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a b s t r a c t

This work focuses on the development of a model predictive control algorithm to simultaneously

regulate the surface slope and roughness of a thin film growth process to optimize thin film light

reflectance and transmittance. Specifically, a thin film deposition process modeled on a one-

dimensional triangular lattice that involves two microscopic processes: an adsorption process and a

migration process, is considered. Kinetic Monte Carlo (kMC) methods are used to simulate the thin film

deposition process. To characterize the surface morphology and to evaluate the light trapping efficiency

of the thin film, surface roughness and surface slope are introduced as the root mean squares of the

surface height profile and surface slope profile. An Edwards–Wilkinson (EW)-type equation is used to

describe the dynamics of the surface height profile and predict the evolution of the root-mean-square

(RMS) roughness and RMS slope. A model predictive control algorithm is then developed on the basis of

the EW equation model to regulate the RMS slope and the RMS roughness at desired levels by

optimizing the substrate temperature at each sampling time. The model parameters of the EW equation

are estimated from simulation data through least-square methods. Closed-loop simulation results

demonstrate the effectiveness of the proposed model predictive control algorithm in successfully

regulating the RMS slope and the RMS roughness at desired levels that optimize thin film light

reflectance and transmittance.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Photovoltaic (solar) cells are an important source of sustain-
able energy. Currently, the limited conversion efficiency of the
solar power prevents the wide application of solar cells. Thin-film
silicon solar cells are currently the most developed and widely
used solar cells. Research on optical and electrical modeling of
thin-film silicon solar cells indicates that the scattering properties
of the thin film interfaces are directly related to the light trapping
process and the efficiencies of thin-film silicon solar cells (Krč
et al., 2003; Müller et al., 2004). Recent studies on enhancing thin-
film solar cell performance (Zeman and Vanswaaij, 2000; Poruba
and Fejfar, 2000; Müller et al., 2004; Springer and Poruba, 2004;
Rowlands et al., 2004) have shown that film surface and interface
morphology, characterized by root-mean-square roughness (RMS
roughness, r) and root-mean-square slope (RMS slope, m), play an
important role in enhancing absorption of the incident light by
the semiconductor layers. Specifically, significant increase of

conversion efficiency by introducing appropriately rough inter-
faces has been reported in several works (Tao and Zeman, 1994;
Leblanc and Perrin, 1994; Krč and Zeman, 2002). To provide a
concrete example of this issue, we focus on a typical p-i-n thin-
film solar cell (Fig. 1). In this thin-film solar cell, light comes into
the hydrogenated amorphous silicon (a-Si:H) semiconductor
layers (p, i, n layers) through a front transparent conducting
oxide (TCO) layer (made, for example, of ZnO:Al), and part of this
light is absorbed by the semiconductor layers before it reaches the
back TCO layer. At the back TCO layer, the remaining light is either
reflected back to the semiconductor layers to potentially be
absorbed again or leaves the system by transmitting through the
back TCO layer. The reflected light that is not absorbed reaches
the front TCO layer again and this process of reflection and
transmission is repeated until all the light leaves the cell or is
absorbed by the cell. We focus on a thin film a-Si:H p-i-n solar cell
with glass/ZnO:Al as the front TCO layer and ZnO:Al as the back
TCO layer to demonstrate quantitatively the influence of surface/
interface r and m on thin film light reflectance and transmittance.

Light scattering (Rayleigh scattering) occurs when the incident
light goes through a rough interface (e.g., the front TCO surface or
the TCO-p interface) where it is divided into four components:
specular reflection, specular transmission, diffused reflection and
diffused transmission; see Fig. 2 (Tao and Zeman, 1994; Leblanc
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and Perrin, 1994). If a rough thin film surface is illuminated with a
beam of monochromatic light at normal incidence, the total
reflectance, R, can be approximately calculated as follows (Davies,
1954):

R¼ R0 exp �
4pr2

l2

� �

þR0

Z p=2

0
2p4 a

l

� �2 r

l

� �2

ðcosyþ1Þ4 sinyexp �
ðpa sin yÞ2

l2

" #
dy,

ð1Þ

where R0 is the reflectance of a perfectly smooth surface of the
same material, r is the RMS roughness, y is the incident angle, l is
the light wavelength and a is the auto-covariance length. It can be
proved that a¼

ffiffiffi
2
p

r=m, where m is the RMS slope of the profile of
the surface (Bennett and Porteus, 1961). The numerical
integration result of Eq. (1) is shown in Fig. 3. From this plot,
it can be inferred that both r and m strongly influence the

intensity of light reflection (and therefore, light transmission) by
the surface/interface. Specifically, in a thin-film solar cell, the
objective is to maximize the generation of electricity in the
i-layer, so it is necessary to control the intensities and directions
of light reflection and transmission at the front and back TCO
layers, as well as at the TCO-p and n-TCO interfaces by attaining
proper values of r and m during the thin-film manufacturing
process. Specifically, when light first comes into the front TCO
layer, appropriate values of r and m are needed for the surface of
the TCO layer to maximize the transmission, T, through the TCO
layer. At the back n-TCO interface layer, certain surface
morphology is also required to maximize the reflection, R, of
light back to the cell. The distributions of the four components of
light reflectance and transmittance are also affected by m and r

(Krč and Zeman, 2002, 2004) even though this dependence cannot
be expressed by an approximate equation like the one of Eq. (1).
Therefore, it is important during the manufacturing of thin-film
solar cells to regulate process input variables like precursor flow
rates and temperature such that the surfaces/interfaces of the
produced thin-film solar cells have appropriate values (set-points)
of r and m that optimize light reflectance and transmittance.

