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a b s t r a c t

This work focuses on modeling and control of aggregate thin film surface morphology for improved

light trapping using a patterned deposition rate profile. The dynamics of the evolution of the thin film

surface height profile are modeled by an Edwards–Wilkinson-type equation (a second-order stochastic

partial differential equation) in two spatial dimensions. The thin film surface morphology is

characterized in terms of aggregate surface roughness and surface slope. These variables are computed

with respect to appropriate visible light-relevant characteristic length scales and defined as the

root-mean-squares of height deviation and slope of aggregate surface height profiles, respectively.

Analytical solutions of the expected aggregate surface roughness and surface slope are obtained by

solving the Edwards–Wilkinson equation and are used in the controller design. The model parameters

of the Edwards–Wilkinson equation are estimated from kinetic Monte-Carlo simulations using a novel

parameter estimation procedure. This parameter dependence on the deposition rate is used in the

formulation of the predictive controller to predict the influence of the control action on the surface

roughness and slope at the end of the growth process. The cost function of the controller involves

penalties on both aggregate surface roughness and mean slope from set-point values as well as

constraints on the magnitude and rate of change of the control action. The controller is applied to the

two-dimensional Edwards–Wilkinson equation. Simulation results show that the proposed controller

successfully regulates aggregate surface roughness and slope to set-point values at the end of the

deposition that yield desired levels of thin film reflectance and transmittance.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Photovoltaic (solar) cells are an important source of sustainable
energy. Thin film silicon solar cells are currently among the most
important and widely used solar cells and their share of the overall
solar cell market is steadily increasing (e.g., Green, 2007; van Sark
et al., 2007). Research on optical modeling of thin film silicon solar
cells indicates that the scattering properties of the thin film
interfaces directly influence the light trapping process and the
efficiencies of thin film silicon solar cells (e.g., Zeman and
Vanswaaij, 2000; Poruba et al., 2000; Müller et al., 2004; Springer
and Poruba, 2004; Rowlands et al., 2004). For example, a higher
diffused transmittance of incident light is desired for the upper
surface of solar cells for a maximum energy input. The scattering
properties of the interfaces have a complex correlation with the
surface morphology; in particular, the root-mean-square roughness

and slope (Vorburger et al., 1993) at characteristic length scales that
are comparable to the wavelength of the visible light. Specifically,
significant increase of conversion efficiency with appropriately
roughened interfaces has been reported in several works (Tao and
Zeman, 1994; Leblanc and Perrin, 1994; Springer et al., 2001; Krč
and Zeman, 2002). However, no efforts have been seen in improving
the conversion efficiency of thin film solar cells via the regulation of
the thin film surface morphology during the manufacturing process
by appropriately tailoring the surface slope and roughness to desired
specifications. Thus, it is desirable to develop systematic approaches
to manufacture thin film solar cells with optimal conversion
efficiencies via computational multiscale modeling and real-time
model-based control of the manufacturing process.

In the context of modeling of thin film surface morphology and
microstructure, mathematical modeling techniques have been
developed to describe the microscopic features of thin film
growth including: (1) kinetic Monte-Carlo (kMC) methods (e.g.,
Gillespie, 1976; Reese et al., 2001), and (2) stochastic partial
differential equations (Edwards and Wilkinson, 1982; Vvedensky
et al., 1993; Lauritsen et al., 1996). In addition to microscopic
modeling, real-time feedback control of deposition conditions,
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based on mathematical models, has become increasingly impor-
tant in order to meet stringent requirements on thin film quality
and reduce thin film variability. While deposition uniformity and
composition control can be accomplished on the basis of con-
tinuum-type distributed parameter models, precise control of
thin film microstructure requires multiscale distributed models
that predict how the film state on the microscopic level is affected
by changes in the controllable process parameters. Since kMC
models are not available in closed form, they cannot be readily
used for feedback control design and system-level analysis. On
the other hand, stochastic differential equation (SDE) models can
be derived from the corresponding master equation of the micro-
scopic process and/or identified from process data (Christofides
et al., 2008; Ni and Christofides, 2005). The closed form of the SDE
models enables their use as the basis for the design of feedback
controllers which can regulate thin film surface roughness (e.g.,
Christofides et al., 2008; Ni and Christofides, 2005; Hu et al.,
2009d), film porosity (Hu et al., 2009b, 2009d), and film thickness
(Hu et al., 2009c). Recently, we have initiated an effort towards
modeling and control of thin film surface morphology to optimize
the light reflectance and transmittance properties of thin films. In
this direction, we have studied the dynamics and lattice size
dependence of surface mean slope (Huang et al., 2011) and have
developed predictive control algorithms to regulate both surface
roughness and slope at an atomic level using stochastic PDEs in
one spatial dimension (Zhang et al., 2010c) and two spatial
dimensions (Zhang et al., 2010b). However, control of thin film
surface morphology at a length scale comparable to the visible
light wavelength has remained an unsolved practical problem.

