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 A B S T R A C T

Reinforcement learning (RL) offers a promising route to fast, nonlinear feedback control for complex process 
systems; however, its deployment is hindered by the lack of formal stability guarantees and sensitivity to model-
plant mismatch under constraints. This paper proposes a stability and robustness-oriented RL-based control 
framework for nonlinear constrained processes by explicitly integrating Lyapunov-based decision rules into 
the RL closed loop and importing an offset-free approach from model predictive control (MPC). The RL policy 
is treated as a performance-seeking candidate controller that is supervised by a Lyapunov-certified fallback 
controller: at each sampling instant, the learned candidate input is evaluated against a Lyapunov condition, and 
any violating proposal is rejected in favor of a stabilizing backup input, yielding Lyapunov-certified practical 
stability under sample-and-hold implementation. To mitigate steady-state offsets and enhance robustness to 
disturbances and mismatches, the state available to the learning agent is augmented with online-estimated 
uncertainty/disturbance variables in the spirit of offset-free MPC, enabling the policy/value function to 
condition its decisions on the magnitude of uncertainty rather than overfitting nominal dynamics. The proposed 
architecture is demonstrated using two representative RL methods—an HJB-based value-critic approach and 
a TD3-based actor-critic approach—both deployed under the same Lyapunov-supervisory switching logic. 
Simulation studies on nonlinear chemical process control problems show that the proposed RL-based control 
framework preserves the low online computational cost while enforcing Lyapunov stability and improving 
robustness under disturbances, thereby advancing RL toward reliable process control deployment.
1. Introduction

Advanced control has played a central role in improving safety, 
efficiency, and product quality in modern process systems. Among 
existing approaches, model predictive control (MPC) has become a 
mature and widely deployed paradigm due to its explicit handling of 
multivariable interactions, input and output constraints, and economic 
objectives (Qin and Badgwell, 2003). In particular, nonlinear MPC 
and its variants have demonstrated strong performance in complex 
chemical and energy processes where nonlinearities and constraints 
are unavoidable (Rawlings et al., 2020). Despite this success, MPC 
requires solving a constrained finite-horizon optimal control problem 
online at each sampling instant, which can be computationally demand-
ing for nonlinear models, long horizons, and large-scale architectures, 
potentially limiting achievable sampling rates in fast or safety-critical 
applications (Rawlings et al., 2020). A significant body of work in 
the process control community has therefore focused on scalable and 
stability-oriented MPC formulations, including Lyapunov-based MPC 
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designs that retain formal stability properties under network imperfec-
tions such as sensor data losses (Muñoz de la Peña and Christofides, 
2008), and distributed MPC frameworks for nonlinear process systems 
subject to asynchronous and delayed measurements (Liu et al., 2010; 
Christofides et al., 2013). Economic MPC further expands the scope 
by directly optimizing economic performance, but may exacerbate 
online computational requirements due to nonquadratic objectives and 
nonlinear constraints (Ellis et al., 2014).

These considerations motivate growing interest in computationally 
efficient advanced control strategies, where most of the computational 
burden is shifted offline and online implementation reduces to evalu-
ating an explicit feedback law. Reinforcement learning (RL) naturally 
fits this paradigm: an RL controller can be trained offline (from data 
and/or simulators) to produce a policy, often parameterized by function 
approximators such as neural networks, that can be evaluated online 
with minimal overhead (Sutton and Barto, 2018; Lillicrap et al., 2015; 
Faria et al., 2022; Nian et al., 2020). It is also noted that, for complex 
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industrial processes, RL typically requires a large number of interaction 
samples and therefore relies heavily on representative simulators for 
offline training. Moreover, when MPC can be solved to (near-)global 
optimality using the same underlying model, an RL-based controller 
trained on that model is not expected to outperform such an MPC 
benchmark (Nian et al., 2020). Beyond computational efficiency, RL 
offers additional advantages for nonlinear process control, including 
reduced reliance on high-fidelity first-principles models, the ability to 
optimize long-horizon and nonstandard objectives directly from inter-
action data, and the capability to leverage historical plant or simulation 
data via offline RL to improve performance without repeated online 
trial-and-error (Sutton and Barto, 2018; Levine et al., 2020; Faria et al., 
2022).

Despite these appealing features, deploying RL controllers in safety-
critical process systems remains challenging. A central issue is robust-
ness: learned policies can be sensitive to distribution shift caused by 
model-plant mismatch, unmodeled disturbances, measurement noise, 
and operating-condition changes, and performance may degrade when 
the closed-loop system visits regions insufficiently represented in train-
ing data (Dulac-Arnold et al., 2019; Morimoto and Doya, 2005). While 
robust RL and robust Markov decision process formulations provide 
principled ways to reason about uncertainty, they often introduce 
conservatism and can be difficult to calibrate for nonlinear continuous-
time plants with hard operating constraints (Nilim and El Ghaoui, 2005; 
Iyengar, 2005). Equally important, standard RL objectives do not ex-
plicitly enforce closed-loop stability or constraint satisfaction, and safe 
exploration is inherently difficult when constraint violations are unac-
ceptable; consequently, providing verifiable stability/safety guarantees 
for neural-network policies remains an active research area and is a 
key reason why real-plant RL deployments are still relatively limited in 
the process industries (Garcıa and Fernández, 2015; Berkenkamp et al., 
2017; Chow et al., 2018; Dulac-Arnold et al., 2019).

A promising route to address these limitations is to leverage es-
tablished advanced control theory as a backbone for RL design and 
deployment. In particular, Lyapunov-based MPC provides construc-
tive mechanisms to ensure stability and constraint satisfaction for 
nonlinear constrained systems (Mhaskar et al., 2006), including ex-
tensions that retain stability properties under communication network 
imperfections such as measurement/data losses (Muñoz de la Peña 
and Christofides, 2008). Likewise, offset-free MPC formulations in-
corporate disturbance/mismatch estimation into the prediction model 
to mitigate steady-state offsets and improve robustness in tracking 
problems (Pannocchia, 2015; Pannocchia et al., 2015). These MPC 
concepts can be embedded into RL in multiple ways (e.g., as safety 
filters/shields, training regularizers, or offset-free state augmentation), 
and recent work has begun to demonstrate practically implementable 
RL controllers by explicitly leveraging offset-free MPC structures and 
stability-oriented MPC ideas (Hassanpour et al., 2024a,b; Khodaverdian 
et al., 2025a). Nevertheless, robustness-oriented stability analysis for 
RL closed loops under general uncertainty/disturbances remains com-
paratively underdeveloped, leaving an important gap between emerg-
ing stability-guaranteed RL designs and broad deployment in realistic 
process settings (Dulac-Arnold et al., 2019; Garcıa and Fernández, 
2015).

Therefore, in this paper, we propose a stability and robustness-
oriented RL framework for nonlinear constrained process systems by 
explicitly integrating Lyapunov-based decision rules into the RL closed 
loop and importing the offset-free method from MPC. The key idea is to 
treat the RL policy as a performance-seeking candidate controller that 
is supervised by a Lyapunov-certified fallback controller. Specifically, 
at each sampling instant, we first compute the RL action and check the 
stability condition; if the RL decision fails this condition, we switch 
to the fallback controller that is designed to satisfy the Lyapunov 
requirement so that the implemented control action always preserves 
the desired stability property. In parallel, to mitigate steady-state offsets 
and sensitivity to model-plant mismatch, we augment the learning state 
2 
with disturbance/mismatch variables (estimated online) in the spirit of 
offset-free MPC, enabling the RL policy to recognize the magnitude of 
uncertainty and compensate for it rather than overfitting to nominal 
dynamics. We demonstrate the application of this architecture using 
two representative RL methods, namely an HJB-based value-critic RL 
and a TD3-based actor-critic RL, by conditioning the learned value/pol-
icy on the augmented variables and deploying them under the same 
Lyapunov-supervisory switching logic. The resulting approach retains 
the low online computational cost of neural-network feedback while 
providing a systematic mechanism to enforce Lyapunov stability and 
improve robustness under disturbances, thereby moving RL closer to 
reliable deployment in process control applications.

2. Preliminaries

2.1. Notation

The transpose of a vector 𝑥, the set of real numbers, set difference, 
functions, and piecewise-constant functions with period 𝛥 are denoted 
by 𝑥⊤, R, 𝛺1∖𝛺2, 𝑓 (⋅), and 𝑆 (𝛥) respectively, where both 𝑓 and 𝑆 are 
arbitrary notations. The initial instance of time (i.e., where 𝑡 = 0) is 
denoted 𝑡0, whereas arbitrary reference instances of time are denoted 𝑡𝑘. 
A function 𝛼 ∶ [0, 𝑎) → [0,∞) is said to be of class- if it is continuous, 
strictly increasing, and satisfies 𝛼(0) = 0.

2.2. Class of systems

This paper considers nonlinear first-order ordinary differential equa-
tion (ODE) systems of the form: 

𝑥̇ = 𝐹 (𝑥, 𝑢) (1)

The state vector 𝑥 =
[

𝑥1, 𝑥2,… , 𝑥𝑛
]⊤ ∈ R𝑛 collects all relevant process 

state variables and is assumed to be measured at fixed sampling instants 
𝑡𝑘, as is standard for sampled-data state feedback control. The control 
input vector 𝑢 =

[

𝑢1, 𝑢2,… , 𝑢𝑚
]⊤ ∈ R𝑚 represents all control actions 

applied to the process. In practice, actuator limitations impose hard 
bounds on the inputs. The set of admissible control actions is defined 
as follows: 

𝑈 ∶=

⎧

⎪

⎨

⎪

⎩

𝑢 ∈ R𝑚
|

|

|

|

|

𝑢 =
[

𝑢1, 𝑢2,… , 𝑢𝑚
]⊤

𝑢𝑖,min ≤ 𝑢𝑖 ≤ 𝑢𝑖,max

∀ 𝑖 = 1, 2,… , 𝑚

⎫

⎪

⎬

⎪

⎭

⊂ R𝑚 (2)

We employ the deviation-variable form of the system so that the origin 
is an equilibrium of the open-loop nominal model, i.e., 𝐹 (0, 0) = 0
without loss of generality. We further assume that the state evolves in 
a domain 𝐷 ⊂ R𝑛 containing the origin (e.g., the operating region of 
interest) and that 𝐹 (⋅, ⋅) is sufficiently smooth nonlinear vector function 
on 𝐷 × 𝑈 .

In practice, the true process may be affected by unmodeled dynam-
ics, parametric mismatch, and unknown disturbances. We represent 
these effects by the perturbed system 

𝑥̇ = 𝐹 (𝑥, 𝑢) +𝑊 (𝑥, 𝑡) (3)

where 𝑊 ∶ 𝐷 × R → R𝑛 denotes an unknown disturbance/model-
plant mismatch term that may be time-varying. We assume that 𝑊
belongs to a known bounded disturbance set and is uniformly bounded 
in magnitude by a constant 𝑊max > 0 over the region of interest: 

 ∶=
{

𝑊 (⋅, ⋅) || |𝑊 (𝑥, 𝑡)| ≤ 𝑊max ∀(𝑥, 𝑡) ∈ 𝐷 × R
}

(4)

Unless otherwise stated, all controller design and stability analysis in 
this paper are carried out with respect to the nominal model Eq. (1); 
the perturbed dynamics Eq. (3) are introduced only to represent the 
actual process behavior and the associated model-plant mismatch.
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2.3. Stabilizability assumption

The core assumptions that ensure stabilizability are collectively 
referred to as the stabilizability assumption. The stabilizability as-
sumption consists of two main assumptions, stated with respect to the 
nominal model Eq. (1) (i.e., without explicitly accounting for the un-
known disturbance term 𝑊 (𝑥, 𝑡) in Eq. (3)). The first is that we assume 
the existence of a sufficiently smooth explicit feedback control law that 
renders the origin of the nominal system Eq. (1) exponentially stable. 
This controller is referred to as the reference stabilizing controller, or 
reference controller, as a shorthand, and is of the form:
𝛷∶R𝑛 → 𝑈 (5)

𝑢 (𝑥) = 𝛷 (𝑥) (6)

The second is the assumption that there exists a sufficiently smooth 
Lyapunov function 𝑉 (𝑥) defined on a region where the associated 
stabilizing controller produces admissible inputs, i.e., 𝑢 = 𝛷(𝑥) ∈ 𝑈 , 
which, when applied to the closed-loop nominal system under the 
reference controller, satisfies the following inequalities: 
𝑐1 |𝑥|

2 ≤ 𝑉 (𝑥) ≤ 𝑐2 |𝑥|
2 (7a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷 (𝑥)) ≤ −𝑐3 |𝑥|
2 (7b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4 |𝑥| (7c)

𝑐𝑖 > 0 ∀ 𝑖 ∈ {1, 2, 3, 4} (7d)

for all 𝑥 in an open neighborhood of the origin, denoted 𝐷.
The remaining parts of the stabilizability assumption are derived 

from the sufficiently smooth assumption for the system dynamics men-
tioned earlier. This implies Lipschitz continuity for 𝑉 (𝑥), 𝛷 (𝑥), and 
𝐹 (𝑥,𝛷 (𝑥)). Additionally, because 𝛷 (𝑥) is bounded (due to the presence 
of constraints on the control action since 𝑢 ∈ 𝑈), when 𝑥 is bounded 
within a level set 𝛺𝜌 ∶= {𝑥 ∣ 𝑉 (𝑥) ≤ 𝜌} ⊂ 𝐷, we have that 𝐹 (𝑥,𝛷 (𝑥))
is bounded for all 𝑥 ∈ 𝛺𝜌 and 𝑢 ∈ 𝑈 . Also, we note that the product 
of two continuously differentiable functions yields a function that is at 
least continuously differentiable. Thus, the stabilizability assumption 
implies the existence of positive constants 𝑀𝐹 , 𝐿𝑥, 𝐿′

𝑥 that ensure, for 
all 𝑥, 𝑥′ ∈ 𝛺𝜌 and 𝑢 ∈ 𝑈 , that the following inequalities are satisfied: 
|

|

|

𝐹
(

𝑥′, 𝑢
)

− 𝐹 (𝑥, 𝑢)||
|

≤ 𝐿𝑥 ||𝑥 − 𝑥
′
|

|

(8a)

|𝐹 (𝑥, 𝑢)| ≤𝑀𝐹 (8b)

|

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑉

(

𝑥′
)

𝜕𝑥
𝐹
(

𝑥′, 𝑢
)

|

|

|

|

|

≤ 𝐿′
𝑥
|

|

𝑥 − 𝑥′|
|

(8c)

2.4. Lyapunov-based model predictive control

The stability assumption can be applied to MPC to yield the
Lyapunov-based MPC (LMPC) that solves for optimal control while 
ensuring closed-loop stability (Mhaskar et al., 2006). 

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁𝛥

𝑡𝑘
𝐿 (𝑥̃ (𝑡) , 𝑢 (𝑡)) d𝑡 (9a)

s.t. ̇̃𝑥 (𝑡) = 𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) (9b)

𝑢 ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (9c)

𝑥̃(𝑡𝑘) = 𝑥
(

𝑡𝑘
)

(9d)

𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ 𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝛷
(

𝑥̃
(

𝑡𝑘
)))

(9e)

In this formulation, the optimization takes place over a horizon of 
length 𝑁𝛥, with 𝛥 denoting the controller’s sampling period and 𝑁
the horizon’s sampling step count. This formulation uses sample-and-
hold control, as continuous-time control is infeasible for real-world 
3 
processes. For simplicity, the sampling interval for both the controllers 
and state measurements is treated as equivalent. Eq. (9a) denotes 
an arbitrary cost as a function of the control actions and estimated 
states over the horizon. Eq. (9b) represents the process dynamics, 
which are used for numerical integration during optimization to pre-
dict how the states of the closed-loop system evolve over the hori-
zon. Eq. (9d) enforces an initialization step where the sensor readings 
are used as a ground truth initial state, and Eq. (9c) enforces the control 
bounds. Eq. (9e) denotes the stability constraint; the implementation of 
the stabilizability assumption. This constraint ensures that the system is 
at least as stabilizing as the reference controller. An alternative form is
provided: 
𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ −𝛼𝑉
(

𝑥̃
(

𝑡𝑘
))

(10)

This formulation uses the properties of the Lyapunov function from Sec-
tion 2.3 as opposed to using the reference controller. Using a positive 
constant 𝛼 to control the strength of this constraint, this formulation 
allows for stability guarantees without needing to directly apply the 
reference controller. 

Remark 1.  LMPC does not pose constraints on the form of the cost 
function. Although this paper will use a quadratic cost function, other 
formulations are supported. Economic MPC is one such modification 
that can enable enhanced cost-efficiency of processes in a manner that 
supports time-varying economics (Ellis et al., 2014; Khodaverdian et al., 
2025b).

Remark 2.  Eq. (9e) is only applied at 𝑡𝑘 because this formulation is 
a receding horizon LMPC, where only the first control input from the 
solution is applied. After applying the first solution for one sampling 
interval, the LMPC problem is re-solved. This approach relaxes the con-
straints of the optimization problem, allowing for faster solutions, but 
comes at the cost of marginally reduced accuracy of the cost-optimal 
trajectory.

Remark 3.  Consider an LMPC formulation that satisfies the design 
above. We consider two cases of this LMPC: one with a long horizon 
and one with a short horizon. The long-horizon case is used purely for 
reference of what the truly optimal behavior would be (MPC optimal 
control action calculation improves with increased horizon length), as 
this case would take longer to calculate than the sampling interval, 
thereby making it infeasible for real-time control. The short-horizon 
case is a suboptimal solution relative to the long-horizon LMPC that 
is, however, faster to solve in real-time. This short-horizon LMPC can 
thus be used as a fallback controller as a means to enforce the stability 
guarantees for the closed-loop system at the expense of poor cost 
optimality.