In the context of modeling and control of thin film micro-
structure and surface morphology, two mathematical modeling
approaches have been developed and widely used: kinetic Monte
Carlo (kMC) methods and stochastic differential equation (SDE)
models. KMC methods were initially introduced to simulate thin
film microscopic processes based on the microscopic rules and the
thermodynamic and kinetic parameters obtained from experi-
ments and molecular dynamics simulations (Levine et al., 1998;
Zhang et al., 2004; Levine and Clancy, 2000; Christofides et al.,
2008). Since kMC models are not available in closed form, they
cannot be readily used for feedback control design and system-
level analysis. On the other hand, SDE models can be derived from
the corresponding master equation of the microscopic process
and/or identified from process data (Christofides et al., 2008;
Ni and Christofides, 2005; Hu et al., 2009b–d). The closed form
of SDE models enables their use as the basis for the design of
feedback controllers which can regulate thin film surface rough-
ness, film porosity, and film thickness using either deposi-
tion rate or substrate temperature as manipulated input (Hu et al.,
2009b–d). Recent research work has also focused on multiscale
modeling and identification methods for control of surface morphol-
ogy (Varshney and Armaou, 2006). Furthermore, computationally

Fig. 1. Typical structure of a p-i-n thin-film solar cell with front transparent

conducting oxide (TCO) layer and back contact.
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Fig. 2. Light scattering at a rough interface: specular reflection, Rsp, diffused

reflection, Rd, specular transmission, Tsp, and diffused transmission, Td. n1 and n2

are the refractive indices of the two substances above and below the rough

interface, respectively.
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Fig. 3. Reflectance of thin film surface as a function of r for different m.
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efficient multiobjective optimization methods for microscopic
systems using in situ adaptive tabulation techniques have been
developed (Varshney and Armaou, 2005, 2008). However, simul-
taneous feedback control of RMS slope and roughness of surface
height profiles in thin film deposition processes has not been
studied.

Motivated by the above considerations, this work focuses on
the development of a model predictive control algorithm to
simultaneously regulate the surface slope and roughness of a thin
film growth process to optimize thin film light reflectance and
transmittance. Specifically, a thin film deposition process mod-
eled on a one-dimensional triangular lattice that involves two
microscopic processes: an adsorption process and a migration
process, is considered. Kinetic Monte Carlo methods are used to
simulate the thin film deposition process. To characterize the
surface morphology and to evaluate the light trapping efficiency
of the thin film, surface roughness and surface slope are
introduced as the root mean squares of the surface height profile
and surface slope profile. An Edwards–Wilkinson (EW)-type
equation is used to describe the dynamics of the surface height
profile and predict the evolution of the RMS roughness and RMS
slope. A model predictive control algorithm is then developed on
the basis of the EW equation model to regulate the RMS slope and
the RMS roughness at desired levels by optimizing the substrate
temperature at each sampling time. The model parameters of the
EW equation are estimated from simulation data through least-
square methods. Closed-loop simulation results are presented to
demonstrate the effectiveness of the proposed model predictive
control algorithm in successfully regulating the RMS slope and the
RMS roughness at desired levels that optimize thin film light
reflectance and transmittance.

2. Thin film deposition process

In this section, a thin film growth process is considered and
modeled by using an on-lattice kMC model on a triangular lattice.
Vacancies and overhangs are allowed to develop inside the film
(Hu et al., 2009a, d). Definitions of surface height profile, root-
mean-square roughness, and RMS slope are also introduced in this
section.

2.1. On-lattice kinetic Monte Carlo model

The one-dimensional triangular lattice in which the thin film
deposition process takes place is shown in Fig. 4. Film growth
occurs in the direction perpendicular to the lateral direction, i.e.,
the vertical direction as shown in Fig. 4. Periodic boundary
conditions are applied in the lateral direction, i.e., the horizontal
direction as shown in Fig. 4. In the triangular lattice, the
maximum number of nearest neighboring particles around a
given particle is six. In the one-dimensional triangular lattice
model, a particle with only one nearest neighbor (and the rest five
neighboring sites being vacant) is considered unstable and is
subject to instantaneous surface relaxation. When a particle is
subject to instantaneous surface relaxation, it moves to the
nearest vacant site that is the most stable, i.e., the site with the
most nearest neighbors; see Huang et al. (in press) for a detailed
description of the relaxation process. To initiate the thin film
deposition process, a fully packed and fixed substrate layer is
placed in the bottom of the lattice at the beginning of the
deposition process; see Fig. 4.

In this thin film deposition process, two different micro-
processes take place and significantly influence the thin film
surface morphology (Wang and Clancy, 2001; Yang et al., 1997):
an adsorption process, where vertically incident particles are

deposited from the gas phase into the thin film, and a migration
process, where particles on the thin film overcome the energy
barriers of their sites and move to neighboring vacant sites. In an
adsorption process, the initial positions of the incident particles
are randomly determined with a uniform probability distribution
function in the gas phase domain. In a migration process, the
probability that an on-film particle is subject to migration (i.e.,
migration rate) follows an Arrhenius-type law, where the pre-
exponential factor and the activation energy are taken from a
silicon film (Hu et al., 2009a). However, substrate particles and
the particles fully surrounded by six nearest neighbors cannot
move.

The stochastic nature of the microscopic deposition process is
captured by using a kinetic Monte Carlo (kMC) algorithm to
simulate the evolution of the deposition process. The microscopic
rules of these micro-processes are used in the kMC algorithm to
simulate the thin film deposition process. In the kMC simulation,
each Monte Carlo event represents a specific microprocess, e.g.,
adsorption of a particle from the gas phase or migration of a
particle on the thin film. In the kMC simulation, the time
increment after a successfully executed Monte Carlo event
depends on the total rate of all possible events in the lattice
model of the thin film at the time of the execution of the event. In
this work, a continuous-time Monte Carlo (CTMC)-type method
(e.g., Vlachos et al., 1993) is used to implement the kMC
simulations.

