= _Kx GF) B := 0
’ - Ky 0]’ ’ lp

(68)

Assume the gains K., K, are chosen such that A is Hurwitz. Let Q = QT > 0
be arbitrary and let P = P > 0 solve

ATP+PA=-0 (69)
Define V,(¢) := €T Pe, 4 := Apin(P), and A := Ay (P). If
1= 3 Apin(@) = IPILp > 0 70)

then the following statements hold as long as x(t), X(t) € D.

(i) Eventually constant mismatch (zero steady-state error). If there
exists a finite time t, > 0 such that 6*(t) = 0 for all t > t,, then for all
t>1,

V, (e) < exp[-k(t—1)] V, (e(t))),  k:=2 71)
2
Consequently
e < 1% exp[-S 0] el vz 72)
= & 2 c c/lls = fe

In particular, e(t) — 0, namely %(r) - x(t) and 6(t) - 0* as t — co.
(ii) Time-varying bounded mismatch (bounded estimation error). If
16* (|| < dpyy for all t > 0, then for all t > 0

V, (e(n)) < exp[—«1] V, (e(0)) + p* [1 — exp[—«1]| (73)
where x = a/7 and
o oo Ao i 2 2
p :=||PB| dpyax- pri= = s [IPB|I=d;, (74)
2a
Consequently
. * . 2p*
limsup V, (e(t)) < p limsup |le(?)|| < - (75)
t—00 t—00 A

Moreover, the mismatch reconstruction error (1) := Gyey() is ultimately
bounded

2p*

hm nsup lo@®|l < |Gyl e

(76)

Proof. Using the true process Eq. (3) with Eq. (64) and the ob-
server Eq. (13) implemented under sample-and-hold input u(r) = u(t;)
on [ty,1;,1), the estimation error e satisfies the compact dynamics
+BO* (1)

é=Ae+ [ 77)

—_—

Aey)

F(x,u) — F(X,u)
0

where A, B are given in Eq. (68) and u = u(t) on [1,1,, (). By Eq. (65),
lACe )Nl < Lrpllexll < Lllell.

Let V,(e) = %eTPe with P solving Eq. (69). Along trajectories
of Eq. (77)
v, = e pe
=e'PAe+e  PAe,) +e' PBO*(2)
= —%eTQe +e PA(e,) +e  PBO*() (78)
< (—%ﬂmin(Q) + ||1"||L1r)||€||2 + I PBIIO* O llell
—allell* + Bllell 79

where « is defined in Eq. (70). Under [|6*(9)|| < d,,, the term f is given
in Eq. (74). Using Young’s inequality
ﬂZ

Bllell < —||e||2 (80)
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Substituting into Eq. (79) gives

. 2
Vv, < V+———KVe+c (81)
ﬂ
with ¥ = «/7 and ¢ = %/Qa).
Assume there exists t, > 0 such that §*(f) = 0 for all ¢ > ¢,. Then for
all + > r, we have g = 0 and Eq. (81) reduces to Ve < —«V, on [t,, ),

which implies Eq. (71). Using 3 illel> < V,(e) < 5 Zlle||? yields Eq. (72).

With [[§*(@#)|| < dp.x Eq. (81) implies V, < —«xV, + c. Solving the
comparison system z = —kz + ¢ with z(0) = V,(e(0)) yields Eq. (73)
with p* = ¢/k as in Eq. (74). The bounds in Eq. (75) follow from
%ille”z <V, < %§||e||2. Finally, Eq. (76) follows from &% = Gye, and
llegll < llell O

Corollary 1. Under the matched mismatch assumption Eq. (64), let
u;(t) denote the (ideal) equilibrium input obtained from Eq. (14) by
replacing 0@ ) with the true mismatch parameter 0* (1), and recall that the
implemented update computes ug,(t,) via Eq. (14). Suppose the Jacobian
condition Eq. (15) holds on a neighborhood of interest. Moreover, assume
the equilibrium Jacobian is uniformly nonsingular on a set © containing
0*(1) and 0(r), ie.,

slelg“( [Fo, u)+G9€]> 1“ <M, <

(82)

Then the induced equilibrium mapping ug, = ¥ (0) is locally Lipschitz on O,
and for all 1 with 6*(¢), 0(t) € O the steady-state input error satisfies

gy (1) -

where one may take Ly := M,||G,||. Consequently, in case (i) of Theorem
4, we have ug,(1) — u:p(t); in case (ii), the computed steady-state input is
ultimately bounded as

s (Ol < Ly 160) ~ 6* 0]l = Ly llep®Il < Ly lle@l (83)

lim sup ||ug, (1) — (z)|| < Ly (84)
=00

5. Application to a chemical process example

In this section, we apply the proposed stable and robust RL-based
controller with the shielded layer to a representative chemical pro-
cess. In particular, we implement the framework in a closed loop and
evaluate how the Lyapunov-based safety shield (fallback controller)
improves reliability under unknown model-process mismatch and dis-
turbances. Additionally, to highlight the benefit of the proposed design,
we compare it against a conventional RL controller and an RL imple-
mentation without any backup. Finally, we benchmark the resulting
controller against various other controllers to quantify both closed-loop
performance and computational efficiency.

5.1. Process description

The model chemical process of choice for this study is a simulated
continuous stirred-tank reactor (CSTR). The CSTR is assumed to be
perfectly mixed and insulated. We consider a singular irreversible ele-
mentary reaction that is exothermic, making the CSTR non-isothermal.
The reaction is treated as an arbitrary liquid-phase reaction (A — B)
with second-order dynamics. Heat is added or removed from the system
through a controllable heating rate Q. These assumptions yield the
following dynamic model:

2
=5 = V—L(CAO—CA)—kCA (85a)
dT _ F AH | 0
L L _1)- kC2 + —— (85b)
a v (T pC, A PG
k = kg exp [—R—ET] (850)
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Table 1
Parameter values of the CSTR model.
Variable Value Variable Value
Cys 1.954 kmol m™3 Caos 4.0kmolm~3
c, 0.231kJkg™' K™ AH —1.15 x 10* kJ kmol ™!
E 5.0 x 10* kJ kmol ™" F 5m3h!
ko 8.46 x 10° m* kmol ™" h™! 0, 0.0kJh!
R 8.314 kJ kmol ™' K oL 1.0x 10* kgm™3
T, 300.0K T, 300.0K
T, 401.9K 1 1m?

Here—with the exception of k;, which denotes the isothermal rate-
constant—the “0” subscript denotes feed values, C, denotes concen-
tration of A, and T denotes the temperature of the solution within the
CSTR. p,C,,AH, E and V; denote the solution density, specific heat,
heat of reaction, activation energy and liquid volume, respectively.

5.2. Control problem

The inlet concentration C,, and the heating rate Q are selected as
the manipulated inputs, and the state variables are chosen to be C, and
T. In order to utilize the origin as the steady state (denoted by the s
subscript) without loss of generality, the state and control variables are
expressed as deviation variables. Accordingly, the vectors used in the
problem formulation are defined as x" = [C4 — C,,, T—T,] and u" =
[Ca0 — Cos» @ — O] for the state and control vectors, respectively. The
control inputs are subject to bounds, specifically —3.5 < C g — Cyps <
3.5kmolm™ and -5 x 10° < Q0 - O, < 5 x 103kIh~!. Specifics on
the various constants used in the CSTR dynamic model are provided
in Table 1.