2.5. Offset-free Lyapunov-based model predictive control

The LMPC formulation in Eq. (9) is based on the nominal prediction 
model Eq. (1), while the true process may evolve according to Eq. (3) 
due to unknown disturbances/model-plant mismatch. Such mismatch 
can lead to steady-state offsets when using a purely nominal MPC. To 
mitigate this issue, we employ an offset-free MPC structure that aug-
ments the nominal model with additional disturbance states, estimates 
them online via an extended Luenberger observer, and then uses these 
estimates in the prediction model within the MPC optimization. The 
augmented offset-free prediction model is as follows: 
̇̃𝑥 (𝑡) = 𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) + 𝐺𝜃 𝜃 (𝑡) (11a)
̇̃𝜃 (𝑡) = 0 (11b)

where 𝐺𝜃 represents the gain matrix of the augmented term and 𝜃(𝑡)
is treated as constant over the prediction horizon. By defining 𝜒 ∶=
[

𝑥̃⊤, 𝜃⊤
]⊤, Eq. (11) can be compactly written as: 

𝜒̇ (𝑡) = 𝐹 (𝜒 (𝑡) , 𝑢 (𝑡)) ∶=
[

𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) + 𝐺𝜃 𝜃 (𝑡)
]

(12)

0
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We assume that the state 𝑥(𝑡) is available as a continuous-time mea-
surement. Over the same interval, we employ the extended Luenberger 
observer: 
̇̂𝑥 (𝑡) = 𝐹 (𝑥̂ (𝑡) , 𝑢 (𝑡)) + 𝐺𝜃 𝜃̂ (𝑡) +𝐾𝑥 [𝑥 (𝑡) − 𝑥̂ (𝑡)] (13a)
̇̂𝜃 (𝑡) = 𝐾𝜃 [𝑥 (𝑡) − 𝑥̂ (𝑡)] (13b)

where 𝐾𝑥 and 𝐾𝜃 are constant observer gain matrices. The controller 
uses the real 𝑥(𝑡𝑘) and 𝜃̂(𝑡𝑘) at time 𝑡𝑘. In deviation-variable coordinates, 
we take the tracking setpoint as 𝑥sp = 0; under mismatch/distur-
bance, the corresponding steady-state input generally shifts and must 
be recomputed online using the disturbance estimate. Specifically, 
the offset-free steady-state input 𝑢sp(𝑡𝑘) is defined as any admissible 
solution of the equilibrium condition for the offset-free model: 
0 = 𝐹

(

0, 𝑢sp
(

𝑡𝑘
))

+ 𝐺𝜃 𝜃̂
(

𝑡𝑘
)

, 𝑢sp(𝑡𝑘) ∈ 𝑈 (14)

which is a set of nonlinear algebraic equations in 𝑢sp(𝑡𝑘). In imple-
mentation, Eq. (14) can be solved by a standard root-finding method 
(e.g., Newton method), warm-started from the previously computed 
𝑢sp(𝑡𝑘−1) and followed by projection onto 𝑈 if needed. To ensure well-
posedness, we assume that for each admissible 𝜃̂(𝑡𝑘) in a neighborhood 
of interest there exists a solution 𝑢sp(𝑡𝑘) ∈ 𝑈 to Eq. (14) and that the 
input Jacobian of the equilibrium map is nonsingular at the solution, 
i.e., 
det

( 𝜕
𝜕𝑢

[

𝐹 (0, 𝑢) + 𝐺𝜃 𝜃̂
(

𝑡𝑘
)

])

|

|

|𝑢=𝑢sp(𝑡𝑘)
≠ 0 (15)

so that a locally unique and smoothly varying mapping 𝑢sp = 𝛹 (𝜃̂) exists 
(by the implicit function theorem). Using the estimates, the offset-free 
MPC solves the following optimization at each sampling instant: 

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁𝛥

𝑡𝑘
𝐿 (𝑥̃ (𝑡) , 𝑢 (𝑡)) d𝑡 (16a)

s.t. ̇̃𝑥 (𝑡) = 𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) + 𝐺𝜃 𝜃
(

𝑡𝑘
)

, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (16b)
̇̃𝜃 (𝑡) = 0, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (16c)

𝑢 ∈ 𝑈, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (16d)

𝑥̃(𝑡𝑘) = 𝑥(𝑡𝑘), 𝜃(𝑡𝑘) = 𝜃̂(𝑡𝑘) (16e)

In Eq. (16), 𝑥̃(𝑡) denotes the nominal predicted state used within the 
optimizer, whereas the measured state 𝑥(𝑡) evolves according to the 
true process Eq. (3). The disturbance estimate 𝜃̂(𝑡𝑘) provides an offset-
free correction to the prediction model, enabling improved tracking and 
reduced steady-state offsets under bounded disturbances and model-
plant mismatch. Although Eq. (16) addresses steady-state offsets, it does 
not explicitly enforce the Lyapunov decrease condition used in Eq. (9). 
We therefore define an offset-free Lyapunov-based MPC (OF-LMPC) by 
augmenting Eq. (16) with a Lyapunov constraint that is activated only 
in an outer region. Let 𝛺𝜌 ∶= {𝑥 ∣ 𝑉 (𝑥) ≤ 𝜌} ⊂ 𝐷 and fix 0 < 𝜌sw < 𝜌, 
defining 𝛺𝜌sw ∶= {𝑥 ∣ 𝑉 (𝑥) ≤ 𝜌sw}. Define the gate threshold 

𝑆(𝑥) ∈
{

𝑉̇
(

𝑥,𝛷(𝑥)
)

, −𝛼𝑉 (𝑥)
}

(17)

consistent with whether the reference-controller form in Eq. (9e) or the 
𝛼𝑉  form in Eq. (10) is adopted. The offset-free LMPC optimization is 
of the form: 

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁𝛥

𝑡𝑘
𝐿 (𝑥̃ (𝑡) , 𝑢 (𝑡)) d𝑡 (18a)

s.t. ̇̃𝑥 (𝑡) = 𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) + 𝐺𝜃 𝜃
(

𝑡𝑘
)

, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (18b)
̇̃𝜃 (𝑡) = 0, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (18c)

𝑢 ∈ 𝑈, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (18d)

𝑥̃(𝑡𝑘) = 𝑥(𝑡𝑘), 𝜃(𝑡𝑘) = 𝜃̂(𝑡𝑘) (18e)

𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ 𝑆
(

𝑥
(

𝑡𝑘
))

, ∀ 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌sw (18f)

Because 𝑥̃(𝑡𝑘) = 𝑥(𝑡𝑘), the Lyapunov constraint Eq. (18f) is eval-
uated at the current estimated state. Enforcing Eq. (18f) only for 
4 
𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌sw  reduces conservativeness inside 𝛺𝜌sw  while retaining 
the Lyapunov-based stabilizing mechanism in the outer region; in prac-
tice, the steady-state target 𝑢sp(𝑡𝑘) from Eq. (14) is updated online using 
𝜃̂(𝑡𝑘) and can be used wherever a reference input is needed (e.g., for 
defining tracking objectives or for constructing the reference controller 
𝛷(⋅) around the current offset-free equilibrium).

Remark 4.  If Eq.  (15) does not hold globally, then the setpoint-tracking 
costs in Eq. (16a) and (18a) can be modified to remove any dependence 
on the input-deviation term (i.e., the penalty on 𝑢 − 𝑢sp). In particular, 
one may adopt an alternative offset-free tracking cost that penalizes 
only state/output deviations (or other suitable terms) while retaining 
offset-free performance (Wallace et al., 2016).

Remark 5.  In this study, we assume that the process states are 
continuously measurable and available to the controller. Therefore, 
the controller uses the measured state directly, and the offset-free 
observer is used only to estimate the mismatch term 𝜃̂. In practice, 
state measurements may be sampled at a finite rate or may not be 
available for all states. In such cases, the offset-free observer in Eq. (13) 
can be used as a state estimator, and the offset-free LMPC optimization 
in Eq. (16) and (18) can be initialized using the estimated state, i.e., by 
replacing the initialization condition with 𝑥̃(𝑡𝑘) = 𝑥̂(𝑡𝑘).

Remark 6.  The Lyapunov constraint Eq. (18f) is evaluated using 𝑉̇ (𝑥, 𝑢)
computed from the nominal model Eq. (1), rather than from the true 
process dynamics Eq. (3). Under unknown disturbance/model-plant 
mismatch, this nominal 𝑉̇  can be an imperfect surrogate of the true 
Lyapunov derivative. If enforced everywhere, the resulting constraint 
biases the optimizer toward decisions that are misleading for the true 
closed-loop behavior, especially near the origin where the mismatch 
can dominate the nominal decrease prediction. For this reason, we ac-
tivate the Lyapunov constraint only in the outer region 𝛺𝜌∖𝛺𝜌sw , where 
its role is primarily to provide a stabilizing mechanism that drives the 
state into the inner set 𝛺𝜌sw . Once the state enters 𝛺𝜌sw , the constraint is 
removed to avoid relying on a potentially inaccurate nominal decrease 
certificate. In this inner region, the offset-free structure and the MPC 
objective are used to achieve improved tracking performance while 
reducing steady-state offsets.

Remark 7.  We set ̇̃𝜃 = 0 over the prediction horizon, i.e., 𝜃 is 
held constant at its current estimate. This choice is primarily practical: 
future real-time process measurements are unavailable beyond 𝑡𝑘, so 
the controller cannot reliably predict the evolution of the mismatch 
within the horizon. This constant-𝜃 assumption is widely adopted in 
offset-free MPC implementations (see Wallace et al., 2016; Pannocchia, 
2015; Pannocchia et al., 2015; Hassanpour et al., 2024a).

Remark 8.  The gain matrix of the augmented term 𝐺𝜃 is a tuning 
parameter. In practice, it is selected (offline) to reduce the overall 
estimation error and to ensure convergence of the observer error to 
a bounded neighborhood by satisfying the conditions discussed in 
Section 4.2.

2.6. Reinforcement learning

Reinforcement learning (RL) studies how an agent selects actions 
using a policy 𝜋 to interact with an environment so as to maximize 
cumulative reward. At each sampling instant, the agent observes the 
state 𝑠, applies an action 𝑎 = 𝜋(𝑠), receives a reward 𝑟(𝑠, 𝑎), and 
transitions to a successor state 𝑠′. Collected transitions are commonly 
stored in a replay buffer 
 ∶=

{(

𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠
′
𝑖
)}𝑁

𝑖=1 (19)

which is used to train function approximators in an off-policy manner.
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A key concept is the value function, which quantifies long-term per-
formance under a policy. The state-value function satisfies the Bellman 
equation 
𝑉 𝜋 (𝑠) = 𝑟 (𝑠, 𝜋 (𝑠)) + 𝛾𝑉 𝜋 (𝑠′

)

(20)

where 0 < 𝛾 < 1. Equivalently, many RL algorithms learn the action-
value function 𝑄(𝑠, 𝑎), which evaluates state–action pairs and supports 
policy improvement. In discrete settings, classical updates include the 
on-policy SARSA and off-policy Q-learning equations,
𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼

[

𝑟 + 𝛾𝑄
(

𝑠′, 𝑎′
)

−𝑄 (𝑠, 𝑎)
]

(21)

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼
[

𝑟 + 𝛾 max
𝑎′

𝑄
(

𝑠′, 𝑎′
)

−𝑄 (𝑠, 𝑎)
]

(22)

with learning rate 𝛼 > 0. For continuous-state and continuous-action 
control problems, modern actor-critic methods parameterize both a 
policy (actor) and a value function (critic), enabling direct policy 
optimization while leveraging replay data for sample-efficient learning.

3. Robust and stable reinforcement learning design and imple-
mentation

This section presents the proposed reinforcement learning (RL) 
design and implementation framework for nonlinear process control 
under unknown disturbances and model-plant mismatch. The key idea 
is to integrate an offset-free augmentation into the RL formulation: the 
extended Luenberger observer Eq. (13) estimates a structured mismatch 
state 𝜃̂ online, and the controller is conditioned on the corresponding 
augmented state 𝜒̂ ∶=

[

𝑥⊤, 𝜃̂⊤
]⊤. Although the RL policy uses the 

measured state 𝑥(𝑡𝑘), 𝜃̂(𝑡𝑘) estimates disturbance/mismatch from the 
observer and helps the policy adjust its action under mismatch. This 
enables the learned policy to adapt its action to the inferred disturbance 
realization and mitigates steady-state offsets that commonly arise when 
learning and deploying based on nominal models.

Building on this offset-free augmentation, we develop two comple-
mentary RL realizations: (i) a robust Hamilton–Jacobi-Bellman (HJB)-
based value-critic approach that learns a differentiable value function 
over 𝜒̂ and induces a feedback policy via the HJB stationarity condition, 
and (ii) a robust TD3-based actor-critic approach that is trained and 
deployed entirely in closed loop, using the augmented state 𝜒̂ (through 
the observer estimate 𝜃̂) to account for disturbance realizations during 
online interaction. To ensure closed-loop stability and safe deployment, 
the resulting RL actions are further protected by a stabilizing shield 
composed of provably stabilizing controllers, which overrides the RL 
decision whenever a predefined stability/safety condition is violated. 
These components yield a robust and stable RL framework suitable for 
real-time implementation.

3.1. Robust hamilton–Jacobi-Bellman-based RL design

Hamilton–Jacobi-Bellman (HJB)-based reinforcement learning for-
mulates the control problem as solving a stationary HJB optimality 
equation (Zhu et al., 2025; Wang et al., 2025). To handle unknown 
disturbances/model-plant mismatch in a manner consistent with the 
offset-free framework in Section 2.5, we perform the value-based design 
on the observer-conditioned augmented state 𝜒̂ ∶=

[

𝑥⊤, 𝜃̂⊤
]⊤, where 

𝜃̂(𝑡𝑘) is the disturbance estimate provided by the extended Luenberger 
observer Eq. (13).

In this framework, the optimal value function is defined using the 
augmented state as follows: 

𝑉 ⋆ (𝜒̂) = min
𝑢(⋅)

{

∫

∞

𝑡
𝑟 (𝜒̂ (𝜏) , 𝑢 (𝜏)) 𝑑𝜏

}

(23)

and it satisfies the stationary HJB condition 

min 𝐻
(

𝜒̂ , 𝑢, 𝑉 ⋆) = min
{

𝑟 (𝜒̂ , 𝑢) + 𝜕𝑉 ⋆
𝐹 (𝜒̂ , 𝑢)

}

= 0 (24)

𝑢 𝑢 𝜕𝜒̂

5 
Consequently, the optimal policy is the action that minimizes this 
Hamiltonian at each augmented state: 
𝜋⋆ (𝜒̂) = argmin

𝑢
𝐻

(

𝜒̂ , 𝑢, 𝑉 ⋆) (25)

In closed-loop implementation, the policy is evaluated using 𝜒̂(𝑡𝑘) ∶=
[

𝑥(𝑡𝑘)⊤, 𝜃̂(𝑡𝑘)⊤
]⊤, where 𝜃̂(𝑡𝑘) is obtained from Eq. (13).

To ensure a fair comparison between LMPC and RL, the instanta-
neous cost 𝑟 in the RL formulation is chosen to match the quadratic 
stage cost used in LMPC, 
𝑟 (𝜒̂ , 𝑢) = 𝐿 (𝑥, 𝑢) = 𝑥⊤𝑊𝑥𝑥 + 𝑢⊤𝑊𝑢𝑢 (26)

so that the Hamiltonian can be written as 
𝐻

(

𝜒̂ , 𝑢, 𝑉 ⋆) = 𝑥⊤𝑊𝑥𝑥 + 𝑢⊤𝑊𝑢𝑢 +
𝜕𝑉 ⋆

𝜕𝜒̂
𝐹 (𝜒̂ , 𝑢) (27)

When the augmented dynamics are input-affine, 
𝐹 (𝜒̂ , 𝑢) = 𝑓 (𝜒̂) + 𝑔̄ (𝜒̂) 𝑢 (28)

the HJB condition Eq. (24) can be solved under the stationarity condi-
tions (Lewis et al., 2012) to yield the feedback law: 

𝜋⋆ (𝜒̂) = −1
2
𝑊 −1
𝑢 𝑔̄ (𝜒̂)⊤

𝜕𝑉 ⋆ (𝜒̂)
𝜕𝜒̂

(29)

This expression replaces the nominal state with the observer-
conditioned augmented state and uses the corresponding input matrix 
𝑔̄(𝜒̂) induced by the offset-free augmentation.

Since the exact optimal value function 𝑉 ⋆(𝜒̂) is not available in 
closed form, we introduce a differentiable critic network 𝑉𝑤(𝜒̂) pa-
rameterized by neural network weights 𝑤. The critic is trained to 
minimize the mean-squared residual of the augmented HJB equation 
evaluated at sampled augmented states {𝜒̂ (

𝑡𝑖
)}𝑁

𝑖=1. Specifically, the 
training objective and the weight update are given by 

 (𝑤) = 1
𝑁

𝑁
∑

𝑖=1

(

𝑟
(

𝜒̂
(

𝑡𝑖
)

, 𝜋𝑤
(

𝜒̂
(

𝑡𝑖
)))

+
(

𝜕𝑉𝑤
𝜕𝜒̂

)

(

𝜒̂
(

𝑡𝑖
))

𝐹
(

𝜒̂
(

𝑡𝑖
)

, 𝜋𝑤
(

𝜒̂
(

𝑡𝑖
)))

)2
(30a)

𝑤 ← 𝑤 − 𝛼𝑤 ∇𝑤  (𝑤) (30b)

where (𝑤) denotes the loss function and 𝛼𝑤 is the learning rate that 
determines the step size of gradient descent.

Finally, by embedding the disturbance/mismatch information into 
the augmented state 𝜒̂ through the online estimate 𝜃̂(𝑡𝑘) provided 
by Eq. (13), the resulting HJB-RL policy becomes explicitly condi-
tioned on the disturbance realization inferred from measurements. As 
a result, the learned critic 𝑉𝑤(𝜒̂) and the induced policy 𝜋(𝜒̂) adapt 
the control action according to 𝜃̂, providing offset-free correction and 
mitigating steady-state offsets under bounded model-plant mismatch. 
In this sense, the observer-conditioned augmented-state formulation 
upgrades a nominal HJB-RL design into a robust HJB-RL methodology 
that systematically accounts for structured disturbances via online dis-
turbance estimation and feedback on 𝜒̂ . Algorithm 1 summarizes this 
proposed training procedure, where 𝜖𝑘 denotes an exploration-noise 
term (e.g., Gaussian noise) whose magnitude can be scheduled/de-
cayed and bounded, and clip(⋅) enforces the admissible input set 𝑈
by saturating the tentative action to the componentwise input limits. 
The replay buffer  stores transition data (𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1). Finally, up-
date_every specifies the number of environment steps between two 
consecutive critic-parameter updates, and 𝑁 is the mini-batch size used 
when sampling from .

Remark 9.  The optimal control policy obtained from the HJB condi-
tion does not explicitly account for stability constraints. To enhance the 
accuracy of the approximated optimal value function, the neural net-
work performance could be further improved by incorporating stability 
criteria in the training process; however, this aspect is not within the 
scope of the present study.
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Algorithm 1 Robust HJB-RL training with offset-free augmented state
1: Initialize critic 𝑉𝑤(𝜒̂) with random parameters 𝑤
2: Initialize replay buffer 
3: Initialize process and observer states, set iteration counter 𝑘 ← 0
4: while not converged do 
5: Update observer Eq. (13) using measurements and obtain 𝜃̂(𝑡𝑘)
6: Form augmented estimate 𝜒̂(𝑡𝑘) ←

[

𝑥⊤(𝑡𝑘), 𝜃̂⊤(𝑡𝑘)
]⊤

7: Select action with exploration: 𝑢𝑘 ← clip
(

𝜋𝑤(𝜒̂(𝑡𝑘)) + 𝜖𝑘
)

8: Apply 𝑢𝑘 to the process and obtain next measurement at 𝑡𝑘+1
9: Update observer and form 𝜒̂(𝑡𝑘+1)
10: Store (𝜒̂(𝑡𝑘), 𝑢𝑘, 𝜒̂(𝑡𝑘+1)) in 
11: if 𝑘 mod update_every = 0 then 
12: Sample mini-batch from 
13: Compute HJB residuals: 𝑗 (𝑤) = 𝑟(𝜒̂𝑗 , 𝜋𝑤(𝜒̂𝑗 )) +

∇𝜒̂𝑉𝑤(𝜒̂𝑗 )⊤𝐹
(

𝜒̂𝑗 , 𝜋𝑤(𝜒̂𝑗 )
)

14: Update 𝑤 by minimizing 1
𝑁

∑𝑁
𝑗=1 𝑗 (𝑤)2

15: end if
16: 𝑘 ← 𝑘 + 1
17: end while

3.2. Robust TD3-RL design

TD3-RL, combined with an offset-free structure, has been explored 
as a candidate robust RL design. This approach was first proposed 
by Hassanpour et al. (2024a,b) and was reported to outperform offset-
free MPC in the studied cases; however, the method does not provide 
an explicit closed-loop stability guarantee, and the potential reduction 
in online computational time relative to solving MPC optimizations is 
not explicitly highlighted or quantified. Therefore, in this study, we 
design the robust TD3-RL based on the offset-free TD3-RL proposed 
by Hassanpour et al. (2024a,b) and further modify it with the shield 
layer to guarantee the closed-loop stability.

TD3-RL (Twin Delayed Deep Deterministic Policy Gradient) is an 
off-policy actor-critic reinforcement learning algorithm designed for 
continuous-action control problems, and it is widely used in appli-
cations such as robotics and process control where the manipulated 
inputs are continuous-valued. Compared with DDPG, TD3 improves 
training stability and performance through three key modifications: 
(i) twin critic networks are used and the minimum of their estimates 
is taken to mitigate Q-value overestimation, (ii) the policy (actor) is 
updated less frequently than the critics to reduce the impact of policy 
updates on volatile value function estimates, and (iii) target policy 
smoothing is employed by adding clipped noise to the target action to 
suppress exploitation of function-approximation errors. By leveraging 
replay buffers and target networks, TD3 typically achieves improved 
sample efficiency in continuous control tasks.

