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A B S T R A C T

Steam methane reforming in solid oxide proton conducting membranes is a state-of-the-art process capable
of initiating methane reforming reactions, electrochemical hydrogen separation, and the compression of
purified hydrogen product within a single electrochemical processing unit. Given the many process variables
involved, a model predictive controller is needed to safely operate a protonic membrane reformer (PMR)
under dynamic operational conditions by employing physically relevant constraints that protect the reactor
materials of construction and maximize the stability of the process. This work derives, and experimentally
validates, physics-based models for a PMR process and integrates an overall process model into centralized
and decentralized model predictive control schemes. The performance of control actions from classical
proportional–integral controllers and model predictive controllers are surveyed, and the decentralized model
predictive control algorithm, developed here, obeys practical constraints, reaches the target variables’ setpoints
quickly, and lowers computational costs relative to the centralized predictive controller. Finally, the addition of
a disturbance observer (DOB) ensures robust controller performance when subject to incomplete and infrequent
process measurements or common system disturbances.

1. Introduction

From bench-scale to commercial-scale process intensification efforts, the operation of novel chemical process designs involves controlling
predictable and stochastic subprocesses that must be modeled with some combination of theory and data. For high-temperature electrocatalysis,
which generally describes any steam methane reforming (SMR) process in solid oxide proton conducting membranes, straightforward analytical
models can be derived from reaction engineering first principles. The challenge of employing such models within control schemes arises from the
physical and chemical instability of catalysts in extreme reactor conditions, given the surface chemistry of these catalysts is in rapid flux as a result of
the large thermal and electrochemical forces applied (Yuste-Tirados et al., 2024). Additional complexity, in terms of kinetic modeling, is introduced
from the stochastic nature of catalyst deactivation, coupled with hard-to-measure thermal and electrochemical side reactions that are responsible
for oxidizing catalytically active surface sites in the anodic electrode of a protonic membrane reformer (Jang et al., 2024). Consequently, each
test of an electrified methane reforming system yields varying degrees of catalyst deactivation that materializes through a variety of physical and
chemical mechanisms at random times. Additionally, the resistance of the solid electrolyte membrane, responsible for facilitating the electrochemical
separation of hydrogen from anode to cathode (Yuste-Tirados et al., 2023), rapidly fluctuates and causes an unsteady heat flux through the body of
the membrane and to the reactants. Therefore, novel electrified SMR processes in solid oxide proton conducting membranes require sophisticated
control schemes regulated by physically relevant operational constraints.

Traditional control schemes like proportional–integral–derivative (PID) control are widely used for their algorithmic simplicity and their
reliability in maintaining the safe, steady state operation of process systems. However, these control schemes exhibit limitations when applied
to complex systems characterized by nonlinear dynamics, multi-variable interactions, and controller response speed. These limitations become
significant in advanced chemical processing systems like novel electrified SMR reactors, where sudden changes in reaction states, stringent
operational limits, and complex physical and chemical mechanisms make optimal control of such reactor systems very challenging.
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Model predictive control (MPC), by contrast, regulates process variability in complex systems by predicting future mass and energy states based
on dynamic models of the overall system structure. This advanced controller can also optimize control input actions according to induced setpoint
changes and unpredictable system disturbances. Our previous work demonstrated the dynamic modeling and MPC of an electrified SMR system,
in contrast to most of the existing research, which focuses on conventional fire-heated SMR systems. For example, Cui et al. (2024) and Çıtmacı
et al. (2024) synthesized a physics-based, lumped-parameter model for an electrically heated SMR system and integrated the model into a model
redictive controller using an extended Luenburger observer. In Wang et al. (2024), a recurrent neural network model was developed for an
lectrically heated SMR system and integrated into an MPC scheme with an integrator and offset-free MPC, both of which showed enhanced control
ehavior compared to proportional–integral (PI) controllers. An online machine learning model would most likely require re-training and could
ntroduce uncertainty into the control action calculation process, especially for operational conditions and phenomena not captured in training data
ets. Given steam methane reforming processes can accurately be described by reaction engineering-based first-principles models, there is no need
o introduce a less reliable machine learning model into the MPC algorithm. For reactors with kinetics that are not well-understood, a machine
earning approach to modeling would be more suitable. Thus, in this work, we advance the field by implementing a multi-input–multi-output
MIMO) MPC scheme in a PMR to manage the complex phenomena of the system using first-principles modeling techniques. For SMR processes
n solid oxide proton conducting membranes, specifically, MPC adapts to rapid changes in electrode surface chemistry, allowing the controller
o adjust inputs in real time, reducing the impact of unforeseen flow and temperature variations that would otherwise forfeit the stability of the
ystem.

The implementation of MPC requires full-state measurement feedback at each sampling time. However, in many chemical processes, not all
system states are directly measurable (Soroush, 1997). Even if a particular system state can be measured, the detection of that state may be
infrequent. This situation necessitates the use of a state observer. Additionally, the MPC model may become inaccurate due to disturbances
originating from thermal fluctuations, electrochemical side reactions, or catalyst degradation. To address these issues, an observer is integrated
into a predictive controller to estimate unmeasured system states and to correct model predictions in real time. This correction is crucial as it
allows the controller to compensate for different physical disturbances, such as unsteady heat flux and varying electrode resistance, that directly
impact the final state of the PMR system. By using a disturbance observer (DOB), the MPC scheme maintains robust and precise control over key
target variables, mainly, the rate of pure H2 generation.

To address the computational challenges of implementing MPC in a real chemical process, a decentralized model predictive control (DMPC)
strategy is employed. By dividing the system into smaller, decoupled subsystems with independent controllers, DMPC significantly reduces the
computational load of the controller while maintaining system-wide coordination (Bemporad and Barcelli, 2010; Richards and How, 2004; Chen
et al., 2020). Each local controller manages specific process constraints, allowing for faster optimization calculations and real time adjustments.

s a result, this decentralized approach enables scalable control, making it feasible for commercial-scale SMR control applications that do not
ompromise system performance or the hydrogen production capacity of a PMR.

2. Preliminaries

2.1. Notation

The symbol ‖⋅‖ represents the Euclidean norm of a vector. The transpose of vector 𝒙 is denoted by 𝒙⊤. R represents the set of real numbers. A
unction, 𝑓 (⋅), falls under the class 1 if it is continuously differentiable within its defined domain.

Definitions of variables used in the modeling of the reactor and bubbler:

• 𝐴ℎ, 𝐴𝑟
ℎ, 𝐴𝑝

ℎ, 𝐴𝑎,𝑃 𝑀 𝑅
ℎ , 𝐴𝑐 ,𝑃 𝑀 𝑅

ℎ , 𝐴𝑏
ℎ: Surface area for heat loss, of retentate, of permeate, of PMR anode, of PMR cathode, of bubbler [m2].

• 𝐴𝑖: Pre-exponential factor of adsorption constant 𝐾𝑖 [Pa−1 for 𝑖 = CH4,H2,CO and unitless for 𝑖 = H2O].
• 𝐴𝑗 : Pre-exponential factor of rate coefficient 𝑘𝑖 [mol Pa0.5 (kg𝑐 𝑎𝑡 s)−1 for 𝑗 = 1 (SMR reaction), mol (Pa kg𝑐 𝑎𝑡 s)−1 for 𝑗 = 2 (WGS reaction)].
• 𝐶𝑖, 𝐶𝑟

𝑖 , 𝐶
𝑝
𝑖 , 𝐶𝑎,𝑃 𝑀 𝑅

𝑖 , 𝐶𝑐 ,𝑃 𝑀 𝑅
𝑖 : Concentration of gas 𝑖, in retentate, in permeate, in PMR anode, in PMR cathode [mol m−3].