The design goal is to create a controller that drives the closed-
loop system from any given initial state bounded by —-0.6 < C, —
C,, < 0.6kmolm™ and —-10 < T — T, < 10K to the origin. Be-
cause of the deviation-variable notation, this origin represents the
desired operating (unstable) steady state. To achieve this, a refer-
ence controller satisfying Section 2.3 is chosen as a proportional
(P) controller acting on both deviation states with gains k.; = 2
and k., = 5,000 and saturations consistent with the input bounds,
ie, Cyp — Cuoy = clip(=k.;(Cy—Cyy),[-3.5,35]) and O - O, =
clip(—k. (T — T}),[-5 x 10°,5 x 10°]). Similarly, a Lyapunov function of
the form V = x" Px with

1,060 22
P= [ 0.52]
is used.

22
The immediate cost of the LMPC and RL at 7 = 1, is designed as the
quadratic form:

L(x(t), uty)) = x(t) W, x(t) + u(ty) T W, u(ty) (86)

with weighting matrices W, = diag(1000, 1) and W, = diag(10, 10~%).
The consistent cost (negative reward) function is used to ensure a fair
comparison between all controllers.

In this study, we evaluate robustness under bounded model mis-
match and time variation by considering additive disturbances (W (x, 1)
in Eq. (3)) in both Egs. (85a) and (85b). Over the operating region
induced by the initial-state set, we assume that the disturbance terms
are bounded as |W,(x,7)] < 10 and |W,(x,t)| < 500 for all 7, where
W, (x,t) and W,(x,1) denote the additive disturbances in the concentra-
tion and temperature dynamics, respectively. To generate parametric
mismatch scenarios that are consistent with these bounds, we introduce
time-varying perturbations through the feed temperature 7,(r) and
activation energy E(¢) and select their admissible ranges such that
the resulting induced mismatch remains within the assumed bounds
on W, and W, over the operating region. Physically, perturbing T ()
models variations in the inlet/feed thermal condition (e.g., upstream
heat-exchanger performance changes or ambient-induced fluctuations).
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Perturbing E(¢) models uncertainty and slow drift in reaction kinetics
(e.g., catalyst aging/deactivation, impurities, or unmodeled chemistry),
effectively changing the temperature sensitivity of the reaction rate and
thereby impacting both the concentration consumption rate and the
heat-release rate. Specifically, we constrain the perturbations to remain
within T,(r) € [290K, 300K] and E(r) € [5.0 X 10*kIkmol™, 5.15 x
10* kT kmol '] for all 7.

We test robustness under two types of mismatch/nonstationarity: (i)
a transient drift that settles after an initial period and (ii) a persistent
drift that continues throughout the evaluation horizon. In our setting,
these two cases are emulated by applying time-varying perturbations
to the feed temperature 7j,(r) and activation energy E(f) on the plant
side while keeping the controller model nominal. In both cases, the
perturbation is composed of a constant offset (offline model-plant
mismatch) and a time-varying component:

Ty(t) = 300K + AT, + 6Ty (1), E@t) =5.0x10*kJkmol ™! + AE + §E(1)

where AT, and AE are constant offsets, and 6T;(r) and 6 E(r) describe
the drift profile. For the transient-drift case, we ramp 67;(r) and S E(t)
linearly over an initial duration T; and then hold them constant (equiv-
alently, once the drift reaches its prescribed terminal value or a bound
it remains fixed thereafter). For the persistent-drift case, we ramp
6T,(1) and SE(¢) continuously over the entire horizon r € [0,T,.4]
without settling. In all simulations, the drift magnitudes and offsets are
selected (and saturated when needed) so that T, () remains between
290K and 300K, and E(r) remains between 5.0 x 10*kJkmol~! and
5.15 x 10* kI kmol ™!, for all #.

Remark 18. All closed-loop simulations are implemented in a sample-
and-hold fashion with sampling period 4 = 5s. Within each sampling
interval [7,t, + 4), the control input is held constant as u(r) = u(ty),
and the CSTR dynamics are numerically integrated using the forward
Euler method with integration step size dt = 0.1 s. This integration step
size was validated by repeating representative closed-loop simulations
with smaller dr, which yielded essentially identical state and observer
trajectories.

Remark 19. When selecting the Lyapunov function V(x) = x' Px and
the reference stabilizing controller @(x) (the saturated P controller),
we proceed as follows. First, we tune &(x) so that it stabilizes the
deviation dynamics and drives the state to the origin while respecting
the input bounds over the operating region D. Next, with ®(x) fixed,
we construct a quadratic Lyapunov candidate by choosing a symmetric
positive definite matrix P > 0 and verifying (numerically) that there
exists a level set 2, := {x : V(x) < p} such that Q, C D, &(x) € U for
all x € 2,, and the assumptions in Section 2.3 hold on @,. If a sampled
P fails these checks, it is discarded and resampled until a valid P is
obtained.

Remark 20. In the numerical studies, the admissible operating region
for the stability analysis and switching logic is chosen as @, = {x |
V(x) < p} with p = 200, and the switching level in Eq. (56) is set to
Psw = 20. The choice p = 200 is made such that, over 2, the satu-
rated reference controller @(-) together with the quadratic Lyapunov
function V(x) = x' Px satisfies the conditions stated in Section 2.3.
The switching level p,, = 20 is selected as an inner level set that the
reference controller can robustly drive trajectories into from the outer
region Q,\ £, , so that states starting in £, are brought into 2, in
finite time under the reference controller.

5.3. Offset-free observer and LMPC

The online implementation of the offset-free LMPC follows the same
closed-loop structure shown in Fig. 1. In this case, the control policy
is the proposed offset-free LMPC described in Section 2.5. Specifically,
the prediction model is the offset-free model Egs. (11) and (12), the



X. Cui et al.

disturbance states are estimated online using the extended Luenberger
observer Eq. (13), and the steady-state tracking input u,(,) is com-
puted from the equilibrium condition Eq. (14). At each sampling instant
t,, the optimizer is initialized with the current measured state and
uses the most recent disturbance estimate d(r,) as a constant param-
eter over the horizon to solve the offset-free Lyapunov-based MPC
problem Eq. (18).

In this work, the LMPC optimization problem is solved using the
sequential least squares quadratic programming (SLSQP) algorithm,
which is a gradient-based method for constrained nonlinear programs.
At each iteration, SLSQP solves a quadratic approximation of the
original problem and updates the decision variables until convergence.
Based on test simulations, the convergence tolerance and the finite-
difference step size are set as 1 x 107!2 and 1 x 107%. The resulting
first control move u(t,) is applied to the plant in a sample-and-hold
fashion over [f,;,;), while the observer Eq. (13) is integrated using
the available state measurement to update 2(f) and () online.

