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This work focuses on simultaneous regulation of film thickness, surface roughness, and porosity in a multiscale
model of a thin film growth process using the inlet precursor concentration as the manipulated input.
Specifically, under the assumption of continuum, a partial differential equation model is first derived to describe
the dynamics of the precursor concentration in the gas phase. The thin film growth process is modeled via a
microscopic kinetic Monte Carlo simulation model on a triangular lattice with vacancies and overhangs allowed
to develop inside the film. Closed-form dynamic models of the thin film surface profile and porosity are
developed and used as the basis for the design of model predictive control algorithms to simultaneously
regulate film thickness, surface roughness, and porosity. Both state feedback and porosity estimation-based
output feedback control algorithms are presented. Simulation results demonstrate the applicability and
effectiveness of the proposed modeling and control approach by applying the proposed controllers to the
multiscale model of the thin film growth process.

1. Introduction

Modeling and control of thin film microstructure in thin
film deposition processes has attracted significant research
attention in recent years. Specifically, kinetic Monte Carlo
(kMC) models based on a square lattice and utilizing the
solid-on-solid (SOS) approximation for deposition were
initially employed to describe the evolution of film micro-
structure and design feedback control laws for thin film
surface roughness.1,2 Furthermore, a method that couples
partial differential equation (PDE) models and kMC models
was developed for computationally efficient multiscale
optimization of thin film growth.3 However, kMC models
are not available in closed-form and this limitation restricts
the use of kMC models for system-level analysis and design
of model-based feedback control systems.

Stochastic differential equations (SDEs) arise naturally in the
modeling of surface morphology of ultrathin films in a variety
of thin film preparation processes.4-8 Advanced control methods
based on SDEs have been developed to address the need of
model-based feedback control of thin film microstructure.
Specifically, methods for state/output feedback control of surface
roughness based on linear9-11 and nonlinear12,13 SDE models
have been developed.

In the context of modeling of thin film porosity, kMC
models have been widely used to model the evolution of
porous thin films in many deposition processes.14-17 Deter-
ministic and stochastic ordinary differential equation (ODE)
models of film porosity were recently developed18 to model
the evolution of film porosity and its fluctuation and design
model predictive control (MPC) algorithms to control film
porosity to a desired level and reduce run-to-run porosity
variability. More recently, simultaneous control of film
thickness, surface roughness, and porosity within a unified
control framework was addressed on the basis of a kMC thin
film growth model using the deposition rate as the manipu-

lated input.19 However, in a practical thin film growth setting,
the surface deposition rate cannot be manipulated directly
but indirectly through manipulation of the inlet precursor
concentration.

The present work addresses this practical consideration and
focuses on simultaneous regulation of film thickness, surface
roughness, and porosity in a multiscale model of a thin film
growth process using the inlet precursor concentration as the
manipulated input. Specifically, under the hypothesis of a
continuum, a partial differential equation model is used to
describe the dynamics of the precursor concentration in the
gas phase. The thin film growth process is modeled via a
microscopic kinetic Monte Carlo simulation model on a
triangular lattice with vacancies and overhangs allowed to
develop inside the film. The macroscopic and microscopic
models are connected through boundary conditions. Distrib-
uted parameter and lumped dynamic models are developed
to describe the evolution of the film surface profile and
porosity, respectively. The developed dynamic models are
then used as the basis for the design of state and output
feedback model predictive control algorithms to simulta-
neously regulate film thickness, surface roughness, and
porosity. Simulation results demonstrate the applicability and
effectiveness of the proposed modeling and control approach
by applying the proposed controllers to the multiscale process
model.

2. Preliminaries

We consider a silicon thin film growth process in a low-
pressure chemical vapor deposition (LPCVD) reactor, which
is shown in Figure 1. Due to the large discrepancies of the
time and length scales between the gas-phase and the thin-
film growth phenomena, two different models are employed
to describe the evolutions of the gas phase and of the thin
film. Under the hypothesis of continuum, a PDE model
derived from a mass balance is used to describe the precursor
concentration in the gas-phase. The thin film growth model
is simulated through an on-lattice kMC model that uses a
triangular lattice and allows overhangs and vacancies to

* To whom correspondence should be addressed: E-mail: pdc@
seas.ucla.edu. Phone: +1(310)794-1015. Fax: +1(310)206-4107.

† Department of Chemical and Biomolecular Engineering.
‡ Department of Electrical Engineering.

Ind. Eng. Chem. Res. 2010, 49, 7795–7806 7795

10.1021/ie901396g  2010 American Chemical Society
Published on Web 11/12/2009



develop inside the film. The two models are connected
through boundary conditions, i.e., the adsorption rate in the
kMC model depends on the reactant concentration right above
the surface following an appropriate deposition rate law.

2.1. Gas-Phase Model. For the gas-phase model, a vertical,
one-dimensional, stagnant flow geometry is considered. The
inlet flow consists of two components, hydrogen and silane.
Silane diffuses through a stagnant gas film of hydrogen. The
temperature is constant throughout the gas phase. Thus, under
the assumption of continuum, the silane concentration in the
gas phase can be modeled via the following parabolic PDE:

where X is the molar fraction of silane, D is the diffusivity
of silane, and the term - KX accounts for the consumption
of silane in the gas phase, i.e., via gas-phase reaction and
undesired sediments on reactor walls (we assume that this
term has a first-order dependence on silane concentration,
but other rate laws can be readily used in the present
framework).

The diffusivity, D, is calculated using a second order
polynomial of temperature as follows:20

where Tg is the gas phase temperature set at 300 K, and c0, c1,
and c2 are the coefficients of the polynomial whose values are
given in Table 1.