• 𝐶𝑝,𝑖: Heat capacity of species 𝑖 [J (kg K)−1].
• 𝐸𝑗 : Activation energy of reaction 𝑗 [J mol−1].
• 𝐹𝑖,0, 𝐹 𝑟

𝑖,0, 𝐹 𝑝
𝑖,0, 𝐹 𝑎,𝑃 𝑀 𝑅

𝑖,0 , 𝐹 𝑐 ,𝑃 𝑀 𝑅
𝑖,0 , 𝐹 𝑏

𝑖,0: Inlet molar flowrate of gas 𝑖, of retentate, of permeate, of PMR anode, of PMR cathode, of bubbler
[mol s−1].

• 𝐹𝑘,𝑟𝑒𝑚: Removal rate of gas 𝑘 [mol s−1].
• 𝐼𝑚, 𝐼𝑓 : Current through membrane, current to heat furnace [A].
• 𝐾𝑖: Adsorption constant of gas 𝑖 [Pa−1 for 𝑖 = CH4,H2,CO and unitless for 𝑖 = H2O]
• 𝐾𝑗 : Equilibrium constant of reaction 𝑗 [Pa2 for 𝑗 = 1 (SMR reaction), unitless for 𝑗 = 2 (WGS reaction)]
• 𝑘𝑗 : Reaction rate constant of reaction 𝑗 [mol Pa0.5 (kg𝑐 𝑎𝑡 s)−1 for 𝑗 = 1 (SMR reaction), mol (Pa kg𝑐 𝑎𝑡 s)−1 for 𝑗 = 2 (WGS reaction)]
• 𝑀H2O: Molecular mass of H2O [kg mol−1]
• 𝑃 , 𝑃 𝑟, 𝑃 𝑝, 𝑃 𝑎,𝑃 𝑀 𝑅, 𝑃 𝑐 ,𝑃 𝑀 𝑅, 𝑃 𝑏: Pressure, of retentate, of permeate, of PMR anode, of PMR cathode, of bubbler [Pa]
• 𝑃𝑖: Partial pressure of gas 𝑖 [Pa]
• 𝑞, 𝑞𝑟, 𝑞𝑝, 𝑞𝑎,𝑃 𝑀 𝑅, 𝑞𝑐 ,𝑃 𝑀 𝑅: Outlet volumetric flowrate, of retentate, of permeate, of PMR anode, of PMR cathode [m3 s−1].
• 𝑟𝑗 : Rate of reaction 𝑗 per kilogram of catalyst [mol (kg s)−1].
• 𝑅𝑗 : Rate of reaction 𝑗 [mol s−1].
• 𝑅: Universal gas constant [J (mol K)−1]
• 𝑅𝑓 , 𝑅𝑚: Electric resistance of furnace, of membrane [Ω].
• 𝑅𝑖,𝑔 𝑒𝑛: Generation rate of species i due to reaction [mol s−1].
• 𝑇 , 𝑇 𝑎, 𝑇 𝑟, 𝑇 𝑝, 𝑇 𝑎,𝑃 𝑀 𝑅, 𝑇 𝑐 ,𝑃 𝑀 𝑅: Temperature, of ambient, of retentate, of permeate, of PMR anode, of PMR cathode [𝐾].
• 𝑇 , 𝑇 𝑟, 𝑇 𝑝, 𝑇 𝑏: Temperature at the inlet, of retentate, of permeate, bubbler [𝐾].
0 0 0 0
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• 𝑈ℎ, 𝑈 𝑟
ℎ, 𝑈 𝑝

ℎ , 𝑈𝑎,𝑃 𝑀 𝑅
ℎ , 𝑈 𝑐 ,𝑃 𝑀 𝑅

ℎ , 𝑈 𝑏
ℎ : Overall heat transfer coefficient, of retentate, of permeate, of PMR anode, of PMR cathode, of bubbler

[J (s K m2)−1]
• 𝑉 , 𝑉 𝑟, 𝑉 𝑝, 𝑉 𝑏

𝑔 𝑎𝑠, 𝑉 𝑏: Volume of reactor, of retentate, of permeate, of gas in bubbler, of bubbler [m3]
• 𝑊𝑐 𝑎𝑡: Weight of catalyst [kg]
• 𝛥𝐻𝑟𝑗 : Enthalpy change of reaction 𝑗 [J mol−1]
• 𝜌𝑖, 𝜌𝑟𝑖 , 𝜌

𝑝
𝑖 , 𝜌

𝑏
𝑖 : Density of species 𝑖, of retentate, of permeate, of bubbler [kg m−3]

2.2. Class of systems

A general nonlinear system is described by the following equations:

𝒙̇ = 𝑭 (𝒙, 𝒖) (1a)

𝒚 = 𝒉(𝒙, 𝒖) (1b)

where the state vector is denoted by 𝒙 ∈ R𝑛, and 𝒖 ∈ R𝑚 represents the manipulated (control) input vector, constrained by the set 𝑈 ⊂ R𝑚.
∈ R𝑘 is the measured (to be controlled) output vector. 𝑭 ∈ R𝑛 represents a general nonlinear vector function and is used to represent a typically
nknown process model. Without loss of generality, we assume the initial time to be zero (𝑡0 = 0).

We consider 𝑗 = 1,… , 𝑁𝑠𝑦𝑠 subsystems, where each subsystem 𝑗 is regulated by its respective control input 𝑢𝑗 and can be influenced by
interactions with other subsystems due to coupling effects. The continuous-time nonlinear dynamics for each subsystem 𝑗 are given by:

𝒙̇𝒋 = 𝑭 𝒋(𝒙, 𝒖𝒋), ∀𝑗 = 1,… , 𝑁𝑠𝑦𝑠 (2a)

𝒚𝒋 = 𝒉𝒋(𝒙𝒋 , 𝒖𝒋), ∀𝑗 = 1,… , 𝑁𝑠𝑦𝑠 (2b)

where 𝑁𝑠𝑦𝑠 denotes the number of subsystems, 𝒙𝑗 ∈ R𝑛𝑗 and 𝒖𝑗 ∈ R𝑚𝑗 are the state vector and control inputs for subsystem 𝑗, respectively. The
verall system state vector is 𝒙 = [𝒙⊤1 …𝒙⊤𝑁𝑠𝑦𝑠

]⊤ ∈ R𝑛, where 𝑛 =
∑𝑁𝑠𝑦𝑠

𝑗=1 𝑛𝑗 , and the control input vector for the entire system is 𝒖 = [𝒖⊤1 … 𝒖⊤𝑁𝑠𝑦𝑠
]⊤ ∈

𝑚, where 𝑚 =
∑𝑁𝑠𝑦𝑠

𝑗=1 𝑚𝑗 . The control input for each subsystem 𝑗 is constrained by 𝒖𝑗 ∈ 𝑈𝑗 ∶= {𝒖𝐦𝐢𝐧,𝒋𝒊 ≤ 𝒖𝒋𝒊 ≤ 𝒖𝐦𝐚𝐱,𝒋𝒊 ,∀𝑖 = 1, 2,⋯ , 𝑚𝑗} ∈ R𝑚𝑗 , where
= 1,… , 𝑁𝑠𝑦𝑠. The set 𝑈 constraining the control input vector for the entire system is the union of the individual sets 𝑈𝑗 , for all 𝑗 = 1,… , 𝑁𝑠𝑦𝑠.