To demonstrate the proposed offset-free LMPC, Fig. 2 compares
its setpoint-tracking performance with that of the nominal LMPC un-
der the time-varying parametric mismatch introduced in this study.
Specifically, the true plant evolves with perturbed feed temperature
and activation energy while the controller model remains nominal:
Ty(t) is ramped from 300K to 290K and E(r) is ramped from 5.0 X
10*kJkmol™ to 5.15 x 10*kJkmol™' over the first 10min and then
held constant (transient-drift case). Under this mismatch, the nominal
LMPC uses the fixed nominal prediction model Eq. (1), so its horizon
predictions become biased relative to the disturbed plant Eq. (3);
consequently, the closed-loop trajectories converge to a neighborhood
with a visible steady-state offset, even though the Lyapunov constraint
still enforces convergence to a Lyapunov level set. In contrast, the
offset-free LMPC incorporates the disturbance estimate é(tk) from the
extended observer Eq. (13) into the prediction model via Eq. (18b)
and updates the steady-state tracking input u,(#,) online via Eq. (14).
As a result, both the horizon predictions and the tracking reference
are corrected toward the disturbed equilibrium induced by the ramped
T,(1) and E(r), which improves steady-state accuracy and removes the
offset, consistent with the trajectories in Fig. 2. This mechanism is
further supported by Fig. 3, which shows that after an initial transient
(during which the mismatch is being identified), the observer estimates
converge and remain aligned with the actual disturbed process states.

As shown in Fig. 3, the real disturbed process states (red) and
the offset-free observer estimates (blue) do not perfectly match at the
beginning because the observer starts with limited information about
the disturbance and the associated mismatch. During this transient pe-
riod, the observer must correct the state estimate while also identifying
the disturbance states, so a small estimation gap is expected. As the
disturbance estimates settle, the observer compensates the mismatch
more accurately. Consequently, the estimated trajectories align with
the actual process states and remain overlapped afterward, indicating
negligible steady-state estimation error.

5.4. Fast learned policy for approximating offset-free LMPC via FNN

To enable a computationally efficient surrogate of the constrained
offset-free LMPC (OFLMPC), we first generate an offline imitation
dataset by running closed-loop simulations of the OFLMPC under
bounded disturbances and model mismatch, and then train a feedfor-
ward neural network (FNN) to approximate the resulting feedback law.
The data-generation procedure follows the same OFLMPC closed-loop
implementation described in Section 5.3: the disturbed plant evolves
under the time-varying mismatch profile, the disturbance estimates are
produced online by the extended Luenberger observer Eq. (13), and
the OFLMPC control action is obtained by solving Eq. (18) at each
sampling instant. Each closed-loop rollout is simulated for 30 min with
sampling period 4 = 5s (sample-and-hold control over each interval)
and numerical integration step dr = 0.1s. The OFLMPC steady-state
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Table 2
Best hyperparameters used in offline FNN training.

Learning rate Batch size Network width Network depth Dropout rate
3.5948 x 1073 64 256 2 0.0236

Table 3

FNN imitation accuracy for the offset-free LMPC policy (train/validation/test).
Split MSE,, MSE, MSE, , MSEy,, MSE o000
Train 0.010748 7.0982 x 107 2.19%107* 197 x 107 2.08x 1074
Val 0.011731 7.2057 x 107 239x 1074 2.00x 1074 220x 1074
Test 0.011375 7.4675 x 107 2.32x107* 2.07x 1074 220 1074

reference input ug,(#,) required by the tracking objective is updated
online at each sampling time using the current disturbance estimate
via the equilibrium condition Eq. (14).

To cover the operating region, the initial deviation state x(z) is
sampled from randomized Lyapunov level-set rings of V(x) = x' Px
(with the same P used in the safety design). Specifically, we construct
Nying = 200 rings over V' € [0.01, 200], select a ring index uniformly
at random, and sample an initial point on the selected ring, yielding
diverse initial conditions ranging from near-setpoint to outer-region
states. For robustness, each rollout is generated using the true-process
model Eq. (3) with additive disturbances W (x,1) = [W;(x,1), Wy(x, t)]T
entering both Eq. (85a) and (85b). Over the operating region in-
duced by the above initial-state set, we assume the disturbance bounds
W, (x,1)| < 10, |W,(x,1)| < 500, where W(x,t) and W,(x,t) denote the
additive disturbances in the concentration and temperature dynamics,
respectively. In the data-generation simulations, a disturbance realiza-
tion is sampled once per trajectory (uniformly within the above bounds)
and then held constant over the entire 30 min trajectory simulation.

With this dataset, we train an FNN to approximate the OFLMPC
feedback map. The measured/estimated learning state is
s = [Cy, T, éCA’ Oy ]T, and the corresponding OFLMPC control
action is upypc = [Cag — Cpo5» @ — O ]T with bounds C,y — Cyo, €
[-3.5,3.5] and O — Q, € [-3 x 10°, 3 x 103]. The dataset is formed by
stacking all recorded trajectories and removing missing entries. Each
state component is min—max normalized using dataset extrema (saved
for later deployment), and each input is mapped to [—1, 1] through an
affine transform consistent with the actuator bounds. The FNN then
learns a two-output map zpyy s + u by minimizing the mean-
squared error (MSE) between the predicted and OFLMPC actions in the
normalized action space.

To obtain a compact yet accurate approximation, the network hy-
perparameters are selected via Bayesian optimization over the learning
rate, batch size, network width, network depth, and dropout rate. After
30 Bayesian-optimization iterations (including 10 random initial trials),
the best hyperparameter set is summarized in Table 2, achieving the
lowest validation objective MSE, ¢onnorm = 3.1681 X 10~ during the
search. Using these hyperparameters, the final FNN is trained with early
stopping (best epoch 22; training terminated at epoch 34).

Table 3 reports the resulting errors on the train, validation, and
held-out test sets in both physical units and normalized units. The
normalized mean MSE is MSE.,,, = 2.20 X 107* on the test set,
indicating that the learned policy closely matches the OFLMPC actions
over the sampled operating region. In addition, Fig. 4 shows scatter
plots comparing the FNN outputs against the OFLMPC targets on the
test set for both inputs, where points concentrate near the 45 ° line,
confirming accurate action replication.

Remark 21. At the start of data-generation, the disturbance/mismatch
parameters are sampled randomly and then held constant over the
entire trajectory, i.e., we train with a constant disturbance realization
W (t) = W within each episode. This choice is intentional. Since the
learning state includes the disturbance estimate 4, it is sufficient to
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Fig. 2. Closed-loop trajectories comparing Nominal LMPC and offset-free LMPC (OFLMPC). The dashed line indicates the setpoint (C, = C,, and T =T,).
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Fig. 3. Comparison between the states of the disturbed process and the offset-free observer estimates.

sample different constant disturbance realizations across trajectories
to expose the observer to diverse mismatch patterns and train the
network as a function of . If W(r) were allowed to vary rapidly
within a trajectory, the resulting time-varying targets could mislead
the supervised imitation objective by mixing controller responses to
exogenous fluctuations with the underlying 6-dependent feedback law.
This is especially undesirable for subsequent RL training, where we rely
on f to provide a consistent representation of mismatch and want the
learned models/policies to reflect a stable mapping rather than chase
nonstationary disturbances.