The thin film surface morphology depends on the adsorption
and the migration processes. As a result of the complex interplay
between the adsorption process and the migration process, the
thin film surface morphology achieves a thermal balance. This
thermal balance can be represented by certain values of surface
roughness and surface slope, the definitions of which are
introduced in the next subsection. The macroscopic variables of
the deposition process have a strong influence on the resulting
film surface morphology. The two variables that are considered in
this work are the adsorption rate and the substrate temperature.
Specifically, the adsorption rate, which is denoted by W, is defined
as the number of deposited layers per second. The substrate
temperature, which is denoted by T, influences the migration rate
via the Arrhenius rate law.

We note that the deposition rate as an operating condition in
this work is different from the rate of change of film thickness.
The deposition rate here refers to the number of fully packed

Gas phase

Gas phase
particles

Particles
on lattice

Substrate
ParticlesSubstrate

Fig. 4. Thin film growth process on a triangular lattice. The arrows denote

adsorption and migration processes.
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layers deposited per second and, in a vapor deposition process
model, is determined from the flux rate at the gas-phase/surface
boundary. With a constant deposition rate, the same amount of
particles is deposited in the same time period (in the sense of
expected value). Meanwhile, with different substrate tempera-
tures, different film microstructures may form with different film
porosity and film thickness. Thus, process operating conditions
like the deposition rate or the substrate temperature, can be
constant or vary with respect to time. These operating variables
can be used as the manipulated variables for the control of the
thin film surface morphology expressed in terms of RMS surface
slope and RMS surface roughness.

2.2. Definition of variables

In this section, two variables, RMS surface roughness and
RMS surface slope, are precisely defined to characterize the film
surface morphology and calculate the reflectance of a surface/
interface. The surface height profile is used to represent the film
surface morphology in the one-dimensional lattice model and is
defined as the connection of the centers of the surface particles.
Surface particles are the particles that can be reached from above
in the vertical direction without being fully blocked by other
particles on the film (Hu et al., 2009a, d). Fig. 5 shows an example
of the surface height profile of a given thin film configuration. The
RMS surface roughness and RMS surface slope can be then defined
on the basis of the surface height profile of the thin film.

Surface roughness is a commonly used measure of thin film
surface morphology. In this work, surface roughness is defined as
the root mean square of the surface height profile. Specifically, the
definition of RMS surface roughness is given as follows:

r¼
1

2L

X2L

i ¼ 1

ðhi�hÞ2
" #1=2

, ð2Þ

where r denotes the RMS surface roughness, hi, i¼1,2,y,2L, is the
surface height at the i-th position in the unit of layer, L is the
number of sites on the lateral direction, and h ¼ ð1=2LÞ

P2L
i ¼ 1 hi is

the average surface height.

From the expression of surface light reflectance of Eq. (1) and
the dependence of light reflectance in Fig. 3, the RMS surface slope
is also an important variable that determines the surface
morphology in addition to the RMS roughness. In this work, the
RMS slope represents the extent of surface slope and is defined as
the root-mean-square of surface slope profile similarly to the
definition of the RMS roughness of Eq. (2) in the following form:

m¼
1

2L

X2L

i ¼ 1

ðhs
i Þ

2

" #1=2

, ð3Þ

where m denotes the RMS slope and hs
i , i¼1,2,y,2L, is the surface

slope at the i-th position. Both m and hs
i are dimensionless

variables. The surface slope profile is obtained from the surface
height profile using a first-order finite-difference approximation
as follows:

hs
i ¼
ðhiþ1�hiÞ

ffiffiffi
3
p

=2

1=2
¼

ffiffiffi
3
p
ðhiþ1�hiÞ, ð4Þ

where the constant,
ffiffiffi
3
p

, is derived from the geometric ratio
between the single-layer height and the interval between
adjacent height positions in the triangular lattice. Due to the
use of PBCs, the slope at the right most boundary position (hs

2L) is
computed from the right most and the left most surface heights,
i.e., hs

2L ¼
ffiffiffi
3
p
ðh1�h2LÞ. Fig. 5 also shows an example of the surface

slope profile obtained from the surface height profile.
The behavior of RMS slope, i.e., its dynamics and dependence

on the operating conditions and on the lattice size, has been
studied in previous work (Huang et al., in press). For the purpose
of theoretical analysis and control design, the square of RMS
roughness (surface roughness square, r2) and the square of RMS
slope (mean slope square, m2), are used in the analysis and
controller design later in this work. Specifically, the expected
mean slope square increases from zero and reaches
a steady state at large times. The dynamics and the steady-
state values of the expected mean slope square depend on
the operating conditions, i.e., the substrate temperature and the
adsorption rate. Thus, the substrate temperature and/or the
adsorption rate may be used as the manipulated inputs in the
model predictive control design.

3. Closed-form dynamic model construction

3.1. Edward–Wilkinson model

The dynamics and evolution of the surface height profile
of the thin film growth process of Fig. 4 can be described by
an Edwards–Wilkinson (EW)-type equation (Edwards and
Wilkinson, 1982; Family, 1986; Hu et al., 2009a; Huang et al., in
press). The EW equation is a second-order stochastic PDE that
has the following form (Edwards and Wilkinson, 1982; Hu et al.,
2009a):

@h

@t
¼ rhþn

@2h

@x2
þxðx,tÞ, ð5Þ

subject to the following PBCs:

hð�L0,tÞ ¼ hðL0,tÞ,
@h

@x
ð�L0,tÞ ¼

@h

@x
ðL0,tÞ, ð6Þ

and the initial condition:

hðx,0Þ ¼ h0ðxÞ, ð7Þ

where xA ½�L0,L0� is the spatial coordinate, t is the time, and rh

and n are model parameters. Specifically, rh is related to the
growth of average surface height and n is related to the effect of
surface particle relaxation and migration. Since rh is only related

Surface slope profile

Surface
particles

Surface height profile

Particles
under
surface

x

hΔ
xΔ

Fig. 5. An example showing the definition of the surface height profile and the

calculation of the corresponding surface slope profile.
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to the average surface height, this term can be ignored for the
purpose of modeling and control of the RMS slope, i.e., rh¼0, (Hu
et al., 2009a; Huang et al., in press).

