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This work focuses on the development of a multivariable model predictive controller that simultaneously
regulates thin film surface roughness and mean slope to optimize light reflectance and transmittance during
thin film manufacturing by manipulating substrate temperature and deposition rate. Surface roughness and
surface slope are defined as the root-mean-squares of the surface height profile and the surface slope profile,
respectively. The dynamics of the evolution of the thin film surface height profile are assumed to be described
by an Edwards-Wilkinson-type equation (a second-order stochastic partial differential equation) in two spatial
dimensions. Analytical solutions of the expected surface roughness and surface slope are obtained on the
basis of the Edwards-Wilkinson equation and are used in the controller design. The model parameters of the
Edwards-Wilkinson equation depend on the substrate temperature and deposition rate. This dependence is
used in the formulation of the predictive controller to predict the influence of the control action on the surface
roughness and slope at the end of the growth process. The model predictive controller involves constraints on
the magnitude and rate of change of the control action and optimizes a cost that involves penalty on both
surface roughness and mean slope from the set-point values. The controller is applied to the two-dimensional
Edwards-Wilkinson equation and is shown to successfully regulate surface roughness and mean slope to
set-point values at the end of the deposition that yield desired film reflectance and transmittance.

1. Introduction

Thin film growth of semiconductor materials has attracted
significant research attention due to its importance in many
applications, such as microelectronic and photovoltaic devices.
The microscopic structure and surface morphology of the thin
films strongly influence the mechanical, electrical, and photo-
voltaic properties of the semiconductor devices. For example,
the surface roughness, which measures the deviation of the film
surface from an ideal one, determines the interfacial properties
between two successively deposited layers. Furthermore, recent
studies have demonstrated that the light trapping efficiency of
thin-film solar cells is determined by the surface roughness and
the mean surface slope, the latter of which is the root-mean-
square (rms) of the surface slope profile.1-5

Toward a rational approach to the manufacturing of thin films
with desired surface morphology and film microstructure,
significant efforts have been made over the last 10 years in the
microscopic modeling and feedback control of thin film growth
(see, for example, ref 6 for an overview of key results and
references). Modeling approaches can be broadly classified into
the following categories: kinetic Monte Carlo (kMC) methods
and stochastic differential equation (SDE) models. KMC
methods were initially introduced to simulate thin film micro-
scopic processes based on the microscopic rules and the
thermodynamic and kinetic parameters obtained from experi-
ments and molecular dynamics simulations.7-10 Since kMC
models are not available in closed form, they cannot be readily
used for feedback control design and system-level analysis. On
the other hand, SDE models can be derived from the corre-
sponding master equation of the microscopic process11,12 and/
or identified from process data.6,13 The closed form of the SDE

models enables their use as the basis for the design of feedback
controllers which can regulate thin film surface roughness
(e.g.,6,13,14), film porosity,14,15 and film thickness.16 Recently,
we have initiated an effort toward modeling and control of
surface mean slope which strongly influences the light reflec-
tance and transmittance properties of thin films. In this direction,
we have studied dynamics and lattice size dependence of surface
mean slope17 and predictive control of both surface roughness
and slope using stochastic partial differential equations (PDEs)
in one spatial dimension.18 Recent research work has also
focused on the computationally efficient multiobjective opti-
mization and predictive control of microscopic and multiscale
systems using in situ adaptive tabulation.19,20 However, model
predictive control of both surface roughness and slope using
stochastic PDEs in two spatial dimensions, an important problem
from a practical standpoint, to optimize the light trapping
efficiency during thin film manufacturing processes has not been
studied yet.