We first generate an offline dataset by running an offset-free LMPC 
in closed loop under unknown disturbances, where an offset-free ob-
server is executed online to estimate the mismatch/disturbance state 
𝜃̂ and the LMPC incorporates this estimate in its prediction model to 
mitigate steady-state offsets; at each sampling instant 𝑡𝑘, the LMPC 
optimization is solved and the first control move is implemented in 
a sample-and-hold fashion over [𝑡𝑘, 𝑡𝑘+1). From these trajectories, we 
store transition tuples 

off ∶=
{

(𝑠𝑘, 𝑎𝑘, 𝑟𝑘, 𝑠𝑘+1)
}𝑁off−1

𝑘=0
, 𝑁off ∶= |off | (31)

where the learning state includes both the process deviation state and 
the observer-based disturbance estimate 
𝑠𝑘 ∶=

[

𝑥(𝑡𝑘)⊤, 𝜃̂(𝑡𝑘)⊤
]⊤ (32)

𝑎𝑘 is the applied LMPC control input, 𝑟𝑘 is the instantaneous reward 
consistent with the control objective, and 𝑠  is the future state after 
𝑘+1

6 
one sampling interval. Using off , we train a feedforward neural net-
work (FNN) policy 𝜋teach(𝑠) to approximate the LMPC feedback law via 
supervised imitation and use this behavior-cloned policy to initialize 
the actor for the subsequent RL stage; we then pretrain the twin critic 
networks using only the offline buffer while keeping the actor fixed at 
(or close to) its cloned initialization, and finally perform an additional 
offline refinement stage where the actor is updated using a TD3-BC 
objective on the offline buffer. After critic-only pretraining, the actor 
is refined on off  using a weighted combination of a TD3 policy 
objective and a behavior-cloning regularizer (TD3-BC), where the TD3 
term encourages actions that maximize the estimated value under the 
learned twin critics {𝑄𝜓1 , 𝑄𝜓2}

TD3(𝜙) = − 1
𝑁off

𝑁off−1
∑

𝑘=0
min

(

𝑄𝜓1
(

𝑠𝑘, 𝜋𝜙(𝑠𝑘)
)

, 𝑄𝜓2
(

𝑠𝑘, 𝜋𝜙(𝑠𝑘)
)

)

(33)

while the cloning term penalizes deviation from the LMPC-mimicking 
teacher policy 𝜋teach

BC(𝜙) =
1

𝑁off

𝑁off−1
∑

𝑘=0

‖

‖

‖

𝜋𝜙(𝑠𝑘) − 𝜋teach(𝑠𝑘)
‖

‖

‖

2

2
(34)

The final actor objective is the convex combination 
actor (𝜙) = (1 − 𝛼)TD3(𝜙) + 𝛼BC(𝜙) 𝛼 ∈ [0, 1] (35)

where 𝛼 controls the strength of imitation regularization (typically re-
duced over training so that the policy can depart from the teacher when 
doing so improves the critic-evaluated return); since all updates in this 
section rely exclusively on off  prior to deployment, the procedure is 
offline from the standpoint of closed-loop operation and yields an actor-
critic initialization that closely follows the stabilizing LMPC behavior 
while substantially reducing the exploration burden of the subsequent 
online stage

3.3. Shielded online implementation

Gerold and Lucia (2025) proposes an adaptive robust model pre-
dictive shielding framework, where a predictive safety check filters 
the RL action and replaces unsafe proposals with an offline-trained 
approximate robust NMPC backup policy. In contrast, we employ a 
Lyapunov-based supervision layer that certifies the learned candidate 
via the contractive condition 𝑉̇ (𝑥, 𝑢) ≤ 𝑆(𝑥), and switch to LMPC 
and a stabilizing reference controller when the condition is violated. 
Fig.  1 illustrates the proposed shielded online implementation, which 
combines a learned controller with a supervision layer. In the closed 
loop, the process is affected by unknown disturbances, 𝑊  in Eq. (3), 
while sensors provide real-time feedback. An observer runs in parallel 
to estimate not only the process state but also a slowly varying distur-
bance/mismatch term, denoted by 𝜃̂. This estimate provides a compact 
representation of uncertainty that is directly used by the control layer.

At each sampling instant, the control layer generates a candidate 
input using the available online information (measured/estimated state 
and 𝜃̂). The primary controller is an online-updated RL policy 𝛷RL, 
trained to approximate the LMPC input–output mapping using the same 
conditioning variables and a cost-aligned objective, with the goal of 
retaining LMPC-like performance while avoiding online optimization; 
however, online learning may occasionally produce degraded policies 
due to limited data, nonstationarity, or distribution shift, especially 
during early stages of deployment.

To improve practical robustness, we introduce a computationally 
efficient fallback learned policy implemented as a feedforward neural 
network (FNN) 𝛷FNN, trained offline to imitate the offset-free LMPC. 
Since 𝛷FNN can be evaluated with negligible computational cost, it 
serves as a reliable baseline when online updates temporarily degrade 
the RL policy. In operation, the controller first compares the predicted 
Lyapunov time-derivative of the RL proposal and the FNN proposal 
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Fig. 1. Closed-loop structure with a Lyapunov-based shield layer. A learning-based policy block selects a candidate input 𝑢L (from either the RL policy or the 
fast-learned FNN policy) using the measured state 𝑥 and the disturbance/mismatch estimate 𝜃̂ provided by the observer. A safety check evaluates the Lyapunov 
condition 𝑉̇ (

𝑥, 𝑢L
)

≤ 𝑆(𝑥); if satisfied, 𝑢L is applied to the actuator, otherwise the controller switches to a model-based fallback input 𝑢F. The actuator drives the 
process subject to an external disturbance 𝑊 , while the sensor and observer close the feedback loop.
under the current information, and selects the more contractive one 
as the learned candidate.

Instead of directly applying the learned candidate, a Lyapunov-
based shield (gate) is inserted between the learned policy and the 
actuator. Consistent with the stability condition used in the LMPC 
design, the gate checks whether the candidate input satisfies the chosen 
Lyapunov decrease requirement, e.g., of the form in Eq. (9e) or Eq. (10). 
If the check is satisfied, the candidate is accepted; otherwise, the gate 
rejects the learned candidate and switches to a model-based fallback 
input computed by a short-horizon LMPC, which enforces the same 
Lyapunov condition but calculated by the nominal model while still 
optimizing the online cost.

To further guarantee that a valid control signal can always be 
issued, the fallback pathway is complemented by a final failsafe layer. 
If the LMPC fallback is unavailable or fails to return an input that 
satisfies the Lyapunov condition, a stabilizing reference controller 𝛷(⋅)
(as in Section 2.3) is applied. Overall, the architecture prioritizes 
learned performance when the candidate is certified as safe, while 
preserving stability-oriented behavior via systematic switching to the 
LMPC fallback and the reference controller when needed. The complete 
shield-layer decision logic is summarized in Algorithm 2.

Beyond online deployment, the same structure supports online 
training. During operation, closed-loop data are stored and periodically 
used to refine the RL policy. Importantly, the shield remains active 
throughout data collection and policy updates, so performance can 
improve over time while the closed-loop system continues to operate 
under the same Lyapunov-based supervision. The presence of the offline 
FNN surrogate further reduces the risk that online training temporarily 
degrades the closed-loop behavior.

Remark 10.  When comparing the learned policies in the first stage 
of the shield (i.e., 𝛷RL versus the offline FNN surrogate 𝛷FNN), we 
evaluate the Lyapunov time-derivative using the offset-free prediction 
model Eq. (11) and denote it by 𝑉̇of (𝑥, 𝑢). In contrast, when assessing the 
Lyapunov condition for the LMPC fallback (and the stabilizing reference 
controller 𝛷), we compute 𝑉̇ (𝑥, 𝑢) using the nominal model Eq. (1). 
This choice is consistent with the stabilizability assumption and the 
stability guarantees established in Section 4, which are derived with 
respect to the nominal dynamics. The use of 𝑉̇of  is solely for selecting 
between the two learned candidates to improve practical setpoint-
tracking performance. Since the FNN is trained to imitate the offset-free
LMPC feedback map, evaluating its contraction using the offset-free 
7 
Algorithm 2 Shielded online implementation (constraint-enforced 
switching)
1: for 𝑘 = 0, 1, 2,…  do 
2: Measure/estimate 𝑥(𝑡𝑘) (and 𝜃̂(𝑡𝑘) if used); compute 𝑉 (𝑥(𝑡𝑘))
3: Compute proposals: 𝑢RL ← 𝛷RL(𝑥(𝑡𝑘)) ∈ 𝑈 , 𝑢FNN ← 𝛷FNN(𝑥(𝑡𝑘)) ∈

𝑈
4: Form 𝑢L ← 𝛷L(𝑥(𝑡𝑘)), where 𝛷L(𝑥) ∈

argmin𝛷𝐶∈{𝛷RL ,𝛷FNN} 𝑉̇ (𝑥,𝛷𝐶 (𝑥))
5: if 𝑉 (𝑥(𝑡𝑘)) ≤ 𝜌sw or 𝑉̇ (𝑥(𝑡𝑘), 𝑢L) ≤ 𝑆(𝑥(𝑡𝑘)) then 
6: Apply 𝑢(𝑡𝑘) ← 𝑢L
7: else 
8: Compute 𝑢LMPC(𝑡𝑘)
9: if 𝑉̇ (𝑥(𝑡𝑘), 𝑢LMPC(𝑡𝑘)) ≤ 𝑆(𝑥(𝑡𝑘)) then 
10: Apply 𝑢(𝑡𝑘) ← 𝑢LMPC(𝑡𝑘)
11: else 
12: Apply failsafe 𝑢(𝑡𝑘) ← 𝛷(𝑥(𝑡𝑘))
13: end if
14: end if
15: Hold 𝑢(𝑡) = 𝑢(𝑡𝑘) for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥)
16: end for

model typically provides a more faithful prediction of its tracking 
behavior than using the nominal model, whose mismatch-induced bias 
can lead to overly conservative or misleading comparisons.

Remark 11.  The above two RL realizations are selected as complemen-
tary representatives for implementing the proposed shielded, offset-free 
framework. For the model-free branch, we start from DDPG since 
it is a classic deterministic actor–critic method for continuous-action 
control and has been widely adopted as a baseline in continuous-
time/continuous-input process systems; we then adopt TD3 as a gener-
ally more reliable and more stable improvement over DDPG in practice. 
This choice is further supported by prior studies that successfully 
combine TD3-RL with offset-free augmentation by including the mis-
match/disturbance estimate in the RL state (e.g., (Hassanpour et al., 
2024a,b)). For the model-based branch, we include the HJB-based 
value–critic approach as a representative realization because the offset-
free mechanism continuously estimates and compensates for model–
plant mismatch, so the effective prediction model improves over time; 
consequently, the HJB-residual training and the induced feedback pol-
icy can become progressively better aligned with the true closed-loop 
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behavior. Moreover, HJB/value-function based RL has been studied and 
applied in chemical process control (e.g., (Wang et al., 2025; Zhu et al., 
2025)), motivating it as a practical model-based counterpart to the 
model-free TD3 branch.

Remark 12.  In Algorithm 2, an LMPC fallback failure refers to sit-
uations where the LMPC action cannot be computed reliably within 
the current control interval. Typical causes include: (i) solver failure 
(e.g., infeasibility, non-convergence, or numerical issues) and (ii) ex-
ceeding the prescribed computational time limit, i.e., the solve time 
is longer than the sampling period 𝛥. In either case, the LMPC solu-
tion is not safely deployable at the current sampling time, and the 
shield triggers the final failsafe by applying the stabilizing reference 
controller.

Remark 13.  The proposed architecture does not assume that the 
learned policies (the online RL policy and the offline FNN surrogate) are 
stabilizing by themselves, nor does it require that the RL training explic-
itly enforces the Lyapunov decrease condition used in the supervisory 
layer. Instead, the learned policies are treated as performance-oriented 
candidate controllers that may occasionally violate the Lyapunov gate. 
In our application studies, the learned policies nevertheless generate 
a substantial fraction of actions that satisfy the Lyapunov condition; 
however, even if one were to incorporate this condition directly into 
training (e.g., via reward penalties or critic regularization), there is still 
no guarantee that a learned policy will satisfy it at every time step. 
Therefore, rigorous closed-loop stability/ultimate-boundedness guaran-
tees stem from the supervisory shield: a learned candidate is applied 
only if it passes the Lyapunov-based gate, and otherwise the con-
troller switches to the model-based LMPC fallback and, if needed, the 
stabilizing reference controller. Consequently, the closed-loop inherits 
the stability properties established for the LMPC/reference controller 
under sample-and-hold implementation and bounded mismatch, while 
learning primarily serves to improve performance and reduce the online 
optimization burden.

4. Closed-loop stability guarantees of the proposed reinforcement 
learning-based controller

In this section, the closed-loop stability guarantees of the proposed 
reinforcement learning-based controller are demonstrated under the 
shielded online implementation.

4.1. Closed-loop stability

For a continuous-time implementation of the reference feedback, 
the stabilizability assumption in Section 2.3 implies exponential stabil-
ity of the origin for the nominal model. In practice, however, controllers 
are implemented digitally (sample-and-hold) and the plant may be 
subject to bounded model-plant mismatch/disturbances. Consequently, 
the closed-loop behavior is characterized in terms of practical stability
and ultimate boundedness, i.e., convergence to (and invariance of) a 
neighborhood of the origin. Let 𝐷 ⊂ R𝑛 be an open neighborhood of 
the origin on which Eq. (7b) and (7c) hold, and pick 𝜌 > 0 such that 
the sublevel set 𝛺𝜌 ∶= {𝑥 ∈ 𝐷 ∶ 𝑉 (𝑥) ≤ 𝜌} satisfies 𝛺𝜌 ⊂ 𝐷. The analysis 
is restricted to trajectories with 𝑥(𝑡0) ∈ 𝛺𝜌 and to inequalities enforced 
on 𝛺𝜌.

Before addressing the uniformly bounded disturbance case, we first 
consider the case where the mismatch/disturbance is vanishing. Con-
sider the true process Eq. (3) under the continuous-time reference 
feedback 𝑢 = 𝛷(𝑥), i.e., 𝑥̇ = 𝐹 (𝑥,𝛷(𝑥)) +𝑊 (𝑥, 𝑡). Along its trajectories, 

𝑉̇ (𝑥) =
𝜕𝑉 (𝑥)
𝜕𝑥

(

𝐹 (𝑥,𝛷(𝑥)) +𝑊 (𝑥, 𝑡)
)

≤ −𝑐3 |𝑥|
2 + 𝑐4 |𝑥| |𝑊 (𝑥, 𝑡)| (36)

where Eq. (7b) and (7c) were used. If, in addition, the mismatch is 
vanishing in the sense that there exists a nonnegative function 𝛿(𝑡) with 
𝛿(𝑡) → 0 as 𝑡 → ∞ such that 
𝑊 (𝑥, 𝑡) ≤ 𝛿(𝑡) 𝑥 , ∀(𝑥, 𝑡) ∈ 𝛺 × R (37)
| | | | 𝜌

8 
then 
𝑉̇ (𝑥) ≤ −

(

𝑐3 − 𝑐4𝛿(𝑡)
)

|𝑥|2 (38)

Therefore, there exists a finite time 𝑇 ≥ 𝑡0 such that 𝛿(𝑡) ≤ 𝛿 <
𝑐3
𝑐4

 for all 𝑡 ≥ 𝑇 , which implies 𝑉̇ (𝑥) ≤ −
(

𝑐3 − 𝑐4𝛿
)

|𝑥|2 < 0 for 
all 𝑥 ∈ 𝛺𝜌∖{0} and all 𝑡 ≥ 𝑇 . In other words, once the vanishing 
mismatch becomes sufficiently small, 𝑉̇  is negative definite on 𝛺𝜌, and 
the closed-loop inherits the same exponential decay mechanism as in 
the nominal case. This case reflects a common practical situation where 
the model we construct is relatively accurate near the setpoint steady 
state. Hence, as the state converges toward the setpoint, the model-
plant mismatch diminishes, and the closed-loop behavior approaches 
that of the nominal exponentially stable system.

We now turn to the more general and practically relevant case 
in which the mismatch/disturbance is only known to be uniformly 
bounded (not necessarily vanishing). In this case, a strict decrease of 𝑉
cannot be guaranteed globally, but one can establish practical stability 
and ultimate boundedness with an explicit ultimate bound, as stated 
next.

Theorem 1.  Consider the true process Eq. (3) under the reference feedback 
𝑢 = 𝛷(𝑥): 
𝑥̇ = 𝐹 (𝑥,𝛷(𝑥)) +𝑊 (𝑥, 𝑡) (39)

Let 𝛺𝜌 ⊂ 𝐷 be the sublevel set defined above. Suppose the stabilizability 
assumption for the nominal model Eq. (1) holds on 𝛺𝜌 with a continuously 
differentiable Lyapunov function 𝑉 (𝑥) and constants 𝑐1, 𝑐2, 𝑐3, 𝑐4 satisfy-
ing Eq. (7). Assume the disturbance is uniformly bounded as in Eq. (4), 
i.e., |𝑊 (𝑥, 𝑡)| ≤ 𝑊max for all (𝑥, 𝑡) ∈ 𝛺𝜌 ×R. Let 𝑟 > 0 be such that the ball 
{𝑥 ∣ |𝑥| < 𝑟} is contained in 𝛺𝜌.

Fix any 𝜃 ∈ (0, 1) and define 

𝜇 ∶=
𝑐4
𝑐3

𝑊max

𝜃
, 𝑘 ∶=

√

𝑐2
𝑐1
, 𝛾 ∶=

(1 − 𝜃)𝑐3
2𝑐2

, 𝑏 ∶= 𝑘𝜇 =
𝑐4
𝑐3

√

𝑐2
𝑐1

𝑊max

𝜃

(40)

If 𝜇 < 𝑘−1𝑟 (equivalently 𝑊max < 𝑐3
𝑐4

√

𝑐1
𝑐2
𝜃 𝑟), then for every initial 

condition satisfying |
|

𝑥(𝑡0)|| < 𝑘−1𝑟, the solution of Eq. (39) exists for all 
𝑡 ≥ 𝑡0, remains in 𝛺𝜌, and there exists a finite time 𝑡1 ≥ 𝑡0 such that 

|𝑥(𝑡)| ≤ 𝑘 exp
(

−𝛾(𝑡 − 𝑡0)
)

|

|

𝑥(𝑡0)|| , 𝑡0 ≤ 𝑡 < 𝑡1 (41a)

|𝑥(𝑡)| ≤ 𝑏, 𝑡 ≥ 𝑡1 (41b)

In particular, the origin of the nominal model is practically stable for the 
perturbed closed-loop system and the trajectories are ultimately bounded 
with ultimate bound 𝑏. (see Khalil and Grizzle (2002, Thm. 4.10) and Khalil 
and Grizzle (2002, Lem. 4.8))

Proof.  Along trajectories of Eq. (39),

𝑉̇ (𝑥) =
𝜕𝑉 (𝑥)
𝜕𝑥

(𝐹 (𝑥,𝛷(𝑥)) +𝑊 (𝑥, 𝑡))

≤ 𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥)) +
|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

|𝑊 (𝑥, 𝑡)|

≤ −𝑐3 |𝑥|
2 + 𝑐4 |𝑥|𝑊max (42)

where Eq. (7b) and (7c) and |𝑊 (𝑥, 𝑡)| ≤ 𝑊max were used (on 𝛺𝜌). For 
any fixed 𝜃 ∈ (0, 1),

−𝑐3 |𝑥|
2 + 𝑐4 |𝑥|𝑊max = −(1 − 𝜃)𝑐3 |𝑥|

2 −
(

𝜃𝑐3 |𝑥|
2 − 𝑐4 |𝑥|𝑊max

)

≤ −(1 − 𝜃)𝑐3 |𝑥|
2 , ∀ |𝑥| ≥ 𝜇 (43)

with 𝜇 defined in Eq. (40). Define 𝛼1(𝑠) = 𝑐1𝑠2, 𝛼2(𝑠) = 𝑐2𝑠2, and 
𝛼3(𝑠) = (1 − 𝜃)𝑐3𝑠2, which are class- functions on [0, 𝑟]. Then Eq. (43) 
gives 𝑉̇ ≤ −𝛼3(‖𝑥‖) for all ‖𝑥‖ ≥ 𝜇. Applying (Khalil and Grizzle, 
2002, Thm. 4.10) on the domain {𝑥 ∶ ‖𝑥‖ < 𝑟} ⊂ 𝛺𝜌 yields practical 
stability/ultimate boundedness.
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Moreover, the explicit bounds Eq. (41) follow from (Khalil and 
Grizzle, 2002, Lem. 4.8) by viewing 𝑊  as an additive perturbation with 
𝛿 = 𝑊max, which yields 𝑘, 𝛾, 𝑏 as in Eq. (40). The condition 𝜇 < 𝑘−1𝑟
ensures the relevant balls are contained in {𝑥 ∶ ‖𝑥‖ < 𝑟} ⊂ 𝛺𝜌, so the 
corresponding trajectories remain in 𝛺𝜌. □

The demonstration characterizes the effect of bounded (or vanish-
ing) mismatch under a continuous-time reference feedback 𝑢 = 𝛷(𝑥). In 
our implementation, however, the applied input is piecewise constant 
and is taken as the first decision returned by the LMPC at each sampling 
instant. We therefore next provide a sampled-data stability charac-
terization for the true process under the sample-and-hold application 
of the LMPC input, showing forward invariance of 𝛺𝜌 and ultimate 
boundedness to a (possibly inflated) inner level set.