In the EW equation of Eq. (5), xðx,tÞ is a Gaussian white noise
term with the following expressions for its mean and covariance:

/xðx,tÞS¼ 0,

/xðx,tÞxðx0,t0ÞS¼ s2dðx�x0Þdðt�t0Þ, ð8Þ

where / �S denotes the mean value, s2 is a parameter which
measures the noise intensity, and dð�Þ denotes the standard Dirac
delta function.

To obtain the dynamics of the RMS slope, we first solve the EW
equation using modal decomposition. A direct computation of the
eigenvalue problem of the linear second-order operator of Eq. (5)
yields the eigenvalues, ln, and the eigenfunctions, fnðxÞ. Due to the
eigenspectrum of the second-order operator and the nature of the
deposition process, l0 ¼ 0 (which corresponds to the average
surface height) and lno0 for nZ1. The solution of Eq. (5) is then
expanded in an infinite series in terms of the eigenfunctions. By
substituting the expansion into Eq. (5) and taking the inner product
with the adjoint eigenfunctions, the following system of infinite
stochastic ordinary differential equations (ODEs) is obtained:

dan

dt
¼ lnanþx

n
aðtÞ, n¼ 0,1, . . . ,1, ð9Þ

where xn
a is the projection of the noise xðx,tÞ in the n-th ODE. Since

the infinite stochastic ODEs of Eq. (9) are linear and uncoupled, the
state variance can be directly obtained from the analytical solution
of Eq. (9) as follows:

/a2
nðtÞS¼�

s2

2ln
þ /a2

nðt0ÞSþ
s2

2ln

� �
e2lnðt�t0Þ, n¼ 1,2, . . . ,1:

ð10Þ

The dynamics of the surface roughness square and of the mean
slope square can be obtained from the solution of the state
variance of Eq. (10). The surface roughness square in the
continuum domain in which the EW equation is constructed is
defined as the square of the standard deviation of the surface
height profile from its average height as follows:

r2ðtÞ ¼
1

2L0

Z L0

�L0

½hðx,tÞ�hðtÞ�2 dx, ð11Þ

where hðtÞ ¼ ð1=2L0Þ
R L0

�L0
hðx,tÞdx is the average surface height

which corresponds to the zeroth state in Eq. (9). The expected
surface roughness square, /r2ðtÞS, can then be rewritten in terms
of the state variance, /a2

nðtÞS, as follows:

/r2ðtÞS¼
1

2L0

X1
n ¼ 1

/a2
nðtÞS: ð12Þ

However, the mean slope square cannot be defined in the
continuum domain similarly to the surface roughness square of Eq.
(11) because such a definition leads to an infinite value of mean
slope square (Huang et al., in press). To calculate the mean slope
square and derive its dynamic behavior, the mean slope square
should be obtained from the solution of the EW equation under a
suitable finite-difference discretization of the continuum surface
height profile. Specifically, a spatial discretization is introduced to
the continuum domain, [�L0, L0], with evenly distributed nodes in
space. The number of nodes equals the lattice size of the kMC
model, L. With the finite-dimensional discretization, the mean
slope square of a discrete surface height profile can be computed
in a similar fashion to Eq. (3) as follows:

m2 ¼
1

2L

X2L

i ¼ 1

hiþ1�hi

Dx

� �2

, ð13Þ

where hi denotes the surface height at the i-th node and Dx¼ L0=L

denotes the interval between two adjacent nodes. The expected mean
slope square can then be expressed as the sum of weighted modal
state variances as follows (Huang et al., in press):

/m2ðtÞS¼
X1
n ¼ 1

Kn/a2
nðtÞS where Kn ¼

2

LðDxÞ3
sin2 np

2L

� �
: ð14Þ

Using the analytical solutions of the expected surface rough-
ness square of Eq. (12) and of the expected mean slope square of
Eq. (14), we can obtain the behavior of the surface roughness
square and of the mean slope square from the EW equation and
from the lattice model. These analytical solutions will be later
used to predict the evolution of the expected surface roughness
square and of the expected mean slope square in the model
parameter estimation and in the controller design.

Remark 1. The EW equation of Eq. (5) is appropriate as a dynamic
model for a random deposition with instantaneous relaxation
process, as was established in our previous research work (Hu et al.,
2009a). Specifically, our previous work has focused on the scaling
properties of the porous thin film deposition process used in this
work and has rigorously demonstrated an EW-consistent behavior
of this process. Thus, the EW equation is a good choice as the
dynamic model for the evolution of surface height profile, especially
from a control point of view. The applicability of the EW equation
model for the control algorithm design is demonstrated via the
numerical simulations in Section 5. In general, the EW equation is
an appropriate model for many deposition processes with certain
microscopic rules that lead to a thermal balance between adsorp-
tion and relaxation/migration during thin film growth.

Remark 2. The use of modal decomposition for order reduction of
the EW equation of Eq. (5) is appropriate because the EW
equation is linear in h and its parameters are constant between
two successive sampling times/control actions. Furthermore, the
open- and closed-loop simulations in Section 5 demonstrate that
the use of the modal decomposition to solve the model used for
controller design yields very good closed-loop response.