2.3. Model predictive control

Model predictive control determines an optimal sequence of control inputs over a prediction horizon to minimize a cost function while satisfying
system constraints. The MPC optimization problem is defined as:

 = min
𝒖 ∫

𝑡𝑘+𝑁ℎ

𝑡𝑘
𝐿(𝒚̂(𝑡), 𝒖(𝑡)) d𝑡 (3a)

s.t. ̇̂𝒙(𝑡) = 𝑭̂ (𝒙̂(𝑡), 𝒖(𝑡)) , 𝒙̂(𝑡𝑘) = 𝒙(𝑡𝑘) (3b)

𝒚̂(𝑡) = 𝒉(𝒙̂(𝑡), 𝒖(𝑡)) (3c)

𝐿(𝒚̂(𝑡), 𝒖(𝑡)) = (𝒚̂(𝑡) − 𝒚𝑠𝑝)⊤𝑨(𝒚̂(𝑡) − 𝒚𝑠𝑝) + (𝒖(𝑡) − 𝒖𝑠𝑝)⊤𝑩(𝒖(𝑡) − 𝒖𝑠𝑝) (3d)

𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (3e)

‖𝒖(𝑡𝑘) − 𝒖(𝑡𝑘−1)‖ ≤ 𝛥𝒖limit (3f)

𝒖(𝑡) ∈ 𝑈 ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (3g)

where the objective function ( ) minimizes the deviation of the predicted output 𝒚̂(𝑡) from the setpoint 𝒚𝑠𝑝 and the control input 𝒖(𝑡) from the
reference 𝒖𝑠𝑝, weighted by matrices 𝑨 =

[

𝐴𝑝𝑞
]

and 𝑩 =
[

𝐵𝑝𝑞
]

, which are diagonal, i.e., 𝐴𝑝𝑞 = 0 and 𝐵𝑝𝑞 = 0 for 𝑝 ≠ 𝑞. The state vector 𝒙̂(𝑡) is
estimated by the designed (to be specified below) model 𝑭̂ (𝒙̂(𝑡), 𝒖(𝑡)). The constraints enforce control input rate limits (𝛥𝒖limit) and ensure control
inputs remain within the feasible set 𝑈 .

2.4. Decentralized model predictive control

The optimization problem described in Section 2.3 incorporates all state variables and control inputs, a structure known as centralized MPC
(CMPC). While CMPC is effective, it can become computationally expensive for large-scale or complicated systems. Decentralized model predictive
ontrol addresses this challenge by dividing the global optimization into smaller, localized problems, each handled by an individual MPC controller
or the respective subsystem 𝑗 = 1,… , 𝑁𝑠𝑦𝑠.

Each local MPC controller for 𝑗th subsystem solves:

𝑗 = min
𝒖𝑗 ∫

𝑡𝑘+𝑁ℎ

𝑡𝑘
𝐿𝑗 (𝒚̂𝑗 (𝑡), 𝒖𝑗 (𝑡)) d𝑡 (4a)

s.t. ̇̂𝒙𝑗 (𝑡) = 𝑭 𝒋
(

𝒙̂𝑗 (𝑡), 𝒖𝒋(𝑡)
)

, 𝒙̂𝑗 (𝑡𝑘) = 𝒙𝑗 (𝑡𝑘) (4b)

𝒚̂𝑗 (𝑡) = 𝒉𝒋(𝒙̂𝑗 (𝑡), 𝒖𝑗 (𝑡)) (4c)
𝐿𝑗 (𝒚̂𝑗 (𝑡), 𝒖𝑗 (𝑡)) = (𝒚̂𝑗 (𝑡) − 𝒚𝑗 ,𝑠𝑝)⊤𝑨𝒋(𝒚̂𝑗 (𝑡) − 𝒚𝑗 ,𝑠𝑝)

+ (𝒖𝑗 (𝑡) − 𝒖𝑗 ,𝑠𝑝)⊤𝑩𝒋(𝒖𝑗 (𝑡) − 𝒖𝑗 ,𝑠𝑝) (4d)

𝑡 ∈ [𝑡 , 𝑡 ) (4e)
𝑘 𝑘+𝑁ℎ
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‖𝒖𝑗 (𝑡𝑘) − 𝒖𝑗 (𝑡𝑘−1)‖ ≤ 𝛥𝒖limit,𝑗 (4f)

𝒖𝑗 (𝑡) ∈ 𝑈𝑗 ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (4g)

where the objective function (𝑗) minimizes the deviation of the predicted output 𝒚̂𝑗 (𝑡) from the setpoint 𝒚𝑗 ,𝑠𝑝 and the control input 𝒖𝒋(𝑡) from the
reference 𝒖𝑗 ,𝑠𝑝, weighted by matrices 𝑨 =

[

𝐴𝑗 ,𝑝𝑞
]

and 𝑩 =
[

𝐵𝑗 ,𝑝𝑞
]

, which are diagonal, i.e., 𝐴𝑗 ,𝑝𝑞 = 0 and 𝐵𝑗 ,𝑝𝑞 = 0 for 𝑝 ≠ 𝑞. The state vector 𝒙̂𝑗 (𝑡)
is estimated by the designed model 𝑭 𝒋

(

𝒙̂𝑗 (𝑡), 𝒖𝒋(𝑡)
)

. The constraints enforce control input rate limits (𝛥𝒖limit,𝑗) and ensure control inputs remain
within the feasible set 𝑈𝑗 .

2.5. Disturbance observer

For this specific work, the disturbance observer formulation is developed from the offset-free method, which is also one type of the extended
tate observer. This allows the system to correct errors by introducing an additional disturbance state (extended state), 𝝃 ∈ R𝑚. Additionally, the
tate observer is also designed to estimate the state. The offset-free approach can be represented by the following set of equations (Maeder et al.,

2009; Wang et al., 2024; Wallace et al., 2016):

̇̃𝒙 = 𝑭̂ (𝒙̃, 𝒖) +𝑳𝒙(𝒚 − 𝒚̃) + 𝑩𝒅𝝃 (5a)

𝒚̃ = 𝒉(𝒙̃, 𝒖) (5b)
̇̃𝝃 = 𝑳𝝃 (𝒚 − 𝒚̃) (5c)

where 𝒙̃ ∈ R𝑛 is the modified state vector governed by the system dynamics with augmented state observer and disturbance accumulation.
𝑳𝒙 ∈ R𝑛×𝑘 and 𝑳𝝃 ∈ R𝑛×𝑘 serves as the observer gains, and (𝒚− 𝒚̃) ∈ R𝑘 is the error between the real output 𝒚 ∈ R𝑘 and the expected output 𝒚̃ ∈ R𝑘.
The additional disturbance state 𝝃 ∈ R𝑛 corrects for model inaccuracies by accumulating the error. 𝑩𝒅 ∈ R𝑛×𝑛 represents the disturbance matrix.

Building on the offset-free method, the unknown input observer (UIO), which is a type of disturbance observer that explicitly estimates
isturbances and integrates them into the system model (Chen et al., 2015). In this technique, the disturbances are assumed to be generated

by the following exogenous system (Johnson, 1970; Chen et al., 1996):

𝝃̇ = 𝑾 𝝃 (6a)

𝒅 = 𝑽 𝝃 (6b)

where 𝑾 ∈ R𝑛×𝑛 and 𝑽 ∈ R𝑛×𝑛 are designed diagonal matrices. Specifically, the disturbance term is introduced to capture the mismatch between
the actual process dynamics and the model used in the MPC. Therefore, the DOB equations are formulated by introducing a new disturbance term
̃ ∈ R𝑛 that is computed from the auxiliary state 𝝃̃ ∈ R𝑛 to Eq. (5), as shown in the following equation:

̇̃𝒙 = 𝑭̂ (𝒙̃, 𝒖) +𝑳𝒙(𝒚 − 𝒚̃) + 𝑩𝒅 𝒅̃ (7a)

𝒚̃ = 𝒉(𝒙̃) (7b)
̇̃𝝃 = 𝑾 𝝃̃ +𝑳𝝃 (𝒚 − 𝒚̃) (7c)