Theorem 2.  Consider the true process Eq. (3) under the sample-and-hold 
implementation of the first LMPC input: 
𝑥̇(𝑡) = 𝐹

(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

+𝑊 (𝑥(𝑡), 𝑡) , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (44)

where 𝑢(𝑡𝑘) is the first control input vector returned by the LMPC prob-
lem Eq. (9), and the LMPC prediction model is the nominal model Eq. (1). 
Assume Section 2.3 holds for the nominal model on
𝛺𝜌 ∶= {𝑥 ∈ R𝑛 ∣ 𝑉 (𝑥) ≤ 𝜌} ⊂ 𝐷, and the disturbance satisfies 𝑊 ∈ 
in Eq. (4) on 𝛺𝜌. Assume 𝑊 (𝑥, 𝑡) is measurable in 𝑡 and locally Lipschitz 
in 𝑥 on 𝐷, so that Eq. (44) admits a unique Carathéodory solution. Assume 
the bounds ‖𝐹 (𝑥, 𝑢)‖ ≤ 𝑀𝐹  on 𝛺𝜌 × 𝑈 and the Lipschitz bound Eq. (8c) 
hold on 𝛺𝜌 × 𝑈 (with constant 𝐿′

𝑥). Suppose the LMPC enforces at each 
sampling instant 𝑡𝑘 either Eq. (9e) or Eq. (10), and choose 𝛼 = 𝑐3

𝑐2
.

Let 0 < 𝜌𝑠 < 𝜌 and define the one-step inflated level 

𝜌min ∶= sup
{

𝑉
(

𝑥(𝑡𝑘 + 𝛥)
)

|| 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑠 , 𝑊 ∈  , 𝐸𝑞. (44) holds on [𝑡𝑘, 𝑡𝑘 + 𝛥)
}

(45)

Assume 𝜌𝑠 < 𝜌min < 𝜌. If there exists a constant 𝜖𝑤 > 0 such that 

− 𝛼𝜌𝑠 + 𝐿′
𝑥

(

𝑀𝐹 +𝑊max
)

𝛥 + 𝑐4

(√

𝜌
𝑐1

+
(

𝑀𝐹 +𝑊max
)

𝛥
)

𝑊max ≤ −𝜖𝑤

(46)

then the closed-loop trajectory starting from any 𝑥(𝑡0) ∈ 𝛺𝜌 satisfies:

(1) For any sampling instant 𝑡𝑘 with 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 , 

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ −𝜖𝑤, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (47)

(2) There exists a finite time 𝑡1 ≥ 𝑡0 such that 
𝑥(𝑡) ∈ 𝛺𝜌min

⊂ 𝛺𝜌, ∀ 𝑡 ≥ 𝑡1 (48)

In particular, 𝛺𝜌 is forward invariant and the closed-loop is ulti-
mately bounded.

Proof.  Fix any sampling instant 𝑡𝑘 and any 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥). Along
Eq. (44), 

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

=
𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

(

𝐹
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

+𝑊 (𝑥(𝑡), 𝑡)
)

(49)

Add and subtract 𝜕𝑉 (𝑥(𝑡𝑘))
𝜕𝑥 𝐹

(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
) to split the derivative into three 

terms. Using the Lipschitz bound Eq. (8c), the gradient bound Eq. (7c), 
and the disturbance bound ‖𝑊 (𝑥, 𝑡)‖ ≤ 𝑊max, we obtain 

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ 𝐿′
𝑥‖𝑥(𝑡)−𝑥(𝑡𝑘)‖+

𝜕𝑉 (𝑥(𝑡𝑘))
𝜕𝑥

𝐹
(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
)

+𝑐4‖𝑥(𝑡)‖𝑊max

(50)

Next, by Eq. (44) and the bounds ‖𝐹 (𝑥, 𝑢)‖ ≤ 𝑀𝐹  on 𝛺𝜌 × 𝑈 and 
‖𝑊 (𝑥, 𝑡)‖ ≤ 𝑊max on 𝛺𝜌, the sample-and-hold state increment satisfies

‖𝑥(𝑡) − 𝑥(𝑡𝑘)‖ ≤
𝑡
‖𝑥̇(𝜏)‖ 𝑑𝜏 ≤

𝑡(
‖𝐹 (𝑥(𝜏), 𝑢(𝑡𝑘))‖ + ‖𝑊 (𝑥(𝜏), 𝜏)‖

)

𝑑𝜏
∫𝑡𝑘 ∫𝑡𝑘

9 
≤ (𝑀𝐹 +𝑊max)𝛥 (51)

and therefore ‖𝑥(𝑡)‖ ≤ ‖𝑥(𝑡𝑘)‖ + (𝑀𝐹 + 𝑊max)𝛥. If 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 , 
then ‖𝑥(𝑡𝑘)‖ ≤

√

𝜌∕𝑐1 and 𝑉 (𝑥(𝑡𝑘)) ≥ 𝜌𝑠. Moreover, depending on 
which Lyapunov constraint is enforced at 𝑡𝑘: (i) under Eq. (9e), the 
reference-controller decrease Eq. (7b) gives 𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥 𝐹 (𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) ≤
−𝑐3‖𝑥(𝑡𝑘)‖2 ≤ − 𝑐3

𝑐2
𝑉 (𝑥(𝑡𝑘)) ≤ −𝛼𝜌𝑠; (ii) under Eq. (10), we have directly 

𝜕𝑉 (𝑥(𝑡𝑘))
𝜕𝑥 𝐹 (𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) ≤ −𝛼𝑉 (𝑥(𝑡𝑘)) ≤ −𝛼𝜌𝑠. Substituting these bounds 

yields, for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥), 

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ −𝛼𝜌𝑠+𝐿′
𝑥(𝑀𝐹 +𝑊max)𝛥+𝑐4

(√

𝜌
𝑐1
+(𝑀𝐹 +𝑊max)𝛥

)

𝑊max

(52)

so Eq. (46) implies Eq. (47).
For Item 2, when 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 , Item 1 implies 𝑉̇ ≤ −𝜖𝑤 on 

[𝑡𝑘, 𝑡𝑘 + 𝛥), so 𝑉  strictly decreases on that interval. When 𝑥(𝑡𝑘) ∈
𝛺𝜌𝑠 , the definition Eq. (45) together with 𝜌𝑠 < 𝜌min < 𝜌 implies 
𝑥(𝑡𝑘+1) ∈ 𝛺𝜌min

⊂ 𝛺𝜌. Therefore, 𝛺𝜌 is forward invariant. Finally, since 
𝑉̇ ≤ −𝜖𝑤 whenever 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 , the Lyapunov level at sampling 
instants decreases until the trajectory reaches 𝛺𝜌𝑠  in finite time at 
some sampling instant 𝑡𝑘⋆ . Once 𝑥(𝑡𝑘⋆ ) ∈ 𝛺𝜌𝑠 , the definition Eq. (45) 
implies 𝑥(𝑡𝑘⋆+1) ∈ 𝛺𝜌min

, and inductively the trajectory remains in 𝛺𝜌min
thereafter, establishing Eq. (48). □

As seen in the proposed constraint-enforced switching framework, 
the control law operates by conditionally selecting which control signal 
is applied to the actuators. In addition to the online-updated RL policy, 
we include an offline-trained feedforward neural network (FNN) as a 
computationally efficient surrogate of the Lyapunov-contractive MPC. 
The FNN provides a reliable baseline when online learning temporarily 
degrades performance. At each sampling instant, the controller first se-
lects a learned candidate by comparing the predicted Lyapunov decrease 
of the online RL policy and the FNN surrogate, and then applies the 
Lyapunov-based constraint enforcer. The closed-loop stability/ultimate-
boundedness guarantees are inherited from the Lyapunov gate and the 
LMPC/reference-controller fallback, rather than from intrinsic stability 
properties of the learned policies.

Despite neither the online RL policy nor the FNN surrogate hav-
ing an a priori stability guarantee, the stability guarantees for the 
LMPC shown in Theorem  2 also guarantee stability for the modified 
framework via the constraint enforcer

Theorem 3.  Consider the true process Eq. (3) under sample-and-hold 
control with sampling period 𝛥: 
𝑥̇(𝑡) = 𝐹

(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

+𝑊 (𝑥(𝑡), 𝑡) , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (53)

Assume Section 2.3 holds on 𝛺𝜌 ∶= {𝑥 ∣ 𝑉 (𝑥) ≤ 𝜌} ⊂ 𝐷 and the disturbance 
satisfies 𝑊 ∈  in Eq. (4) on 𝛺𝜌. Assume 𝑊 (𝑥, 𝑡) is measurable in 𝑡 and 
locally Lipschitz in 𝑥 on 𝐷, so that Eq. (53) admits a unique Carathéodory 
solution.

Let 𝛷RL ∶ R𝑛 → 𝑈 be an RL controller satisfying 𝛷RL(𝑥) ∈ 𝑈 for all 
𝑥, and let 𝛷FNN ∶ R𝑛 → 𝑈 be an offline FNN surrogate policy satisfying 
𝛷FNN(𝑥) ∈ 𝑈 for all 𝑥.

Fix 0 < 𝜌sw < 𝜌 and define 
𝑆(𝑥) ∈

{

𝑉̇
(

𝑥,𝛷(𝑥)
)

, −𝛼𝑉 (𝑥)
}

(54)

consistent with whether Eq. (9e) or Eq. (10) is used.
Define the learned candidate policy 𝛷L by selecting between 𝛷RL and 

𝛷FNN based on the predicted Lyapunov decrease: 
𝛷L(𝑥) ∈ argmin

𝛷𝐶∈{𝛷RL ,𝛷FNN}
𝑉̇
(

𝑥,𝛷𝐶 (𝑥)
)

(55)

Use the following constraint enforcer: 

𝑢
(

𝑡𝑘
)

=

⎧

⎪

⎪

⎨

⎪

⎪

𝛷L
(

𝑥
(

𝑡𝑘
))

, if 𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌sw or
𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷L
(

𝑥
(

𝑡𝑘
)))

≤ 𝑆
(

𝑥
(

𝑡𝑘
))

𝛷LMPC
(

𝑡𝑘
)

, if 𝑉
(

𝑥
(

𝑡𝑘
))

> 𝜌sw and
̇ ( ( ) ( ( ))) ( ( ))

(56)
⎩

𝑉 𝑥 𝑡𝑘 , 𝛷L 𝑥 𝑡𝑘 > 𝑆 𝑥 𝑡𝑘
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where 𝛷LMPC is defined by 

𝛷LMPC
(

𝑡𝑘
)

=

{

𝑢LMPC
(

𝑡𝑘
)

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝑢LMPC
(

𝑡𝑘
))

≤ 𝑆
(

𝑥
(

𝑡𝑘
))

𝛷
(

𝑥
(

𝑡𝑘
))

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝑢LMPC
(

𝑡𝑘
))

> 𝑆
(

𝑥
(

𝑡𝑘
)) (57)

and always returns an input in 𝑈 .
Assume the following outer-region decay property holds: there exist 

constants 0 < 𝜌𝑠 < 𝜌 and 𝜖𝑤 > 0 such that for any sampling instant 𝑡𝑘
with 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 , whenever the applied input satisfies 

𝑉̇
(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
)

≤ 𝑆
(

𝑥(𝑡𝑘)
)

(58)

the sample-and-hold trajectory satisfies 
𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ −𝜖𝑤, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (59)

In particular, when 𝑢(𝑡𝑘) = 𝑢LMPC(𝑡𝑘) is the first input returned by the 
LMPC and the LMPC enforces Eq. (58) at 𝑡𝑘, Theorem  2 (Item 1) provides 
sufficient conditions for Eq. (59).

Define the inner level 
𝜌in ∶= max{𝜌𝑠, 𝜌sw} (60)

Define the one-step worst-case Lyapunov level: 

𝜌⋆min ∶= sup
{

𝑉
(

𝑥(𝑡𝑘 + 𝛥)
)

|| 𝑥(𝑡𝑘) ∈ 𝛺𝜌in , 𝑊 ∈  , 𝐸𝑞.(53)holds on [𝑡𝑘, 𝑡𝑘 + 𝛥)
}

(61)

Assume the invariance-feasibility condition 
𝜌in < 𝜌

⋆
min < 𝜌 (62)

Then for any 𝑥(𝑡0) ∈ 𝛺𝜌, the closed-loop trajectory under Eq. (56) 
satisfies:

1. Forward invariance (hence boundedness): for all 𝑡 ≥ 𝑡0, 𝑥(𝑡) ∈
𝛺𝜌, and thus by Eq. (7a), ‖𝑥(𝑡)‖ ≤

√

𝜌∕𝑐1 for all 𝑡 ≥ 𝑡0.
2. Ultimate boundedness with explicit bound: there exists a finite 
time 𝑡1 ≥ 𝑡0 such that 

𝑥(𝑡) ∈ 𝛺𝜌⋆min
⊂ 𝛺𝜌, ∀ 𝑡 ≥ 𝑡1 (63)

Consequently, again using Eq. (7a), ‖𝑥(𝑡)‖ ≤
√

𝜌⋆min∕𝑐1 for all 𝑡 ≥ 𝑡1. 
Moreover, at any sampling instant with 𝑉 (𝑥(𝑡𝑘)) ≤ 𝜌sw, we have 
‖𝑥(𝑡𝑘)‖ ≤

√

𝜌sw∕𝑐1.

Proof.  Fix any sampling instant 𝑡𝑘.
(1) Forward invariance of 𝛺𝜌. Assume 𝑥(𝑡𝑘) ∈ 𝛺𝜌, i.e., 𝑉 (𝑥(𝑡𝑘)) ≤

𝜌.
If 𝑉 (𝑥(𝑡𝑘)) > 𝜌in, then 𝑉 (𝑥(𝑡𝑘)) > 𝜌sw and 𝑉 (𝑥(𝑡𝑘)) > 𝜌𝑠. By the 

constraint enforcer Eq. (56), the applied input satisfies 𝑉̇ (𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) ≤
𝑆(𝑥(𝑡𝑘)). Since 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠 , the outer-region decay property Eq. (59) 
gives

𝑉̇ (𝑥(𝑡), 𝑢(𝑡𝑘)) ≤ −𝜖𝑤, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥)

so 𝑉  strictly decreases on [𝑡𝑘, 𝑡𝑘 + 𝛥) and thus 𝑉 (𝑥(𝑡)) ≤ 𝑉 (𝑥(𝑡𝑘)) ≤ 𝜌 for 
all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥).

If 𝑉 (𝑥(𝑡𝑘)) ≤ 𝜌in, then by the definition Eq. (61) and the assumption 
𝜌⋆min < 𝜌, we have 𝑉 (𝑥(𝑡𝑘 + 𝛥)) ≤ 𝜌⋆min < 𝜌, hence 𝑥(𝑡𝑘+1) ∈ 𝛺𝜌⋆min

⊂ 𝛺𝜌. 
Therefore, in both cases, whenever 𝑥(𝑡𝑘) ∈ 𝛺𝜌 we obtain 𝑥(𝑡𝑘+1) ∈ 𝛺𝜌. 
By induction over 𝑘, 𝛺𝜌 is forward invariant, and the bound ‖𝑥(𝑡)‖ ≤
√

𝜌∕𝑐1 follows from Eq. (7a).
(2) Ultimate boundedness. Whenever 𝑉 (𝑥(𝑡𝑘)) > 𝜌in, the argument 

above yields 𝑉̇ ≤ −𝜖𝑤 on [𝑡𝑘, 𝑡𝑘+𝛥), so 𝑉  strictly decreases on that inter-
val. Hence, after finitely many sampling instants there exists 𝑡𝑘⋆  such 
that 𝑉 (𝑥(𝑡𝑘⋆ )) ≤ 𝜌in. For this sampling instant, the definition Eq. (61) 
implies 𝑉 (𝑥(𝑡𝑘⋆+1)) ≤ 𝜌⋆min.

We now show that once 𝑉 (𝑥(𝑡𝑗 )) ≤ 𝜌⋆min for some 𝑗, then 𝑉 (𝑥(𝑡𝑗+1)) ≤
𝜌⋆min. If 𝑉 (𝑥(𝑡𝑗 )) ≤ 𝜌in, then 𝛺𝑉 (𝑥(𝑡𝑗 )) ⊆ 𝛺𝜌in  and Eq. (61) implies 
𝑉 (𝑥(𝑡 )) ≤ 𝜌⋆ . If instead 𝜌 < 𝑉 (𝑥(𝑡 )) ≤ 𝜌⋆ , then 𝑉 (𝑥(𝑡 )) > 𝜌
𝑗+1 min in 𝑗 min 𝑗 𝑠

10 
and 𝑉 (𝑥(𝑡𝑗 )) > 𝜌sw, so the enforcer gives 𝑉̇ (𝑥(𝑡𝑗 ), 𝑢(𝑡𝑗 )) ≤ 𝑆(𝑥(𝑡𝑗 )) and 
the outer-region decay property yields 𝑉̇ (𝑥(𝑡), 𝑢(𝑡𝑗 )) ≤ −𝜖𝑤 on [𝑡𝑗 , 𝑡𝑗 +𝛥), 
hence 𝑉 (𝑥(𝑡𝑗+1)) < 𝑉 (𝑥(𝑡𝑗 )) ≤ 𝜌⋆min.

Therefore 𝑉 (𝑥(𝑡𝑘)) ≤ 𝜌⋆min holds for all sufficiently large 𝑘, and the 
corresponding continuous-time statement Eq. (63) follows. The norm 
bound follows from Eq. (7a). □

Remark 14.  The alternate form of the stability constraint from Eq. (10) 
does not explicitly use the reference controller, but still requires it 
to exist due to the Lyapunov function needing to satisfy Eq. (7). A 
consequence of using this form is that 𝛼 must be defined by the user. 
An excessively small 𝛼 risks being overpowered by the sample-and-
hold and disturbance terms in Eq. (46) (e.g., 𝐿′

𝑥(𝑀𝐹 + 𝑊max)𝛥 and 
𝑐4(

√

𝜌∕𝑐1 + (𝑀𝐹 +𝑊max)𝛥)𝑊max), whereas an excessively large 𝛼 risks 
the solution being infeasible due to the control bounds.