3.2. Model parameter estimation and dependence on substrate

temperature

In the EW equation of Eq. (5), there are three parameters rh, n,
and s2. The dependence of the model parameters, n and s2, on the
operating conditions, i.e., the adsorption rate and the substrate
temperature, is determined from the kMC simulation data. In this
work, we only consider the temperature dependence of model
parameters and use the substrate temperature as the manipulated
input for control purposes (see Section 4). Deposition rate is
another choice for manipulated variable, and it can be imple-
mented via the control of inlet flow rate and/or precursor
concentration. Multivariable feedback control with temperature
and deposition rate as manipulated variables can be done but it is
outside the scope of this work.

In this work, the model parameter estimation is conducted on the
basis of the RMS slope so that the dynamics of the surface slope can
be captured by the EW equation in a more accurate fashion. Speci-
fically, these parameters are estimated by matching the predicted
evolution profiles of mean slope square to the ones obtained from
the kMC simulations of the thin film deposition process in a least-
square sense where the following cost is minimized:

min
n,s2

XN1

k ¼ 1

/m2ðtkÞS�
X1
n ¼ 1

Kn/a2
nðtkÞS

" #2

, ð15Þ

where N1 is the number of data points used for parameter estimation
and /m2ðtkÞS is the expected mean slope square computed from
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100 independent kMC simulations with identical and time-invariant
operating conditions. The prediction of the state variance, /a2

nðtkÞS,
is obtained from the analytical solution of Eq. (10). In this work, the
deposition rate is fixed at W0¼1 layer/s for all simulations. Eleven
substrate temperature values ranging from 300 to 700 K are sampled
for the computation of the dependence of the parameters on
substrate temperature.

Fig. 6 shows the steady-state values of the expected mean
slope square at different substrate temperatures computed from
the EW equation with the estimated parameters and from the
kMC simulations; the agreement is excellent for all substrate
temperatures. The dependence of the model parameters on
the substrate temperature is shown in Fig. 7 and is used in the
formulation of the model predictive controller. The EW-type
equation with parameters estimated under time-invariant
operating conditions is suitable for the purpose of model predictive
control design because the control input in the MPC formulation is
piecewise constant, i.e., the manipulated substrate temperature
remains constant between two consecutive sampling times, and
thus, the dynamics of the microscopic process can be predicted using
the closed-form dynamic models with estimated parameters.

The temperature dependence of model parameters can be verified
by comparing the predictions of the expected mean slope square
from the EW equation with the estimated parameters to the
corresponding profiles obtained from the KMC simulations, as shown
in Figs. 8 and 9. We see that the EW equation with the estimated
parameters is consistent with the kMC simulations in terms of the
expected mean slope square at varying substrate temperatures.

It has been demonstrated that for a broad range of tempera-
ture variation the porous thin film growth process exhibits EW-
type behavior (Hu et al., 2009a). Thus, each time a new
temperature condition (control actuation) is applied to the thin
film growth process, the process follows the EW equation
behavior but with different model parameters, which depend on
the new temperature condition.

4. Model predictive control

In this section, a model predictive controller is developed on
the basis of the constructed closed-form dynamic model. The
control objective is to regulate the expected mean slope square
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Fig. 6. Steady-state values of the expected mean slope square computed from the

EW equation (solid line) and from the kMC simulations (dashed line) at different

substrate temperatures; W¼1 layer/s.
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and the expected surface roughness square of the thin film to
desired levels which optimize the light trapping efficiency, i.e.,
minimizing or maximizing the light reflectance of the surface or
interface in thin-film solar cells. The dynamics of the mean slope
square and of the surface roughness square are described by the
EW equation of the surface height profile of Eq. (5) with
appropriately estimated parameters.

4.1. MPC formulation

In this subsection, we consider the problem of regulation of
RMS slope and RMS roughness of thin film to desired levels within
a model predictive control framework. The expected values of
mean slope square and of surface roughness square, /m2S and
/r2S, are chosen as the control objectives. The substrate
temperature is used as the manipulated input. When temperature
is used as the manipulated input, the deposition rate is fixed at a
certain value, W0, during the entire closed-loop simulation. To
account for a number of practical considerations, several
constraints are added to the controller. First, there is a constraint
on the range of variation of the substrate temperature. This
constraint ensures validity of the on-lattice kMC model. Another
constraint is imposed on the rate of change of the substrate
temperature to account for actuator limitations. The control
action at time t is obtained by solving a finite-horizon optimal
control problem. The cost function in the optimal control problem
includes penalty on the deviation of /r2S and /m2S from their
set-point values, which are computed to optimize the light
reflectance of the thin film. The optimization problem is subject
to the dynamics of the surface height. The optimal temperature
profile is calculated by solving a finite-dimensional optimization
problem in a receding horizon fashion. Specifically, the MPC
problem is formulated as follows:

min
T1 ,...,Ti ,...,Tp

J¼
Xp

i ¼ 1

qm2 ,i
m2

set�/m2ðtiÞS
m2

set

� �2

þqr2 ,i
r2

set�/r2ðtiÞS
r2

set

� �2
( )

subject to
@h

@t
¼ rhþn

@2h

@x2
þxðx,tÞ,

r2ðtÞ ¼
1

2L0

Z L0

�L0

½hðx,tÞ�hðtÞ�2 dx,

m2ðtÞ ¼
1

2L

X2L

i ¼ 1

hiþ1�hi

Dx

� �2

,

TminoTioTmax, ðTiþ1�TiÞ=D
		 		rLT ,

i¼ 1,2, . . . ,p, ð16Þ

where t is the current time, D is the length of the sampling
interval, p is the number of prediction steps, pD is the specified
prediction horizon, ti, i¼1,2,y,p, is the time of the ith prediction
step ðti ¼ tþ iDÞ, Ti, i¼1,2,y,p, is the substrate temperature at the
ith step (Ti¼T(ti)), qr2 ,i and qm2 ,i, i¼1,2,y,p, are the weighting
penalty factors for the deviations of /r2S and /m2S from their
respective set-points, r2

set and m2
set, at the ith prediction step, Tmin

and Tmax are the lower and upper bounds on the substrate
temperature, respectively, and LT is the limit on the rate of change
of the substrate temperature. The optimal temperature profile,
(T1, T2,y,Tp), is obtained from the solution of the optimization
problem of (16), which minimizes the deviation of the expected
mean slope square and of the expected surface roughness square
from their respective set-point values within the prediction
horizon.