𝒅̃ = 𝑽 𝝃̃ (7d)

where 𝒅̃ ∈ R𝑛 estimates the disturbance 𝒅 ∈ R𝑛 in Eq. (6) calculated using 𝑽 𝝃̃ ∈ R𝑛. Based on Eq. (7), the model utilized in MPC is formulated by
ombining the state variables and the observer variables as follows:

̇̄𝒙 = 𝑭̄ (𝒙̄, 𝒖) (8a)

𝒚̄ = 𝒉(𝒙̄) (8b)

𝒙̄ =
[

𝒙̃
𝝃̃

]

, 𝑭̄ (𝒙̄, 𝒖) =
[

𝑭̂ (𝒙̃, 𝒖) + 𝑩𝒅 𝒅̃
𝑾 𝝃̃

]

(8c)

For the subsystem 𝑗, this augmented model is as follows:

̇̄𝒙𝑗 = 𝑭̄ 𝒋(𝒙̄𝒋 , 𝒖𝒋) (9a)

𝒚̄𝑗 = 𝒉𝒋(𝒙̄𝒋) (9b)

𝒙̄𝑗 =
[

𝒙̃𝑗
𝝃̃𝑗

]

, 𝑭̄ 𝒋(𝒙̄𝒋 , 𝒖𝒋) =
[

𝑭̂ 𝒋(𝒙̃𝑗 , 𝒖𝑗 ) + 𝑩𝒅 ,𝒋 𝒅̃𝑗
𝑾 𝑗 𝝃̃𝑗

]

(9c)

Since the model is corrected over time, the reference control input vector setpoints (𝒖𝑠𝑝) must also be changed. To estimate 𝒖𝑠𝑝, the condition
in which state variables are at a steady state and the control target has reached the controlled setpoints is assumed. Therefore,

𝑭̄ (𝒙̄𝑠𝑝, 𝒖𝑠𝑝) = 𝟎, (10a)

𝒉(𝒙̄𝑠𝑝, 𝒖𝑠𝑝) = 𝒚𝑠𝑝. (10b)

The solution (𝒙̄∗𝑠𝑝, 𝒖∗𝑠𝑝) of Eq. (10) is the corresponding state vector and reference control input vector at the setpoints. However, if multiple solutions
r no solution exists within the feasible region for Eq. (10), these equations cannot be effectively employed to determine 𝒖𝑠𝑝. Therefore, to ensure

the uniqueness of the solution for Eq. (10) within the feasible regions, the following conditions must be satisfied.
Firstly, the number of equations should be matched to the number of unknowns. Therefore,
dim(𝑭̄ ) + dim(𝒉) = 𝑛 + 𝑚, (11)
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where 𝑛 = dim(𝒙̄𝑠𝑝) and 𝑚 = dim(𝒖𝑠𝑝). From the definition, 𝑚 = 𝑘 is needed to satisfy this condition. This condition guarantees the possibility of a
unique solution. Additionally, the functions 𝑭̄ and 𝒉 are supposed to be continuously differentiable. Formally, this means:

𝑭̄ ∈ 1(R𝑛+𝑚,R𝑛), 𝒉 ∈ 1(R𝑛+𝑚,R𝑚) (12)

which is used to prove continuous differentiability and ensures that the system is smooth enough to apply differential methods like the Implicit
Function Theorem or Newton–Raphson methods to calculate the steady states.

The Jacobian matrix 𝑱 of the system with respect to the variables (𝒙̄𝑠𝑝, 𝒖𝑠𝑝) is also considered. The Jacobian is given by:

𝑱 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑭̄
𝜕𝒙̄𝑠𝑝

𝜕𝑭̄
𝜕𝒖𝑠𝑝

𝜕𝒉
𝜕𝒙̄𝑠𝑝

𝜕𝒉
𝜕𝒖𝑠𝑝

⎤

⎥

⎥

⎥

⎥

⎦

. (13)

This Jacobian matrix must be nonsingular at the solution point (𝒙̄∗𝑠𝑝, 𝒖∗𝑠𝑝), which is mathematically expressed as:

det (𝑱 ) ≠ 0. (14)

This condition guarantees the local uniqueness of the solution and ensures that the system behaves well under small perturbations.
Finally, the global uniqueness of the solution (𝒙̄∗𝑠𝑝, 𝒖

∗
𝑠𝑝) is established by reformulating the system as a contraction mapping and applying the

anach Fixed-Point Theorem (Khamsi and Kirk, 2011). The vector 𝒛 and the mapping 𝑻 are defined as follows:

𝒛 =
[

𝒙̄𝑠𝑝
𝒖𝑠𝑝

]

, 𝑻 (𝒛) =
[

𝑻 𝑥̄(𝒛)
𝑻 𝑢(𝒛)

]

, (15)

where 𝑻 𝑥̄ and 𝑻 𝑢 are defined based on the original Eq. (10), as follows:

𝑻 𝑥̄(𝒛) = 𝒙̄𝑠𝑝 − 𝛼 𝑭̄ (𝒙̄𝑠𝑝, 𝒖𝑠𝑝), (16)

𝑻 𝑢(𝒛) = 𝒖𝑠𝑝 − 𝛽
(

𝒉(𝒙̄𝑠𝑝, 𝒖𝑠𝑝) − 𝒚𝑠𝑝
)

, (17)

where 𝛼 and 𝛽 are appropriately chosen constants.
The Lipschitz condition with Lipschitz constant 𝐿 < 1 must also be satisfied for the designed function 𝑻 :

‖𝑻 (𝒛1) − 𝑻 (𝒛2)‖ ≤ 𝐿 ⋅ ‖𝒛1 − 𝒛2‖, (18)

for all 𝒛1, 𝒛2 ∈ R𝑛+𝑚. This can be achieved by bounding the norms of the differences:

‖𝑻 𝑥̄(𝒛1) − 𝑻 𝑥̄(𝒛2)‖ ≤ 𝛼 𝐿𝐹 ‖𝒛1 − 𝒛2‖, (19)

‖𝑻 𝑢(𝒛1) − 𝑻 𝑢(𝒛2)‖ ≤ 𝛽 𝐿ℎ‖𝒛1 − 𝒛2‖, (20)

where 𝐿𝐹 and 𝐿ℎ are Lipschitz constants for 𝑭̄ and 𝒉, respectively. 𝛼 and 𝛽 are chosen to ensure that 𝑻 is a contraction:

𝛼 𝐿𝐹 + 𝛽 𝐿ℎ < 1. (21)

Since R𝑛+𝑚 equipped with the standard Euclidean norm is a complete metric space, by the Banach Fixed-Point Theorem, the mapping 𝑻 has a
nique fixed point in R𝑛+𝑚. This uniqueness is established by the contraction property, which ensures that the function, when iterated from any
nitial point, converges towards the fixed point. This fixed point corresponds to the unique solution (𝒙̄∗𝑠𝑝, 𝒖

∗
𝑠𝑝) of Eq. (10).

Under the conditions of dimensional consistency Eq. (11), continuous differentiability Eq. (12), nonsingularity of the Jacobian Eq. (14), and
the contraction mapping condition Eq. (21), both local and global uniqueness of the steady state solutions (𝒙̄∗𝑠𝑝, 𝒖

∗
𝑠𝑝) within the feasible region are

established. This ensures that the unique set of reference control input setpoints can be adaptively changed. If the solution of Eq. (10) is not unique,
𝑩 or 𝑩𝒋 are required to be set as 𝟎 in Eqs. (3d) and (4d), respectively.

Remark 1. In particular, if 𝑾 = 0 and 𝑽 = 𝐼 , it is equivalent to Eq. (5). Thus, 𝑾 = 0 and 𝑽 = 𝐼 are set as the initial values when tuning the
disturbance observer. Finally, both parameters are carefully tuned to optimize performance.