Remark 15.  The proof demonstrates stability guarantees for any such 
interval in which the stability constraints are enforced. As presented 
in Eq. (9), this implies that stability guarantees do not exist beyond the 
first sampling interval; hence, the receding horizon approach would 
functionally satisfy the stability guarantees but is not guaranteed to 
optimize with respect to a trajectory that satisfies these guarantees for 
all points beyond the first sampling interval.

Remark 16.  The RL-based controller has no stability guarantees alone, 
hence why every case eventually reforms to be in terms of the reference 
controller, as the reference controller’s existence and use are solely for 
the enforcement and satisfaction of stability guarantees.

Remark 17.  The ultimate bound size can be reduced if a certified
backup controller is also enforced inside the switching region. Specif-
ically, when 𝑉 (𝑥(𝑡𝑘)) ≤ 𝜌sw (hence ‖𝑥(𝑡𝑘)‖ ≤

√

𝜌sw∕𝑐1), one may apply 
an alternative backup law that satisfies a stronger Lyapunov-decrease 
condition under sample-and-hold, e.g., an offset-free constraint of the 
form 𝑉̇of (𝑥(𝑡𝑘), 𝑢(𝑡𝑘)) ≤ −𝛼𝑉 (𝑥(𝑡𝑘)). This replaces the generic one-step 
inflation bound used in Theorem  3 by a tighter inner-region bound 
(see Appendix), yielding a smaller ultimate invariant set; under con-
stant matched mismatch, the residual term vanishes and the resulting 
ultimate bound coincides with the nominal sample-and-hold bound.

4.2. Offset-free observer error bound

We analyze the extended Luenberger observer Eq. (13) under a 
matched structured mismatch assumption consistent with Eq. (11). 
Specifically, assume that the true process Eq. (3) satisfies 
𝑊 (𝑥, 𝑡) = 𝐺𝜃 𝜃

⋆(𝑡) (64)

Here, 𝐺𝜃 ∈ R𝑛×𝑝 is known and constant and 𝜃⋆(𝑡) ∈ R𝑝 is possibly 
time-varying.

Suppose 𝐹 (⋅, ⋅) is Lipschitz in 𝑥 on 𝐷 uniformly in 𝑢, namely there 
exists 𝐿𝐹 > 0 such that for all 𝑥1, 𝑥2 ∈ 𝐷
|

|

|

𝐹
(

𝑥1, 𝑢
)

− 𝐹
(

𝑥2, 𝑢
)

|

|

|

≤ 𝐿𝐹 |

|

𝑥1 − 𝑥2|| (65)

Also suppose there exists 𝑑max ≥ 0 such that 
|

|

𝜃̇⋆(𝑡)|
|

≤ 𝑑max, ∀𝑡 ≥ 0 (66)

Assume full-state measurement is available to the observer. Under 
sample-and-hold control, the applied input satisfies 𝑢(𝑡) = 𝑢(𝑡𝑘) for 
all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). Accordingly, on each interval [𝑡𝑘, 𝑡𝑘+1) the observer 
dynamics are given by Eq. (13) with 𝑢(𝑡) replaced by 𝑢(𝑡𝑘).

Define the estimation errors 

𝑒𝑥(𝑡) ∶= 𝑥(𝑡) − 𝑥̂(𝑡), 𝑒𝜃(𝑡) ∶= 𝜃⋆(𝑡) − 𝜃̂(𝑡), 𝑒(𝑡) ∶=
[

𝑒𝑥(𝑡)⊤, 𝑒𝜃(𝑡)⊤
]⊤

(67)
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Theorem 4.  Consider the true process Eq. (3) with Eq. (64) and the 
observer Eq. (13) with full-state measurement implemented under sample-
and-hold input 𝑢(𝑡) = 𝑢(𝑡𝑘) on [𝑡𝑘, 𝑡𝑘+1). Define 

𝐴 ∶=
[

−𝐾𝑥 𝐺𝜃
−𝐾𝜃 0

]

, 𝐵 ∶=
[

0
𝐼𝑝

]

(68)

Assume the gains 𝐾𝑥, 𝐾𝜃 are chosen such that 𝐴 is Hurwitz. Let 𝑄 = 𝑄⊤ ≻ 0
be arbitrary and let 𝑃 = 𝑃⊤ ≻ 0 solve 
𝐴⊤𝑃 + 𝑃𝐴 = −𝑄 (69)

Define 𝑉𝑒(𝑒) ∶= 1
2 𝑒
⊤𝑃𝑒, 𝜆 ∶= 𝜆min(𝑃 ), and 𝜆 ∶= 𝜆max(𝑃 ). If 

𝛼 ∶= 1
2𝜆min(𝑄) − ‖𝑃‖𝐿𝐹 > 0 (70)

then the following statements hold as long as 𝑥(𝑡), 𝑥̂(𝑡) ∈ 𝐷.
(i) Eventually constant mismatch (zero steady-state error). If there 
exists a finite time 𝑡𝑐 ≥ 0 such that 𝜃̇⋆(𝑡) ≡ 0 for all 𝑡 ≥ 𝑡𝑐 , then for all 
𝑡 ≥ 𝑡𝑐

𝑉𝑒 (𝑒(𝑡)) ≤ exp
[

−𝜅(𝑡 − 𝑡𝑐 )
]

𝑉𝑒
(

𝑒(𝑡𝑐 )
)

, 𝜅 ∶= 𝛼
𝜆

(71)

Consequently 

‖𝑒(𝑡)‖ ≤

√

𝜆
𝜆

exp
[

−𝜅
2
(𝑡 − 𝑡𝑐 )

]

‖𝑒(𝑡𝑐 )‖, ∀𝑡 ≥ 𝑡𝑐 (72)

In particular, 𝑒(𝑡) → 0, namely 𝑥̂(𝑡) → 𝑥(𝑡) and 𝜃̂(𝑡) → 𝜃⋆ as 𝑡→ ∞.
(ii) Time-varying bounded mismatch (bounded estimation error). If 
‖𝜃̇⋆(𝑡)‖ ≤ 𝑑max for all 𝑡 ≥ 0, then for all 𝑡 ≥ 0

𝑉𝑒 (𝑒(𝑡)) ≤ exp[−𝜅𝑡] 𝑉𝑒 (𝑒(0)) + 𝜌⋆
[

1 − exp[−𝜅𝑡]
]

(73)

where 𝜅 = 𝛼∕𝜆 and 

𝛽 ∶= ‖𝑃𝐵‖ 𝑑max, 𝜌⋆ ∶= 𝜆
2𝛼2

𝛽2 = 𝜆
2𝛼2

‖𝑃𝐵‖2 𝑑2max (74)

Consequently 

lim sup
𝑡→∞

𝑉𝑒 (𝑒(𝑡)) ≤ 𝜌⋆ lim sup
𝑡→∞

‖𝑒(𝑡)‖ ≤

√

2𝜌⋆
𝜆

(75)

Moreover, the mismatch reconstruction error 𝑤̃(𝑡) ∶= 𝐺𝜃𝑒𝜃(𝑡) is ultimately 
bounded 

lim sup
𝑡→∞

‖𝑤̃(𝑡)‖ ≤ ‖𝐺𝜃‖

√

2𝜌⋆
𝜆

(76)

Proof.  Using the true process Eq. (3) with Eq. (64) and the ob-
server Eq. (13) implemented under sample-and-hold input 𝑢(𝑡) = 𝑢(𝑡𝑘)
on [𝑡𝑘, 𝑡𝑘+1), the estimation error 𝑒 satisfies the compact dynamics 

𝑒̇ = 𝐴𝑒 +
[

𝐹 (𝑥, 𝑢) − 𝐹 (𝑥̂, 𝑢)
0

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥(𝑒𝑥)

+𝐵 𝜃̇⋆(𝑡) (77)

where 𝐴,𝐵 are given in Eq. (68) and 𝑢 = 𝑢(𝑡𝑘) on [𝑡𝑘, 𝑡𝑘+1). By Eq. (65), 
‖𝛥(𝑒𝑥)‖ ≤ 𝐿𝐹 ‖𝑒𝑥‖ ≤ 𝐿𝐹 ‖𝑒‖.

Let 𝑉𝑒(𝑒) = 1
2 𝑒
⊤𝑃𝑒 with 𝑃  solving Eq. (69). Along trajectories 

of Eq. (77)
𝑉̇𝑒 = 𝑒⊤𝑃 𝑒̇

= 𝑒⊤𝑃𝐴𝑒 + 𝑒⊤𝑃𝛥(𝑒𝑥) + 𝑒⊤𝑃𝐵 𝜃̇⋆(𝑡)

= − 1
2 𝑒
⊤𝑄𝑒 + 𝑒⊤𝑃𝛥(𝑒𝑥) + 𝑒⊤𝑃𝐵 𝜃̇⋆(𝑡) (78)

≤
(

− 1
2𝜆min(𝑄) + ‖𝑃‖𝐿𝐹

)

‖𝑒‖2 + ‖𝑃𝐵‖ ‖𝜃̇⋆(𝑡)‖ ‖𝑒‖

≤ −𝛼‖𝑒‖2 + 𝛽‖𝑒‖ (79)

where 𝛼 is defined in Eq. (70). Under ‖𝜃̇⋆(𝑡)‖ ≤ 𝑑max, the term 𝛽 is given 
in Eq. (74). Using Young’s inequality 

𝛽‖𝑒‖ ≤ 𝛼
‖𝑒‖2 +

𝛽2 (80)

2 2𝛼
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Substituting into Eq. (79) gives 

𝑉̇𝑒 ≤ −𝛼
𝜆
𝑉𝑒 +

𝛽2

2𝛼
= −𝜅𝑉𝑒 + 𝑐 (81)

with 𝜅 = 𝛼∕𝜆 and 𝑐 = 𝛽2∕(2𝛼).
Assume there exists 𝑡𝑐 ≥ 0 such that 𝜃̇⋆(𝑡) ≡ 0 for all 𝑡 ≥ 𝑡𝑐 . Then for 

all 𝑡 ≥ 𝑡𝑐 we have 𝛽 = 0 and Eq. (81) reduces to 𝑉̇𝑒 ≤ −𝜅𝑉𝑒 on [𝑡𝑐 ,∞), 
which implies Eq. (71). Using 12𝜆‖𝑒‖2 ≤ 𝑉𝑒(𝑒) ≤

1
2𝜆‖𝑒‖

2 yields Eq. (72).
With ‖𝜃̇⋆(𝑡)‖ ≤ 𝑑max, Eq. (81) implies 𝑉̇𝑒 ≤ −𝜅𝑉𝑒 + 𝑐. Solving the 

comparison system 𝑧̇ = −𝜅𝑧 + 𝑐 with 𝑧(0) = 𝑉𝑒(𝑒(0)) yields Eq. (73) 
with 𝜌⋆ = 𝑐∕𝜅 as in Eq. (74). The bounds in Eq. (75) follow from 
1
2𝜆‖𝑒‖

2 ≤ 𝑉𝑒(𝑒) ≤
1
2𝜆‖𝑒‖

2. Finally, Eq. (76) follows from 𝑤̃ = 𝐺𝜃𝑒𝜃 and 
‖𝑒𝜃‖ ≤ ‖𝑒‖ □

Corollary 1.  Under the matched mismatch assumption Eq. (64), let 
𝑢⋆sp(𝑡) denote the (ideal) equilibrium input obtained from Eq. (14) by 
replacing 𝜃̂(𝑡𝑘) with the true mismatch parameter 𝜃⋆(𝑡), and recall that the 
implemented update computes 𝑢sp(𝑡𝑘) via Eq. (14). Suppose the Jacobian 
condition Eq. (15) holds on a neighborhood of interest. Moreover, assume 
the equilibrium Jacobian is uniformly nonsingular on a set 𝛩 containing 
𝜃⋆(𝑡) and 𝜃̂(𝑡), i.e., 

sup
𝜃∈𝛩

‖

‖

‖

( 𝜕
𝜕𝑢

[

𝐹 (0, 𝑢) + 𝐺𝜃𝜃
]

)−1
‖

‖

‖

≤𝑀𝑢 < ∞ (82)

Then the induced equilibrium mapping 𝑢sp = 𝛹 (𝜃) is locally Lipschitz on 𝛩, 
and for all 𝑡 with 𝜃⋆(𝑡), 𝜃̂(𝑡) ∈ 𝛩 the steady-state input error satisfies 

‖𝑢sp(𝑡) − 𝑢⋆sp(𝑡)‖ ≤ 𝐿𝛹 ‖𝜃̂(𝑡) − 𝜃⋆(𝑡)‖ = 𝐿𝛹 ‖𝑒𝜃(𝑡)‖ ≤ 𝐿𝛹 ‖𝑒(𝑡)‖ (83)

where one may take 𝐿𝛹 ∶=𝑀𝑢‖𝐺𝜃‖. Consequently, in case (i) of Theorem 
4, we have 𝑢sp(𝑡) → 𝑢⋆sp(𝑡); in case (ii), the computed steady-state input is 
ultimately bounded as 

lim sup
𝑡→∞

‖𝑢sp(𝑡) − 𝑢⋆sp(𝑡)‖ ≤ 𝐿𝛹

√

2𝜌⋆
𝜆

(84)

5. Application to a chemical process example

In this section, we apply the proposed stable and robust RL-based 
controller with the shielded layer to a representative chemical pro-
cess. In particular, we implement the framework in a closed loop and 
evaluate how the Lyapunov-based safety shield (fallback controller) 
improves reliability under unknown model-process mismatch and dis-
turbances. Additionally, to highlight the benefit of the proposed design, 
we compare it against a conventional RL controller and an RL imple-
mentation without any backup. Finally, we benchmark the resulting 
controller against various other controllers to quantify both closed-loop 
performance and computational efficiency.

5.1. Process description

The model chemical process of choice for this study is a simulated 
continuous stirred-tank reactor (CSTR). The CSTR is assumed to be 
perfectly mixed and insulated. We consider a singular irreversible ele-
mentary reaction that is exothermic, making the CSTR non-isothermal. 
The reaction is treated as an arbitrary liquid-phase reaction (𝐴 → 𝐵) 
with second-order dynamics. Heat is added or removed from the system 
through a controllable heating rate 𝑄̇. These assumptions yield the 
following dynamic model: 
d𝐶𝐴
d𝑡

= 𝐹
𝑉𝐿

(

𝐶𝐴0 − 𝐶𝐴
)

− 𝑘𝐶2
𝐴 (85a)

d𝑇
d𝑡

= 𝐹
𝑉𝐿

(

𝑇0 − 𝑇
)

− 𝛥𝐻
𝜌𝐿𝐶𝑝

𝑘𝐶2
𝐴 + 𝑄̇

𝜌𝐿𝐶𝑝𝑉𝐿
(85b)

𝑘 = 𝑘 exp
[

− 𝐸 ]

(85c)
0 𝑅𝑇
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Table 1
Parameter values of the CSTR model.
 Variable Value Variable Value  
 𝐶𝐴𝑠 1.954 kmolm−3 𝐶𝐴0𝑠 4.0 kmolm−3  
 𝐶𝑝 0.231 kJ kg−1 K−1 𝛥𝐻 −1.15 × 104 kJ kmol−1 
 𝐸 5.0 × 104 kJ kmol−1 𝐹 5m3 h−1  
 𝑘0 8.46 × 106 m3 kmol−1 h−1 𝑄̇𝑠 0.0 kJ h−1  
 𝑅 8.314 kJ kmol−1 K−1 𝜌𝐿 1.0 × 103 kgm−3  
 𝑇0 300.0K 𝑇0𝑠 300.0K  
 𝑇𝑠 401.9K 𝑉𝐿 1m3  

Here—with the exception of 𝑘0, which denotes the isothermal rate-
constant—the ‘‘0’’ subscript denotes feed values, 𝐶𝐴 denotes concen-
tration of A, and 𝑇  denotes the temperature of the solution within the 
CSTR. 𝜌𝐿, 𝐶𝑝, 𝛥𝐻,𝐸 and 𝑉𝐿 denote the solution density, specific heat, 
heat of reaction, activation energy and liquid volume, respectively.

5.2. Control problem

The inlet concentration 𝐶𝐴0 and the heating rate 𝑄̇ are selected as 
the manipulated inputs, and the state variables are chosen to be 𝐶𝐴 and 
𝑇 . In order to utilize the origin as the steady state (denoted by the 𝑠
subscript) without loss of generality, the state and control variables are 
expressed as deviation variables. Accordingly, the vectors used in the 
problem formulation are defined as 𝑥⊤ =

[

𝐶𝐴 − 𝐶𝐴𝑠, 𝑇 − 𝑇𝑠
] and 𝑢⊤ =

[

𝐶𝐴0 − 𝐶𝐴0𝑠, 𝑄̇ − 𝑄̇𝑠
] for the state and control vectors, respectively. The 

control inputs are subject to bounds, specifically −3.5 ≤ 𝐶𝐴0 − 𝐶𝐴0𝑠 ≤
3.5 kmolm−3 and −5 × 105 ≤ 𝑄̇ − 𝑄̇𝑠 ≤ 5 × 105 kJ h−1. Specifics on 
the various constants used in the CSTR dynamic model are provided 
in Table  1.

The design goal is to create a controller that drives the closed-
loop system from any given initial state bounded by −0.6 ≤ 𝐶𝐴 −
𝐶𝐴𝑠 ≤ 0.6 kmolm−3 and −10 ≤ 𝑇 − 𝑇𝑠 ≤ 10K to the origin. Be-
cause of the deviation-variable notation, this origin represents the 
desired operating (unstable) steady state. To achieve this, a refer-
ence controller satisfying Section 2.3 is chosen as a proportional 
(P) controller acting on both deviation states with gains 𝑘𝑐,1 = 2
and 𝑘𝑐,2 = 5,000 and saturations consistent with the input bounds, 
i.e., 𝐶𝐴0 − 𝐶𝐴0𝑠 = clip

(

−𝑘𝑐,1(𝐶𝐴 − 𝐶𝐴𝑠), [−3.5, 3.5]
) and 𝑄̇ − 𝑄̇𝑠 =

clip
(

−𝑘𝑐,2(𝑇 − 𝑇𝑠), [−5 × 105, 5 × 105]
)

. Similarly, a Lyapunov function of 
the form 𝑉 = 𝑥⊤𝑃𝑥 with

𝑃 =
[

1,060 22
22 0.52

]

is used.
The immediate cost of the LMPC and RL at 𝑡 = 𝑡𝑘 is designed as the 

quadratic form: 
𝐿
(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
)

= 𝑥(𝑡𝑘)⊤𝑊𝑥 𝑥(𝑡𝑘) + 𝑢(𝑡𝑘)⊤𝑊𝑢 𝑢(𝑡𝑘) (86)

with weighting matrices 𝑊𝑥 = diag(1000, 1) and 𝑊𝑢 = diag(10, 10−8). 
The consistent cost (negative reward) function is used to ensure a fair 
comparison between all controllers.

In this study, we evaluate robustness under bounded model mis-
match and time variation by considering additive disturbances (𝑊 (𝑥, 𝑡)
in Eq.  (3)) in both Eqs. (85a) and (85b). Over the operating region 
induced by the initial-state set, we assume that the disturbance terms 
are bounded as |𝑊1(𝑥, 𝑡)| ≤ 10 and |𝑊2(𝑥, 𝑡)| ≤ 500 for all 𝑡, where 
𝑊1(𝑥, 𝑡) and 𝑊2(𝑥, 𝑡) denote the additive disturbances in the concentra-
tion and temperature dynamics, respectively. To generate parametric 
mismatch scenarios that are consistent with these bounds, we introduce 
time-varying perturbations through the feed temperature 𝑇0(𝑡) and 
activation energy 𝐸(𝑡) and select their admissible ranges such that 
the resulting induced mismatch remains within the assumed bounds 
on 𝑊1 and 𝑊2 over the operating region. Physically, perturbing 𝑇0(𝑡)
models variations in the inlet/feed thermal condition (e.g., upstream 
heat-exchanger performance changes or ambient-induced fluctuations). 
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Perturbing 𝐸(𝑡) models uncertainty and slow drift in reaction kinetics 
(e.g., catalyst aging/deactivation, impurities, or unmodeled chemistry), 
effectively changing the temperature sensitivity of the reaction rate and 
thereby impacting both the concentration consumption rate and the 
heat-release rate. Specifically, we constrain the perturbations to remain 
within 𝑇0(𝑡) ∈ [290K, 300K] and 𝐸(𝑡) ∈ [5.0 × 104 kJ kmol−1, 5.15 ×
104 kJ kmol−1] for all 𝑡.