The EW equation model is a stable system, guaranteed by the
eigenspectrum of the second-order spatial differential operator
with a positive coefficient. In this work, the optimization
formulations in the MPC algorithms are solved on an open-loop

operating basis at each sampling time (even though feedback is
included at each sampling time via the measurements). Thus, the
inherent stability of the EW-equation model ensures a stable
closed-loop operation under the model predictive controller.

4.2. MPC formulation based on finite-dimensional approximations

The surface roughness square and the mean slope square in
terms of the state variance, Eqs. (12) and (14), respectively,
require computation of infinite sums. Thus, the model predictive
controller of (16) is infinite-dimensional and cannot be imple-
mented in practice. To this end, finite-dimensional approxima-
tions (with a sufficiently large number of slow modes) can be used
to approximately predict the dynamics of the surface roughness
square and of the mean slope square as follows:

/~r2
ðtÞS¼

1

2L0

XN

n ¼ 1

/a2
nðtÞS, / ~m2

ðtÞS¼
XN

n ¼ 1

Kn/a2
nðtÞS, ð17Þ

where N denotes the dimension of the approximation and the
tilde symbols denote the association of these variables with a
finite-dimensional system.

Fig. 10 shows the profiles of the reconstructed surface
roughness square and mean slope square obtained from the
finite-dimensional approximations of Eq. (17) and compares them
with the values of the surface roughness square and of the mean
slope square computed from the definitions of Eqs. (2) and (3). It
can be seen from Fig. 10 that as the order of the approximation
increases, the reconstructed values are approaching the actual
values computed from the definitions. Thus, the finite-
dimensional approximation, that contains a finite number of
modes, can be used for model prediction in the model predictive
control formulation. Note that, although a higher-order model
generally yields a more accurate approximation, the choice of the
dimension of the reduced-order model is limited by the lattice
size/discretization size. In the closed-loop simulations, the values
of states are reconstructed from the discrete surface height profile
by taking the inner product with the adjoint eigenfunctions. Due
to the finite number of discrete surface height points, there is a
limited number (half of the discrete surface height points) of
states (modes) that can be used to obtained correct estimates of
the surface roughness square and of the mean slope square. This
limited availability of the states is an additional reason for using a
reduced-order model in the MPC formulation. The MPC
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formulation based on the finite-dimensional approximation of the
EW equation has the following form:

min
T1 ,...,Ti ,...,Tp

J¼
Xp

i ¼ 1
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m2

set�/ ~m2
ðtiÞS
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set

" #2
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set�/~r
2
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;
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e2lniD,
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nðtiÞS,

/ ~m2
ðtiÞS¼

XN

n ¼ 1

Kn/a2
nðtiÞS,

TminoTioTmax, jðTiþ1�TiÞ=DjrLT ,

i¼ 1,2, . . . ,p: ð18Þ

5. Closed-loop simulations

In this section, we apply the proposed predictive controller of
(18) to the kMC model of the thin film deposition process to
regulate the surface slope and roughness at desired levels. The
substrate temperature is used as the manipulated variable, which
can be implemented via a heating/cooling system. The adsorption
rate is kept constant during all deposition runs. The controlled
variables are the expected values of the mean slope square and of
the surface roughness square at the end of the deposition process.

In the closed-loop simulations, the surface height profile is
obtained from the surface morphology of the thin film from the
kMC simulations and is transferred to the controller (state
feedback control) at each sampling time. A finite number of slow
modes are reconstructed from the surface height profile and are
used to calculate the predictions of the mean slope square and of
the surface roughness square along the prediction horizon. The
estimated parameters and the dependence of the parameters on
substrate temperature is used when solving the optimization
problem in the model predictive controller. The constrained
optimization problem formulated in the MPC of (18) is solved and
the optimal input temperature profile is obtained and is applied to
the closed-loop system. The optimization problem is solved via a
local constrained minimization algorithm with a broad set of
initial guesses. The measurement of thin film surface morphology
is a challenging issue, especially in real-time. Several techniques
have been developed that enable surface height measurements
during the operation of a deposition process like atomic force
microscopy. The surface information can be also obtained by
combining the on-line probing and off-line measurements.

After being computed from the solution of the optimization
problem, the optimal manipulated input is applied to the thin film
growth process in a sample-and-hold fashion, i.e., the substrate
temperature remains constant until the next sampling time. The
EW model constructed from the open-loop simulation data can be
used in the MPC design since the manipulated input in the closed-
loop system changes slowly with respect to the dynamics of the
evolution of surface roughness and slope.

5.1. Separate regulation of surface slope and roughness

We first consider the control problems of separately regulating
surface roughness and slope. Specifically, closed-loop simulations
of the slope-only control problem are carried out by assigning the
following values to the weighting factors in the MPC formulation
of (18): qr2 ¼ 0:0 and qm2 ¼ 1:0. Two set-point values, m2

set¼0.5
and 5, are considered. The order of finite-dimensional approx-
imation used in the MPC formulation is N¼100. The deposition
rate is fixed at W¼1 layer/s, which is appropriate from a practical

standpoint, and the initial substrate temperature is T¼500 K. The
variation of temperature is from 400 to 700 K. The maximum rate
of change of the temperature is LT¼1 K/s, which is also appro-
priate from a practical standpoint. The number of prediction steps
is p¼5 and the prediction step size is D¼ 5 s. The sampling time is
also 5 s. Since the sampling time equals the prediction step size,
only the first value of the manipulated input trajectory, T1, is
applied to the deposition process (i.e., kMC model) during the
time interval between two successive sampling times, ðt,tþDÞ. At
the time tþD, the surface height profile is sampled and the MPC
problem of (16) is solved to obtain the next optimal manipulated
input trajectory. The closed-loop simulation duration is 1000 s. All
expected values are obtained from 200 independent simulation
runs to evaluate the statistics of closed-loop performance.