The diffusion equation of eq 1 is subject to the initial
condition

the boundary condition at the inlet (z ) z0 ) 0.4 m)

where Xin is the inlet concentration of silane, and the boundary
condition at the wafer surface (z ) 0)

where C is the molar concentration of the gas phase right
above the surface and RW is the deposition rate on the wafer

surface. Under the assumption of ideal gas, C ) P/(RTg),
where P is the gas phase pressure and R is the ideal gas
constant.

When silane diffuses to the wafer surface, it decomposes into
silicon and hydrogen as follows:

Then, the silicon atoms are deposited onto the thin film. The
deposition rate law on the surface is given as follows:20

where Xs is the silane concentration at the wafer surface, and k,
KH, and Ks are coefficients in the rate law. The coefficient k
follows an Arrhenius-type law as follows:20

where Ts is the temperature of the wafer surface. The values of
the parameters and coefficients of the gas-phase model can be
found in Table 1.

2.2. On-lattice Kinetic Monte Carlo Model of Thin
Film Growth. The film growth model used in this work is an
on-lattice kMC model in which all particles occupy discrete
lattice sites.19,21 The on-lattice kMC model is valid for a low
temperature region, T < 0.5Tm (Tm is the melting point of the
crystal). A triangular lattice is selected to represent the crystalline
structure of the film, as shown in Figure 2. The new particles
are always deposited from the top side of the lattice where the
gas phase is located. The number of sites in the lateral direction
is defined as the lattice size and is denoted by L. In the triangular
lattice, a bottom layer in the lattice is initially set to be fully
packed and fixed, as shown in Figure 2. There are no vacancies
in this layer, and the particles in this layer cannot migrate. This
layer acts as the substrate for the deposition and is not counted
in the computation of the number of the deposited particles,
i.e., this fixed layer does not influence the film microscopic
properties. Two types of microscopic processes (Monte Carlo
events) are considered: an adsorption process, in which particles
are incorporated into the film from the gas phase, and a
migration process, in which surface particles move to adjacent
sites.14,16,17,22

In an adsorption process, an incident particle comes in
contact with the film and is incorporated onto the film. The
microscopic adsorption rate, W, which is in units of layers
per unit time, is equal to the deposition rate, RW (i.e., W )

Figure 1. Schematic of thin film growth process in an LPCVD reactor.

Table 1. Gas-Phase Model Parameters

Tg 300 K P 1 torr
Ts 850 K z0 0.4 m
c0 -2.90 K 0.5
c1 2.06 × 10-2 KH 0.19 Pa-1/2

c2 2.81 × 10-5 Ks 0.70 Pa-1

∂X
∂t

) D
∂

2X

∂z2
- KX (1)

D ) c0 + c1Tg + c2Tg
2 (2)

X(z, 0) ) 0 (3)

X(z0, t) ) Xin (4)

CD
∂X
∂z

(0, t) ) RW (5)

Figure 2. Thin film growth process on a triangular lattice.

SiH4 f Si + 2H2 (6)

RW )
kPXs

1 + KH(P(1 - Xs))
1/2 + KsPXs

(7)

k ) 1.6 × 104 exp(-18500/Ts) mol · m-2 · s-1 · Pa-1 (8)
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RW). The incident particles are initially placed at random
positions above the film lattice and move toward the lattice
in the vertical direction until contacting the first particle on
the film. Upon contact, the particle moves (relaxes) to the
nearest vacant site. Surface relaxation is conducted if this
site is unstable, i.e., site with only one neighboring particle.
When a particle is subject to surface relaxation, the particle
moves to its most stable neighboring vacant site and is finally
incorporated into the film.

In a migration process, a particle overcomes the energy barrier
of the site and jumps to its vacant neighboring site. The
migration rate (probability) of a particle follows an Arrhenius-
type law with a precalculated activation energy barrier that
depends on the local environment of the particle and the
substrate temperature. Since the film is thin, the temperature is
assumed to be uniform throughout the film. The interior particles
(the particles fully surrounded by six nearest neighbors) and
the substrate layer particles cannot migrate.

When a particle is subject to migration, it can jump to
either of its vacant neighboring sites with equal probability,
unless the vacant neighboring site has no nearest neighbors,
i.e., the surface particle cannot jump off the film and it can
only migrate on the surface. The deposition process is
simulated using the continuous-time Monte Carlo (CTMC)
method (see ref 18 for details on the microscopic model and
simulation algorithm).

2.3. Definitions of Surface Height Profile and Film Site
Occupancy Ratio. Utilizing the continuous-time Monte Carlo
algorithm, simulations of the kMC model of a porous silicon
thin film growth process can be carried out. Snapshots of
film microstructure, i.e., the configurations of particles within
the triangular lattice, are obtained from the kMC model at
various time instants during process evolution. To quantita-
tively evaluate the thin film microstructure, two variables,
surface roughness and film porosity, are introduced in this
subsection.

Surface roughness, which measures the texture of the thin
film surface, is represented by the root-mean-square (rms)
of the surface height profile of the thin film. Determination
of surface height profile is slightly different in the triangular
lattice model compared to an SOS model. In the SOS model,
the surface of the thin film is naturally described by the
positions of the top particles of each column. In the triangular
lattice model, however, due to the existence of vacancies and
overhangs, the definition of the film surface needs further
clarification (see ref 21 for details). Specifically, taking into
account practical considerations of surface roughness mea-
surements, the surface height profile of a triangular lattice
model is defined based on the particles that can be reached
in the vertical direction, as shown in Figure 3. In this
definition, a particle is considered as a surface particle only
if it is not blocked by the particles in the neighboring
columns. Therefore, the surface height profile of a porous
thin film is the line that connects the sites that are occupied
by the surface particles. With this definition, the surface
height profile can be treated as a function of the spatial
coordinate. Surface roughness, as a measurement of the
surface texture, is defined as the standard deviation of the
surface height profile from its average height. The math-
ematical definition of surface roughness is given later in
section 3.1.