2.6. Protonic membrane reformer

The PMR process generates hydrogen along with carbon monoxide (CO) and carbon dioxide (CO2) as byproducts (Eq. (22)).

CH4 + H2O ⇌ 3H2 + CO, 𝛥𝐻298 = 206.1 kJ mol−1 (22a)

CO + H2O ⇌ CO2 + H2, 𝛥𝐻298 = −41.15 kJ mol−1 (22b)

A PMR unit simultaneously permeates protons from its anodic gas mixture through a solid oxide electrolyte to purify the H2 target product. The
riving force for H2 separation from the ionized H+ atoms in the anode to the cathode is the potential gradient produced by a power supply. An
lectrochemical surface reaction allows for the recombination of H+ with electrons to reform H2 gas in the high-pressure cathode of the PMR.

H2 ⇌ 2H+ + 2e− (23)

This integrated system offers a more efficient pathway for hydrogen production by combining reforming, purification, and compression processes
within a single unit. In contrast, a conventional SMR plant necessitates multiple discrete units to achieve the same outcomes (Molburg and Doctor,
2003; Taji et al., 2018; Hsu et al., 2024).
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Fig. 1. Overall piping and instrumentation schematic to demonstrate the location of the PMR system process units, sensors, and actuators.

2.7. Experimental methods

2.7.1. PMR system
The PMR system at UCLA was built to convert methane and steam into carbon monoxide, carbon dioxide, and hydrogen. Fig. 1 displays a

&ID diagram showing the PMR process gas flow, piping, sensors, and actuators. Argon (Ar) is used as a gas chromatogram (GC) tracer during
xperiments to account for volumetric flowrate changes in the gas product mixture caused by the overall stoichiometry of the gas-phase SMR
eactions. Along with argon, hydrogen is fed to the reactor unit to prevent unwanted side reactions that produce solid carbon and to simulate the
xistence of a pre-reformer. All reactants flow through the anode, or the retentate region, of the reactor. At the same time, a mixture of steam
nd hydrogen flow as carrier gases through the cathode, or permeate region, of the PMR where electrochemically separated hydrogen is collected.
he system is configured such that a carrier gas is needed to move steam from the steam-generating bubblers to the permeate side of the proton
embrane reformer unit. Hydrogen is used as a carrier because the downstream digital flow meter, located after the steam-removing condensers,

an only accurately measure a pure gas species flowrate. Thus, if hydrogen is the carrier gas in the cathode that is mixed with the hydrogen that
lows to the permeate side of the membrane through electrochemical separation, a pure species flows through the digital flow meter that is used
o track the hydrogen volumetric flowrate.

The experimental system pressure is 1 bar at the anode and 1 bar at the cathode. During operation, the inlet gases travel through two bubblers
that wet the gas mixtures in the anode and cathode. A steam-to-carbon ratio of 3 is used in the anode gas mixture, while a 67% steam mixture
lows through the cathode side of the reformer. Next, the reactant gases flow into the anode of the PMR where Ni catalytic sites are embedded
nto the surface of the anodic electrode. The SMR and WGS reactions take place at the anodic electrode, and concurrently, dihydrogen gas splits
nto protons that are separated through the solid electrolyte housed between the electrodes. Once the protons travel through the electrolyte and
hrough the cathodic electrode, the individual hydrogen atoms meet with available electrons and reform dihydrogen gas, demonstrating a primary
riving force for separation that is a function of the potential difference between the anode and cathode of the membrane. Unreacted gases and

unremoved species remain in the anode and exit the reactor to be quantified in a TCD GC after excess steam is removed with a condenser. The
emoved hydrogen species exit the reactor cathode, and the flowrate of the separated hydrogen is measured downstream after cathodic steam is
lso removed with a condenser.

2.7.2. Actuators and sensors
The experimental PMR system is equipped with temperature indicators and actuators, pressure indicators and actuators, flow indicators and

ctuators, a potentiostat, and a TCD GC. All sensors and actuators are recorded on a per second basis into a LabVIEW user interface with a
ompactRIO analog-to-digital signal converter. The four mass flow controllers measure and modulate all inlet gas flowrates. A flowmeter measures

the total hydrogen flowrate in the cathode before the molecular hydrogen gas exits the system through a vent. Four pressure indicators transmit
the pressures in the anode and cathode steam tanks, the cathode reactor inlet, and the anode reactor outlet. Back pressure regulators, or pressure
controllers, set the pressures on either side of the PMR system. Two temperature controllers are located in the steam bubblers to control the vapor
pressure of steam, and three temperature indicators are located in the two steam tanks and the anode inlet of the PMR. Finally, a potentiostat is
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Fig. 2. Schematic describing the molar flow of retentate and permeate inlet species through the CST-MR control volume, through a generic proton conducting membrane, and to
the retentate and permeate outlets of the reactor.

used to measure and control the potential across the closed circuit of the PMR, along with an automated GC that measures the composition of the
anode species after leaving the PMR.

Remark 2. Each gas species flowrate from the reactor is measured using GC and expressed in standard cubic centimeters per minute (sccm). Due
to the GC cooling period and analysis time, sampling is performed at 18-min intervals with a 15-min delay, resulting in infrequent and delayed
gas measurement data. In contrast, the temperature indicators and digital flowmeter provide data in real time on a per second basis.

3. Model development and validation

In this section, a first principles model of the entire PMR system is derived from a classic reaction engineering CSTR model in order to capture
the dynamic behavior of a general gas-phase CST-MR. Subsequently, this model is applied to the PMR system, and a model for a gas bubbler is
developed to estimate the steam flowrate in the reactor inlet gas mixture. A CST-MR operates like a typical CSTR but incorporates a membrane
within the reactor. This membrane allows for selective separation or removal of selected components during the reaction. In a CST-MR, the side of
the membrane with unremoved gas species is referred to as the retentate, and the side of the membrane through which the removed species travel
is called the permeate (Barbieri, 2015). The schematic of a general CST-MR is illustrated in Fig. 2.

3.1. Gas-phase CST-MR dynamic model

To develop the dynamic model of a CST-MR process, a traditional CSTR model is adapted. For a dynamic CSTR model, the mole balance of
each gas species is presented as follows:

𝐹𝑖,0 + 𝑅𝑖,𝑔 𝑒𝑛 = 𝑞 𝐶𝑖 + 𝑉 𝐶̇𝑖 (24)

where 𝑖 refers to all species in the reactor. In general, this equation reveals that the incoming species must exit the reactor outlet or accumulate
within the reactor control volume. Based on this, the mole balance for a gas-phase CST-MR retentate is developed. For the retentate side of a
CST-MR, the mole balance is as follows:

𝐹 𝑟
𝑗 ,0 + 𝑅𝑗 ,𝑔 𝑒𝑛 = 𝑞𝑟𝐶𝑟

𝑗 + 𝑉 𝑟𝐶̇𝑟
𝑗 (25a)

𝐹 𝑟
𝑘,0 + 𝑅𝑘,𝑔 𝑒𝑛 = 𝑞𝑟𝐶𝑟

𝑘 + 𝐹𝑘,𝑟𝑒𝑚 + 𝑉 𝑟𝐶̇𝑟
𝑘 (25b)

Where 𝑗 and 𝑘 refer to each unremoved or removed species, respectively. Based on rearranging of Eq. (25), a dynamic model for the retentate is
developed:

𝑪̇𝒓 = 1
𝑉 𝑟

(

𝑭 𝒓
𝟎 +𝑹𝒈𝒆𝒏 − 𝑞𝑟 𝑪𝒓 − 𝑭 𝑟𝑒𝑚

)

(26a)

𝑪𝒓 =

[

𝐶𝑟
𝑗

𝐶𝑟
𝑘

]

, 𝑭 𝒓
𝟎 =

[

𝐹 𝑟
𝑗 ,0

𝐹 𝑟
𝑘,0

]

, 𝑹𝒈𝒆𝒏 =
[

𝑅𝑗 ,𝑔 𝑒𝑛
𝑅𝑘,𝑔 𝑒𝑛

]

, 𝑭 𝑟𝑒𝑚 =
[

0
𝐹𝑘,𝑟𝑒𝑚

]

(26b)

where the dynamic behavior of the species concentration in the retentate is described by this ordinary differential equation (ODE). However, due
to gas-phase thermodynamic properties, the volumetric flowrate (𝑞𝑟 in Eq. (26)) in the retentate changes with the progression of SMR reactions
and hydrogen extraction. To determine 𝑞𝑟, the ideal gas law is involved as shown in Eq. (27).