This work focuses on modeling and control of aggregate thin
film surface morphology for improved light trapping using a
patterned deposition rate profile. The dynamics of the evolution
of the thin film surface height profile are modeled by an Edwards–
Wilkinson-type equation (a second-order stochastic partial differ-
ential equation) in two spatial dimensions. It is first established
that the use of a spatially uniform deposition rate profile cannot
generate significant thin film surface roughness and slope at large
length scales (comparable to visible light wavelength), necessitat-
ing the use of a sine-wave-patterned deposition rate profile in
space. The thin film surface morphology is described in terms of
aggregate surface roughness and surface slope, computed with
respect to appropriate visible light-relevant characteristic length
scales and defined as the root-mean-squares of an aggregate
surface height profile and of an aggregate surface slope profile,
respectively. Using analytical solutions of the expected aggregate
surface roughness and surface slope, the functional dependence of
the Edwards–Wilkinson equation model parameters on the deposi-
tion rate is computed and used within a predictive control frame-
work to predict the influence of the control action on the surface
roughness and slope at the end of the growth process. The
controller is applied to the two-dimensional Edwards–Wilkinson
equation representing an 8000 nm� 8000 nm spatial domain and
using a sine-wave-patterned deposition rate profile in space, and it
is shown to successfully regulate aggregate surface roughness and
slope at the end of the deposition at levels that yield desired thin
film reflectance and transmittance levels.

2. Aggregate surface morphology

2.1. Process description and modeling

In this work, the thin film deposition process is modeled by an
on-lattice kinetic Monte-Carlo model. Details of the model can be
found in previous work of our group (Huang et al., 2010). The two
dimensional square lattice where the deposition process takes

place is shown in Fig. 1. Periodic boundary conditions (PBCs) are
applied in the directions perpendicular to the growth direction.
Two different types of micro-processes are considered: an adsorp-
tion process and a migration process. In the adsorption process,
incident particles are incorporated onto the thin film. The inci-
dence direction in the adsorption process is restricted to be the
vertical direction. The rate of adsorption is proportional to the
average deposition rate across the simulation domain. The site in
which a particle is deposited is randomly selected from all lattice
sites with equal probability. During the migration process, parti-
cles on the thin film surface hop against appropriate energy
barriers and move to their vacant neighboring sites. The migra-
tion rate follows an Arrhenius-type law and depends on the local
particle micro-configuration (i.e., number of nearest neighboring
particles). The substrate temperature is fixed at 460 K. The lattice
is initialized with a fully packed and fixed substrate. A contin-
uous-time Monte-Carlo (CTMC)-type algorithm (e.g., Vlachos
et al., 1993) is used to carry out the simulations.

2.2. Aggregate surface roughness and slope

Thin film surface morphology can be characterized by rough-
ness and slope. Roughness is defined as the root-mean-square
(RMS) of the surface height profile

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where h(i,j,t) is the surface height measurement at the (i,j) lattice
site at time t, h denotes the average surface height, L is
the dimension of the simulation domain, l is the number of
discrete height measurements on x or y direction. Slope is defined
as the root-mean-square of the gradient of the surface height in x

direction
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Fig. 1. Thin film deposition process on a 2D square lattice.
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Roughness and slope can be defined at different length scales.
The top subplot in Fig. 2 shows a one-dimensional (1D) surface
with roughness at different length scales. In order to characterize
surface morphology at different length scales, an aggregate sur-
face height profile hDði,jÞ is introduced in this work. The aggregate
surface height profile is the averaged height over an interval of
length D in 1D and a square of side D in 2D. In the 2D case, the
aggregate surface height takes the form

hDði,jÞ ¼
PD�1

ia ¼ 0

PD�1
ja ¼ 0 hðiDþ ia,jDþ jaÞ

D2
, i,j¼ 0,1,2, . . . ,lD�1, ð3Þ

where lD is the number of points on the discrete aggregate surface
height profile. Then the aggregate surface roughness, rD, and the
aggregate surface slope, mD, can be defined based on the aggre-
gate surface height profile as follows

rDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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XlD�1

i ¼ 0

XlD�1

j ¼ 0
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vuut , ð4Þ

mDðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Remark 1. Fig. 2 shows an example of an atomic surface profile
and of an aggregate surface profile. We note that in general the
surface morphology, including roughness and slope, depends on
lattice size and this dependence has been explored in other works
of our group (the reader may refer to Hu et al. (2009a) and Huang
et al. (2010, 2011)).