This work focuses on the development of a multivariable
model predictive controller that simultaneously regulates thin
film surface roughness and mean slope to optimize light
reflectance and transmittance during thin-film manufacturing by
manipulating substrate temperature and deposition rate. The
dynamics of the evolution of the thin film surface height profile
are assumed to be described by an Edwards-Wilkinson-type
equation in two spatial dimensions. Analytical solutions of the
expected surface roughness and surface slope are obtained on
the basis of the Edwards-Wilkinson equation and are used in
the design of a model predictive controller that manipulates
substrate temperature and deposition rate. The model predictive
controller optimizes a cost that involves penalty on both surface
roughness and mean slope from desired set-point values and
imposes constraints on the magnitude and rate of change of the
control action. The controller is applied to the two-dimensional
Edwards-Wilkinson equation and is shown to successfully
regulate the surface roughness and mean slope to set-point values
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at the end of the deposition that yield desired film reflectance
and transmittance.

2. Preliminaries

2.1. Edwards-Wilkinson Equation for Surface Height
Dynamics. The Edwards-Wilkinson (EW) equation, which is
a second-order stochastic PDE, has been demonstrated to
adequately describe the dynamics of the evolution of the surface
height profile in many thin-film growth processes that involve
a thermal balance between atom adsorption and surface
migration.17,21-23 In this work, an EW-type equation in two
spatial dimensions takes the following form:

where x ∈ [0, π], y ∈ [0, π] are the spatial coordinates, t is the
time, h(x, y, t) is the surface height, and �(x, y, t) is a Gaussian
white noise with a zero mean and the following covariance:

where δ( · ) denotes the Dirac delta function. c, c2, and σ2 are
model parameters that have explicit dependence on the mac-
roscopic operating variables, i.e., the substrate temperature, T,
and the deposition rate, W. Specifically, c is related to the growth
rate of the average surface height and c2 is related to the effect
of surface relaxation/migration. These model parameters can
be identified on the basis of kinetic Monte Carlo simulation or
experimental data.13,24 The stochastic PDE of eq 1 is subject to
periodic boundary conditions (PBCs) of the form:

and the initial condition

To analyze the dynamics and obtain a finite-dimensional
approximation of the EW equation, we first consider the
eigenvalue problem of the linear operator of eq 1 subject to the
periodic boundary conditions of eqs 3 and 4:

where λm,n denotes an eigenvalue, φm,n denotes an eigenfunction,
and ∇j, j ) 0, 1, denotes the gradient of a given function. The
solution of the eigenvalue problem is as follows:

The solution of the EW equation of eq 1 can be expanded in an
infinite series in terms of the eigenfunctions of the operator of
eq 6 as follows:

where z1,m,n, z2,m,n, z3,m,n, and z4,m,n are time-varying coefficients.
Substituting the above expansion for the solution, h(x,y,t) into

eq 1 and taking the inner product with the adjoint eigenfunctions,
the following system of infinite stochastic linear ordinary
differential equations (ODEs) for the temporal evolution of the
time-varying coefficients is obtained:

where �p,m,n ) ∫0
π∫0

π�(x, y, t)φp,m,n dx dy is the projection of the
noise �(x, y, t) on the ODE for zp,m,n. The noise term, �p,m,n, has
zero mean and covariance

The temporal evolution of the variance of mode zp,m,n can be
obtained from the solution of the linear ODE of eqs 15 and 16
as follows:

For feedback control purposes (see section 3 below), the
modes can be calculated from a surface height measurement as
follows:
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In many circumstances, only discrete height profile measure-
ments are available, thus eq 19 can be approximated by

where L is the number of spatial height sampling (measurement)
points in [0, π] in both x and y coordinates and ĥ(i, j, t) )
h(xi, yj, t) ) h(iπ/L, jπ/L, t). It is worth pointing out that, when
discrete height measurements are available, the highest number
of modes that can be accurately calculated is limited by the
spatial sampling points, m, n e L/2.