5.5. Robust HIB-RL policy

Following the robust HJB-RL formulation in Section 3.1 and the
offset-free augmented model and observer in Section 2.5, we

implement an offset-free HJB-RL controller for the unknown disturbed
CSTR example. In particular, the value-based design is carried out on
the augmented state 7 := [xT, éT]T.

The offset-free HJB-RL policy is trained in simulation using closed-
loop rollouts of the disturbed CSTR together with the extended Luen-
berger observer. At each sampling time 7,, the RL observation is taken
as the augmented estimate

Cyty) — Cyy
i oo O] _| T@ =T,
s(t) = x@ty) 1= [9(1k)] - écA (1) @7
0r (1)

where x(t,) denotes the measured plant deviation state and @(tk) is
the disturbance estimate generated by the observer in Eq. (13). The
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Fig. 4. Test-set action replication performance of the FNN policy. Each point compares the OFLMPC action (data source) with the corresponding FNN prediction

for the same input state.

control action is implemented under sample-and-hold with sampling
period A = 55, and both the plant and observer are integrated using
explicit Euler with step size 0.1s. Each training episode simulates a
30 min closed-loop trajectory.

To ensure coverage of both near-origin and far-from-origin regions,
the initial deviation state x(0) is sampled from Lyapunov level-set rings
defined by V(x) = x" Px using the matrix P specified in Section 5.2.
The ring sampler spans V' € [0.01,200] using 200 uniform-width rings.
To expose the learner to bounded mismatch consistent with the dis-
turbance set used throughout this work, the real chemical process
is perturbed by additive disturbances W(x,1) = [W;(x,1), Wy(x, t)]T
satisfying |W;(x,1)| < 10 and |W,(x, t)| < 500, sampled once per episode
and held constant during the episode. In contrast, consistent with Sec-
tion 3.1, the HJB residual used for learning is evaluated using the
offset-free prediction model F(7,u), so the learner does not explicitly
incorporate W (x,t) in the model used for the critic update.

The critic V,,(f) is parameterized by a fully-connected neural net-
work with two hidden layers of width 256 and tanh activations. Its raw
output is passed through a softplus(-) nonlinearity and augmented with
a small quadratic term in the input to improve numerical robustness

V,,(#) = softplus( £,,(2)) + £, 2113, (88)

Given a differentiable critic, the control action is computed from the
stationarity condition of the Hamiltonian, consistent with Eq. (29), as
a closed-form function of the gradient V,V,,(7) and then clipped to
the admissible input set. Moreover, in accordance with the offset-free
tracking construction in Section 2.5, the offset-free steady-state input
usp(é(tk)) is computed online from the latest disturbance estimate and
used as the reference in both the policy computation and the stage
cost. This yields an offset-free regulation objective consistent with the
quadratic benchmarking objective in Eq. (86) and the cost-matching
choice in Eq. (26)

The critic parameters are updated by minimizing the mean-squared
stationary augmented HJB residual as introduced in Eq. (30). For a
mini-batch {7;} ,N the residual is formed as

=1’

eq>0

Rz w) = L(xpw* (7)) + (V3 V(20) F(2u*(2) (89)

where F(-) denotes the offset-free model used for residual evaluation
and u*(#;) is the HJB-induced action computed from V 2Vl and
clipped to satisfy the input bounds. The critic is optimized using the
Adam optimizer with gradient clipping, together with a small anchoring
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regularization at the origin to stabilize learning near 7 =0

N
1 o
L) = 5 Y R w) + Ay Vo OF + A IV VOl Ay dy >0

i=1

(90)

A replay buffer is used to maintain a representative distribution of
visited augmented states. At each interaction step, the transition data
are stored and mini-batches are sampled uniformly from the buffer for
stochastic gradient updates. Training begins with 2,000 random-action
steps for warm-up, after which Gaussian exploration noise is added to
the HJB-induced action and clipped to satisfy the input bounds. Unless
otherwise stated, training uses a batch size of 128 and performs one
critic update per environment step

Policy evaluations are performed every 6,000 interaction steps on a
fixed set of initial conditions sampled from rings with indices
{10,30, ...,190}, where the evaluation disturbances are sampled within
the same bounds as in training. The best-performing critic is selected
based on the evaluation return and saved for subsequent closed-loop
studies, and all training and evaluation statistics are logged contin-
uously. The key hyperparameters used in the robust HJB-RL imple-
mentation for training the critic network V,(7) via the augmented
HJB-residual minimization in Eq. (30) are summarized in Table 4.

To demonstrate the proposed offset-free HJB-RL (OFHJB-RL) design
under the same parametric mismatch mechanism introduced in Sec-
tion 5.2, Fig. 5 compares its closed-loop performance with two base-
lines: a nominal HJB-RL controller (trained/derived without offset-free
compensation) and a deployment without the Lyapunov-based shield.
In this comparison, the true plant evolves with perturbed feed tempera-
ture and activation energy while the controller model remains nominal;
specifically, T, (r) is ramped from 300K to 290K and E(¢) is ramped from
5.0 10*kJ kmol™! to 5.15 x 10* kJ kmol~! over the first 10 min and then
held constant, which corresponds to the transient-drift (Set 1) mismatch
pattern described in Section 5.2.

As shown in Figs. 5(a) and 5(b), the proposed OFHJB-RL achieves
the most reliable setpoint regulation: C, — C,, decays rapidly and
remains tightly clustered near zero, and T — T, approaches the set-
point with limited dispersion across trajectories. The nominal HJB-RL
exhibits a visible steady-state offset and a wider spread, indicating
sensitivity to the biased plant dynamics induced by the thermal/ki-
netic mismatch. The input trajectories in Figs. 5(c) and 5(d) further
reflect this difference: the nominal controller produces more scattered
actions with larger excursions, whereas the proposed method yields
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Table 4

Robust HJB-RL (value-critic) training hyperparameters.
Parameter Value Parameter Value
Optimizer Adam Learning rate a,, 1x1073
Mini-batch size N 128 Critic hidden width xdepth 256 x 2
Critic activation tanh Output activation softplus
¢, regularization weight 1x107 Quadratic positivity term in V, 1x 107*]| 2113
Update frequency 1 Replay buffer capacity 5% 10°
Random exploration steps N, 2000 Exploration noise std o, 0.10
Evaluation interval 6000 Total training steps 300000
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Fig. 5. Closed-loop trajectories comparing the proposed offset-free HJB-RL (OFHJB-RL), a nominal HJB-RL baseline, and the proposed controller deployed without
the Lyapunov-based shield under the transient-drift mismatch profile (Set 1) generated by ramping 7;,(r) and E(¢) over the first 10min and then holding them

constant. The dashed line indicates the setpoint (C, = C,, and T =T,).

smoother and better-clustered inputs. Comparing the proposed method
with the unshielded deployment highlights the role of the Lyapunov-
based shield: removing the shield leads to less consistent transients and
larger input excursions, even when convergence is still achieved for
some trajectories.

Next, Fig. 6 evaluates the proposed OFHJB-RL under the two
bounded mismatch profiles defined in Section 5.2. In dis 1 (Set 1),
T, (1) and E(r) are ramped over an initial period and then held constant,
emulating a transient drift that settles. In dis 2 (Set 2), the perturbations
start at + = 0 and vary continuously until the end of the horizon,
reaching the prescribed bounds at the final time, which emulates a
persistent drift that does not settle.