In addition to film surface roughness, the film site occupancy
ratio (SOR) was introduced in ref 18 to represent the extent of

the porosity inside the thin film. The mathematical expression
of film SOR is defined as follows:

where F denotes the film SOR, N is the total number of
deposited particles on the lattice, L is the lattice size, and H
denotes the number of deposited layers. Note that the
deposited layers are the layers that contain only deposited
particles and do not include the initial substrate layers. The
variables in the expression of eq 9 can be found in Figure 4.
Since each layer contains L sites, the total number of sites
in the film that can be contained within the H layers is LH.
Thus, film SOR is the ratio of the occupied lattice sites, N,
over the total number of available sites, LH. Film SOR ranges
from 0 to 1. Specifically, F ) 1 denotes a fully occupied
film with a flat surface. The value of zero is assigned to F at
the beginning of the deposition process since there are no
particles deposited on the lattice.

3. Dynamic Model Construction

3.1. Edwards-Wilkinson-type Equation of Surface
Height. An Edwards-Wilkinson(EW)-type equation, a second-
order stochastic PDE, can be used to describe the surface

Figure 3. Definition of surface height profile. A surface particle is a particle
that is not blocked by particles from both of its neighboring columns in the
vertical direction.

Figure 4. Illustration of the definition of the film SOR of eq 9.

F ) N
LH

(9)
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height evolution in many microscopic processes that involve
thermal balance between adsorption (deposition) and migra-
tion (diffusion). Following our previous works,19,21 an EW-
type equation is chosen to describe the dynamics of the
fluctuation of surface height (the validation of this choice
can be found in ref 23):

subject to periodic boundary conditions

and the initial condition

where x ∈ [-π,π] is the spatial coordinate, t is the time, rh

and ν are the model parameters, and �(x,t) is a Gaussian white
noise with the following mean and covariance:

where σ2 is a parameter which measures the intensity of the
Gaussian white noise and δ( · ) denotes the standard Dirac
delta function. The values of rh, V, and σ will be computed
so that the solutions of eq 10 approximate well data obtained
from the kMC simulations of the thin film growth process.

To proceed with control design, a stochastic ODE approxima-
tion of eq 10 is first derived using modal decomposition.
Consider the eigenvalue problem of the linear operator of eq
10, which takes the following form:

where λn denotes an eigenvalue and φjn denotes an eigen-
function. A direct computation of the solution of the above
eigenvalue problem yields λ0 ) 0 with ψ0 ) 1/(2π)1/2, and
λn ) -νn2 (λn is an eigenvalue of multiplicity two) with
eigenfunctions φn ) (1/√π) sin(nx) and ψn ) (1/√π) cos(nx)
for n ) 1, ..., ∞. Note that the φjn in eq 14 denotes either φn

or ψn. The solution of eq 10 is expanded in an infinite series
in terms of the eigenfunctions of the operator of eq 14 as
follows:

where Rn(t) and �n(t) are time-varying coefficients. Substitut-
ing the above expansion for the solution, h(x,t), into eq 10
and taking the inner product with the adjoint eigenfunctions,
φn*(x) ) (1/√π) sin(nx) and ψn*(x) ) (1/√π) cos(nx), the
following system of infinite stochastic ODEs is obtained:

where

The covariances of �R
n(t) and ��

n(t) can be obtained:
〈�R

n(t)�R
n(t′)〉 ) σ2δ(t - t′) and 〈��

n(t)��
n(t′)〉 ) σ2δ(t - t′).

Due to the orthogonality of the eigenfunctions of the operator
in the EW equation of eq 10, �R

n(t) and ��
n(t), n ) 0,1, ..., are

stochastically independent.
Since the stochastic ODE system is linear, the analytical

solution of state variance can be obtained from a direct
computation as follows:

where 〈Rn
2(t0)〉 and 〈�n

2(t0)〉 are the state variances at time t0.
The analytical solution of state variance of eq 18 will be used
in the parameter estimation and the MPC design.

When the dynamic model of surface height profile is
determined, surface roughness of the thin film is defined as the
standard deviation of the surface height profile from its average
height and is computed as follows:

where hj(t) ) (1/2π)∫-π
π h(x,t) dx is the average surface height.

According to eq 15, we have hj(t) ) �0(t)ψ0. Therefore, 〈r2(t)〉
can be rewritten in terms of 〈Rn

2(t)〉 and 〈�n
2(t)〉 as follows:

where hj ) (1/2π)∫-π
π h(x,t) dx ) �0(t)ψ0 is the average of

surface height. Thus, eq 20 provides a direct link between
the state variance of the infinite stochastic ODEs of eq 16
and the expected surface roughness of the thin film. However,
due to the presence of infinite terms in the summation of eq
20, the solution of the expected surface roughness of eq 20
cannot be directly used in the MPC design. Thus, a reduced-
order model is needed and is introduced in the MPC design
later in section 4.1. Note that the parameter rh does not appear
in the expression of surface roughness, since only the zeroth
state, �0, is affected by rh, but this state is not included in
the computation of the expected surface roughness square
of eq 20.