The dependence of c, c2, and σ2 on substrate temperature T
and deposition rate W can be identified from either experiments
or kinetic Monte Carlo simulations of the thin film growth
process. The expressions reported in ref 13 that are identified
as being from kinetic Monte Carlo simulations are used here:

where kB is the Boltzmann constant (8.617343 × 10-5 eV/K),
kw ) 3.3829 × 10-12, aw ) 0.6042, Ew ) 2.7 × 10-3 eV, kc )
1.0274 × 10-13, ac ) 0.1669, Ec ) 1.9 × 10-3 eV, av )
15.55493, kv ) 20.64504 s, at ) 0.02332 K-1, and kt ) 0.0261
s ·K-1.

2.2. Film Surface Roughness and rms Slope. Thin-film
surface morphology can be characterized by roughness and rms
slope. Roughness is defined as the root-mean-square of the
surface height profile:

where hj denotes the average surface height. Substituting eq 14
into eq 24, the expected value of r2 can be rewritten in terms of
the state covariance as follows:

The rms slope is defined as the root-mean-square of the slope
of the surface height:

The expected rms slope square can also be expressed in terms
of the state covariance as follows:

where Kp,m,n can be computed by

3. Multivariable Predictive Controller Design

In this section, a model predictive controller is developed
based on the dynamic model of the expected roughness square
and rms slope square. Substrate temperature and deposition rate
are used as the manipulated variables. The control objective is
to minimize the deviation of the expected roughness square and/
or rms slope square from desired set-point values. Because the
thin film deposition process is a batch process, the interval
between current time and the end of the batch run is used as
the prediction horizon. During each predictive controller evalu-
ation, the manipulated variable is assumed to stay fixed until
the end of the batch. To account for practical considerations,
two types of input constrains are imposed. First, both the
temperature and the deposition rate have lower and upper limits;
second, the rates of change of both inputs are constrained to be
less than certain upper limits due to actuator limitations. The
resulting MPC formulation is as follows:

where
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zp,m,n(t) )
π2

K2 ∑
i)0

L-1

∑
j)0

L-1
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where tf is the final time of the batch run, rset
2 and mset

2 are the
respective set-points for the surface roughness square and the
mean slope square, qr2 and qm2 are the weighting factors for the
deviations of 〈r2〉 and (m2) from their respective set-points, rset

2

and mset
2, at tf, dt is the time interval between two successive

sampling times and control actions, Tmin and Tmax are the lower
and upper bounds on the substrate temperature, respectively,
∆Tmax is the limit on the rate of change of the substrate
temperature, Wmin and Wmax are the lower and upper bounds on
the deposition rate, respectively, and ∆Wmax is the limit on the
rate of change of the deposition rate.

The optimization problem is solved at each sampling time
once a new measurement of the surface height profile becomes
available. An interior point method optimizer, IPOPT,25 is used
to solve the optimization problem in the MPC formulation.

Remark 1. Referring to the design and implementation of
estimation-based (output feedback) control systems, we note that
an output feedback controller, which utilizes a Kalman-Bucy-
type filter as the state estimator, was deVeloped and used in
the context of coVariance control of a stochastic partial
differential equation in a preVious work of our group.26

Furthermore, estimation-based control of a kinetic Monte Carlo
model of a one-dimensional thin-film growth process was also
studied in the context of roughness control24 and porosity
control.27 In the present work, we focus on the model predictiVe
control of surface roughness and slope of a process described
by the Edwards-Wilkinson equation in two spatial dimensions.
The application of the proposed controller to a kinetic Monte
Carlo simulation model of a two-dimensional thin-film growth
process, as well as the design of an estimation-based control
scheme, will be addressed in a future work.

4. Simulation Results

In this section, the model predictive controller of eq 29 is
applied to the two-dimensional EW equation plant model of eq
1. The variation of substrate temperature is from 600-750 K,
and the variation of the deposition rate is from 0.1 to 1 layer/s.
The initial temperature is 610 K, and the initial deposition rate
is 1 layer/s. The maximum rates of change is Tmax ) 5 K/s for
temperature and ∆Wmax ) 0.05 layer/s for deposition rate. The
sampling time is 5 s. Each closed-loop simulation lasts for 100 s.
Expected values are calculated from 100 independent runs.