We test robustness under two types of mismatch/nonstationarity: (i) 
a transient drift that settles after an initial period and (ii) a persistent 
drift that continues throughout the evaluation horizon. In our setting, 
these two cases are emulated by applying time-varying perturbations 
to the feed temperature 𝑇0(𝑡) and activation energy 𝐸(𝑡) on the plant 
side while keeping the controller model nominal. In both cases, the 
perturbation is composed of a constant offset (offline model-plant 
mismatch) and a time-varying component:
𝑇0(𝑡) = 300K + 𝛥𝑇0 + 𝛿𝑇0(𝑡), 𝐸(𝑡) = 5.0 × 104 kJ kmol−1 + 𝛥𝐸 + 𝛿𝐸(𝑡)

where 𝛥𝑇0 and 𝛥𝐸 are constant offsets, and 𝛿𝑇0(𝑡) and 𝛿𝐸(𝑡) describe 
the drift profile. For the transient-drift case, we ramp 𝛿𝑇0(𝑡) and 𝛿𝐸(𝑡)
linearly over an initial duration 𝑇𝑑 and then hold them constant (equiv-
alently, once the drift reaches its prescribed terminal value or a bound 
it remains fixed thereafter). For the persistent-drift case, we ramp 
𝛿𝑇0(𝑡) and 𝛿𝐸(𝑡) continuously over the entire horizon 𝑡 ∈ [0, 𝑇end]
without settling. In all simulations, the drift magnitudes and offsets are 
selected (and saturated when needed) so that 𝑇0(𝑡) remains between 
290K and 300K, and 𝐸(𝑡) remains between 5.0 × 104 kJ kmol−1 and 
5.15 × 104 kJ kmol−1, for all 𝑡.

Remark 18.  All closed-loop simulations are implemented in a sample-
and-hold fashion with sampling period 𝛥 = 5 s. Within each sampling 
interval [𝑡𝑘, 𝑡𝑘 + 𝛥), the control input is held constant as 𝑢(𝑡) = 𝑢(𝑡𝑘), 
and the CSTR dynamics are numerically integrated using the forward 
Euler method with integration step size d𝑡 = 0.1 s. This integration step 
size was validated by repeating representative closed-loop simulations 
with smaller d𝑡, which yielded essentially identical state and observer 
trajectories.

Remark 19.  When selecting the Lyapunov function 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 and 
the reference stabilizing controller 𝛷(𝑥) (the saturated P controller), 
we proceed as follows. First, we tune 𝛷(𝑥) so that it stabilizes the 
deviation dynamics and drives the state to the origin while respecting 
the input bounds over the operating region 𝐷. Next, with 𝛷(𝑥) fixed, 
we construct a quadratic Lyapunov candidate by choosing a symmetric 
positive definite matrix 𝑃 ≻ 0 and verifying (numerically) that there 
exists a level set 𝛺𝜌 ∶= {𝑥 ∶ 𝑉 (𝑥) ≤ 𝜌} such that 𝛺𝜌 ⊂ 𝐷, 𝛷(𝑥) ∈ 𝑈 for 
all 𝑥 ∈ 𝛺𝜌, and the assumptions in Section 2.3 hold on 𝛺𝜌. If a sampled 
𝑃  fails these checks, it is discarded and resampled until a valid 𝑃  is 
obtained.

Remark 20.  In the numerical studies, the admissible operating region 
for the stability analysis and switching logic is chosen as 𝛺𝜌 = {𝑥 ∣
𝑉 (𝑥) ≤ 𝜌} with 𝜌 = 200, and the switching level in Eq. (56) is set to 
𝜌sw = 20. The choice 𝜌 = 200 is made such that, over 𝛺𝜌, the satu-
rated reference controller 𝛷(⋅) together with the quadratic Lyapunov 
function 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 satisfies the conditions stated in Section 2.3. 
The switching level 𝜌sw = 20 is selected as an inner level set that the 
reference controller can robustly drive trajectories into from the outer 
region 𝛺𝜌 ⧵𝛺𝜌sw , so that states starting in 𝛺𝜌 are brought into 𝛺𝜌sw  in 
finite time under the reference controller.

5.3. Offset-free observer and LMPC

The online implementation of the offset-free LMPC follows the same 
closed-loop structure shown in Fig.  1. In this case, the control policy 
is the proposed offset-free LMPC described in Section 2.5. Specifically, 
the prediction model is the offset-free model Eqs. (11) and (12), the 
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disturbance states are estimated online using the extended Luenberger 
observer Eq. (13), and the steady-state tracking input 𝑢sp(𝑡𝑘) is com-
puted from the equilibrium condition Eq. (14). At each sampling instant 
𝑡𝑘, the optimizer is initialized with the current measured state and 
uses the most recent disturbance estimate 𝜃̂(𝑡𝑘) as a constant param-
eter over the horizon to solve the offset-free Lyapunov-based MPC 
problem Eq. (18).

In this work, the LMPC optimization problem is solved using the 
sequential least squares quadratic programming (SLSQP) algorithm, 
which is a gradient-based method for constrained nonlinear programs. 
At each iteration, SLSQP solves a quadratic approximation of the 
original problem and updates the decision variables until convergence. 
Based on test simulations, the convergence tolerance and the finite-
difference step size are set as 1 × 10−12 and 1 × 10−6. The resulting 
first control move 𝑢(𝑡𝑘) is applied to the plant in a sample-and-hold 
fashion over [𝑡𝑘, 𝑡𝑘+1), while the observer Eq. (13) is integrated using 
the available state measurement to update 𝑥̂(𝑡) and 𝜃̂(𝑡) online.

To demonstrate the proposed offset-free LMPC, Fig.  2 compares 
its setpoint-tracking performance with that of the nominal LMPC un-
der the time-varying parametric mismatch introduced in this study. 
Specifically, the true plant evolves with perturbed feed temperature 
and activation energy while the controller model remains nominal: 
𝑇0(𝑡) is ramped from 300K to 290K and 𝐸(𝑡) is ramped from 5.0 ×
104 kJ kmol−1 to 5.15 × 104 kJ kmol−1 over the first 10min and then 
held constant (transient-drift case). Under this mismatch, the nominal 
LMPC uses the fixed nominal prediction model Eq. (1), so its horizon 
predictions become biased relative to the disturbed plant Eq. (3); 
consequently, the closed-loop trajectories converge to a neighborhood 
with a visible steady-state offset, even though the Lyapunov constraint 
still enforces convergence to a Lyapunov level set. In contrast, the 
offset-free LMPC incorporates the disturbance estimate 𝜃̂(𝑡𝑘) from the 
extended observer Eq. (13) into the prediction model via Eq. (18b) 
and updates the steady-state tracking input 𝑢sp(𝑡𝑘) online via Eq. (14). 
As a result, both the horizon predictions and the tracking reference 
are corrected toward the disturbed equilibrium induced by the ramped 
𝑇0(𝑡) and 𝐸(𝑡), which improves steady-state accuracy and removes the 
offset, consistent with the trajectories in Fig.  2. This mechanism is 
further supported by Fig.  3, which shows that after an initial transient 
(during which the mismatch is being identified), the observer estimates 
converge and remain aligned with the actual disturbed process states.

As shown in Fig.  3, the real disturbed process states (red) and 
the offset-free observer estimates (blue) do not perfectly match at the 
beginning because the observer starts with limited information about 
the disturbance and the associated mismatch. During this transient pe-
riod, the observer must correct the state estimate while also identifying 
the disturbance states, so a small estimation gap is expected. As the 
disturbance estimates settle, the observer compensates the mismatch 
more accurately. Consequently, the estimated trajectories align with 
the actual process states and remain overlapped afterward, indicating 
negligible steady-state estimation error.

5.4. Fast learned policy for approximating offset-free LMPC via FNN

To enable a computationally efficient surrogate of the constrained 
offset-free LMPC (OFLMPC), we first generate an offline imitation 
dataset by running closed-loop simulations of the OFLMPC under 
bounded disturbances and model mismatch, and then train a feedfor-
ward neural network (FNN) to approximate the resulting feedback law. 
The data-generation procedure follows the same OFLMPC closed-loop 
implementation described in Section 5.3: the disturbed plant evolves 
under the time-varying mismatch profile, the disturbance estimates are 
produced online by the extended Luenberger observer Eq. (13), and 
the OFLMPC control action is obtained by solving Eq. (18) at each 
sampling instant. Each closed-loop rollout is simulated for 30min with 
sampling period 𝛥 = 5 s (sample-and-hold control over each interval) 
and numerical integration step d𝑡 = 0.1 s. The OFLMPC steady-state 
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Table 2
Best hyperparameters used in offline FNN training.
 Learning rate Batch size Network width Network depth Dropout rate 
 3.5948 × 10−3 64 256 2 0.0236  

Table 3
FNN imitation accuracy for the offset-free LMPC policy (train/validation/test).
 Split MSE𝐶𝐴0 MSE𝑄̇ MSE𝐶𝐴0 ,𝑛 MSE𝑄̇,𝑛 MSEmean,𝑛  
 Train 0.010748 7.0982 × 107 2.19 × 10−4 1.97 × 10−4 2.08 × 10−4 
 Val 0.011731 7.2057 × 107 2.39 × 10−4 2.00 × 10−4 2.20 × 10−4 
 Test 0.011375 7.4675 × 107 2.32 × 10−4 2.07 × 10−4 2.20 × 10−4 

reference input 𝑢sp(𝑡𝑘) required by the tracking objective is updated 
online at each sampling time using the current disturbance estimate 
via the equilibrium condition Eq. (14).

To cover the operating region, the initial deviation state 𝑥(𝑡0) is 
sampled from randomized Lyapunov level-set rings of 𝑉 (𝑥) = 𝑥⊤𝑃𝑥
(with the same 𝑃  used in the safety design). Specifically, we construct 
𝑁ring = 200 rings over 𝑉 ∈ [0.01, 200], select a ring index uniformly 
at random, and sample an initial point on the selected ring, yielding 
diverse initial conditions ranging from near-setpoint to outer-region 
states. For robustness, each rollout is generated using the true-process 
model Eq.  (3) with additive disturbances 𝑊 (𝑥, 𝑡) =

[

𝑊1(𝑥, 𝑡), 𝑊2(𝑥, 𝑡)
]⊤

entering both Eq. (85a) and (85b). Over the operating region in-
duced by the above initial-state set, we assume the disturbance bounds 
|𝑊1(𝑥, 𝑡)| ≤ 10, |𝑊2(𝑥, 𝑡)| ≤ 500, where 𝑊1(𝑥, 𝑡) and 𝑊2(𝑥, 𝑡) denote the 
additive disturbances in the concentration and temperature dynamics, 
respectively. In the data-generation simulations, a disturbance realiza-
tion is sampled once per trajectory (uniformly within the above bounds) 
and then held constant over the entire 30min trajectory simulation.

With this dataset, we train an FNN to approximate the OFLMPC 
feedback map. The measured/estimated learning state is
𝑠 =

[

𝐶𝐴, 𝑇 , 𝜃̂𝐶𝐴 , 𝜃̂𝑇
]⊤, and the corresponding OFLMPC control 

action is 𝑢LMPC =
[

𝐶𝐴0 − 𝐶𝐴0𝑠, 𝑄̇ − 𝑄̇𝑠
]⊤ with bounds 𝐶𝐴0 − 𝐶𝐴0𝑠 ∈

[−3.5, 3.5] and 𝑄̇ − 𝑄̇𝑠 ∈ [−3 × 105, 3 × 105]. The dataset is formed by 
stacking all recorded trajectories and removing missing entries. Each 
state component is min–max normalized using dataset extrema (saved 
for later deployment), and each input is mapped to [−1, 1] through an 
affine transform consistent with the actuator bounds. The FNN then 
learns a two-output map 𝜋FNN ∶ 𝑠 ↦ 𝑢 by minimizing the mean-
squared error (MSE) between the predicted and OFLMPC actions in the 
normalized action space.

To obtain a compact yet accurate approximation, the network hy-
perparameters are selected via Bayesian optimization over the learning 
rate, batch size, network width, network depth, and dropout rate. After 
30 Bayesian-optimization iterations (including 10 random initial trials), 
the best hyperparameter set is summarized in Table  2, achieving the 
lowest validation objective MSEmean,norm = 3.1681 × 10−4 during the 
search. Using these hyperparameters, the final FNN is trained with early 
stopping (best epoch 22; training terminated at epoch 34).

Table  3 reports the resulting errors on the train, validation, and 
held-out test sets in both physical units and normalized units. The 
normalized mean MSE is MSEmean,n = 2.20 × 10−4 on the test set, 
indicating that the learned policy closely matches the OFLMPC actions 
over the sampled operating region. In addition,  Fig.  4 shows scatter 
plots comparing the FNN outputs against the OFLMPC targets on the 
test set for both inputs, where points concentrate near the 45 ◦ line, 
confirming accurate action replication.

Remark 21.  At the start of data-generation, the disturbance/mismatch 
parameters are sampled randomly and then held constant over the 
entire trajectory, i.e., we train with a constant disturbance realization 
𝑊 (𝑡) ≡ 𝑊  within each episode. This choice is intentional. Since the 
learning state includes the disturbance estimate 𝜃̂, it is sufficient to 
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Fig. 2. Closed-loop trajectories comparing Nominal LMPC and offset-free LMPC (OFLMPC). The dashed line indicates the setpoint (𝐶𝐴 = 𝐶𝐴𝑠 and 𝑇 = 𝑇𝑠).
Fig. 3. Comparison between the states of the disturbed process and the offset-free observer estimates.
sample different constant disturbance realizations across trajectories 
to expose the observer to diverse mismatch patterns and train the 
network as a function of 𝜃̂. If 𝑊 (𝑡) were allowed to vary rapidly 
within a trajectory, the resulting time-varying targets could mislead 
the supervised imitation objective by mixing controller responses to 
exogenous fluctuations with the underlying 𝜃̂-dependent feedback law. 
This is especially undesirable for subsequent RL training, where we rely 
on 𝜃̂ to provide a consistent representation of mismatch and want the 
learned models/policies to reflect a stable mapping rather than chase 
nonstationary disturbances.

5.5. Robust HJB-RL policy

Following the robust HJB-RL formulation in Section 3.1 and the 
offset-free augmented model and observer in Section 2.5, we
14 
implement an offset-free HJB-RL controller for the unknown disturbed 
CSTR example. In particular, the value-based design is carried out on 
the augmented state 𝜒̂ ∶=

[

𝑥⊤, 𝜃̂⊤
]⊤.

The offset-free HJB-RL policy is trained in simulation using closed-
loop rollouts of the disturbed CSTR together with the extended Luen-
berger observer. At each sampling time 𝑡𝑘, the RL observation is taken 
as the augmented estimate 

𝑠(𝑡𝑘) = 𝜒̂(𝑡𝑘) ∶=
[

𝑥(𝑡𝑘)
𝜃̂(𝑡𝑘)

]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝐴(𝑡𝑘) − 𝐶𝐴𝑠
𝑇 (𝑡𝑘) − 𝑇𝑠
𝜃̂𝐶𝐴 (𝑡𝑘)
𝜃̂𝑇 (𝑡𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

(87)

where 𝑥(𝑡𝑘) denotes the measured plant deviation state and 𝜃̂(𝑡𝑘) is 
the disturbance estimate generated by the observer in Eq. (13). The 
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Fig. 4. Test-set action replication performance of the FNN policy. Each point compares the OFLMPC action (data source) with the corresponding FNN prediction 
for the same input state.
control action is implemented under sample-and-hold with sampling 
period 𝛥 = 5 s, and both the plant and observer are integrated using 
explicit Euler with step size 0.1 s. Each training episode simulates a 
30min closed-loop trajectory.

To ensure coverage of both near-origin and far-from-origin regions, 
the initial deviation state 𝑥(0) is sampled from Lyapunov level-set rings 
defined by 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 using the matrix 𝑃  specified in Section 5.2. 
The ring sampler spans 𝑉 ∈ [0.01, 200] using 200 uniform-width rings. 
To expose the learner to bounded mismatch consistent with the dis-
turbance set used throughout this work, the real chemical process 
is perturbed by additive disturbances 𝑊 (𝑥, 𝑡) =

[

𝑊1(𝑥, 𝑡), 𝑊2(𝑥, 𝑡)
]⊤

satisfying |𝑊1(𝑥, 𝑡)| ≤ 10 and |𝑊2(𝑥, 𝑡)| ≤ 500, sampled once per episode 
and held constant during the episode. In contrast, consistent with Sec-
tion 3.1, the HJB residual used for learning is evaluated using the 
offset-free prediction model 𝐹 (𝜒̂ , 𝑢), so the learner does not explicitly 
incorporate 𝑊 (𝑥, 𝑡) in the model used for the critic update.

The critic 𝑉𝑤(𝜒̂) is parameterized by a fully-connected neural net-
work with two hidden layers of width 256 and tanh activations. Its raw 
output is passed through a sof tplus(⋅) nonlinearity and augmented with 
a small quadratic term in the input to improve numerical robustness 

𝑉𝑤(𝜒̂) = sof tplus
(

𝑓𝑤(𝜒̂)
)

+ 𝜀𝑞‖𝜒̂‖22, 𝜀𝑞 > 0 (88)

Given a differentiable critic, the control action is computed from the 
stationarity condition of the Hamiltonian, consistent with Eq. (29), as 
a closed-form function of the gradient ∇𝜒̂𝑉𝑤(𝜒̂) and then clipped to 
the admissible input set. Moreover, in accordance with the offset-free 
tracking construction in Section 2.5, the offset-free steady-state input 
𝑢𝑠𝑝

(

𝜃̂(𝑡𝑘)
) is computed online from the latest disturbance estimate and 

used as the reference in both the policy computation and the stage 
cost. This yields an offset-free regulation objective consistent with the 
quadratic benchmarking objective in Eq.  (86) and the cost-matching 
choice in Eq. (26)

The critic parameters are updated by minimizing the mean-squared 
stationary augmented HJB residual as introduced in Eq. (30). For a 
mini-batch {𝜒̂𝑖}𝑁𝑖=1, the residual is formed as 

(𝜒̂𝑖, 𝑤) = 𝐿
(

𝑥𝑖, 𝑢
⋆(𝜒̂𝑖)

)

+
(

∇𝜒̂𝑉𝑤(𝜒̂𝑖)
)⊤𝐹

(

𝜒̂𝑖, 𝑢
⋆(𝜒̂𝑖)

)

(89)

where 𝐹 (⋅) denotes the offset-free model used for residual evaluation 
and 𝑢⋆(𝜒̂𝑖) is the HJB-induced action computed from ∇𝜒̂𝑉𝑤(𝜒̂𝑖) and 
clipped to satisfy the input bounds. The critic is optimized using the 
𝙰𝚍𝚊𝚖 optimizer with gradient clipping, together with a small anchoring 
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regularization at the origin to stabilize learning near 𝜒̂ = 0

(𝑤) = 1
𝑁

𝑁
∑

𝑖=1
(𝜒̂𝑖, 𝑤)2 + 𝜆𝑉 𝑉𝑤(0)2 + 𝜆∇ ‖∇𝜒̂𝑉𝑤(0)‖22, 𝜆𝑉 , 𝜆∇ > 0

(90)

A replay buffer is used to maintain a representative distribution of 
visited augmented states. At each interaction step, the transition data 
are stored and mini-batches are sampled uniformly from the buffer for 
stochastic gradient updates. Training begins with 2,000 random-action 
steps for warm-up, after which Gaussian exploration noise is added to 
the HJB-induced action and clipped to satisfy the input bounds. Unless 
otherwise stated, training uses a batch size of 128 and performs one 
critic update per environment step

Policy evaluations are performed every 6,000 interaction steps on a 
fixed set of initial conditions sampled from rings with indices
{10, 30,… , 190}, where the evaluation disturbances are sampled within 
the same bounds as in training. The best-performing critic is selected 
based on the evaluation return and saved for subsequent closed-loop 
studies, and all training and evaluation statistics are logged contin-
uously. The key hyperparameters used in the robust HJB-RL imple-
mentation for training the critic network 𝑉𝑤(𝜒̂) via the augmented 
HJB-residual minimization in Eq. (30) are summarized in Table  4.