Film thickness, which is represented by the average of surface
height, hj, is another objective under consideration in this work.
The dynamics of the expected value of averaged surface height
can be obtained from the analytical solution of the zeroth state,
�0, from eq 16, as follows:

∂h
∂t

) rh + ν ∂
2h

∂x2
+ �(x, t) (10)

h(-π, t) ) h(π, t),
∂h
∂x

(-π, t) ) ∂h
∂x

(π, t) (11)

h(x, 0) ) h0(x) (12)

〈�(x, t)〉 ) 0
〈�(x, t)�(x', t')〉 ) σ2δ(x - x')δ(t - t')

(13)

Aφ̄n(x) ) ν
d2

φ̄n(x)

dx2
) λnφ̄n(x)

φ̄n(-π) ) φ̄n(π),
dφ̄n

dx
(-π) )

dφ̄n

dx
(π)

(14)

h(x, t) ) ∑
n)1

∞

Rn(t)φn(x) + ∑
n)0

∞

�n(t)ψn(x) (15)

d�0

dt
) √2πrh + ��

0(t)

dRn

dt
) λnRn + �R

n(t),
d�n

dt
) λn�n + ��

n(t), n ) 1, ..., ∞
(16)

�R
n(t) ) ∫-π

π
�(x, t)φn*(x) dx, ��

n(t) )∫-π

π
�(x, t)ψn*(x) dx

(17)

〈Rn
2(t)〉 ) σ2

2νn2
+ (〈Rn

2(t0)〉 -
σ2

2νn2)e-2νn2(t-t0)

〈�n
2(t)〉 ) σ2

2νn2
+ (〈�n

2(t0)〉 -
σ2

2νn2)e-2νn2(t-t0)

n ) 1, 2, ..., ∞

(18)

r(t) ) � 1
2π ∫-π

π
[h(x, t) - hj(t)]2 dx (19)

〈r2(t)〉 ) 1
2π

〈∫-π

π
(h(x, t) - hj(t))2 dx〉

) 1
2π

〈 ∑
i)1

∞

(Ri
2(t) + �i

2(t))〉

) 1
2π ∑

i)1

∞

[〈Ri
2(t)〉 + 〈�i

2(t)〉] (20)

d〈hj〉
dt

) rh (21)

7798 Ind. Eng. Chem. Res., Vol. 49, No. 17, 2010



The analytical solution of expected value of film thickness, 〈hj〉,
can be obtained directly from eq 21 as follows:

3.2. Dynamic Model of Film Site Occupancy Ratio. The
concept of film site occupancy ratio (SOR) is used to
characterize film porosity. According to the definition of film
SOR of eq 9, film SOR accounts for all deposited layers
during the entire deposition process. Thus, film SOR is a
cumulative property, the evolution of which can be character-
ized by an integral form. Before further derivation of the
dynamic model of film SOR, a concept of instantaneous film
SOR of the film layers deposited between time t and t + dt,
denoted by Fd, is first introduced as the spatial derivative of
the number of deposited particles in the growing direction
as follows:

In eq 23, the lattice size L is a constant and the derivative
dH can be written as a linear function of time derivative dt as
follows:

where rH is the growth rate of the thin film from the top layer
point of view. Note that rH is different from the model coefficient
rh in eq 10. Thus, the expressions of N and H can be obtained
by integrating eqs 23 and 24 as follows:

With the definition of F of eq 9 and the expressions of N and
H of eq 25, the film SOR of eq 9 can be rewritten in an integral
form as follows:

To simplify the subsequent development and develop an
SOR model that is suitable for control purposes, we assume
(this assumption will be verified in the closed-loop simulation
results below where the performance of the controller will
be evaluated) that the dynamics of the instantaneous film
SOR, Fd, can be approximated by a linear first-order process,
i.e.:

where τ is the time constant and Fd
ss is the steady-state value

of the instantaneous film SOR. We note that the first-order
ODE model of eq 27 was introduced and justified with
numerical results in refs 18 and 23 for the modeling of the
partial film SOR, which is defined to characterize the evolu-
tion of the film porosity of layers that are close to the film
surface. In this work, the instantaneous film SOR is a similar
concept to the partial film SOR, because it also describes
the contribution to the bulk film porosity of the newly

deposited layers. Therefore, the first-order ODE model is a
suitable choice to describe the evolution of the instantaneous
film SOR.

From eq 26, it follows that at large times as Fd approaches
Fd

ss, the steady-state film SOR (Fss) approaches the steady-state
value of the instantaneous film SOR (i.e., Fss ) Fd

ss). The
deterministic ODE system of eq 27 is subject to the following
initial condition:

where t0 is the initial time and Fd0 is the initial value of the
instantaneous film SOR. From eqs 27 and 28 and the fact that
Fss ) Fd

ss at large times, it follows that

For controller implementation purposes, the expression of the
film SOR can be derived as follows:

where t0 is the current time, F0 and H0 are film SOR and film
height at time t0, respectively.

Substituting the solution of Fd of eq 29 into eq 30 and
assuming that rH is constant for t > τ > t0, which is taken to be
the case in the parameter estimation and the MPC formulations
below, the analytical solution of film SOR at time t can be
obtained as follows:

which is directly utilized in the model predictive control
formulation of eq 34 below.

4. Model Predictive Controller Design

In this section, model predictive controllers are designed to
regulate the expected values of film roughness square, SOR,
and thickness to desired levels by manipulating the inlet silane
concentration. Two different ways of implementing the desired
film thickness requirement are presented and compared. A
reduced-order model of the EW equation is used in the MPC
formulation to approximate the dynamics of the surface rough-
ness. State feedback control is considered in this section to
present the control algorithms, i.e., the surface height profile
and the value of film SOR are assumed to be available to the
controller. Porosity estimation-based model predictive control
is considered in section 6.