4.1. Control of Film Surface Roughness. First, the problem
of regulating film surface roughness is considered. In this
scenario, the cost function only contains penalty on the deviation
of the expected surface roughness square from the set-point.
The weighting factors are qr2 ) 1 and qm2 ) 0. The set-point is
rset

2 ) 15.
Figure 1 shows the profile of 〈r2〉 under the model predictive

controller of eq 29. It can be seen that the controller drives the
expected film roughness at the end of the simulation close to
the desired value. Figure 2 shows the expected profiles of T
and W for the closed-loop simulation. The overall variations of
both temperature and deposition rate are small because the initial
values of these variables are close to the ones needed to
accomplish the desired set-points for surface roughness and
slope. As a result, the constraints on the rate of change of the
manipulated variables are not reached in this case since the rates
of change of the variables requested by the controller are much

smaller than the imposed constraints. Figure 3 compares the
histogram of r2 from open-loop and closed-loop simulations.
The model predictive control algorithm reduces the variance
of r2 by 47%, from 0.3179 to 0.1681.

4.2. Control of Film Surface rms Slope. Next, we consider
the regulation of thin film surface rms slope. The cost function
includes only penalty on the deviation of the expected value of
rms slope square from the set point by choosing weighting
factors qr2 ) 0 and qm2 ) 1. The set point is mset

2 ) 0.2.
Figure 4 shows the profile of expected rms slope square from

100 repeats of closed-loop simulations. The rms slope reaches
its set point at t ) 100 s. The constraint on the rate of change
of the temperature takes effect in the slope-only control problem
and limits the increase of the substrate temperature at the initial
stage of the deposition. A peak appears in the slope profile in

Tmin e T e Tmax, Wmin e W e Wmax (31)

|T(t) - T(t - dt)| e ∆Tmax, |W(t) - W(t - dt)| e
∆Wmax (32)

Figure 1. Profile of expected film surface roughness square from 100 closed-
loop simulations. qr2 ) 1, qm2 ) 0, and rset

2 ) 15.

Figure 2. Profiles of manipulated variables. qr2 ) 1, qm2 ) 0, and rset
2 )

15.

Figure 3. Comparison of histograms of r2 at the end of the simulation
between open-loop (top plot) and closed-loop (bottom plot) simulations.
qr2 ) 1, qm2 ) 0, and rset

2 ) 15.
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the first 20 s because the temperature can not increase fast
enough from its initial value due to the rate of change constraint.
Figure 5 shows the profile of expected temperature and
deposition rate. Because the low set-point value of the mean
slope square requires a relatively high substrate temperature,
the controller increases the temperature at the maximum rate
during the first four steps and then keeps the temperature around
716 K. The comparison of histograms of m2 at the end of the
simulation between closed-loop and open-loop is presented in
Figure 6. The MPC reduces the variance but by a smaller amount
compared to the case of roughness-only control.

4.3. Simultaneous Control of Roughness and rms
Slope. Finally, simultaneous regulation of roughness and rms
slope is carried out. The set-points of the surface roughness
square and of the mean slope square are rset

2 ) 15 and mset
2 )

0.2. The weighting factor of mean slope square is kept at 1,
while the weighting factor of roughness square increases from
0.01 to 106.

Figure 7 shows the change of 〈r2〉 and 〈m2〉 as a function of
qr2/qm2. It can be seen that as the weighting on roughness square
increases, the expected roughness square approaches more
closely its set-point value at the cost of larger deviation of rms
slope square from its set-point value.