2.3. Light reflection on a rough surface

For thin film solar cells, the energy conversion efficiency is
directly related to the light trapping/scattering properties of the
thin film interfaces and surfaces, which in turn depend on the
surface roughness and slope. It should be pointed out that the
wavelength of visible light (380–750 nm) is several orders of
magnitude greater than the distance between two neighboring
atoms ð � 0:2 nmÞ. The light reflection depends on roughness
and slope defined at a length scale comparable to the light
wavelength.

When incident light goes through a rough interface, it is
divided into four components: specular reflection, specular trans-
mission, diffused reflection and diffused transmission (Tao and
Zeman, 1994; Leblanc and Perrin, 1994). If a rough thin film

surface is illuminated with a beam of monochromatic light at
normal incidence, the total reflectance, R, can be approximated as
follows (Davies, 1954):

R¼ R0exp �4pr2D
l2

� �
þR0

Z p=2

0
2p4 aD

l

� �2 rD
l

� �2

Uðcosyþ1Þ4sinyexp � ðpaDsinyÞ2
l2

" #
dy, ð6Þ

where R0 is the reflection of a perfectly smooth surface, rD is
the aggregate surface roughness, y is the reflectance angle, l is
the light wavelength and aD is the auto-covariance length of the
surface. It can be proved that aD ¼

ffiffiffi
2

p
rD=mD, where mD is the

slope of the aggregate profile of the surface (Bennett and Porteus,
1961). The numerical integration result of Eq. (6) is shown in
Fig. 3 using l¼ 700 nm. Both rD and mD strongly influence the
intensity of light reflection (and therefore, light transmission) of
the surface/interface. Thus, it is important to regulate rD and mD

of the surfaces/interfaces of the thin film solar cells to appropriate
values that optimize light reflection and transmission during thin
film manufacturing.

2.4. Patterned deposition rate profile

Fig. 4 shows the variation of roughness and slope as a function
of aggregation length for a deposition process with uniform
deposition rate profile. The results are from a kinetic Monte-Carlo
simulation of the two-dimensional thin film deposition process of
Fig. 1 with l¼200. Both aggregate roughness and slope decrease
as aggregation length increases. In this case, the surface rough-
ness is due to atomic level fluctuations and thus we conclude that
atomic level fluctuations contribute mainly to roughness and
slope at small length scales.

In order to generate significant roughness and slope at
large length scales (i.e., comparable to the wave length of visible
light), we introduce a patterned deposition rate profile of the
following form:

wðx,y,tÞ ¼w0ðtÞþAðtÞsin 2kp
L

x

� �
, ð7Þ

where w0 is the mean deposition rate across the simulation domain,
A is the magnitude of the sine wave, k is the number of complete
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Fig. 2. 1D surface with roughness at different length scales: atomic surface profile
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periods of the sine wave within the simulation domain, and L is the
length of the simulation domain.

2.5. Edwards–Wilkinson equation for surface height dynamics

To design a feedback controller for the thin film deposition
process, a closed form model is needed. The Edwards–Wilkinson
(EW) equation, which is a second-order stochastic partial differ-
ential equation (PDE), has been demonstrated to adequately
describe the dynamics of the evolution of the surface height profile
in many thin film growth processes that involve a thermal balance
between atom adsorption and surface migration (Edwards and
Wilkinson, 1982; Family, 1986; Hu et al., 2009a; Huang et al.,
2011). In this work, we consider a two dimensional (2D) EW type
equation of the following form:

@hD
@t

¼wðx,y,tÞþc2
@2hD
@x2

þ @2hD
@y2

� �
þxðx,y,tÞ, ð8Þ

where xA ½0,L�, yA ½0,L� are the spatial coordinates, t is the time,
hDðx,y,tÞ is the aggregate surface height, and xðx,y,tÞ is a Gaussian
white noise with zero mean and covariance:

/xðx,y,tÞxðx0,y0,t0ÞS¼ s2dðx�x0Þdðy�y0Þdðt�t0Þ: ð9Þ

where dð�Þ denotes the Dirac delta function,w(x,y,t) is the patterned
deposition rate profile described in Eq. (7), and c2 and s2 are model
parameters that depend on the mean deposition rate, w0. The
stochastic PDE of Eq. (8) is subject to the following periodic
boundary conditions:

hDð0,y,tÞ ¼ hDðL,y,tÞ, hDðx,0,tÞ ¼ hDðx,L,tÞ, ð10Þ

@hD
@x

ð0,y,tÞ ¼ @hD
@x

ðL,y,tÞ, @hD
@y

ðx,0,tÞ ¼ @hD
@y

ðx,L,tÞ, ð11Þ

and the initial condition

hDðx,y,0Þ ¼ h0Dðx,yÞ ð12Þ
To analyze the dynamics and obtain a finite-dimensional

approximation of the EW equation, we first consider the eigen-
value problem of the linear operator of Eq. (8) subject to the
periodic boundary conditions of Eqs. (10) and (11):

Afnx ,ny
ðx,yÞ ¼ c2

@2

@x2
þ @2

@y2

� �
fnx ,ny ðx,yÞ ¼ lnx ,nyfnx ,ny ðx,yÞ, ð13Þ

rjfnx ,ny
ð0,yÞ ¼rjfnx ,ny

ðL,yÞ, j¼ 0,1 ð14Þ

rjfnx ,ny
ðx,0Þ ¼rjfnx ,ny ðx,LÞ, j¼ 0,1 ð15Þ

where lnx ,ny denotes an eigenvalue, fnx ,ny
denotes an eigenfunc-

tion, and rj, j¼0, 1, denotes the value and gradient of a given
function, respectively. The solution of the eigenvalue problem is
as follows:

lnx ,ny ¼�4c2p2

L2
ðn2

x þn2
y Þ, ð16Þ
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, ð17Þ
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y

� �
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8>>>>>>>><
>>>>>>>>:

ð18Þ

f3,nx ,ny ¼

0 nx ¼ 0,
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L
sin
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L

x

� �
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y
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ð19Þ

f4,nx ,ny ¼
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2
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x

� �
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y

� �
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p

L
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y

� �
nya0, nx ¼ 0:

8>>>>>><
>>>>>>:

ð20Þ

The solution of the EW equation of Eq. (8) can be expanded in an
infinite series in terms of the eigenfunctions of the operator of
Eq. (13) as follows:

hDðx,y,tÞ ¼
Xþ1

nx ¼ 0

Xþ1

ny ¼ 0

X4
p ¼ 1

fp,nx ,ny
ðx,yÞzp,nx ,ny ðtÞ, ð21Þ

where zp,nx ,ny ðtÞ, p¼1,2,3,4, are time-varying coefficients.
Substituting the above expansion of hDðx,y,tÞ into Eq. (8) and

taking the inner product with the adjoint eigenfunctions, the
following system of infinite stochastic linear ordinary differential
equations (ODEs) for the temporal evolution of the time-varying
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coefficients is obtained:

dz2,0,0
dt

¼w2,0,0þx2,0,0ðtÞ, ð22Þ

dzp,nx ,ny
dt

¼wp,nx ,ny þlnx ,ny zp,nx ,ny þxp,nx ,ny
ðtÞ, ð23Þ

p¼ 1,2,3,4, nx,ny ¼ 0,1, . . . ,1, n2
x þn2

ya0,

where xp,nx ,ny
ðtÞ ¼ R L

0

R L
0 xðx,y,tÞfp,nx ,ny ðx,yÞ dx dy is the projection of

the noise xðx,y,tÞ on the ODE for zp,nx ,ny . The noise term, xp,nx ,ny , has
zero mean and covariance

/xp,nx ,ny ðtÞxp,nx ,ny
ðt0ÞS¼ s2dðt�t0Þ: ð24Þ

Similarly, wp,nx ,ny is the projection of w on the ODE for zp,nx ,ny :

wp,nx ,ny ¼
Z L

0

Z L

0
fp,nx ,ny ðx,yÞwðx,yÞ dx dy, ð25Þ

w1,nx ,ny
¼ 0, ð26Þ

w2,nx ,ny
¼

w0Lþ
AL

2kp
½1�cosð2kpÞ� nx ¼ 0,ny ¼ 0,ffiffiffi

2
p

ALk

2pðn2
x�k2Þ½cosð2kpÞ�1� nxa0,nxak,ny ¼ 0,

0 otherwise:

8>>>>><
>>>>>:

ð27Þ

w3,nx ,ny
¼

ffiffiffi
2

p
AL

2
nx ¼ k,nya0,ffiffiffi

2
p

ALnx

2pðk2�n2
x Þ
sinð2kpÞ nxa0,nxak,ny ¼ 0,

0 otherwise;

8>>>>>><
>>>>>>:

ð28Þ

w4,nx ,ny
¼ 0: ð29Þ

The temporal evolution of the variance of mode zp,nx ,ny can be
obtained from the solution of the linear ODEs of Eqs. (22) and (23)
as follows:

/z2,0,0ðtÞS¼w2,0,0ðt�t0Þ, ð30Þ

varðz2,0,0ðtÞÞ ¼ s2ðt�t0Þ, ð31Þ

/zðtÞS¼ elðt�t0Þ/zðt0ÞSþ wp

l
ðelðt�t0Þ�1Þ, ð32Þ

varðzðtÞÞ ¼ e2lðt�t0Þvarðzðt0ÞÞþs2 e
2lðt�t0Þ�1

2l
, ð33Þ

where zðtÞ ¼ zp,nx ,ny ðtÞ and wp ¼wp,nx ,ny for n2
x þn2

ya0.
For feedback control purposes (see Section 3 below), the

modes can be calculated from a surface height measurement as
follows:

zp,nx ,ny ðtÞ ¼
Z L

0

Z L

0
hDðx,y,tÞfp,nx ,ny ðx,yÞ dx dy: ð34Þ

In many circumstances, only discrete height profile point mea-
surements are available, thus Eq. (34) can be approximated by

zp,nx ,ny ðtÞ �
L

lD

� �2 XlD�1

i ¼ 0

XlD�1

j ¼ 0

hDði,j,tÞfp,nx ,ny
ði,jÞ, ð35Þ

where lD is the number of spatial height sampling (measurement)
points in [0,L]. It is worth pointing out that, when discrete height
point measurements are available, the largest number of modes
that can be accurately calculated is limited by the spatial
sampling points, i.e. nx,nyr lD=2 (Zhang et al., 2010b).

Substituting Eq. (21) into Eq. (4), the expected value of r2D can
be rewritten in terms of the state covariance as follows:

/r2DS¼ 1

L2

X1
nx ,ny ¼ 0

n2x þ n2y a 0

X4
p ¼ 1

/z2p,nx ,ny
S: ð36Þ

The expected RMS slope square can also be expressed in terms of
the state covariance as follows:

/m2
DS¼

X1
nx ,ny ¼ 0

n2x þ n2y a 0

X4
p ¼ 1

Kp,nx ,ny/z2p,nx ,ny
S, ð37Þ

where Kp,nx ,ny can be computed by

Kp,nx ,ny ¼
1

L2

XlD�1

i ¼ 0

XlD�1

j ¼ 0

ðfp,nx ,ny ðiþ1,jÞ�fp,nx ,ny ði,jÞÞ2 ¼
4l2D
L4

sin2 pnx

lD

� �
:

ð38Þ
2.6. Determination of model parameters

The EW equation has two parameters, c2 and s2, which are
assumed to depend on the mean deposition rate w0. In our
previous work (Zhang et al., 2010a), the dependencies of EW
equation parameters on operating conditions were found by
fitting the analytical solution of /r2S to open-loop kinetic
Monte-Carlo simulations. However, this approach is not applic-
able here because a system with a much larger physical domain is
simulated. Assuming the distance between two neighboring sites
is 0.2 nm, there are 40 000�40 000 sites within the 8000 nm�
8000 nm square domain that is simulated. Since it is not possible
to simulate such large lattice size directly, we use the following
steps to get estimates of c2 and s2 as functions of w0.

1. For each value of w0, a series of open-loop kinetic Monte-Carlo
simulations is carried out with increasing lattice size (l¼20,
50,100,150,200,250). The values of c2 and s2 are then deter-
mined by fitting the analytical solution of /r2ðtÞS (without any
aggregation) to kMC simulation data using the least square
method. As a result, c2 and s2 as functions of lattice size l are
obtained for each value of w0, as shown in Fig. 5. The following
functional forms are used for the fitting of c2 and s2=c2:

c2ðl,w0Þ ¼ acðw0Þlþbcðw0Þ, ð39Þ

s2

c2
ðl,w0Þ ¼ asðw0Þlog10ðlÞþbsðw0Þ, ð40Þ

where the values of the coefficients ac(w0), bc(w0), as(w0) and
bs(w0) for different w0 values are given in Table 1.