∑

𝑟 𝑃 𝑟

𝐶𝑖 =

𝑅𝑇 𝑟 (27)
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Where 𝑖 = 𝑗 + 𝑘 refers to each species in the retentate. From the ideal gas law, and with the assumption of constant pressure, the sum of the
erivative of each species concentration can be expressed as Eq. (28).

∑

𝐶̇𝑟
𝑖 = − 𝑃 𝑟

𝑅(𝑇 𝑟)2
̇𝑇 𝑟 (28)

From Eq. (26), the sum of the derivative of each species concentration can also be presented as:
∑

𝐶̇𝑟
𝑖 = 1

𝑉 𝑟

(

∑

𝐹 𝑟
𝑖,0 +

∑

𝑅𝑗 ,𝑔 𝑒𝑛 +
∑

𝑅𝑘,𝑔 𝑒𝑛 − 𝑞𝑟
∑

𝐶𝑟
𝑖 −

∑

𝐹𝑘,𝑟𝑒𝑚

)

(29)

By combining Eqs. (27), (28) and (29), the volumetric flowrate is calculated by Eq. (30).

𝑞𝑟 =
(

∑

𝐹 𝑟
𝑖,0 +

∑

𝑅𝑗 ,𝑔 𝑒𝑛 +
∑

𝑅𝑘,𝑔 𝑒𝑛 −
∑

𝐹𝑘,𝑟𝑒𝑚

) 𝑅𝑇 𝑟

𝑃 𝑟 + 𝑉 𝑟

𝑇 𝑟 𝑇̇
𝑟 (30)

In the CST-MR dynamic model, an energy balance is formulated to monitor the transient reactor temperature, which can also be regarded as a
tate variable. For a conventional CSTR, the energy balance is generally expressed as Eq. (31) (Abdalah, 2020), under the assumptions of negligible

heat generation from the stirrer.

𝑇̇ =
𝑄̇ℎ + 𝑄̇𝑠 + 𝑄̇𝑟 + 𝑄̇𝑙

∑

𝜌𝑖𝐶𝑝,𝑖𝑉
(31a)

𝑄̇𝑠 =
∑

𝐹𝑖,0 ∫

𝑇

𝑇0
𝐶𝑝,𝑖𝑑 𝑇 ′ (31b)

𝑄̇𝑟 = −
∑

𝑅𝑗𝛥𝐻𝑗 (𝑇 ) (31c)

𝑄̇𝑙 = 𝑈ℎ𝐴ℎ(𝑇 𝑎 − 𝑇 ) (31d)

Where 𝑄̇ℎ, 𝑄̇𝑠, 𝑄̇𝑟 and 𝑄̇𝑙 refer to the energy associated with the heat source, enthalpy of inlet gas streams, the endothermic and/or exothermic
eactions, and heat loss to the surroundings, respectively.

For the CST-MR, the temperature of the retentate is also influenced by the species extraction process, particularly when the driving force for
eparation is an electric potential gradient across the membrane. Heat transfer via conduction occurs through the membrane material as well.

Considering these phenomena, the retentate energy balance is written as follows:

𝑇̇ 𝑟 =
𝑄̇𝑟

ℎ + 𝑄̇𝑟
𝑠 + 𝑄̇𝑟

𝑟 + 𝑄̇𝑟
𝑙 + 𝑄̇𝑟

𝑒 + 𝑄̇𝑟
𝑝

∑

𝜌𝑟𝑖𝐶𝑝,𝑖𝑉 𝑟 (32a)

𝑄̇𝑟
𝑠 =

∑

𝐹 𝑟
𝑖,0 ∫

𝑇 𝑟

𝑇 𝑟
0

𝐶𝑝,𝑖𝑑 𝑇 ′ (32b)

𝑄̇𝑟
𝑟 = −

∑

𝑅𝑗𝛥𝐻𝑗 (𝑇 𝑟) (32c)

𝑄̇𝑟
𝑙 = 𝑈 𝑟

ℎ𝐴
𝑟
ℎ(𝑇

𝑎 − 𝑇 𝑟) (32d)

Where 𝑄̇𝑟
ℎ, 𝑄̇𝑟

𝑠, 𝑄̇𝑟
𝑟 and 𝑄̇𝑟

𝑙 refer to the heat transfer rate associated with the heat source, enthalpy of inlet gas stream, the endothermic and/or
exothermic reactions and the heat loss to the surroundings, respectively, for the retentate of a CST-MR process. Additional terms 𝑄̇𝑟

𝑒 and 𝑄̇𝑟
𝑝 are

considered in the CST-MR energy balance, referring to the energy caused by the species extraction process and heat transfer from the permeate to
quantify heat generation at the membrane interface.

For the permeate, the membrane-extracted gas species are inputs to the material balance. Thus, the mole balance for permeate species follows:

𝐹 𝑝
𝑚,0 = 𝑞𝑝𝐶𝑝

𝑚 + 𝑉 𝑝𝐶̇𝑝
𝑚 (33a)

𝐹 𝑝
𝑘,0 + 𝐹𝑘,𝑟𝑒𝑚 = 𝑞𝑝𝐶𝑝

𝑘 + 𝑉 𝑝𝐶̇𝑝
𝑘 (33b)

In this formulation, 𝑚 represents the carrier gas species in the permeate. By rearranging Eq. (33), the dynamic model for the concentration of each
permeate species can be expressed as:

𝑪̇𝒑 = 1
𝑉 𝑝

(

𝑭 𝒑
𝟎 − 𝑞𝑝 𝑪𝒑 + 𝑭 𝑟𝑒𝑚

)

(34a)

𝑪𝒑 =
[

𝐶𝑝
𝑚

𝐶𝑝
𝑘

]

, 𝑭 𝒑
𝟎 =

[

𝐹 𝑝
𝑚,0

𝐹 𝑝
𝑘,0

]

, 𝑭 𝑟𝑒𝑚 =
[

0
𝐹𝑘,𝑟𝑒𝑚

]

(34b)

Similar to the case for the retentate, upon applying the ideal gas law to the permeate gas species concentrations, the derivative of the total gas
concentration in the permeate can be expressed as:

∑

𝐶̇𝑝
𝑖 = − 𝑃 𝑝

𝑅(𝑇 𝑝)2
̇𝑇 𝑝 (35a)

∑

𝐶̇𝑝
𝑖 = 1

𝑉 𝑝

(

∑

𝐹 𝑝
𝑖,0 − 𝑞𝑝

∑

𝐶𝑝
𝑖 +

∑

𝐹𝑘,𝑟𝑒𝑚

)

(35b)

Therefore, combining Eqs. (35a) and (35b), the total volumetric flowrate in the permeate is calculated by:

𝑞𝑝 =
(

∑

𝐹 𝑝
𝑙 ,0 +

∑

𝐹𝑘,𝑟𝑒𝑚

) 𝑅𝑇 𝑝

𝑃 𝑝 + 𝑉 𝑝

𝑇 𝑝 𝑇̇
𝑝 (36)

where 𝑙 = 𝑚 + 𝑘 is denoted as all gases in the permeate and 𝑇 𝑝 is determined by the energy balance of the permeate, shown as follows:

̇𝑇 𝑝 =
𝑄̇𝑝

ℎ + 𝑄̇𝑝
𝑠 + 𝑄̇𝑝

𝑙 + 𝑄̇𝑝
𝑒 + 𝑄̇𝑝

𝑟
∑

𝜌𝑝𝑖𝐶𝑝,𝑖𝑉 𝑝
(37a)

𝑄̇𝑝
𝑠 =

∑

𝐹 𝑝
𝑖,0 ∫

𝑇 𝑝

𝑝
𝐶𝑝,𝑖𝑑 𝑇 ′ +

∑

𝐹𝑘,𝑟𝑒𝑚 ∫

𝑇 𝑝

𝐶𝑝,𝑘𝑑 𝑇 ′ (37b)

𝑇0 𝑇 𝑟
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Fig. 3. Schematic describing the molar flow of anode (retentate) and cathode (permeate) inlet species through the PMR control volume, through the Ni-BCZY proton conducting
membrane, and to the anode and cathode outlets.

𝑄̇𝑝
𝑙 =𝑈

𝑝
ℎ𝐴

𝑝
ℎ(𝑇

𝑎 − 𝑇 𝑝) (37c)

where 𝑄̇𝑝
ℎ, 𝑄̇𝑝

𝑠 , 𝑄̇
𝑝
𝑙 , 𝑄̇

𝑝
𝑒 and 𝑄̇𝑝

𝑟 refer to the heat transfer rate associated with the heat source, enthalpy of inlet gas streams, the heat loss to the
surroundings, resistive-heat due to species extraction, and heat transfer from the retentate region, respectively, for the permeate of a CST-MR
process.

Therefore, the gas-phase CST-MR first principles model can be presented as follows:

𝒙𝑪 𝑺 𝑻−𝑴 𝑹 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪𝒓

𝑇 𝑟

𝑪𝒑

𝑇 𝑝

⎤

⎥

⎥

⎥

⎥

⎦

(38)

3.2. PMR model

The gas-phase CST-MR model developed in Section 3.1 is now applied to the PMR process illustrated in Fig. 3 based on the following
considerations:

• Reaction characteristics: The reactions involved in the SMR process are slow relative to the time required for back mixing, resulting in
near-complete conversion at the initial length of the reactor. Consequently, species concentrations and reactor temperatures remain relatively
uniform throughout the reactor length (Cui et al., 2024).

• Phase characteristics: Since all reactants and products are in the gas phase, at a significantly high temperature, effective species mixing is
achieved even without mechanical stirring.

• Computational efficiency: In comparison to other dynamic models, such as packed bed reactors (PBR), this lumped-parameter model is simpler,
leading to reduced computational time. This efficiency makes it well-suited for real time implementation in an MPC scheme.

However, to implement the gas-phase CST-MR model, additional parameters, including the H2 extraction rate, SMR reaction kinetics, and the
electrochemical extraction energy, must be defined.

Since the extraction process is driven by a potential gradient, the H2 extraction rate (𝐹H2 ,𝑒𝑥 is determined based on the electron balance across
the membrane (Wrubel et al., 2021), as presented in Eq. (39):

𝑛𝑒𝐹𝑎𝐹H2 ,𝑒𝑥 = 𝜂𝐹 𝐼𝑚 (39)

where the 𝑛𝑒 represents the moles of electrons transferred per mole of removed species. According to Eq. (23), 𝑛𝑒 = 2 mol-e/mol. 𝐹𝑎 is the Faraday’s
constant, representing the magnitude of electric charge per mole of electrons. 𝜂𝐹 is the Faradaic efficiency. In this case, a 100% Faradaic efficiency
is assumed. After rearranging Eq. (39), the H2 extraction rate can be expressed as Eq. (40).

𝐹H2 ,𝑒𝑥 =
𝐼𝑚
2𝐹𝑎

(40)

For balances derived in Section 3.1, reaction kinetics must also be determined. Specifically, the rate expressions of the PMR process are modeled
using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism, a widely adopted framework for heterogeneous catalytic reactions, and
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Table 1
Gas species generation rate in the PMR
control volume due to SMR and WGS
chemical reactions.

Gas species Generation rate

CH4 𝑅CH4
= −𝑟1𝑊𝑐 𝑎𝑡

H2O 𝑅H2O = (−𝑟1 − 𝑟2)𝑊𝑐 𝑎𝑡
CO 𝑅CO = 𝑟1𝑊𝑐 𝑎𝑡
H2 𝑅H2

= (3𝑟1 + 𝑟2)𝑊𝑐 𝑎𝑡
CO2 𝑅CO2

= −𝑟2𝑊𝑐 𝑎𝑡
Ar 𝑅Ar = 0

adopts the kinetic parameters put forth in Xu and Froment (1989), as presented below:

𝑟1 =
𝑘1
𝑃 2.5

H2

𝑃CH4
𝑃H2O −

𝑃 3
H2

𝑃CO

𝐾1

(𝐷 𝐸 𝑁)2
(41a)

𝑟2 =
𝑘2
𝑃H2

𝑃CO𝑃H2O −
𝑃H2𝑃CO2

𝐾2

(𝐷 𝐸 𝑁)2
(41b)

𝐷 𝐸 𝑁 = 1 +𝐾CO𝑃CO +𝐾H2
𝑃H2

+𝐾CH4
𝑃CH4

+𝐾H2O
𝑃H2O

𝑃H2

(41c)

where 𝑟1 and 𝑟2 are kinetic rates for the SMR reaction (Eq. (22a)) and the WGS reaction (Eq. (22b)), respectively. In this equation, the partial
pressure 𝑃𝑖 for gas species i, where 𝑖 = CH4,H2O,CO,H2,CO2,Ar, can be determined based on Dalton’s law and the ideal gas law:

𝑃𝑖 =
𝐶𝑖
𝑅𝑇

(42)

To determine rate constants and adsorption coefficients, an Arrhenius-type expression is assumed:

𝑘𝑗 = 𝐴𝑗 exp
(

−
𝐸𝑗

𝑅𝑇

)

, 𝑗 = 1, 2 (43a)

𝐾𝑖 = 𝐴𝑖 exp
(

−
𝛥𝐻𝑖
𝑅𝑇

)

, 𝑖 = CH4,H2O,CO,H2 (43b)

To further determine generation rates of all gas species, the stoichiometric ratios in the SMR and WGS reactions (Eq. (22)) are considered and
summarized in Table 1.