Figs. 11 and 12 show, respectively, the profiles of the expected
mean slope square and of the expected substrate temperature in
the closed-loop simulation where the set-point of the mean slope
square is 0.5. In Fig. 12, the substrate temperature increases
linearly from the initial temperature of 500 K due to the constraint
on the rate of change of the temperature. At large times
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Fig. 11. Profile of the expected mean slope square under closed-loop operation

(solid line); m2
set¼0.5 (dashed line).

0 200 400 600 800 1000
500

520

540

560

580

600

620

640

Time (s)

<T
> 

(K
)

Fig. 12. Profile of the expected substrate temperature under closed-loop

operation; m2
set¼0.5.

X. Zhang et al. / Chemical Engineering Science 65 (2010) 4720–4731 4727



Author's personal copy
ARTICLE IN PRESS

ðt4500 sÞ, the substrate temperature reaches a steady-state value
around 620 K. Correspondingly, the expected surface mean slope
square initially overshoots and is later regulated at the desired
value of 0.5, which can be observed from Fig. 11. The overshoot of
the expected mean slope square is the consequence of the
constrained increase of the substrate temperature. A less-tight
constraint on the rate of change of the substrate temperature or a
higher initial substrate temperature may reduce or even avoid
this overshoot.

Figs. 13 and 14 show the closed-loop simulation results with a
higher set-point value for the mean slope square, m2

set¼5. The
proposed model predictive controller also successfully drives the
expected mean slope square to the desired value of 5 within
1000 s.

In addition to the slope-only control problem, the roughness-
only control problem is considered with the following weighting
factors: qr2 ¼ 1:0 and qm2 ¼ 0:0. As shown in Fig. 15, the expected
surface roughness square is regulated close to the set-point
value of 100; a final offset is observed due to the selection of the
EW-model parameters that are more sensitive with respect to

surface slope. This offset can be eliminated if we replace /m2ðtkÞS
by /r2ðtkÞS in the optimization problem of Eq. (15) used for
estimating the EW-model parameters. (Specifically, there is a
deviation of the expected surface roughness square from the set-
point value at the end of the simulation. This deviation is due to
fact that the parameter set is estimated solely on the basis of the
dynamics of the mean slope square and this parameter set may
result in deviations in the prediction of surface roughness square,
especially for the intermediate region of the substrate
temperature ð500 KoTo650 KÞ. In addition, because there is no
penalty on the deviation of RMS slope, /m2S is far away from its
set-point of 0.5 at the end of the roughness-only control closed-
loop simulations.)

5.2. Simultaneous regulation of surface slope and roughness for light

trapping efficiency

Finally, closed-loop simulations of simultaneous regulation of
surface slope and roughness are carried out. The set-points of the
mean slope square and of the surface roughness square are
m2

set¼0.5 and r2
set¼100, respectively. Since the substrate tem-

perature is the only manipulated input, the mean slope square
and the surface roughness square under closed-loop operations
may not reach their respective set-point values. Therefore, a
tradeoff between the surface slope and roughness is made by the
controller on the basis of the weighting factors of the mean slope
square and of the surface roughness square. To simplify the
development, the same values of weighting factors of the mean
slope square (and the same weighting factors of the surface
roughness square) are used for all prediction steps, i.e.,
qm2 ,1 ¼ qm2 ,2 ¼ � � � ¼ qm2 ,5 ¼ ¼ qm2 ðqr2 ,1 ¼ qr2 ,2 ¼ � � � ¼ qr2 ,5 ¼ qr2 Þ.
The weighting factor of mean slope square is kept at 1, while
the factor of surface roughness square varies from 1 to 10 000.
Fig. 16 shows the final expected values of the mean slope square
and of the surface roughness square at the end of the closed-loop
simulations (t¼1000 s) at different ratios of the weighting factors,
lgðqr2=qm2 Þ. It is clear that as the weighting on the surface
roughness square increases, i.e., a higher value of lgðqr2=qm2 Þ, the
expected surface roughness square approaches more closely its
set-point value of 100, while the expected mean slope square
deviates from its set-point value of 0.5.

Since the mean slope square and the surface roughness square
cannot reach their respective set-points, Fig. 16 also shows
different values of the mean slope square and of the surface
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Fig. 13. Profile of the expected mean slope square under closed-loop operation
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set¼5 (dashed line).
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roughness square which are obtained at the end of the closed-
loop simulations with different weighting factors of the mean
slope square and of the surface roughness square. The light
reflectance of these thin films obtained from the closed-loop
simulations of simultaneous regulation can be computed from the
resulting RMS surface slope and RMS roughness using Eq. (1), as
shown in Fig. 17. In Fig. 17, the RMS slope, m, and the RMS
roughness, r, are computed as the square roots of /m2S and /r2S,
respectively. The RMS roughness is also scaled with (by
multiplying) a physical factor, 6.5 nm, so that the set-point
value, r2

set, together with m2
set, corresponds to an optimal value

(maximum) of the light reflectance in Eq. (1).
It can be seen from Fig. 17 that different values of light

reflectance of thin film are obtained at different ratios of the
weighting factors, lgðqr2=qm2 Þ. A plot with contours of the light
reflectance is given in Fig. 18, which shows the dependence of the
RMS slope, the RMS roughness, and the corresponding light
reflectance of the thin film on the weighting factors. We note that
the values of the RMS roughness in Figs. 17 and 18 are also scaled

with the same factor as the one for r2
set. An optimal weighting

scheme can be determined based on Figs. 17 and 18. For example,
in the case where a high light reflectance is desired to improve the
light trapping efficiency (e.g., for the back TCO layer that reflects
the transmitted light back to the p-i-n layers of the thin film), a
combination of the weighting factors, qr2 ¼ 1 and qm2 ¼ 1, can be
used in the closed-loop operation.