4.1. Reduced-Order Model for Surface Roughness. In the
MPC formulation, the expected surface roughness may be
computed from the EW equation of eq 10 by substituting
the solution of the state variance of eq 18 into the expression
of the expected surface roughness square of eq 20. However,
the EW equation is a distributed parameter dynamic model,
which contains infinite dimensional stochastic states. There-
fore, the solution of the EW equation leads to a model
predictive controller of infinite order that cannot be realized

〈hj(t)〉 ) 〈hj(t0)〉 + rh(t - t0) (22)

Fd ) dN
d(HL)

(23)

dH ) rH dt (24)

N(t) ) L∫0

t
FdrH ds

H(t) ) ∫0

t
rH ds

(25)

F )
∫0

t
FdrH ds

∫0

t
rH ds

(26)

τ
dFd(t)

dt
) Fd

ss - Fd(t) (27)

Fd(t0) ) Fd0 (28)

Fd(t) ) Fss + (Fd0 - Fss)e-(t-t0)/τ (29)

F(t) )
∫0

t0 FdrH ds +∫t0

t
FdrH ds

∫0

t0
rH ds +∫t0

t
rH ds

)
F0H0 +∫t0

t
FdrH ds

H0 +∫ t0

t rH ds

(30)

F )
F0H0 + rH[Fss(t - t0) + (Fss - F0)τ(e-(t-t0)/τ - 1)]

H0 + rH(t - t0)
(31)
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in practice (i.e., the practical implementation of a control
algorithm based on such a system will require the computa-
tion of infinite sums which cannot be done by a computer).
To this end, a reduced-order model of the infinite dimensional
ODE model of eq 16 is instead derived and used to calculate
the prediction of the expected surface roughness in the model
predictive controller.

Due to the structure of the eigenspectrum of the linear
operator of the EW equation of eq 10, the dynamics of the EW
equation are characterized by a finite number of dominant
modes. By neglecting the high-order modes (n g m + 1), the
system of eq 16 can be approximated by a finite-dimensional
system as follows:

Note that the ODE for the zeroth state is also neglected, since
the zeroth state does not contribute to surface roughness.

Using the finite-dimensional system of eq 32, the expected
surface roughness square, 〈r2(t)〉, can be approximated with the
finite-dimensional state variance as follows:

where the tilde symbol in 〈r̃2(t)〉 denotes its association with a
finite-dimensional system.

4.2. MPC Formulation. We consider the control problem
of film surface roughness, porosity, and thickness regulation
by using a model predictive control design. The expected
values, 〈r2〉, 〈F〉, and 〈hj〉, are chosen as the control objectives.
The adsorption rate is computed by the controller, which, in
turn, is used to calculate the inlet silane concentration via
eq 7 (i.e., the presence of the gas phase is neglected in the
calculation of the control action, Xin, but it is accounted for
in the multiscale process model, where the control action is
applied). The substrate temperature is fixed at 850 K during
the entire closed-loop simulation. The control action is
obtained by solving a finite-horizon optimal control problem.

The cost function in the optimal control problem (eq 34
below) includes penalty on the deviation of 〈r2〉 and 〈F〉 from
their respective set-point values. However, since the ma-
nipulated input variable is the adsorption rate and the film
deposition process is a batch operation (i.e., the film growth
process is terminated within a certain time), a desired value
of the film thickness is also required to prevent an under-
grown thin film at the end of the deposition process.
Therefore, in the MPC shown in eq 34, the desired film
thickness is regarded as the set-point value of the film
thickness, i.e., the deviation of the film thickness from the
desired value is included in the cost function. However, only
the negative deviation (when the film thickness is less than
the desired value) is penalized; no penalty is imposed on the
deviation when the thin film thickness exceeds the desired
thickness. Different weighting factors are assigned to the
penalties on the deviations of the expected values of film
surface roughness, SOR, and thickness from their desired
values. Relative deviations are used in the formulation of
the cost function to make the magnitude of the different terms
comparable. The optimization problem is subject to the
dynamics of the reduced-order model of surface roughness
of eq 32, the dynamics of the film thickness of eq 21, and
the dynamics of the film SOR of eq 26. The optimal profile

of the adsorption rate is calculated by solving a finite-
dimensional optimization problem in a receding horizon
fashion. Specifically, the MPC problem is formulated as
follows:

where t is the current time, ∆ is the sampling time, p is the
number of prediction steps, p∆ is the specified prediction
horizon, ti, i ) 1, 2, ..., p, is the time of the ith prediction
step (ti ) t + i∆), respectively, Wi, i ) 1, 2, ..., p, is the
adsorption rate at the ith step (Wi ) W(t + i∆)), respectively,
qr2,i, qh,i, and qF,i, i ) 1, 2, ..., p, are the weighting penalty
factors for the deviations of 〈r2〉 and 〈F〉 from their respective
setpoints rset

2 and Fset, 〈hj〉 from its desired hmin, at the ith
prediction step, and Wmin and Wmax are the lower and upper
bounds on the deposition rate, respectively. Note that we
choose 〈hj〉, rh, and F(t0) to replace H, rH, and Fd0 in the MPC
formulation of eq 34, respectively.

The optimal set of (W1, W2, ..., Wp), is obtained from the solution
of the multivariable optimization problem of eq 34, and only the
first value of the manipulated input trajectory, W1, is used to
compute the inlet silane concentration and is applied to the
deposition process from time t until the next sampling time, when
new measurements are received and the MPC problem of eq 34 is
solved for the computation of the next optimal input trajectory.