2. The values of c2 and s2 at lattice size l¼40 000 are determined
by extrapolating the c2 and s2 according to Eqs. (39) and (40).
The extrapolated values c2(l¼40 000,w0) and s2ðl¼ 40 000,w0Þ
are also included in Table 1.

3. Subsequently, we fit the extrapolated values of c2 and s2 for
l¼40 000 as functions of w0, as shown in Fig. 6. The following
functional forms for c2(w0) and s2ðw0Þ are used:

c2ðw0Þ ¼ pc1w
3
0þpc2w

2
0þpc3w0þpc4, ð41Þ

s2ðw0Þ ¼ ps1w
4
0þps2w

3
0þps3w

2
0þps4w0þps5, ð42Þ

where

pc1 ¼�20:83, pc2 ¼ 110:9, pc3 ¼�204:1, pc4 ¼ 164:9, ð43Þ
ps1 ¼�7:585, ps2 ¼ 36:65, ps3 ¼�59:03,

ps4 ¼ 42:91, ps5 ¼ 2:998: ð44Þ

To verify the above approach, we compare the roughness
obtained from the extrapolated values of c2 and s2 with that from
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direct extrapolation of/r2S. First,/r2S is extrapolated with respect
to lattice size and its value at l¼40 000 is obtained. Fig. 7 shows the
steady state value of /r2S against lattice size. According to Fig. 7,
/r2S can be fitted to a linear function of log10(l) of the form:

/r2SssðlÞ ¼ arlog10ðlÞþbr : ð45Þ

Then the relationship between steady state roughness and aggrega-
tion length, as shown in Fig. 8, is used to find the roughness with
aggregation length D¼ 400. /r2DSðDÞ is fitted to a power-law
function of the form:

/r2DSðDÞ ¼ aaDba þca, ð46Þ

where aa ¼ 0.07883, ba¼�1.193 and ca¼0.02247. According to
Eq. (46), /r2DSðD¼ 400Þ ¼ 0:2224/r2DSðD¼ 1Þ, thus the aggregate

roughness for lattice size l¼40 000 and aggregation length D¼ 400
can be calculated. The results are summarized in Table 2.

Subsequently, we use the extrapolated values of s2=c2 to
calculate the atomic and aggregate steady state surface rough-
ness. According to Eq. (36), the steady state roughness of a
deposition process starting from a flat surface would be

/r2DSss ¼
1

L2

X1
nx ,ny ¼ 0

n2x þ n2y a 0

X4
p ¼ 1

/z2p,nx ,ny
S¼ 1

L2

X1
nx ,ny ¼ 0

n2x þ n2y a 0

X4
p ¼ 1

varðzp,nx ,ny Þ

¼ s2

c2L2

X1
nx ,ny ¼ 0

n2x þ n2y a 0

L2

2p2ðn2
x þn2

yÞ
¼ s2

c2

X1
nx ,ny ¼ 0

n2x þ n2y a 0

1

2p2ðn2
x þn2

y Þ
� 0:4353

s2

c2
:

ð47Þ
The results are shown in Table 3.

Table 1

Values of the coefficients used in Eqs. (39) and (40) and the extrapolated values of c2 and s2 for lattice size l¼40 000.

w0 ac bc c2 as bs s2

0.04 3.20�10�3 �3.04�10�2 128.06 4.17�10�3 5.50�10�2 9.50

0.12 1.97�10�3 �7.16�10�2 78.67 1.43�10�2 1.17�10�1 14.43

0.20 1.24�10�3 �4.34�10�2 49.67 2.90�10�2 1.87�10�1 15.95

0.30 9.61�10�4 �3.56�10�2 38.42 4.71�10�2 3.00�10�1 19.84

0.40 8.33�10�4 �3.63�10�2 33.28 6.29�10�2 4.48�10�1 24.54
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Fig. 6. c2 (top plot) and s2 (bottom plot) as functions of deposition rate w0.
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Fig. 5. c2 (top plot) and s2 (bottom plot) as functions of lattice size l.
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Comparing Tables 2 and 3, we can see that both approaches
yield very close values for both atomic and aggregate surface
roughness for l¼40 000.

Remark 2. This is the first time the above parameter identifica-
tion method is proposed. This method could be used for para-
meter identification for other nonlinear SPDE models, e.g.

Kuramoto–Sivashinsky equation (KSE), which describe surface
evolution in other thin film growth models.