For a perspective of the surface morphology of the thin films,
representative snapshots of the film surface microstructure at the
end of single open-loop and closed-loop simulations (t¼1000 s)
are shown in Fig. 19. Three closed-loop cases are compared: (1)
slope-only control, (2) roughness-only control, and (3) and
simultaneous control of slope and roughness. It can bee seen in
Fig. 19 that different values of the mean slope square and of the
surface roughness square are achieved at the end of simulations. In
the open-loop simulation, the substrate temperature and the
adsorption rate are fixed and the surface slope and roughness
evolve following the open-loop dynamics. In the slope-only and
roughness-only control, the mean slope square and the surface
roughness square are regulated around their respective set-point
values, m2

set¼0.5 and r2
set¼100, at the end of the simulation. In the

case of simultaneous control of slope and roughness, a trade-off is
made between the mean slope square and the surface roughness
square. Specifically, different surface height profiles can be
observed in Fig. 19 under open-loop operation and under
different closed-loop operations. A nearly smooth surface height
profile is obtained under slope-only control with a low RMS slope
(since the RMS slope set-point, 0.5, is quite low) and a certain level
of RMS roughness; these values of RMS slope and roughness result
in a reflectance value of R/R0¼0.69 which could be appropriate for
a back TCO layer. On the other hand, roughness-only control
results in a rough surface height profile with both large slope
fluctuation (high RMS slope) and large height fluctuation (high
RMS roughness); these values of RMS slope and roughness result
in a reflectance value of R/R0¼0.18 which could be appropriate for
a front TCO layer. The surface height profile under simultaneous
control of slope and roughness with weighting factor ratio
lgðqr2=qm2 Þ ¼ 3 results in an ‘‘intermediate’’ surface height profile,
as can be seen in Fig. 19, between slope-only control and
roughness-only control, and a reflectance value of R/R0¼0.46
which could be appropriate for an intermediate solar cell layer.
Therefore, by appropriately choosing the set-points for RMS
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roughness and RMS slope as well as the weighting factors, we can
produce layers that have a broad range of reflectance values.

Remark 3. In this work, the expected values of roughness and
slope are compared to their respective set-points at the end of the
deposition (t¼1000 s). The film thickness is not considered as a
control objective. In some applications, there are stringent
requirements for specific film thickness. If this is the case, model
predictive controllers can be developed for simultaneous regula-
tion of surface roughness, film porosity, and film thickness by
including cost penalty on the deviation of film thickness from a
desired minimum value or by implementing the thickness
requirement as a constraint (Hu et al., 2009c; Zhang et al., in
press).

6. Conclusions

A model predictive control algorithm was developed to
regulate the surface slope and roughness of a thin film growth
process. The thin film deposition process was modeled on a one-
dimensional triangular lattice that involves two microscopic
processes: an adsorption process and a migration process. Kinetic

Monte Carlo methods were used to simulate the thin film
deposition process. To characterize the surface morphology and
to evaluate the light trapping efficiency of the thin film, surface
roughness and surface slope were introduced as the root mean
squares of the surface height profile and surface slope profile. An
EW-type equation was used to describe the dynamics of the
surface height profile and predict the evolution of the RMS
roughness and RMS slope. A model predictive control algorithm
was then developed on the basis of the EW equation model to
simultaneously regulate the RMS slope and the RMS roughness at
desired levels by optimizing the substrate temperature at each
sampling time. The model parameters of the EW equation were
estimated from simulation data through least-square methods.
Closed-loop simulation results were presented to demonstrate the
effectiveness of the proposed model predictive control algorithm
in successfully regulating the RMS slope and the RMS roughness
at desired levels that optimize thin film light reflectance and
transmittance.
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Davies, H., 1954. The reflection of electromagnetic waves from a rough surface.
Proceedings of the Institution of Electrical Engineers 101, 209.

Edwards, S.F., Wilkinson, D.R., 1982. The surface statistics of a granular aggregate.
Proceedings of the Royal Society of London Series A—Mathematical Physical
and Engineering Sciences 381, 17–31.

Family, F., 1986. Scaling of rough surfaces: effects of surface diffusion. Journal of
Physics A: Mathematical and General 19, L441–L446.

Hu, G., Huang, J., Orkoulas, G., Christofides, P.D., 2009a. Investigation of film
surface roughness and porosity dependence on lattice size in a porous thin
film deposition process. Physical Review E 80, 041122.

Hu, G., Orkoulas, G., Christofides, P.D., 2009b. Modeling and control of film porosity
in thin film deposition. Chemical Engineering Science 64, 3668–3682.

Hu, G., Orkoulas, G., Christofides, P.D., 2009c. Regulation of film thickness, surface
roughness and porosity in thin film growth using deposition rate. Chemical
Engineering Science 64, 3903–3913.

Hu, G., Orkoulas, G., Christofides, P.D., 2009d. Stochastic modeling and simulta-
neous regulation of surface roughness and porosity in thin film deposition.
Industrial & Engineering Chemistry Research 48, 6690–6700.

Huang, J., Hu, G., Orkoulas, G., Christofides, P.D., Dynamics and lattice-size
dependence of surface mean slope in thin film deposition. Industrial &
Engineering Chemistry Research, in press, doi:10.1021/ie10012w.
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