Despite the stronger time variation in dis 2, the proposed OFHJB-RL
maintains reliable regulation in both channels. In Figs. 6(a) and 6(b),
C, —Cy, and T — T, converge rapidly and remain close to the setpoint
for both mismatch profiles, without a visible steady-state offset even
when the mismatch continues to evolve. The input trajectories in Figs.
6(c) and 6(d) are consistent with this behavior: in dis 1 the inputs
settle after the drift ends, whereas in dis 2 they continue adjusting over
time to track the changing plant conditions while remaining within the
admissible bounds.
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To complement the time-series comparisons, Fig. 7 visualizes the
phase-plane behavior under the two mismatch sets. In both subfigures,
the initial states are selected on the outer Lyapunov level set V' = 200 by
sampling the polar angle every 36° (10 starting points), and the dashed
ellipses indicate the reference level sets V' =20 and V' = 200.

The quantitative comparison in Table 5 supports the qualitative
trends observed in the figures and indicates that the proposed design
(offset-free augmentation with Lyapunov-based shielding) provides the
most robust closed-loop tracking under mismatch. The proposed offset-
free HJB-RL with the Lyapunov-based shield (Proposed (S)) achieves
the best average reward in both sets (R = —1.277 x 10? for Set 1 and
R = —1.266 x 10° for Set 2), outperforming the shielded nominal HJB-
RL (Nominal (S)) and the unshielded deployment (Proposed (NS)). A
comparison between Proposed (S) and Nominal (S) highlights the role
of the offset-free augmentation: while both methods employ the same
shield, Proposed (S) reduces the terminal offset O from 1.022 x 107! to

1.340 x 1073 in Set 1 and from 8.990 x 1072 to 7.557 x 1073 in Set 2,
lowering O from @(10~") to ®(10~3)-©(10~2), which is consistent with
offset-free compensation (via the augmented state with ) removing
steady-state bias under plant-model mismatch and disturbance drift.
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Fig. 6. Closed-loop trajectories of the proposed OFHJB-RL under two bounded time-varying parametric mismatch profiles implemented on the true plant via
perturbed feed temperature 7;(¢) and activation energy E(¢) while keeping the controller model nominal. In dis 1 (Set 1), T;() and E(t) are ramped over the first

10min and then held constant (transient drift). In dis 2 (Set 2), the perturbations start at + = 0 and vary continuously until the end of the horizon, reaching the
prescribed bounds at the final time (persistent drift). The dashed line indicates the setpoint (C, = C,, and T =T).
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Fig. 7. Phase-plane trajectories (C, — C,,, T —T,) of the closed-loop CSTR under the two bounded mismatch profiles. Initial conditions are chosen on V' (x) = 200

by sampling the polar angle every 36° (10 starting points). The dashed ellipses show the Lyapunov level sets ¥ = 20 and V = 200, and arrows indicate the
trajectory direction under sample-and-hold control.

A comparison between Proposed (S) and Proposed (NS) highlights the 5.6. Robust TD3-RL policy

role of the Lyapunov-based shield: enabling the shield improves the

average reward (from —1.430 x 10 to —1.277 x 10? in Set 1 and from . . . . .

—1.422 x 103 to —1.266 x 103 in Set 2) and further reduces the terminal Following the robust TD3-RL design described in Section 3.2, we
offset, especially in Set 2 (from 3.670 x 10~2 to 7.557 x 10~3), con- implement a two-stage training procedure that first exploits the offline
sistent with rejecting nonconforming actions and invoking the LMPC
fallback/failsafe to limit adverse transients and input excursions when
the learned policy temporarily degrades.

dataset D;; generated by the offset-free Lyapunov-contractive LMPC,

and then continues with online interaction and off-policy updates under
disturbances.

17
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Table 5

Summary performance metrics for Set 1 and Set 2. Here, R denotes the average
reward per trajectory, and O denotes the average terminal offset measured by
the final Lyapunov value. The three HJB variants are: Proposed (S) = proposed
offset-free HJB-RL with the Lyapunov-based shield; Nominal (S) = nominal
HJB-RL with the shield; Proposed (NS) = proposed HJB-RL without the shield
(no shield).

Set Metric Proposed (S) Nominal (S) Proposed (NS)

Set 1 R -1277x 103 -1.329x 103 —1.430 % 103
o 1.340 x 1073 1.022 x 107! 8.400 x 1073

Set 2 R —1.266 x 10° -1.319x 10° —1.422 x 10°
o 7.557x 1073 8.990 x 1072 3.670 x 1072

In the offline stage, we construct a large replay buffer from the
stored transition tuples
{(S4 5Ty 4,,,)), Where s, = [x(7,)",8(t,)T1T matches the augmented
learning state used throughout this work. The action stored in the buffer
is the applied LMPC input a, (equivalently the deviation input u(r)
in Section 5.2), and the reward is computed consistently with Eq. (86)
using the current disturbance estimate through usp(é(tk))' To improve
numerical conditioning of neural network training, the augmented state
is normalized componentwise to s, € [0,1]* using fixed min-max
bounds, and the bounded physical deviation input u() € [Uppi,. Upa] 1S
mapped to a normalized action a(t,) € [-1, 1]* via an affine transform.

We first train a behavior-cloned teacher policy 7, (s) from D g
to approximate the LMPC feedback law, and we use this teacher to
initialize the TD3 actor network. With the actor initialized, we pretrain
the twin critic networks using only the offline buffer while keeping
the actor fixed. This critic-only pretraining follows the standard TD3
target-network update with clipped target-action noise and uses the
minimum of the two target critics to reduce Q-value overestimation.
After critic-only pretraining, the actor can be optionally refined on
D¢ using the TD3-BC objective described previously, i.e., a convex
combination of the TD3 policy loss and the behavior-cloning regularizer
with an « schedule. During online rollout, we additionally impose a
trust-region clamp in the normalized action space to keep z,,(s) within a
fixed neighborhood of 7., (s), which reduces the risk of abrupt policy
deviation from the stabilizing LMPC-like behavior.

In the online pretraining stage, we create a new replay buffer and
prefill it with a small number of transitions sampled from the offline
reservoir buffer to avoid an empty-buffer transient. The controller then
interacts with the disturbed plant in closed loop, where the plant
evolves under the unknown disturbance realization while the offset-
free observer runs online to update 0(7;) and thus the augmented state
s;,- At each sampling instant, the actor receives the scaled observation
5. (1), outputs a(t,) € [-1, 1]?, and applies the corresponding bounded
physical deviation input u(f,) in a sample-and-hold fashion over the
control interval. The collected online transitions are appended to the
replay buffer, and the TD3-BC updates are performed off-policy using
minibatches from this buffer, with critic updates at every iteration. We
use a delayed actor update with period d,, and apply Polyak averaging
to update the actor target network only when the actor is updated. In
contrast, the critic target networks are updated by Polyak averaging
after each critic update.