The dependence of the model coefficients, rh, ν, σ2, Fss, and
τ, on adsorption rate is used in the formulation of the model
predictive controller of eq 34. Thus, parameter estimation from
open-loop kMC simulation results of the thin film growth
process for a variety of operation conditions is performed to
obtain the dependence of the model coefficients on adsorption
rate using least-squares methods.21

Remark 1. In the MPC formulation shown in eq 34, the
desired thickness requirement is implemented by including
penalty on the negatiVe deViation of the expected film thickness
from its set point in the cost function. This formulation cannot
guarantee that the final film thickness is greater than the set-
point Value, thus it can be Viewed as a soft constraint

dRn

dt
) λnRn + �R

n(t),
d�n

dt
) λn�n + ��

n(t)

n ) 1, ..., m
(32)

〈r̃2(t)〉 ) 1
2π ∑

i)1

m

[〈Ri
2(t)〉 + 〈�i

2(t)〉] (33)

min
W1,...,Wi,...,Wp

J ) ∑
i)1

p

{qr2,iFr2,i + qh,iFh,i + qF,iFF,i}
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2 - 〈r̃2(ti)〉
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2 ]2
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hmin
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, hmin > 〈hj(ti)〉

0, hmin e 〈hj(ti)〉
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]2
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2(ti)〉 )

σ2
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σ2

2νn2)e-2νn2∆
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2(ti)〉 )

σ2

2νn2
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σ2
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〈hj(ti)〉 ) 〈hj(ti-1)〉 + rh∆

〈F(ti)〉
) 1

〈hj(ti-1)〉 + rh∆
{〈F(ti-1)〉〈hj(ti-1)〉 +
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-∆/τp - 1)]}

Wmin < Wi < Wmax, i ) 1, 2, ..., p

(34)
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formulation. To ensure that the thickness requirement would
be satisfied, a thickness constraint should be implemented as a
lower bound on deposition rate, which is the smallest deposition
rate needed to reach the desired thickness at the end of the
deposition process. The modified MPC, accounting for the gas
phase Via a constant gain, can be then formulated as follows:

It is important to note that it is possible that the required
minimum deposition rate is larger than the upper bound imposed
on W, thereby resulting in an infeasible optimization problem.
If this happens, the lower bound is reset to Wmax-0.001.

Remark 2. A multiVariable control algorithm can be
deVeloped for more improVed closed-loop control by simulta-
neously manipulating two or more process input Variables. For
example, the adsorption rate, W, and the substrate temperature,
T, may be used as two simultaneous manipulated inputs in a
multiVariable control design. The MPC framework presented
in this work is suitable for multiVariable control system design.
HoweVer, parameter estimation for a wider range of operating
conditions is required to capture the parameter dependence on
the adsorption rate and the substrate temperature. Such a
parameter dependence may be tabulated Via interpolation or
formulated Via linear or nonlinear regression.10

Remark 3. Another possible improVement for the control of
a thin film growth process is to take into account the transition
and crossoVer of the thin film growth behaVior. Specifically,
we haVe recently found23 that at different regions of operating
conditions, i.e., adsorption rate and substrate temperature, the
growth behaVior of thin films may be described by different
dynamic models. At low temperatures, the surface profile of a
porous thin film follows closely the EW dynamics. As temper-
ature increases, the growth behaVior deViates from the EW
equation. Other dynamic models (Kardar-Parisi-Zhang-type
equations or the stochastic Kuramoto-SiVashinsky equation)
may be more suitable to describe the eVolution of the thin film
surface profile. Therefore, the transition and crossoVer may be
incorporated into the control design by switching the dynamic
models at different regions of operation conditions. While the
control system designed in this work is successful in achieVing

the control objectiVes, the use of eVen more accurate dynamic
models of the film growth at different regimes may help further
improVe the accuracy of predictions in the MPC.

5. Simulation Results

In this section, the proposed model predictive controllers of
eqs 34 and 35 are applied to the multiscale model of the thin
film growth process described in section 2. The value of the
adsorption rate is obtained from the solution of the optimization
problem at each sampling time. The corresponding inlet
concentration of silane is calculated from the adsorption rate
based on the rate law of eq 7 and is applied to the closed-loop
system until the next sampling time. The optimization problems
in the MPC formulations of eqs 34 and 35 are solved via a
local constrained minimization algorithm using a broad set of
initial guesses.

The desired values (set-point values) in the closed-loop
simulations are rset

2 ) 50 layer2 and Fset ) 0.985, with a desired
film thickness of hmin ) 800 layers. The substrate temperature
is fixed at 850 K. The variation of adsorption rate is from 0.1
to 0.45 layer/s (0.45 layer/s is the maximum adsorption rate
that can be obtained according to the rate law of eq 7 at Xs )
1 and the given conditions of the gas phase in Table 1). The
number of prediction steps is set to be p ) 5. The prediction
horizon of each step is fixed at ∆ ) 5 s. The closed-loop
simulation duration is 3000 s. All expected values are obtained
from 1000 independent simulation runs.

5.1. Regulation of Film Surface Roughness and
Thickness. Closed-loop simulations of regulating film surface
roughness and thickness are first carried out. In these control
problems, the control objective is to regulate the expected
surface roughness square and expected film thickness to desired
values. Thus, the cost functions of these problems contain
penalties on the deviations of the expected surface roughness
square from the set-point value and of the expected film
thickness from the desired value. The weighting factors are qr2,i
) 0.1, qh,i ) 1 and qF,i ) 0 for all i.