4.4. Application to Light Trapping Efficiency. For thin-
film solar cells, the energy conversion efficiency is directly
related to the light trapping/scattering properties of the thin film
interfaces and surfaces, which can be characterized by the
roughness, r, and the rms slope, m. Specifically, Rayleigh
scattering occurs when the incident light goes through a rough
interface where it is divided into four components: specular
reflection, specular transmission, diffused reflection, and diffused
transmission.28,29 If a rough thin-film surface is illuminated with
a beam of monochromatic light at normal incidence, the total
reflectance, R, can be approximately calculated as follows:30

where R0 is the reflectance of a perfectly smooth surface of the
same material, r is the roughness, θ is the incident angle, λ is
the light wavelength, and a is the autocovariance length. It can
be proved that a ) (2)1/2r/m, where m is the rms slope of the
profile of the surface.31 The numerical integration result of eq
33 is shown in Figure 8. From this plot, it can be inferred that
both r and m strongly influence the intensity of light reflection
(and, therefore, light transmission) by the surface/interface. Thus,
it is important to regulate r and m of the surfaces/interfaces of

Figure 4. Profile of expected film surface rms slope square from 100 closed-
loop simulations. qr2 ) 0, qm2 ) 1, and mset

2 ) 0.2.

Figure 5. Profiles of manipulated variables. qr2 ) 0, qm2 ) 1, and mset
2 )

0.2.

Figure 6. Comparison of histograms of m2 at the end of the simulation
between open-loop (top plot) and closed-loop (bottom plot) simulations.
qr2 ) 0, qm2 ) 1, and mset

2 ) 0.2.

Figure 7. 〈r2〉 and 〈m2〉 at the end of closed-loop simulations (t ) 100 s)
for different penalty weighting factors: qm2 ) 1 and 0.01 e qr2 e 106.

Figure 8. Reflectance as a function of r and m of the thin-film surface.

R ) R0 exp[-4πr2

λ2 ] + R0∫
0

π/2
2π4(a

λ)2( r
λ)2

(cos θ + 1)4sin θ ×

exp[- (πa sin θ)2

λ2 ] dθ (33)
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the thin-film solar cells to appropriate values that optimize light
reflectance and transmittance during thin film manufacturing.

In the simultaneous control of roughness and slope in section
4.3, the expected surface roughness square and mean slope
square can be regulated to different levels with the same set-
points by choosing different weighting schemes, i.e., different
ratios between the weighting factors, qr2/qm2. The corresponding
light reflectance for different weighting factor ratios can be
computed according to eq 33. In Figure 9, the roughness and
rms slope obtained from closed-loop simulations with different
qr2/qm2 are mapped to a contour of reflectance. Note that the
roughness is scaled by a factor of 1.16 × 10-8 m to represent
the length scales of atomic particles in thin film growth
processes. We can see that by changing the ratio, qr2/qm2, we
can produce films whose surface leads to different reflectance
values.

Remark 2. Certain set-points for both surface roughness and
surface slope are desired to be attained during the manufactur-
ing (thin-film growth) process to optimize the light trapping
efficiency of thin-film solar cells. These requirements may be
attained through penalty of the deViation of surface roughness
and slope in the cost functional (as done in this work) or through
imposition of explicit “soft” or “hard” constraints on these
Variables in the model predictiVe control problem. The latter
approach may be more suitable in applications where there is
a need to achieVe a roughness (slope) leVel less than a maximum
acceptable roughness (slope) leVel.

5. Conclusion

In this work, a multivariable model predictive controller was
developed to simultaneously regulate thin-film surface roughness
and mean slope to optimize film light reflectance and transmit-
tance during thin-film manufacturing. The dynamics of the
evolution of the thin-film surface height profile were assumed
to be described by an EW-type equation in two spatial
dimensions. Analytical solutions of the expected surface rough-
ness and surface slope were obtained on the basis of the EW
equation and were used in the design of model predictive
controller that manipulates the substrate temperature and deposi-
tion rate. The model predictive controller involves constraints
on the magnitude and rate of change of the control action and
optimizes a cost that involves penalty on both surface roughness
and mean slope from the set-point values. The controller was
applied to the two-dimensional Edwards-Wilkinson equation
and was demonstrated to successfully regulate surface roughness

and mean slope to set-point values at the end of the batch
operation that yield desired film reflectance and transmittance.
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