3. Predictive controller design

In this section, a model predictive controller is developed based
on the dynamic model of the expected roughness square and slope
square. The mean deposition rate, w0, and magnitude of sine wave,
A, are used as the manipulated variables. In this work, state
feedback is used. At each sampling time, the surface height profile
from the stochastic PDE is fed-back to the controller and the
eigenmodes are calculated. In practice, real-time surface height
measurements can be obtained via atomic force microscopy (AFM)
systems. The control objective is to minimize the deviation of the
expected roughness square and slope square from desired set-
point values. Because the thin film deposition process is a batch
process, the interval between current time and the end of the batch
run is used as the prediction horizon. During each predictive
controller evaluation, the manipulated variable is assumed to stay
fixed until the end of the batch. The constraints of the problem are
(1) the mean deposition rate has lower and upper limits; (2) the
rate of change of the mean deposition rate should be less than an
upper limit due to actuator limitations; (3) the magnitude of sine
wave should be positive and smaller than the average deposition
rate. The resulting MPC formulation is as follows:

min
w0 ,A

f ðw0,AÞ ¼ qr2
r2set�/r2Dðtf ÞS

r2set

 !2

þqm2

m2
set�/m2

Dðtf ÞS
m2

set

 !2

, ð48Þ

where

/r2Dðtf ÞS¼ 1

L2

X1
nx ,ny ¼ 0

n2x þ n2y a 0

X4
p ¼ 1

/z2p,nx ,ny
ðtf ÞS, ð49Þ

/m2
Dðtf ÞS¼

X
nx ,ny ¼ 0

n2x þ n2y a 0

X4
p ¼ 1

ðKp,nx ,ny/z2p,nx ,ny ðtf ÞSÞ, ð50Þ

/z2p,nx ,ny
ðtf ÞS¼ varðzp,nx ,ny ðtf ÞÞþ/zp,nx ,ny ðtf ÞS2, ð51Þ

/zp,nx ,ny ðtf ÞS¼ elnx ,ny ðtf�tÞ/zp,nx ,ny ðtÞSþ wp

lnx ,ny

ðelnx ,ny ðtf�tÞ�1Þ, ð52Þ

varðzp,nx ,ny ðtf ÞÞ ¼ e2lnx ,ny ðtf�tÞvarðzp,nx ,ny ðtÞÞþs2 e
2lnx ,ny ðtf�tÞ�1

2lnx ,ny

, ð53Þ

lnx ,ny ¼�4c2p2

L2
ðn2

x þn2
y Þ, n2

x þn2
ya0: ð54Þ

Subject to

wminrw0rwmax, jw0ðtÞ�w0ðt�dtÞjrDwmax, ð55Þ

0rArw0 ð56Þ
where tf is the final time of the batch run, r2set and m2

set are the
respective set-points for the surface roughness square and the
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Fig. 8. /r2DS as a function of aggregation length D (lattice size l¼500).

Table 2
Extrapolated aggregate roughness when lattice size l¼40 000, aggregation length

D¼ 400, under different deposition rates.

w0 ar br Roughness Aggregate roughness

/r2Sss (nm2) /r2DSss (nm
2)

0.04 0.002143 0.018237 0.0281 6.25�10�3

0.12 0.008171 0.035585 0.0732 1.63�10�2

0.20 0.016950 0.053243 0.1313 2.92�10�2

0.30 0.027590 0.084274 0.2112 4.70�10�2

0.40 0.039788 0.123212 0.3063 6.81�10�2

Table 3
Calculation of atomic and aggregate steady state surface roughness at lattice size

l¼40 000 using extrapolated values of s2=c2.

w0 s2=c2 /r2Sss ðnm2Þ /r2DSss ðnm2Þ

0.04 0.074187 0.0323 7.18�10�3

0.12 0.183404 0.0800 1.78�10�2

0.20 0.321012 0.1399 3.11�10�2

0.30 0.516476 0.2551 5.67�10�2

0.40 0.737238 0.3214 7.15�10�2
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Fig. 7. Steady state value of roughness /r2S as a function of lattice size l.
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mean slope square, qr2 and qm2 are the weighting factors for the

deviations of /r2Dðtf ÞS and /m2
Dðtf ÞS from their respective set-

points, r2set and m2
set, dt is the time interval between two successive

sampling times, wmin and wmax are the lower and upper bounds on

the mean deposition rate, respectively, and Dwmax is the limit on
the rate of change of the mean deposition rate.

The optimization problem is solved at each sampling time
once a new measurement of the surface height profile becomes
available. An interior point method optimizer, IPOPT (Wächter
and Biegler, 2006), is used to solve the optimization problem in
the MPC formulation.