To monitor training progress and select a deployable policy, we
perform periodic fixed evaluations using a fixed set of initial condi-
tions sampled from Lyapunov rings and disturbance realizations within
the prescribed bounds. Each evaluation episode is simulated over the
full horizon, and the model achieving the best average evaluation
return is retained for the subsequent closed-loop comparisons with
and without the proposed shield layer. The TD3-RL (TD3-BC) training
hyperparameters are summarized in Table 6.

To demonstrate the proposed offset-free TD3-RL (OFTD3-RL) design
under the same parametric mismatch mechanism introduced in Sec-
tion 5.2, Fig. 8 compares its closed-loop performance with two base-
lines: a nominal TD3-RL controller (trained without offset-free compen-
sation) and a deployment without the Lyapunov-based shield. In this
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comparison, the true plant evolves with perturbed feed temperature
and activation energy while the controller model remains nominal;
specifically, T;(7) is ramped from 300K to 290K and E(¢) is ramped from
5.0% 10* kTkmol™! to 5.15x 10* kTkmol™! over the first 10 min and then
held constant, which corresponds to the transient-drift (Set 1) mismatch
pattern described in Section 5.2.

As shown in Figs. 8(a) and 8(b), the proposed OFTD3-RL achieves
the most reliable setpoint regulation: C, — C,, decays rapidly and
remains tightly clustered near zero, and T — T, approaches the setpoint
with limited dispersion across trajectories. In contrast, the nominal
TD3-RL exhibits a larger spread and a visible steady-state bias under the
biased plant dynamics induced by the thermal/kinetic mismatch. The
input trajectories in Figs. 8(c) and 8(d)(c)-(d) further reflect this differ-
ence: the nominal policy produces more scattered actions with larger
excursions, whereas the proposed method yields smoother and better-
clustered inputs. Comparing the proposed method with the unshielded
deployment highlights the role of the Lyapunov-based shield: removing
the shield leads to substantially degraded transients and much larger
terminal deviations, consistent with loss of reliability under the same
mismatch.

Next, Fig. 9 evaluates the proposed OFTD3-RL under the two
bounded mismatch profiles defined in Section 5.2. In dis 1 (Set 1),
Ty(t) and E(r) are ramped over an initial period and then held constant,
emulating a transient drift that settles. In dis 2 (Set 2), the perturbations
start at + = 0 and vary continuously until the end of the horizon,
reaching the prescribed bounds at the final time, which emulates a
persistent drift that does not settle. Despite the stronger time variation
in dis 2, the proposed OFTD3-RL maintains reliable regulation in both
channels: C, — C4, and T — T, converge rapidly and remain close to
the setpoint without a visible steady-state offset. The input trajectories
are consistent with this behavior: in dis 1 the inputs settle after the
drift ends, whereas in dis 2 they continue adjusting over time to
accommodate the evolving plant conditions while remaining within
admissible bounds.

To complement the time-series comparisons, Fig. 10 visualizes the
phase-plane behavior under the two mismatch sets. In both subfigures,
the initial states are selected on the outer Lyapunov level set V' = 200 by
sampling the polar angle every 36° (10 starting points), and the dashed
ellipses indicate the reference level sets V' = 20 and V = 200. The
trajectories move consistently toward the inner level set under sample-
and-hold control, illustrating contraction toward the origin region in
both mismatch profiles.

The quantitative comparison in Table 7 supports the qualitative
trends observed in the figures and indicates that the proposed design
(offset-free augmentation with Lyapunov-based shielding) provides the
most robust closed-loop tracking under mismatch. The proposed offset-
free TD3-RL with the Lyapunov-based shield (Proposed (S)) achieves
the best average reward in both sets (R = —1.262 x 10 for Set 1 and
R = —1.254 x 10? for Set 2), outperforming the shielded nominal TD3-
RL (Nominal (S)) and the unshielded deployment (Proposed (NS)). A
comparison between Proposed (S) and Nominal (S) highlights the role
of the offset-free augmentation: while both methods employ the same
shield, Proposed (S) reduces the terminal offset O from 6.785 x 1072
to 3918 x 1073 in Set 1 and from 3.061 x 1072 to 2.844 x 1073 in
Set 2, lowering O from ©(1072) to ©(10~3?), which is consistent with
offset-free compensation (via the augmented state with ) removing
steady-state bias under plant-model mismatch and disturbance drift.
A comparison between Proposed (S) and Proposed (NS) highlights the
role of the Lyapunov-based shield: enabling the shield improves the
average reward (from —1.623 x 10 to —1.262 x 10° in Set 1 and from
—1.641 x 103 to —1.254 x 10? in Set 2) and, more importantly, prevents
the severe loss of reliability observed without shielding by reducing
the terminal offset from @(10') (i.e., 1.606 x 10! in Set 1 and 1.754 x 10!
in Set 2) to ©(1073), consistent with rejecting nonconforming actions
and invoking the LMPC fallback/failsafe to limit adverse transients and
input excursions.
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Table 6

TD3-RL (TD3-BC) training hyperparameters.
Parameter Value Parameter Value
Discount factor y 0.99 Target update rate = 0.005
Policy update delay d 2 Target smoothing noise std o, 0.03
Target noise clip ¢, 0.08 Minibatch size 256
Actor learning rate 1x107* Critic learning rate 1x107*
Critic network size (width, depth) (256, 2) Exploration noise std o, 0.03
TD3-BC weight a (start — end) 1.0 - 0.70 a schedule length (actor updates) 60000

12000 Trust-region radius 4, 0.20
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Fig. 8. Closed-loop trajectories comparing the proposed offset-free TD3-RL (OFTD3-RL), a nominal TD3-RL baseline, and the proposed controller deployed without
the Lyapunov-based shield under the transient-drift mismatch profile (Set 1) generated by ramping 7;,(r) and E(¢) over the first 10min and then holding them

constant. The dashed line indicates the setpoint (C, = C,, and T =T,).

Table 7
Summary performance metrics for Set 1 and Set 2. Here, R denotes the average

reward per trajectory, and O denotes the average terminal offset measured by
the final Lyapunov value. The three TD3 variants are: Proposed (S) = proposed
offset-free TD3-RL with the Lyapunov-based shield; Nominal (S) = nominal
TD3-RL with the shield; Proposed (NS) = proposed TD3-RL without the shield
(no shield).

Proposed (NS)

Set Metric Proposed (S) Nominal (S)

Set 1 R —1.262 x 10° —1.289 x 10° —1.623 x 10°
o 3.918x 1073 6.785 x 1072 1.606 x 10!