Figure 5 shows the closed-loop simulation results of the
roughness-thickness control problem. From Figure 5, it can be
seen that the model predictive controller drives the expected
film thickness close to the desired value, at the end of the
simulation. However, due to the requirement of achieving a
desired film thickness value, which includes a higher penalty
factor, the controller computes a higher adsorption rate, and
thus, it results in a higher expected surface roughness square at
the end of the closed-loop simulation. The effect of the penalty

min
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1
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-∆/τp - 1)]}

Wmin < Wi < Wmax, i ) 1, 2, ..., p

rh >
hmin - h(ti)

(tend - ti)
, i ) 1, 2, ..., p (35)

Figure 5. Profiles of the expected values of surface roughness square (solid
line, left y-axis) and of film thickness (dashed-dotted line, right y-axis)
under closed-loop operation using the MPC formulation of eq 34 with qr2,i
) 0.1, qh,i ) 1, and qF,i ) 0.
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on film thickness can be observed by comparing Figure 5 to
Figure 6, which shows the closed-loop simulation results without
penalty on film thickness. It can be clearly seen that, without
penalty on the deviation of film thickness from its desired value,
the expected surface roughness square approaches closer to the
set-point value at the end of the simulation, while the expected
film thickness is lower than the desired value. Figure 7 shows
the corresponding profiles of the mean value of inlet precursor
concentration for both cases, which demonstrates that in the
simulation runs of Figure 5 (where a higher penalty is used on
film thickness) the controller uses a higher deposition rate.
Figure 8 shows the histogram of film thickness from 1000
independent simulation runs at the end of the simulations (t )
3000 s) using the MPC formulation of eq 34 with qr2,i ) 0.1,
qh,i ) 1, and qF,i ) 0. Although the mean value is around 800,
the distribution is wide and there are many simulations in which
the thickness set-point is not reached. The histogram of
roughness square is shown in Figure 9. In this case, the mean
value is 60.37.

5.2. Regulation of Film Porosity. In this subsection, it is
demonstrated that the precise regulation of SOR to its set point
can be achieved. Figure 10 shows the closed-loop simulation results
of the porosity control problem where the cost function includes
only a penalty on the deviation of film SOR from the desired value,
0.985. The histogram of SOR is also presented in Figure 11, and
the mean value is 0.9845. We conclude from these two figures
that the model predictive controller successfully drives the expected
film SOR to the set-point value.

5.3. Simultaneous Regulation of Film Surface Rough-

ness, Porosity, and Thickness. Closed-loop simulations of
simultaneous regulation of film thickness, surface roughness, and
SOR are carried out with the same weighting factors. Since the
inlet silane concentration is the only manipulated input, the desired
values of rset

2 and Fset cannot be achieved simultaneously, i.e., the
values of inlet silane concentration needed to achieve the desired
surface roughness and film thickness are not the same. Therefore,
a trade-off between the two set-points is made by the controller.
Figures 12 and 13 show the simulation results for this scenario.
The expected values of both surface roughness square and film
SOR approach their corresponding set-points and the expected film

Figure 6. Profiles of the expected values of surface roughness square (solid
line, left y-axis) and of film thickness (dashed-dotted line, right y-axis)
under closed-loop operation using the MPC formulation of eq 34 with
qr2,i ) 1, qh,i ) 0, and qF,i ) 0.

Figure 7. Profiles of expected inlet silane concentrations under closed-
loop operation using the MPC formulation of eq 34 with qr2,i ) 0.1, qh,i )
1, and qF,i ) 0 and the MPC formulation of eq 34 with qr2,i ) 1, qh,i ) 0,
and qF,i ) 0 (dashed line).

Figure 8. Histogram of closed-loop film thickness at the end of simulation
(t ) 3000 s) using the MPC formulation of eq 34 with qr2,i ) 0.1, qh,i )
1, and qF,i ) 0.

Figure 9. Histogram of closed-loop surface roughness square at the end of
simulation (t ) 3000 s) using the MPC formulation of eq 34 with qr2,i )
0.1, qh,i ) 1, and qF,i ) 0.

Figure 10. Profiles of the expected values of film SOR (solid line, left
y-axis) and of inlet silane concentration (dashed-dotted line, right y-axis)
under closed-loop operation using the MPC formulation of eq 34 with
qr2,i ) 0, qh,i ) 0, and qF,i ) 1.
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thickness is lower than the desired one. Figure 14 shows the
histogram of SOR, where a very narrow distribution around the
mean value is observed.

5.4. Regulation of Roughness with a Constraint on
Film Thickness. In this subsection, the modified model predic-
tive controller of eq 35 is applied to the regulation of surface
roughness and film thickness. The cost function penalizes only
roughness deviation, and the weighting factors are qr2,i ) 0.1
and qF,i ) qh,i ) 0.

Figure 15 shows the profile of the mean value of thickness
and roughness. The MPC drives the thickness above the desired

minimum value. The offset of the roughness square at the end
of simulation is larger compared to the result shown in Figure
5 where the film thickness is penalized in the cost function.
Figure 16 shows the histogram of film thickness for 1000
simulation runs. Almost every run reaches the minimum
thickness requirement, and the maximum negative offset is less
than 1. This can be compared with the result of the MPC
formulation of eq 34, where about 50% of the simulation runs
do not satisfy the thickness requirement. Figure 17 shows the
histograms of roughness square. Its distribution is wider
compared with the result of MPC of eq 34, shown in Figure 9.

Figure 11. Histogram of closed-loop SOR at the end of simulation (t )
3000 s) using the MPC formulation of eq 34 with qr2,i ) 0, qh,i ) 0, and
qF,i ) 1.

Figure 12. Profiles of the expected values of surface roughness square (solid
line, left y-axis) and of film thickness (dashed-dotted line, right y-axis)
under closed-loop operation using the MPC formulation of eq 34 with
qr2,i ) 1, qh,i ) 1, and qF,i ) 1.

Figure 13. Profiles of the expected values of film SOR (solid line, left
y-axis) and of inlet silane concentration (dashed-dotted line, right y-axis)
under closed-loop operation using the MPC formulation of eq 34 with
qr2,i ) 1, qh,i ) 1, and qF,i ) 1.