4. Simulation results

In this section, the model predictive controller of Eq. (48) is
applied to the two-dimensional EW equation model of Eq. (8).
The variation of deposition rate is from 0.02 to 0.4 nm/s, the
substrate temperature is fixed at 460 K and the initial deposition
rate is 0.2 nm/s; the maximum rate of change of the deposition
DWmax ¼ 0:1 nm=s. The sampling time is 1 s. Each closed-loop
simulation lasts for 100 s. Expected values are calculated from
100 independent closed-loop system simulation runs.

4.1. Control of film surface roughness

First, the problem of regulating film surface roughness is
considered. In this scenario, the cost function only contains
penalty on the deviation of the expected surface roughness square
from the set-point. The weighting factors are qr2 ¼ 1 and qm2 ¼ 0.
The set-point is r2set¼0.04 nm2. Because the roughness set-point is
small, the surface does not have a clear pattern.

Fig. 9 shows the profile of /r2DS under the model predictive
controller of Eq. (48). It can be seen that the controller drives
the expected film roughness to the desired value at the end of the
simulation. Fig. 10 shows a surface snapshot at the end of the
simulation (t¼100 s) from one single run.

4.2. Control of film surface slope

Next, we consider the regulation of thin film surface slope. The
cost function includes only penalty on the deviation of the
expected value of slope square from the set point by choosing
weighting factors qr2 ¼ 0 and qm2 ¼ 1. The set point is m2

set¼0.025.

Fig. 11 shows the profile of the expected slope square. The
slope reaches its set point at t¼100 s. A surface snapshot at
t¼100 s is also given in Fig. 12. The surface in Fig. 12 has clear
sine wave pattern because the slope set-point is relatively large
for this case.

4.3. Simultaneous control of roughness and slope

Finally, simultaneous regulation of roughness and slope is
carried out. The set-points of the surface roughness square and
of the mean slope square are r2set ¼ 1.0 nm2 and m2

set¼0.025. The
weighting factor of mean slope square is kept at 1, while the
weighting factor of roughness square increases from 10�8 to 1.

Fig. 13 shows the variation of /r2DSðt¼ 100 sÞ and /m2
DS

ðt¼ 100 sÞ as a function of qr2=qm2 . It can be seen that as the
weighting on roughness square increases, the expected roughness
square approaches more closely to its set-point value at the cost
of larger deviation of slope square from its set-point value and
vice versa.
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Fig. 9. Profile of expected film surface roughness square from 100 closed-loop

simulations. qr2 ¼ 1, qm2 ¼ 0 and r2set¼0.04 nm2.
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4.4. Application to light trapping efficiency

We now demonstrate how films of different reflectance can be
produced by simultaneous control of film surface roughness and
slope. Specifically, the expected surface roughness square and
mean slope square can be regulated to different levels by using
the same set points and choosing different weighting schemes,
i.e., different ratios of the weighting factors, qr2=qm2 . In particular,
qm2 is kept at 1.0 while qr

2 changes from 10�8 to 1. The corres-
ponding light reflectance for different weighting factor ratios
can be computed according to Eq. (6). In Fig. 14, the roughness
and slope obtained from closed-loop simulations with different
qr2=qm2 are mapped to a contour of reflectance. The points from
upper right to lower left correspond to qr2=qm2 ratios of increasing
values. By changing the ratio, qr2=qm2 , different films can be
produced whose surface morphology is characterized by a wide
range of reflectance values.

5. Conclusions

In this work, a patterned deposition rate profile was intro-
duced to generate significant roughness and slope at a length

scale comparable to the wavelength of visible light in a thin film
deposition process. Working within the framework of the two-
dimensional Edwards–Wilkinson equation representing an
8000 nm�8000 nm spatial domain, a model predictive controller
was developed to regulate thin film surface roughness and slope
to desired levels, accounting for constraints on the magnitude and
rate of change of the control actions. The mean value and
magnitude of the sine wave deposition rate profile were used as
manipulated variables. Simulation studies demonstrated the
applicability and effectiveness of the patterned deposition rate
profile and of the controller in successfully regulating the final
thin film surface roughness and slope to levels that yield desired
thin film reflectance and transmittance.

References

Bennett, H.E., Porteus, J.O., 1961. Relation between surface roughness and specular
reflectance at normal incidence. Journal of the Optical Society of America 51,
123–129.

Christofides, P.D., Armaou, A., Lou, Y., Varshney, A., 2008. Control and Optimization
of Multiscale Process Systems. Birkhäuser, Boston.
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