Set 2 R —1.254 % 10° —1.273 x 10° —1.641 x 10°
o 2.844 x 1073 3.061 x 1072 1.754 x 10

5.7. Comparison of different controllers

In this part, we compare the closed-loop performance of the pro-
posed RL-based controllers with two MPC-based baselines: the offset-
free LMPC (discussed in Section 5.3) implemented with different pre-
diction horizons and an FNN controller that approximates the offset-

free LMPC policy (Section 5.4).
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First, all controllers are tested under the same plant-side mismatch
profile as in Section 5.3. In the true plant, the feed temperature is
changed from 300K to 290K and the activation energy is increased
from 5.0 x 10* kI kmol™! to 5.15 x 10*kJ kmol~! by a linear ramp over
the first 10min, and then both parameters are kept constant for the
rest of the simulation, while the controller model uses the nominal
parameters. The long-horizon offset-free LMPC (LH-OFLMPC) is used
as the reference because it solves the offset-free Lyapunov-based MPC
problem with a longer prediction horizon at every sampling instant.
The short-horizon offset-free LMPC (SH-OFLMPC) uses the same offset-
free formulation (the same observer, the same online update of ug,(7,),
and the same Lyapunov-based constraint), but it solves the optimiza-
tion with a shorter horizon at every sampling instant throughout the
closed loop. The FNN controller removes online optimization by di-
rectly outputting the control action from a learned approximation of
the offset-free LMPC policy. As shown in Fig. 11, both proposed RL
controllers (TD3-RL and HJB-RL) produce closed-loop trajectories that
closely match the LH-OFLMPC reference under the same disturbance,
suggesting that the learned policies achieve performance comparable to
the optimization-based baseline while keeping the online computation
small.
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Fig. 9. Closed-loop trajectories of the proposed OFTD3-RL under two bounded time-varying parametric mismatch profiles implemented on the true plant via
perturbed feed temperature 7;(¢) and activation energy E(f) while keeping the controller model nominal. In dis 1 (Set 1), T() and E(t) are ramped over the first
10min and then held constant (transient drift). In dis 2 (Set 2), the perturbations start at + = 0 and vary continuously until the end of the horizon, reaching the
prescribed bounds at the final time (persistent drift). The dashed line indicates the setpoint (C, = C,, and T =T).
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Fig. 10. Phase-plane trajectories (C, —C,,, T —T,) of the closed-loop CSTR under the two bounded mismatch profiles. Initial conditions are chosen on V (x) = 200
by sampling the polar angle every 36° (10 starting points). The dashed ellipses show the Lyapunov level sets ' = 20 and ¥ = 200, and arrows indicate the

trajectory direction under sample-and-hold control.

We then evaluate robustness and runtime cost under two distur-
bance sets that remain within the admissible ranges defined in Sec-
tion 5.2. Set 1 represents a drift that ramps during an initial pe-
riod and then becomes constant, and Set 2 represents a drift that
evolves throughout the full horizon and reaches its bounds at the
final time. These two sets are used for the computation-time and the
setpoint-tracking performance comparison reported below.

Fig. 12 and Table 8 together show that the proposed RL controllers
(TD3-RL and HJB-RL) provide the strongest overall trade-off between
real-time execution and setpoint tracking under both disturbance sets:

20

TD3-RL achieves the best reward in Set 1 and Set 2 (R = —1.262 x 103
and R = —1.254x10%), while both TD3-RL and HJB-RL keep the terminal
offset small at the 1073 level (O =3.918 x 1073 and O = 1.340 x 1073 in
Set 1, and O = 2.844 x 1073 and O = 7.557 x 1073 in Set 2), and their
computation times remain well below the 5s limit with millisecond-
level mean times (about 7.6-17 ms in Set 1 and 8.4-15.4 ms in Set 2)
and sub-second to ~1.2s worst-case times across both sets; in contrast,
SH-LMPC stays within the time budget (maximum time below 5s) but
suffers a clear performance penalty with the lowest rewards and a much
larger offset in Set 2 (O = 4.125 x 1072), supporting its use mainly as
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Fig. 11. Closed-loop trajectories of different controllers under the same transient-drift mismatch profile (plant-side 7,(r) ramped from 300K to 290K and E(r)
ramped from 5.0 x 10*kJ kmol™' to 5.15x 10*kJ kmol~' over the first 10 min, then held constant; controller model remains nominal). The dashed line indicates the

setpoint (C, = C,, and T =T).
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Fig. 12. Per-step computation time of each controller for Set 1 and Set 2. Blue/orange bars show the mean and the maximum computation time, respectively,
for HJB-RL, TD3-RL, FNN, SH-LMPC, and LH-LMPC. The dashed horizontal line indicates the sampling-time limit (5s = 5,000 ms).

Table 8

Summary performance metrics for Set 1 and Set 2. Here, R denotes the average reward per trajectory, and O denotes the average

terminal offset measured by the final Lyapunov value.
Set Metric HJB-RL TD3-RL FNN SH-LMPC LH-LMPC
Set 1 R -1.277x 10° -1.262 x 10° —1.281x 10° —1.395x 10° —1.286 x 10°
¢ o 1340 x 103 3.918x 1073 5.686 x 1073 1.001 x 1072 1.792 x 1073
Set 2 R —1.266 x 10° -1.254 % 10° -1.278 x 10° -1.381 x 10° -1.285 x 10°
o 7.557x 1073 2.844x 1073 1.137 x 1072 4.125x 1072 1.423x 1072

a backup, whereas LH-LMPC can deliver competitive tracking in some
cases (e.g., Set 1 O = 1.792 x 1073) but exhibits large computation-

time spikes that exceed the 5s limit and also a larger Set 2 offset
(O = 1.423x 1072), making it less suitable when strict per-step real-time

constraints must be enforced.
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Remark 22. At each sampling instant ¢,, the reported computational
time corresponds to the wall-clock time required to compute and return
the control input that is actually applied to the plant (i.e., policy
evaluation and, when activated, the back-up controller computation).
The online RL training routine is executed asynchronously in parallel
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and does not block the computation of the applied control action;
therefore, its runtime is not included in the per-step computational time
statistics. Hence, the computational-time metric is intended to reflect
real-time implementability under a fixed sampling period, rather than
the total CPU/GPU usage associated with background learning.

6. Conclusion

In this study, we proposed a stability- and robustness-oriented RL
framework for nonlinear constrained process control by combining a
Lyapunov-based shield with an offset-free design inspired by MPC. The
RL policy is treated as a candidate controller and is applied only when
a Lyapunov condition is satisfied; otherwise, the control action is re-
placed by a Lyapunov-designed fallback controller, so the implemented
input follows the stability requirement at every sampling instant while
still allowing RL to improve performance whenever it is safe. To ad-
dress steady-state offsets and model-plant mismatch, the learning state
is augmented with online-estimated disturbance/mismatch variables,
enabling the RL policy/value function to adapt its decisions to the
current uncertainty level. We demonstrated the framework using two
representative RL methods, namely an HJB-based value-critic approach
and a TD3-based actor-critic approach, and showed that the resulting
RL-based controllers handle different disturbance scenarios more ef-
fectively than conventional RL designs while maintaining competitive
setpoint tracking and online computational cost relative to advanced
baseline controllers. Overall, this work provides a practical path to-
ward deploying RL in nonlinear process control with explicit stability
guarantees and improved robustness to uncertainty.
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Appendix. Alternative offset-free Lyapunov constraint

We offer an offset-free Lyapunov constraint that is enforced not only
in the outer region (where an LMPC backup is invoked), but also inside
the inner region where the backup would otherwise be inactive. The
key idea is that the offset-free model replaces the unknown mismatch
by an online estimate, so that the residual mismatch entering V can be
made small (and even vanishing for constant mismatch), leading to a
strictly smaller sample-and-hold ultimate bound on ||x(7)||.