To demonstrate the proposed offset-free HJB-RL (OFHJB-RL) design 
under the same parametric mismatch mechanism introduced in Sec-
tion 5.2, Fig.  5 compares its closed-loop performance with two base-
lines: a nominal HJB-RL controller (trained/derived without offset-free 
compensation) and a deployment without the Lyapunov-based shield. 
In this comparison, the true plant evolves with perturbed feed tempera-
ture and activation energy while the controller model remains nominal; 
specifically, 𝑇0(𝑡) is ramped from 300K to 290K and 𝐸(𝑡) is ramped from 
5.0 × 104 kJ kmol−1 to 5.15 × 104 kJ kmol−1 over the first 10min and then 
held constant, which corresponds to the transient-drift (Set 1) mismatch 
pattern described in Section 5.2.

As shown in Figs.  5(a) and 5(b), the proposed OFHJB-RL achieves 
the most reliable setpoint regulation: 𝐶𝐴 − 𝐶𝐴𝑠 decays rapidly and 
remains tightly clustered near zero, and 𝑇 − 𝑇𝑠 approaches the set-
point with limited dispersion across trajectories. The nominal HJB-RL 
exhibits a visible steady-state offset and a wider spread, indicating 
sensitivity to the biased plant dynamics induced by the thermal/ki-
netic mismatch. The input trajectories in Figs.  5(c) and 5(d) further 
reflect this difference: the nominal controller produces more scattered 
actions with larger excursions, whereas the proposed method yields 
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Table 4
Robust HJB-RL (value-critic) training hyperparameters.
 Parameter Value Parameter Value  
 Optimizer Adam Learning rate 𝛼𝑤 1 × 10−3  
 Mini-batch size 𝑁 128 Critic hidden width ×depth 256 × 2  
 Critic activation tanh Output activation softplus  
 𝓁2 regularization weight 1 × 10−5 Quadratic positivity term in 𝑉𝑤 1 × 10−4‖𝜒̂‖22  Update frequency 1 Replay buffer capacity 5 × 105  
 Random exploration steps 𝑁rand 2000 Exploration noise std 𝜎𝜖 0.10  
 Evaluation interval 6000 Total training steps 300000  
Fig. 5. Closed-loop trajectories comparing the proposed offset-free HJB-RL (OFHJB-RL), a nominal HJB-RL baseline, and the proposed controller deployed without 
the Lyapunov-based shield under the transient-drift mismatch profile (Set 1) generated by ramping 𝑇0(𝑡) and 𝐸(𝑡) over the first 10min and then holding them 
constant. The dashed line indicates the setpoint (𝐶𝐴 = 𝐶𝐴𝑠 and 𝑇 = 𝑇𝑠).
smoother and better-clustered inputs. Comparing the proposed method 
with the unshielded deployment highlights the role of the Lyapunov-
based shield: removing the shield leads to less consistent transients and 
larger input excursions, even when convergence is still achieved for 
some trajectories.

Next, Fig.  6 evaluates the proposed OFHJB-RL under the two 
bounded mismatch profiles defined in Section 5.2. In dis 1 (Set 1), 
𝑇0(𝑡) and 𝐸(𝑡) are ramped over an initial period and then held constant, 
emulating a transient drift that settles. In dis 2 (Set 2), the perturbations 
start at 𝑡 = 0 and vary continuously until the end of the horizon, 
reaching the prescribed bounds at the final time, which emulates a 
persistent drift that does not settle.

Despite the stronger time variation in dis 2, the proposed OFHJB-RL 
maintains reliable regulation in both channels. In Figs.  6(a) and 6(b), 
𝐶𝐴 −𝐶𝐴𝑠 and 𝑇 − 𝑇𝑠 converge rapidly and remain close to the setpoint 
for both mismatch profiles, without a visible steady-state offset even 
when the mismatch continues to evolve. The input trajectories in Figs. 
6(c) and 6(d) are consistent with this behavior: in dis 1 the inputs 
settle after the drift ends, whereas in dis 2 they continue adjusting over 
time to track the changing plant conditions while remaining within the 
admissible bounds.
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To complement the time-series comparisons, Fig.  7 visualizes the 
phase-plane behavior under the two mismatch sets. In both subfigures, 
the initial states are selected on the outer Lyapunov level set 𝑉 = 200 by 
sampling the polar angle every 36◦ (10 starting points), and the dashed 
ellipses indicate the reference level sets 𝑉 = 20 and 𝑉 = 200.

The quantitative comparison in Table  5 supports the qualitative 
trends observed in the figures and indicates that the proposed design 
(offset-free augmentation with Lyapunov-based shielding) provides the 
most robust closed-loop tracking under mismatch. The proposed offset-
free HJB-RL with the Lyapunov-based shield (Proposed (S)) achieves 
the best average reward in both sets (R = −1.277 × 103 for Set 1 and 
R = −1.266 × 103 for Set 2), outperforming the shielded nominal HJB-
RL (Nominal (S)) and the unshielded deployment (Proposed (NS)). A 
comparison between Proposed (S) and Nominal (S) highlights the role 
of the offset-free augmentation: while both methods employ the same 
shield, Proposed (S) reduces the terminal offset O from 1.022 × 10−1 to 
1.340 × 10−3 in Set 1 and from 8.990 × 10−2 to 7.557 × 10−3 in Set 2, 
lowering O from (10−1) to (10−3)–(10−2), which is consistent with 
offset-free compensation (via the augmented state with 𝜃̂) removing 
steady-state bias under plant–model mismatch and disturbance drift. 
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Fig. 6. Closed-loop trajectories of the proposed OFHJB-RL under two bounded time-varying parametric mismatch profiles implemented on the true plant via 
perturbed feed temperature 𝑇0(𝑡) and activation energy 𝐸(𝑡) while keeping the controller model nominal. In dis 1 (Set 1), 𝑇0(𝑡) and 𝐸(𝑡) are ramped over the first 
10min and then held constant (transient drift). In dis 2 (Set 2), the perturbations start at 𝑡 = 0 and vary continuously until the end of the horizon, reaching the 
prescribed bounds at the final time (persistent drift). The dashed line indicates the setpoint (𝐶𝐴 = 𝐶𝐴𝑠 and 𝑇 = 𝑇𝑠).
Fig. 7. Phase-plane trajectories (𝐶𝐴 −𝐶𝐴𝑠, 𝑇 − 𝑇𝑠) of the closed-loop CSTR under the two bounded mismatch profiles. Initial conditions are chosen on 𝑉 (𝑥) = 200
by sampling the polar angle every 36◦ (10 starting points). The dashed ellipses show the Lyapunov level sets 𝑉 = 20 and 𝑉 = 200, and arrows indicate the 
trajectory direction under sample-and-hold control.
A comparison between Proposed (S) and Proposed (NS) highlights the 
role of the Lyapunov-based shield: enabling the shield improves the 
average reward (from −1.430 × 103 to −1.277 × 103 in Set 1 and from 
−1.422 × 103 to −1.266 × 103 in Set 2) and further reduces the terminal 
offset, especially in Set 2 (from 3.670 × 10−2 to 7.557 × 10−3), con-
sistent with rejecting nonconforming actions and invoking the LMPC 
fallback/failsafe to limit adverse transients and input excursions when 
the learned policy temporarily degrades.
17 
5.6. Robust TD3-RL policy

Following the robust TD3-RL design described in Section 3.2, we 
implement a two-stage training procedure that first exploits the offline 
dataset off  generated by the offset-free Lyapunov-contractive LMPC, 
and then continues with online interaction and off-policy updates under 
disturbances.
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Table 5
Summary performance metrics for Set 1 and Set 2. Here, R denotes the average 
reward per trajectory, and O denotes the average terminal offset measured by 
the final Lyapunov value. The three HJB variants are: Proposed (S) = proposed 
offset-free HJB-RL with the Lyapunov-based shield; Nominal (S) = nominal 
HJB-RL with the shield; Proposed (NS) = proposed HJB-RL without the shield 
(no shield).
 Set Metric Proposed (S) Nominal (S) Proposed (NS) 
 Set 1 R −1.277 × 103 −1.329 × 103 −1.430 × 103  
 O 1.340 × 10−3 1.022 × 10−1 8.400 × 10−3  
 Set 2 R −1.266 × 103 −1.319 × 103 −1.422 × 103  
 O 7.557 × 10−3 8.990 × 10−2 3.670 × 10−2  

In the offline stage, we construct a large replay buffer from the 
stored transition tuples 
{(𝑠𝑡𝑘 , 𝑎𝑡𝑘 , 𝑟𝑡𝑘 , 𝑠𝑡𝑘+1 )}, where 𝑠𝑡𝑘 = [𝑥(𝑡𝑘)⊤, 𝜃̂(𝑡𝑘)⊤]⊤ matches the augmented 
learning state used throughout this work. The action stored in the buffer 
is the applied LMPC input 𝑎𝑡𝑘  (equivalently the deviation input 𝑢(𝑡𝑘)
in Section 5.2), and the reward is computed consistently with Eq.  (86) 
using the current disturbance estimate through 𝑢𝑠𝑝(𝜃̂(𝑡𝑘)). To improve 
numerical conditioning of neural network training, the augmented state 
is normalized componentwise to 𝑠sc ∈ [0, 1]4 using fixed min–max 
bounds, and the bounded physical deviation input 𝑢(𝑡𝑘) ∈ [𝑈min, 𝑈max] is 
mapped to a normalized action 𝑎(𝑡𝑘) ∈ [−1, 1]2 via an affine transform.

We first train a behavior-cloned teacher policy 𝜋teach(𝑠) from off
to approximate the LMPC feedback law, and we use this teacher to 
initialize the TD3 actor network. With the actor initialized, we pretrain 
the twin critic networks using only the offline buffer while keeping 
the actor fixed. This critic-only pretraining follows the standard TD3 
target-network update with clipped target-action noise and uses the 
minimum of the two target critics to reduce Q-value overestimation. 
After critic-only pretraining, the actor can be optionally refined on 
off  using the TD3-BC objective described previously, i.e., a convex 
combination of the TD3 policy loss and the behavior-cloning regularizer 
with an 𝛼 schedule. During online rollout, we additionally impose a 
trust-region clamp in the normalized action space to keep 𝜋𝜙(𝑠) within a 
fixed neighborhood of 𝜋teach(𝑠), which reduces the risk of abrupt policy 
deviation from the stabilizing LMPC-like behavior.

In the online pretraining stage, we create a new replay buffer and 
prefill it with a small number of transitions sampled from the offline 
reservoir buffer to avoid an empty-buffer transient. The controller then 
interacts with the disturbed plant in closed loop, where the plant 
evolves under the unknown disturbance realization while the offset-
free observer runs online to update 𝜃̂(𝑡𝑘) and thus the augmented state 
𝑠𝑡𝑘 . At each sampling instant, the actor receives the scaled observation 
𝑠sc(𝑡𝑘), outputs 𝑎(𝑡𝑘) ∈ [−1, 1]2, and applies the corresponding bounded 
physical deviation input 𝑢(𝑡𝑘) in a sample-and-hold fashion over the 
control interval. The collected online transitions are appended to the 
replay buffer, and the TD3-BC updates are performed off-policy using 
minibatches from this buffer, with critic updates at every iteration. We 
use a delayed actor update with period 𝑑𝜋 , and apply Polyak averaging 
to update the actor target network only when the actor is updated. In 
contrast, the critic target networks are updated by Polyak averaging 
after each critic update.

To monitor training progress and select a deployable policy, we 
perform periodic fixed evaluations using a fixed set of initial condi-
tions sampled from Lyapunov rings and disturbance realizations within 
the prescribed bounds. Each evaluation episode is simulated over the 
full horizon, and the model achieving the best average evaluation 
return is retained for the subsequent closed-loop comparisons with 
and without the proposed shield layer. The TD3-RL (TD3-BC) training 
hyperparameters are summarized in Table  6.

To demonstrate the proposed offset-free TD3-RL (OFTD3-RL) design 
under the same parametric mismatch mechanism introduced in Sec-
tion 5.2, Fig.  8 compares its closed-loop performance with two base-
lines: a nominal TD3-RL controller (trained without offset-free compen-
sation) and a deployment without the Lyapunov-based shield. In this 
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comparison, the true plant evolves with perturbed feed temperature 
and activation energy while the controller model remains nominal; 
specifically, 𝑇0(𝑡) is ramped from 300K to 290K and 𝐸(𝑡) is ramped from 
5.0 × 104 kJ kmol−1 to 5.15 × 104 kJ kmol−1 over the first 10min and then 
held constant, which corresponds to the transient-drift (Set 1) mismatch 
pattern described in Section 5.2.

As shown in Figs.  8(a) and 8(b), the proposed OFTD3-RL achieves 
the most reliable setpoint regulation: 𝐶𝐴 − 𝐶𝐴𝑠 decays rapidly and 
remains tightly clustered near zero, and 𝑇 −𝑇𝑠 approaches the setpoint 
with limited dispersion across trajectories. In contrast, the nominal 
TD3-RL exhibits a larger spread and a visible steady-state bias under the 
biased plant dynamics induced by the thermal/kinetic mismatch. The 
input trajectories in Figs.  8(c) and 8(d)(c)–(d) further reflect this differ-
ence: the nominal policy produces more scattered actions with larger 
excursions, whereas the proposed method yields smoother and better-
clustered inputs. Comparing the proposed method with the unshielded 
deployment highlights the role of the Lyapunov-based shield: removing 
the shield leads to substantially degraded transients and much larger 
terminal deviations, consistent with loss of reliability under the same 
mismatch.

Next, Fig.  9 evaluates the proposed OFTD3-RL under the two 
bounded mismatch profiles defined in Section 5.2. In dis 1 (Set 1), 
𝑇0(𝑡) and 𝐸(𝑡) are ramped over an initial period and then held constant, 
emulating a transient drift that settles. In dis 2 (Set 2), the perturbations 
start at 𝑡 = 0 and vary continuously until the end of the horizon, 
reaching the prescribed bounds at the final time, which emulates a 
persistent drift that does not settle. Despite the stronger time variation 
in dis 2, the proposed OFTD3-RL maintains reliable regulation in both 
channels: 𝐶𝐴 − 𝐶𝐴𝑠 and 𝑇 − 𝑇𝑠 converge rapidly and remain close to 
the setpoint without a visible steady-state offset. The input trajectories 
are consistent with this behavior: in dis 1 the inputs settle after the 
drift ends, whereas in dis 2 they continue adjusting over time to 
accommodate the evolving plant conditions while remaining within 
admissible bounds.

To complement the time-series comparisons, Fig.  10 visualizes the 
phase-plane behavior under the two mismatch sets. In both subfigures, 
the initial states are selected on the outer Lyapunov level set 𝑉 = 200 by 
sampling the polar angle every 36◦ (10 starting points), and the dashed 
ellipses indicate the reference level sets 𝑉 = 20 and 𝑉 = 200. The 
trajectories move consistently toward the inner level set under sample-
and-hold control, illustrating contraction toward the origin region in 
both mismatch profiles.

The quantitative comparison in Table  7 supports the qualitative 
trends observed in the figures and indicates that the proposed design 
(offset-free augmentation with Lyapunov-based shielding) provides the 
most robust closed-loop tracking under mismatch. The proposed offset-
free TD3-RL with the Lyapunov-based shield (Proposed (S)) achieves 
the best average reward in both sets (R = −1.262 × 103 for Set 1 and 
R = −1.254 × 103 for Set 2), outperforming the shielded nominal TD3-
RL (Nominal (S)) and the unshielded deployment (Proposed (NS)). A 
comparison between Proposed (S) and Nominal (S) highlights the role 
of the offset-free augmentation: while both methods employ the same 
shield, Proposed (S) reduces the terminal offset O from 6.785 × 10−2

to 3.918 × 10−3 in Set 1 and from 3.061 × 10−2 to 2.844 × 10−3 in 
Set 2, lowering O from (10−2) to (10−3), which is consistent with 
offset-free compensation (via the augmented state with 𝜃̂) removing 
steady-state bias under plant–model mismatch and disturbance drift. 
A comparison between Proposed (S) and Proposed (NS) highlights the 
role of the Lyapunov-based shield: enabling the shield improves the 
average reward (from −1.623 × 103 to −1.262 × 103 in Set 1 and from 
−1.641 × 103 to −1.254 × 103 in Set 2) and, more importantly, prevents 
the severe loss of reliability observed without shielding by reducing 
the terminal offset from (101) (i.e., 1.606×101 in Set 1 and 1.754×101

in Set 2) to (10−3), consistent with rejecting nonconforming actions 
and invoking the LMPC fallback/failsafe to limit adverse transients and 
input excursions.
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Table 6
TD3-RL (TD3-BC) training hyperparameters.
 Parameter Value Parameter Value  
 Discount factor 𝛾 0.99 Target update rate 𝜏 0.005  
 Policy update delay 𝑑 2 Target smoothing noise std 𝜎policy 0.03  
 Target noise clip 𝑐noise 0.08 Minibatch size 256  
 Actor learning rate 1 × 10−4 Critic learning rate 1 × 10−4 
 Critic network size (width, depth) (256, 2) Exploration noise std 𝜎expl 0.03  
 TD3-BC weight 𝛼 (start → end) 1.0 → 0.70 𝛼 schedule length (actor updates) 60 000  
 Actor warmup steps 12 000 Trust-region radius 𝛥𝑎 0.20  
Fig. 8. Closed-loop trajectories comparing the proposed offset-free TD3-RL (OFTD3-RL), a nominal TD3-RL baseline, and the proposed controller deployed without 
the Lyapunov-based shield under the transient-drift mismatch profile (Set 1) generated by ramping 𝑇0(𝑡) and 𝐸(𝑡) over the first 10min and then holding them 
constant. The dashed line indicates the setpoint (𝐶𝐴 = 𝐶𝐴𝑠 and 𝑇 = 𝑇𝑠).
Table 7
Summary performance metrics for Set 1 and Set 2. Here, R denotes the average 
reward per trajectory, and O denotes the average terminal offset measured by 
the final Lyapunov value. The three TD3 variants are: Proposed (S) = proposed 
offset-free TD3-RL with the Lyapunov-based shield; Nominal (S) = nominal 
TD3-RL with the shield; Proposed (NS) = proposed TD3-RL without the shield 
(no shield).
 Set Metric Proposed (S) Nominal (S) Proposed (NS) 
 Set 1 R −1.262 × 103 −1.289 × 103 −1.623 × 103  
 O 3.918 × 10−3 6.785 × 10−2 1.606 × 101  
 Set 2 R −1.254 × 103 −1.273 × 103 −1.641 × 103  
 O 2.844 × 10−3 3.061 × 10−2 1.754 × 101  

5.7. Comparison of different controllers

In this part, we compare the closed-loop performance of the pro-
posed RL-based controllers with two MPC-based baselines: the offset-
free LMPC (discussed in Section 5.3) implemented with different pre-
diction horizons and an FNN controller that approximates the offset-
free LMPC policy (Section 5.4).
19 
First, all controllers are tested under the same plant-side mismatch 
profile as in Section 5.3. In the true plant, the feed temperature is 
changed from 300K to 290K and the activation energy is increased 
from 5.0 × 104 kJ kmol−1 to 5.15 × 104 kJ kmol−1 by a linear ramp over 
the first 10min, and then both parameters are kept constant for the 
rest of the simulation, while the controller model uses the nominal 
parameters. The long-horizon offset-free LMPC (LH-OFLMPC) is used 
as the reference because it solves the offset-free Lyapunov-based MPC 
problem with a longer prediction horizon at every sampling instant. 
The short-horizon offset-free LMPC (SH-OFLMPC) uses the same offset-
free formulation (the same observer, the same online update of 𝑢sp(𝑡𝑘), 
and the same Lyapunov-based constraint), but it solves the optimiza-
tion with a shorter horizon at every sampling instant throughout the 
closed loop. The FNN controller removes online optimization by di-
rectly outputting the control action from a learned approximation of 
the offset-free LMPC policy. As shown in Fig.  11, both proposed RL 
controllers (TD3-RL and HJB-RL) produce closed-loop trajectories that 
closely match the LH-OFLMPC reference under the same disturbance, 
suggesting that the learned policies achieve performance comparable to 
the optimization-based baseline while keeping the online computation 
small.
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Fig. 9. Closed-loop trajectories of the proposed OFTD3-RL under two bounded time-varying parametric mismatch profiles implemented on the true plant via 
perturbed feed temperature 𝑇0(𝑡) and activation energy 𝐸(𝑡) while keeping the controller model nominal. In dis 1 (Set 1), 𝑇0(𝑡) and 𝐸(𝑡) are ramped over the first 
10min and then held constant (transient drift). In dis 2 (Set 2), the perturbations start at 𝑡 = 0 and vary continuously until the end of the horizon, reaching the 
prescribed bounds at the final time (persistent drift). The dashed line indicates the setpoint (𝐶𝐴 = 𝐶𝐴𝑠 and 𝑇 = 𝑇𝑠).
Fig. 10. Phase-plane trajectories (𝐶𝐴 −𝐶𝐴𝑠, 𝑇 −𝑇𝑠) of the closed-loop CSTR under the two bounded mismatch profiles. Initial conditions are chosen on 𝑉 (𝑥) = 200
by sampling the polar angle every 36◦ (10 starting points). The dashed ellipses show the Lyapunov level sets 𝑉 = 20 and 𝑉 = 200, and arrows indicate the 
trajectory direction under sample-and-hold control.
We then evaluate robustness and runtime cost under two distur-
bance sets that remain within the admissible ranges defined in Sec-
tion 5.2. Set 1 represents a drift that ramps during an initial pe-
riod and then becomes constant, and Set 2 represents a drift that 
evolves throughout the full horizon and reaches its bounds at the 
final time. These two sets are used for the computation-time and the 
setpoint-tracking performance comparison reported below.