Figure 14. Histogram of closed-loop SOR at the end of simulation (t )
3000 s) using the MPC formulation of eq 34 with qr2,i ) 1, qh,i ) 1, and
qF,i ) 1.

Figure 15. Profiles of the expected values of surface roughness square (solid
line, left y-axis) and of film thickness (dashed-dotted line, right y-axis)
under closed-loop operation using the MPC formulation of eq 35 with
qr2,i ) 0.1, qh,i ) 0, and qF,i ) 0.

Figure 16. Histogram of closed-loop film thickness at the end of simulation
(t ) 3000 s) using the MPC formulation of eq 35 with qr2,i ) 0.1, qh,i )
0, and qF,i ) 0.
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It should be pointed out that the relative weighting between
thickness and roughness deviation plays a key role in the MPC
of eq 34. For example, by increasing the relative weighting of
thickness over roughness from 10 to 1000, the mean value of
the film thickness can be larger than the set point at the expense
of a much higher surface roughness.

6. Porosity Estimation-Based Model Predictive Control

The MPC formulations of eqs 34 and 35 have been derived
under the state feedback assumption. In this assumption, all the
required information about the thin film state can be measured
in real time during the closed-loop operation. However, it may
be difficult to measure the film porosity online with currently
available techniques, and thus, state feedback control of film
SOR may not be possible to be directly implemented in practice.
To address this problem, an estimation scheme is needed to
estimate the film porosity from other available film measure-
ments, e.g., the surface profile of the thin film. The proposed
MPC formulations will then use the estimates of the film SOR
in the optimization problem to compute the optimal solution
for the manipulated input.

To estimate the film porosity, we need the following
assumptions:

1. The number of deposited layers, H, is available or can be
measured from the surface profile of the thin film.

2. The adsorption rate at the wafer surface, W, can be
obtained, either from the simulation of the gas phase model or
by measuring the surface precursor concentration.

By substituting the number of deposited particles, N, with
the integral of the adsorption rate for the entire deposition
duration in the definition of film SOR of eq 9, film SOR can be
estimated by the following equation:

where F̂(ti) is the estimated film SOR.
To compare the estimated film SOR with its actual value

computed by the multiscale process model, we plot the profiles
of the estimated and of the actual SOR value from a single
simulation run in Figure 18. It can been seen that the estimate
follows closely the actual film SOR but reaches a lower steady-
state value at large times.

Using the estimation scheme of film SOR of eq 36, we can
construct an output feedback controller by combining the MPC
formulations of eqs 34 or 35 and the estimation scheme. To
demonstrate the effectiveness of the estimation scheme and of
the output feedback controller, we first consider the porosity-
only control problem. The MPC formulation of eq 34 is used
in the output feedback controller. The same operating conditions
are used in the output feedback control problem as in the state
feedback control problem in section 5. Figure 19 shows the
profiles of the film SOR and of the inlet concentration of silane.
The output feedback controller successfully stabilizes the
porosity close to the set point value, 0.985. Figure 20 shows
the histogram of SOR at t ) 3000 s under the output feedback
controller. It can be clearly seen that the output feedback
controller results in a wider distribution of film SOR at the end
of the simulation compared to the one under state feedback
control, which is expected due to the error introduced by porosity
estimation.

To further demonstrate the applicability of the output feedback
controller, we also consider simultaneous output feedback
control of film surface roughness, porosity and thickness. The
closed-loop simulation results can be found in Figures 21 and
22, which show the profiles of the expected value of the film
thickness, roughness square, film SOR, and of the inlet silane
concentration, respectively. The closed-loop profiles under
output feedback control are close to the results under state
feedback control presented in section 5.3, which is reasonable
since the film porosity is estimated quite well. The histogram
of the film SOR is also shown in Figure 23; it has a wider spread
compared to the one under state feedback control (Figure 14)
owing to the error introduced by the estimation.

Figure 17. Histogram of closed-loop surface roughness square at the end
of simulation (t ) 3000 s) using the MPC formulation of eq 35 with qr2,i
) 0.1, qh,i ) 0, and qF,i ) 0.

F̂(ti) )
∫0

ti
W(ti) dt

H(ti)
≈
F̂(ti-1)H(ti-1) + ∑

1

i

W(ti)∆

H(ti)
(36)

Figure 18. Profiles of SOR estimated via eq 36 (solid line) and computed
directly from the multiscale process model (dashed-dotted line).

Figure 19. Profiles of the expected value of film SOR (solid line, left y-axis)
and of inlet silane concentration (dashed-dotted line, right y-axis) under
closed-loop operation using the MPC formulation of eq 34 with qr2,i ) 0,
qh,i ) 0, and qF ) 1 and porosity estimation.
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7. Conclusions

In this work, we developed model predictive control algo-
rithms to simultaneously control film surface roughness, poros-
ity, and thickness in a multiscale model of a thin film growth
process. On the macroscopic side, the gas phase dynamics was
modeled by a continuous PDE model derived from a mass
balance. On the microscopic side, the thin film deposition
process was simulated via a kinetic Monte Carlo model
developed on a triangular lattice with vacancies and overhangs
allowed inside the film. Dynamic models of film surface height

and film porosity were developed and used in the MPC
algorithms. The regulation of film thickness was addressed in
two different ways. One way is to include penalty on the
deviation of the film thickness into the cost function, and the
other one is to impose a constraint on the adsorption rate to
ensure the desired film thickness at the end of the film growth
process. The proposed model predictive controllers were applied
to the multiscale thin film growth model to evaluate their
performance. In addition, an estimation scheme of film SOR
was introduced and used successfully in conjunction with the
MPC schemes.
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