Let the true process evolve under sample-and-hold control with
sampling period 4 > 0:

x(t)=F (x(t), u(lk)) + W (x(1),1), tE [ty 1, +4), ut,) €U (A1)

where U c R” is the admissible input set in Eq. (2). Fix p > 0 and
define the Lyapunov sublevel set 2, := {x € R" | V(x) < p} C D.
Throughout, assume Section 2.3 holds on £, with constants ¢, ¢;, ¢35, ¢4,
and the disturbance satisfies |W (x,1)|| < Wy, on 2, X R.
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Assume the matched structured mismatch model

W (x.0)=Gy0*(1), Gy €R™, 0*(t)cR’ (A.2)

and let the extended observer Eq. (13) provide A(r). At each sampling
instant 7, define the frozen offset-free injection and the corresponding
residual mismatch on [z, 1, + 4) as

Wy =Gyt R, @ (1) 1= W (x(1),1) — by, = Gy [0%(1) — (2]

(A.3)
Denote the residual magnitude on the interval by
W= sup [0l (A4)
€[ty 1 +4)

Then, along Eq. (A.1), the Lyapunov derivative admits the decomposi-
tion

oV (x(1))

V (x(0.u(t,)) =

[F (x(), u(ty) + ] + w W, (f)

ox
. aV
=1 Vyp (x(t), u(ty)) + % Wy (1) (A.5)
Using Egs. (7¢) and (A.4), for all 7 € [#,,1, + 4),
V (x(0), u(ty)) < Vog (x(0), u(t))) + cq x| Wy (A.6)

Let p, and p,,, be the outer-region threshold and the switching level
used in the main sample-and-hold analysis, and define the inner level

Pin += max{py, pgy } (A7)

For any n € (0,p), define the following one-step worst-case Lya-
punov inflation map

xX(t) € R, ut)EU, We W} “8)

R i = |4
min{1) SUP{ ) I Eq. (A.1) holds on [1,,1, + 4)

Fix = p;, and define the constant

p:\in = 7e’min(pin) (Ag)

In the earlier analysis (without an inner-region Lyapunov constraint),

once the trajectory reaches £, , the invariance argument yields an
ultimate bound of the form

XN < 1/ /€1
for some ¢,.

We now impose an additional offset-free Lyapunov constraint in the
inner region. Specifically, choose a > 0 (e.g., « = ¢3/¢,), and require
that for every sampling instant #, with x(t;) € 2, , the applied input
u(ty) € U satisfies

V (x(1) < pks Vi > 1, (A.10)

Vor (x(t), u(ty)) < —aV (x(ty)) (A.11)

To relate Eq. (A.11) to V(x(¢), u(ty)) for t € [t, 1, + 4), boundedness
of Fon 2,xU and ||W| < W,,, imply the increment bound
[1x(®) = x@)Il < / lx@lldz < (Mg + W) 4, telt,+4)  (A12)
Tk

Using Eq. (8c) together with Eq. (A.12) yields

Vor (x(), u(t)) < Vg (x().uty)) + L1 (Mg + Wy, ) A, 1 E€ [ty +4)

(A.13)
Moreover, if x(1;) € Q, then ||x(7)|l < 4/p;n/c; and Eq. (A.12) implies

Pin
€l
Combining Egs. (A.6), (A.11), (A.13) and (A.14), for any , with

x(t) € 2, and all ¢ € [1;, 1, + 4),

lx())]| < + (Mp + W) 4, tE [ty t, +4) (A.14)

V (x(0),u(ty)) < —aV (x(t) + L. (Mp + Wy ) A
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+ey (, /’;—l + (Mp+ W) A> W, (A.15)

For readability, define the two (deterministic) sampling-error coef-

ficients
o
Winax) 4, B, = ¢ <‘ /c;l“ + (MF+WmaX)A>

By := L' (Mp+

(A.16)
Then Eq. (A.15) is equivalently
V (x(0),u(ty)) < —aV (x(t})) + By + B, W, t € [t,t, + 4) (A.17)
Define the residual-dependent inner-level map
1w = max{p,, é [Bo+Biwl}. w20 (A.18)

Fix a constant W > 0 and define the (constant) offset-free inner level

—of

= TN O) (A.19)

If W, < W holds for all sufficiently large k (i.e., after some transient),
then for those k and all 7 € [t,, 1, + 4),

V (x(t),uty)) < —a [V (x(t) — 5 (A.20)
In particular, if V(x(t;)) > ﬁfﬂf + n for some 5 > 0, then
4 (x(t), u(tk)) < —an =: —e forallze [t,1, +4) (A.21)

Consequently, there exists k, such that V' (x(7,)) < 5" holds for all
k> ky.

To translate this sampling-time bound into a continuous-time ulti-
mate bound without introducing an explicit inflation map, define the
offset-free one-step inflation map

x(t) € Qqor(yy, ulty) €U satisfies Eq. (A.11),

R (w) = supd V (x()) ||

W, <w, Eq. (A1) holds on [1,1, + 4)
(A.22)
Fix the same constant W and define
pet = ROE (W) (A.23)
Hence there exists 1, > 1, such that
Vv (x(t) < pt Vi > 1, (A.24)

and by Eq. (7a) the corresponding sample-and-hold ultimate state ball
is

Ix)ll < /o /ey

Moreover, the new ultimate level is no larger than the
raw-disturbance inflation level. Indeed, p;ﬁn in Eq. (A.9) is generated
by the full disturbance class W € W (with ||W|| < W,,,,), whereas pfﬂfin
in Eq. (A.23) restricts admissible closed-loop trajectories by enforcing
Eq. (A.11) and by replacing the unknown mismatch contribution in
V with the residual bound W, < W. Therefore the optimization set

underlying Rﬁfm(W) is a subset of that underlying R ;.(pi,), and

vVt >1t, (A.25)

f
Pin < Prnin (A.26)
When W <« W,,,, (and 4 is sufficiently small so that the residual term

dominates the inflation mechanism), The inequality in Eq. (A.26) is
typically strict, yielding a strictly smaller ultimate set.

In the vanishing-residual limit W — 0, recalling ﬁ:’nf = Zionf(W), we
obtain

o B, L' (Mg + W4
Pip = MAX| Pin, —7 ¢ = MAX) ppy —

and pﬂfin approaches the one-step inflated level associated with the
compensated (offset-free) model rather than that associated with the

raw disturbance bound W,,,.

(A.27)
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Two disturbance cases are of interest.

If 6*(¢) = 0 (constant mismatch), then Theorem 4(i) implies (1) —
6* and thus W), — 0. Therefore, for any ¢ > 0 there exists k, such
that W, < € for all k > k_; picking W = ¢ yields the ultimate state

ball Eq. (A.25) with oL = RL (e).

If ||[6*@)|| < d,,,, (time-varying bounded mismatch), then Theorem
4(ii) yields an ultimate bound on the estimation error,
and Egs. (A.3) and (A.4) give

. - - 2p*

limsup W), < W, = |IGyll — 4+ dp 4 (A.28)
k—oo i
with 4 = Ay(P) and p* defined in Eq. (74). Picking W = W,

yields pof = I(%,) and pof = R°L (W) (up to an arbitrarily
small slack), which is smaller than the raw-disturbance inflation ball

whenever W, < W
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