Fig.  12 and Table  8 together show that the proposed RL controllers 
(TD3-RL and HJB-RL) provide the strongest overall trade-off between 
real-time execution and setpoint tracking under both disturbance sets: 
20 
TD3-RL achieves the best reward in Set 1 and Set 2 (R = −1.262 × 103
and R = −1.254×103), while both TD3-RL and HJB-RL keep the terminal 
offset small at the 10−3 level (O = 3.918 × 10−3 and O = 1.340 × 10−3 in 
Set 1, and O = 2.844 × 10−3 and O = 7.557 × 10−3 in Set 2), and their 
computation times remain well below the 5 s limit with millisecond-
level mean times (about 7.6–17 ms in Set 1 and 8.4–15.4 ms in Set 2) 
and sub-second to ∼1.2 s worst-case times across both sets; in contrast, 
SH-LMPC stays within the time budget (maximum time below 5 s) but 
suffers a clear performance penalty with the lowest rewards and a much 
larger offset in Set 2 (O = 4.125 × 10−2), supporting its use mainly as 
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Fig. 11. Closed-loop trajectories of different controllers under the same transient-drift mismatch profile (plant-side 𝑇0(𝑡) ramped from 300K to 290K and 𝐸(𝑡)
ramped from 5.0 × 104 kJ kmol−1 to 5.15 × 104 kJ kmol−1 over the first 10min, then held constant; controller model remains nominal). The dashed line indicates the 
setpoint (𝐶𝐴 = 𝐶𝐴𝑠 and 𝑇 = 𝑇𝑠).
Fig. 12. Per-step computation time of each controller for Set 1 and Set 2. Blue/orange bars show the mean and the maximum computation time, respectively, 
for HJB-RL, TD3-RL, FNN, SH-LMPC, and LH-LMPC. The dashed horizontal line indicates the sampling-time limit (5 s = 5,000ms).
Table 8
Summary performance metrics for Set 1 and Set 2. Here, R denotes the average reward per trajectory, and O denotes the average 
terminal offset measured by the final Lyapunov value.
 Set Metric HJB-RL TD3-RL FNN SH-LMPC LH-LMPC  
 Set 1 R −1.277 × 103 −1.262 × 103 −1.281 × 103 −1.395 × 103 −1.286 × 103 
 O 1.340 × 10−3 3.918 × 10−3 5.686 × 10−3 1.001 × 10−2 1.792 × 10−3  
 Set 2 R −1.266 × 103 −1.254 × 103 −1.278 × 103 −1.381 × 103 −1.285 × 103 
 O 7.557 × 10−3 2.844 × 10−3 1.137 × 10−2 4.125 × 10−2 1.423 × 10−2  
a backup, whereas LH-LMPC can deliver competitive tracking in some 
cases (e.g., Set 1 O = 1.792 × 10−3) but exhibits large computation-
time spikes that exceed the 5 s limit and also a larger Set 2 offset 
(O = 1.423×10−2), making it less suitable when strict per-step real-time 
constraints must be enforced.
21 
Remark 22.  At each sampling instant 𝑡𝑘, the reported computational 
time corresponds to the wall-clock time required to compute and return 
the control input that is actually applied to the plant (i.e., policy 
evaluation and, when activated, the back-up controller computation). 
The online RL training routine is executed asynchronously in parallel 
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and does not block the computation of the applied control action; 
therefore, its runtime is not included in the per-step computational time 
statistics. Hence, the computational-time metric is intended to reflect 
real-time implementability under a fixed sampling period, rather than 
the total CPU/GPU usage associated with background learning.

6. Conclusion

In this study, we proposed a stability- and robustness-oriented RL 
framework for nonlinear constrained process control by combining a 
Lyapunov-based shield with an offset-free design inspired by MPC. The 
RL policy is treated as a candidate controller and is applied only when 
a Lyapunov condition is satisfied; otherwise, the control action is re-
placed by a Lyapunov-designed fallback controller, so the implemented 
input follows the stability requirement at every sampling instant while 
still allowing RL to improve performance whenever it is safe. To ad-
dress steady-state offsets and model-plant mismatch, the learning state 
is augmented with online-estimated disturbance/mismatch variables, 
enabling the RL policy/value function to adapt its decisions to the 
current uncertainty level. We demonstrated the framework using two 
representative RL methods, namely an HJB-based value-critic approach 
and a TD3-based actor-critic approach, and showed that the resulting 
RL-based controllers handle different disturbance scenarios more ef-
fectively than conventional RL designs while maintaining competitive 
setpoint tracking and online computational cost relative to advanced 
baseline controllers. Overall, this work provides a practical path to-
ward deploying RL in nonlinear process control with explicit stability 
guarantees and improved robustness to uncertainty.
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Appendix. Alternative offset-free Lyapunov constraint

We offer an offset-free Lyapunov constraint that is enforced not only 
in the outer region (where an LMPC backup is invoked), but also inside 
the inner region where the backup would otherwise be inactive. The 
key idea is that the offset-free model replaces the unknown mismatch 
by an online estimate, so that the residual mismatch entering 𝑉̇  can be 
made small (and even vanishing for constant mismatch), leading to a 
strictly smaller sample-and-hold ultimate bound on ‖𝑥(𝑡)‖.

Let the true process evolve under sample-and-hold control with 
sampling period 𝛥 > 0: 
𝑥̇(𝑡) = 𝐹

(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

+𝑊 (𝑥(𝑡), 𝑡) , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥), 𝑢(𝑡𝑘) ∈ 𝑈 (A.1)

where 𝑈 ⊂ R𝑚 is the admissible input set in Eq. (2). Fix 𝜌 > 0 and 
define the Lyapunov sublevel set 𝛺𝜌 ∶= {𝑥 ∈ R𝑛 ∣ 𝑉 (𝑥) ≤ 𝜌} ⊂ 𝐷. 
Throughout, assume Section 2.3 holds on 𝛺𝜌 with constants 𝑐1, 𝑐2, 𝑐3, 𝑐4, 
and the disturbance satisfies ‖𝑊 (𝑥, 𝑡)‖ ≤ 𝑊  on 𝛺 × R.
max 𝜌

22 
Assume the matched structured mismatch model 
𝑊 (𝑥, 𝑡) = 𝐺𝜃 𝜃

⋆(𝑡), 𝐺𝜃 ∈ R𝑛×𝑝, 𝜃⋆(𝑡) ∈ R𝑝 (A.2)

and let the extended observer Eq. (13) provide 𝜃̂(𝑡). At each sampling 
instant 𝑡𝑘, define the frozen offset-free injection and the corresponding 
residual mismatch on [𝑡𝑘, 𝑡𝑘 + 𝛥) as 

𝑤̂𝑘 ∶= 𝐺𝜃 𝜃̂(𝑡𝑘) ∈ R𝑛, 𝑤̃𝑘(𝑡) ∶= 𝑊 (𝑥(𝑡), 𝑡) − 𝑤̂𝑘 = 𝐺𝜃
[

𝜃⋆(𝑡) − 𝜃̂(𝑡𝑘)
]

(A.3)

Denote the residual magnitude on the interval by 
𝑊̄𝑘 ∶= sup

𝑡∈[𝑡𝑘 ,𝑡𝑘+𝛥)
‖𝑤̃𝑘(𝑡)‖ (A.4)

Then, along Eq. (A.1), the Lyapunov derivative admits the decomposi-
tion

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

=
𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

[

𝐹
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

+ 𝑤̂𝑘
]

+
𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑤̃𝑘(𝑡)

=∶ 𝑉̇of
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

+
𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑤̃𝑘(𝑡) (A.5)

Using Eqs.  (7c) and (A.4), for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥), 

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ 𝑉̇of
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

+ 𝑐4 ‖𝑥(𝑡)‖ 𝑊̄𝑘 (A.6)

Let 𝜌𝑠 and 𝜌sw be the outer-region threshold and the switching level 
used in the main sample-and-hold analysis, and define the inner level 
𝜌in ∶= max{𝜌𝑠, 𝜌sw} (A.7)

For any 𝜂 ∈ (0, 𝜌), define the following one-step worst-case Lya-
punov inflation map 

min(𝜂) ∶= sup

{

𝑉 (𝑥(𝑡)) ||

𝑥(𝑡𝑘) ∈ 𝛺𝜂 , 𝑢(𝑡𝑘) ∈ 𝑈, 𝑊 ∈ 

Eq. (A.1) holds on [𝑡𝑘, 𝑡𝑘 + 𝛥)

}

(A.8)

Fix 𝜂 = 𝜌in and define the constant 

𝜌⋆min ∶= min(𝜌in) (A.9)

In the earlier analysis (without an inner-region Lyapunov constraint), 
once the trajectory reaches 𝛺𝜌in , the invariance argument yields an 
ultimate bound of the form 
𝑉 (𝑥(𝑡)) ≤ 𝜌⋆min, ‖𝑥(𝑡)‖ ≤

√

𝜌⋆min∕𝑐1, ∀𝑡 ≥ 𝑡1 (A.10)

for some 𝑡1.
We now impose an additional offset-free Lyapunov constraint in the 

inner region. Specifically, choose 𝛼 > 0 (e.g., 𝛼 = 𝑐3∕𝑐2), and require 
that for every sampling instant 𝑡𝑘 with 𝑥(𝑡𝑘) ∈ 𝛺𝜌in , the applied input 
𝑢(𝑡𝑘) ∈ 𝑈 satisfies 

𝑉̇of
(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
)

≤ −𝛼𝑉
(

𝑥(𝑡𝑘)
)

(A.11)

To relate Eq. (A.11) to 𝑉̇ (𝑥(𝑡), 𝑢(𝑡𝑘)) for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥), boundedness 
of 𝐹  on 𝛺𝜌 × 𝑈 and ‖𝑊 ‖ ≤ 𝑊max imply the increment bound 

‖𝑥(𝑡) − 𝑥(𝑡𝑘)‖ ≤ ∫

𝑡

𝑡𝑘
‖𝑥̇(𝜏)‖ 𝑑𝜏 ≤

(

𝑀𝐹 +𝑊max
)

𝛥, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (A.12)

Using Eq. (8c) together with Eq. (A.12) yields 

𝑉̇of
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ 𝑉̇of
(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
)

+𝐿′
𝑥
(

𝑀𝐹 +𝑊max
)

𝛥, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝛥)

(A.13)

Moreover, if 𝑥(𝑡𝑘) ∈ 𝛺𝜌in , then ‖𝑥(𝑡𝑘)‖ ≤
√

𝜌in∕𝑐1 and Eq. (A.12) implies 

‖𝑥(𝑡)‖ ≤
√

𝜌in
𝑐1

+
(

𝑀𝐹 +𝑊max
)

𝛥, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (A.14)

Combining Eqs. (A.6), (A.11), (A.13) and (A.14), for any 𝑡𝑘 with 
𝑥(𝑡𝑘) ∈ 𝛺𝜌in  and all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥),

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡 )
)

≤ −𝛼𝑉
(

𝑥(𝑡 )
)

+ 𝐿′ (𝑀 +𝑊
)

𝛥
𝑘 𝑘 𝑥 𝐹 max
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+ 𝑐4

(√

𝜌in
𝑐1

+
(

𝑀𝐹 +𝑊max
)

𝛥
)

𝑊̄𝑘 (A.15)

For readability, define the two (deterministic) sampling-error coef-
ficients 

𝐵0 ∶= 𝐿′
𝑥
(

𝑀𝐹 +𝑊max
)

𝛥, 𝐵1 ∶= 𝑐4

(√

𝜌in
𝑐1

+
(

𝑀𝐹 +𝑊max
)

𝛥
)

(A.16)

Then Eq. (A.15) is equivalently 
𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ −𝛼𝑉
(

𝑥(𝑡𝑘)
)

+ 𝐵0 + 𝐵1 𝑊̄𝑘, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (A.17)

Define the residual-dependent inner-level map 

of
in (𝑤) ∶= max

{

𝜌in,
1
𝛼
[

𝐵0 + 𝐵1𝑤
]

}

, 𝑤 ≥ 0 (A.18)

Fix a constant 𝑊̄ ≥ 0 and define the (constant) offset-free inner level 
𝜌̄ofin ∶= of

in (𝑊̄ ) (A.19)

If 𝑊̄𝑘 ≤ 𝑊̄  holds for all sufficiently large 𝑘 (i.e., after some transient), 
then for those 𝑘 and all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥), 
𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ −𝛼
[

𝑉
(

𝑥(𝑡𝑘)
)

− 𝜌̄ofin
]

(A.20)

In particular, if 𝑉 (𝑥(𝑡𝑘)) ≥ 𝜌̄ofin + 𝜂 for some 𝜂 > 0, then 

𝑉̇
(

𝑥(𝑡), 𝑢(𝑡𝑘)
)

≤ −𝛼𝜂 =∶ −𝜀 for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥) (A.21)

Consequently, there exists 𝑘2 such that 𝑉
(

𝑥(𝑡𝑘)
)

≤ 𝜌̄ofin  holds for all 
𝑘 ≥ 𝑘2.

To translate this sampling-time bound into a continuous-time ulti-
mate bound without introducing an explicit inflation map, define the 
offset-free one-step inflation map 

of
min(𝑤) ∶= sup

⎧

⎪

⎨

⎪

⎩

𝑉 (𝑥(𝑡)) ||

𝑥(𝑡𝑘) ∈ 𝛺of
in (𝑤)

, 𝑢(𝑡𝑘) ∈ 𝑈 satisfies Eq. (A.11),
𝑊̄𝑘 ≤ 𝑤, Eq. (A.1) holds on [𝑡𝑘, 𝑡𝑘 + 𝛥)

⎫

⎪

⎬

⎪

⎭

(A.22)

Fix the same constant 𝑊̄  and define 
𝜌ofmin ∶= of

min(𝑊̄ ) (A.23)

Hence there exists 𝑡2 ≥ 𝑡0 such that 
𝑉 (𝑥(𝑡)) ≤ 𝜌ofmin, ∀𝑡 ≥ 𝑡2 (A.24)

and by Eq. (7a) the corresponding sample-and-hold ultimate state ball 
is 
‖𝑥(𝑡)‖ ≤

√

𝜌ofmin∕𝑐1, ∀𝑡 ≥ 𝑡2 (A.25)

Moreover, the new ultimate level is no larger than the
raw-disturbance inflation level. Indeed, 𝜌⋆min in Eq. (A.9) is generated 
by the full disturbance class 𝑊 ∈  (with ‖𝑊 ‖ ≤ 𝑊max), whereas 𝜌ofmin
in Eq. (A.23) restricts admissible closed-loop trajectories by enforcing 
Eq. (A.11) and by replacing the unknown mismatch contribution in 
𝑉̇  with the residual bound 𝑊̄𝑘 ≤ 𝑊̄ . Therefore the optimization set 
underlying of

min(𝑊̄ ) is a subset of that underlying min(𝜌in), and 

𝜌ofmin ≤ 𝜌⋆min (A.26)

When 𝑊̄ ≪ 𝑊max (and 𝛥 is sufficiently small so that the residual term 
dominates the inflation mechanism), The inequality in Eq. (A.26) is 
typically strict, yielding a strictly smaller ultimate set.

In the vanishing-residual limit 𝑊̄ → 0, recalling 𝜌̄ofin = of
in (𝑊̄ ), we 

obtain 

𝜌̄ofin → max
{

𝜌in,
𝐵0
𝛼

}

= max
{

𝜌in,
𝐿′
𝑥(𝑀𝐹 +𝑊max)𝛥

𝛼

}

(A.27)

and 𝜌ofmin approaches the one-step inflated level associated with the 
compensated (offset-free) model rather than that associated with the 
raw disturbance bound 𝑊 .
max

23 
Two disturbance cases are of interest.
If 𝜃̇⋆(𝑡) ≡ 0 (constant mismatch), then Theorem  4(i) implies 𝜃̂(𝑡) →

𝜃⋆ and thus 𝑊̄𝑘 → 0. Therefore, for any 𝜀 > 0 there exists 𝑘𝜀 such 
that 𝑊̄𝑘 ≤ 𝜀 for all 𝑘 ≥ 𝑘𝜀; picking 𝑊̄ = 𝜀 yields the ultimate state 
ball Eq. (A.25) with 𝜌ofmin = of

min(𝜀).
If ‖𝜃̇⋆(𝑡)‖ ≤ 𝑑max (time-varying bounded mismatch), then Theorem 

4(ii) yields an ultimate bound on the estimation error,
and Eqs. (A.3) and (A.4) give 

lim sup
𝑘→∞

𝑊̄𝑘 ≤ 𝑊̄tv ∶= ‖𝐺𝜃‖

[√

2𝜌⋆
𝜆

+ 𝑑max𝛥

]

(A.28)

with 𝜆 = 𝜆min(𝑃 ) and 𝜌⋆ defined in Eq. (74). Picking 𝑊̄ = 𝑊̄tv
yields 𝜌̄ofin = of

in (𝑊̄tv) and 𝜌ofmin = of
min(𝑊̄tv) (up to an arbitrarily 

small slack), which is smaller than the raw-disturbance inflation ball 
whenever 𝑊̄tv ≪𝑊max.
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