By applying these defined parameters to the anode based on Eqs. (27), (30) and (40), the volumetric flowrate (𝑞𝑎,𝑃 𝑀 𝑅) can be expressed as
ollows:

𝑞𝑎,𝑃 𝑀 𝑅 =
(

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 + 2𝑟1𝑊𝑐 𝑎𝑡 −

𝐼𝑚
2𝐹𝑎

)

𝑅𝑇 𝑎,𝑃 𝑀 𝑅
𝑃 𝑎,𝑃 𝑀 𝑅 + 𝑉 𝑎,𝑃 𝑀 𝑅

𝑇 𝑎,𝑃 𝑀 𝑅 𝑇̇ 𝑎,𝑃 𝑀 𝑅 (44)

where 𝑖 = CH4,H2O,CO,H2,Ar. Additionally, based on Eqs. (26), (40), (41), (43), (44) and Table 1, the dynamic model for the concentrations of
ll gas species in the anode of the PMR is developed as follows:

𝑪̇𝒂,𝑷 𝑴 𝑹 =
𝑭 𝒂,𝑷 𝑴 𝑹

𝟎 +𝑹 − 𝑞𝑎,𝑃 𝑀 𝑅 𝑪𝒂,𝑷 𝑴 𝑹 − 𝑭 𝒆𝒙

𝑉 𝑎,𝑃 𝑀 𝑅 (45a)

𝑪𝒂,𝑷 𝑴 𝑹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝑎,𝑃 𝑀 𝑅
CH4

𝐶𝑎,𝑃 𝑀 𝑅
H2O

𝐶𝑎,𝑃 𝑀 𝑅
CO

𝐶𝑎,𝑃 𝑀 𝑅
H2

𝐶𝑎,𝑃 𝑀 𝑅
CO2

𝐶𝑎,𝑃 𝑀 𝑅
Ar

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑭 𝒂,𝑷 𝑴 𝑹
𝟎 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

𝐹 𝑎,𝑃 𝑀 𝑅
H2O,0

𝐹 𝑎,𝑃 𝑀 𝑅
CO,0

𝐹 𝑎,𝑃 𝑀 𝑅
H2 ,0

𝐹 𝑎,𝑃 𝑀 𝑅
CO2 ,0

𝐹 𝑎,𝑃 𝑀 𝑅
Ar,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝑟1𝑊𝑐 𝑎𝑡
(−𝑟1 − 𝑟2)𝑊𝑐 𝑎𝑡

𝑟1𝑊𝑐 𝑎𝑡
(3𝑟1 + 𝑟2)𝑊𝑐 𝑎𝑡

−𝑟2𝑊𝑐 𝑎𝑡
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑭 𝑒𝑥 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
𝐼𝑚
2𝐹𝑎
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(45b)

where the dynamic behavior of species concentrations is captured by 𝑪̇𝒂,𝑷 𝑴 𝑹.
For the energy balance shown in Eq. (32), the net heat from the reaction term (𝑄𝑎,𝑃 𝑀 𝑅) for the PMR process can be defined as:

𝑄𝑎,𝑃 𝑀 𝑅 = −𝑟1𝑊𝑐 𝑎𝑡𝛥𝐻1(𝑇 ) − 𝑟2𝑊𝑐 𝑎𝑡𝛥𝐻2(𝑇 ) (46)

where 𝛥𝐻1(𝑇 ) and 𝛥𝐻2(𝑇 ) are the heats of reaction for the SMR reaction (Eq. (22a)) and the WGS reaction (Eq. (22b)), respectively. These enthalpy
changes are calculated based on their thermodynamic definitions:

𝛥𝐻1(𝑇 ) = 3𝐻H2
(𝑇 ) +𝐻CO(𝑇 ) −𝐻CH4

(𝑇 ) −𝐻H2O(𝑇 ) (47a)
𝛥𝐻2(𝑇 ) = 𝐻H2
(𝑇 ) +𝐻CO2

(𝑇 ) −𝐻CO(𝑇 ) −𝐻H2O(𝑇 ) (47b)
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where 𝐻CH4
(𝑇 ), 𝐻H2O(𝑇 ), 𝐻CO(𝑇 ), 𝐻H2

(𝑇 ) and 𝐻H2O(𝑇 ) are the enthalpies of CH4, H2O, CO, H2 and CO2 as a function of the process temperature,
respectively. These enthalpy values can be calculated by the Shomate equation (Shomate, 1944):

𝐻𝑖(𝑇 ) =
4
∑

𝑗=1

𝐴𝑖,𝑗

𝑗
𝑇 𝑗 −

𝐴𝑖,5

𝑇
+ 𝐴𝑖,6 (48)

Additionally, from thermodynamics, the derivative of the Shomate equation reveals the relationship between the heat capacity of a gas component
as a function of the process temperature (𝑇 ) at constant pressure (𝐶𝑝,𝑖) by taking the derivative of Eq. (48):

𝐶𝑝,𝑖(𝑇 ) =
(

𝜕 𝐻𝑖(𝑇 )
𝜕 𝑇

)

𝑃
=

4
∑

𝑗=1
𝐴𝑖,𝑗𝑇

𝑗−1 +
𝐴𝑖,5

𝑇 2
(49)

where 𝐴𝑗 ,𝑖 for 𝑖 = 1, 2,… , 6 for species 𝑗 are the constant coefficients of species 𝑗 in the Shomate equation.
To determine the external heat source terms in Eqs. (32) and (37), considering the utilization of the electric furnace, the following expressions

are developed:

𝑄𝑎,𝑃 𝑀 𝑅
ℎ = 𝑓 𝑎,𝑃 𝑀 𝑅

ℎ 𝐼2𝑓𝑅𝑓 (50a)

𝑄𝑐 ,𝑃 𝑀 𝑅
ℎ = 𝑓 𝑐 ,𝑃 𝑀 𝑅

ℎ 𝐼2𝑓𝑅𝑓 (50b)

where the 𝑄𝑎,𝑃 𝑀 𝑅
ℎ and 𝑄𝑐 ,𝑃 𝑀 𝑅

ℎ represent heat source terms of the anode (retentate) and the cathode (permeate). These terms are calculated from
Joule’s law. The 𝑓 𝑎,𝑃 𝑀 𝑅

ℎ and 𝑓 𝑐 ,𝑃 𝑀 𝑅
ℎ represent the fraction of source heat to the anode and cathode. However, in practice, 𝑓 𝑎,𝑃 𝑀 𝑅

ℎ + 𝑓 𝑐 ,𝑃 𝑀 𝑅
ℎ < 1

ue to external heat loss to the surroundings of the process.
To determine the extraction heat (𝑄̇𝑒) generated by electrochemical separation, a resistive-heating model is considered. The electric current that

is applied to the PMR membrane to extract H2 from the anode encounters a resistance which causes Joule-heating according to (𝑄̇𝐽 ). Additionally,
according to Malerød-Fjeld et al. (2017), the extracted H2 is further compressed as it separates against a pressure gradient induced by a 30 bar
pressure differential across the cathode and anode. Additional energy is generated by the compression process (𝑄̇𝑐).

𝑄̇𝑒 = 𝑄̇𝐽 + 𝑄̇𝑐 (51)

The heats of extraction and compression are defined as follows (Malerød-Fjeld et al., 2017):

𝑄̇𝐽 = 𝐼2𝑚𝑅𝑚 (52a)

𝑄̇𝑐 = 𝐹H2 ,𝑒𝑥𝑅𝑇
𝑐 ,𝑃 𝑀 𝑅 ln (𝑃

𝑐 ,𝑃 𝑀 𝑅
𝑃 𝑎,𝑃 𝑀 𝑅 ) (52b)

Considering the extraction heat occurring on the solid oxide interface located between the anode and the cathode, the total extraction heat is split
into two parts, as follows:

𝑄̇𝑎,𝑃 𝑀 𝑅
𝑒 = 𝑓 𝑎,𝑃 𝑀 𝑅

𝑒 𝑄̇𝑒 (53a)

𝑄̇𝑐 ,𝑃 𝑀 𝑅
𝑒 = 𝑓 𝑐 ,𝑃 𝑀 𝑅

𝑒 𝑄̇𝑒 (53b)

𝑓 𝑎,𝑃 𝑀 𝑅
𝑒 + 𝑓 𝑐 ,𝑃 𝑀 𝑅

𝑒 = 1 (53c)

where 𝑓 𝑎,𝑃 𝑀 𝑅
𝑒 and 𝑓 𝑐 ,𝑃 𝑀 𝑅

𝑒 are fractions of the extraction heat contributing to the anode and cathode. In this model, the same heat contribution
rom both sides of the membrane is assumed:

𝑓 𝑎,𝑃 𝑀 𝑅
𝑒 = 𝑓 𝑐 ,𝑃 𝑀 𝑅

𝑒 = 1
2

(54)

For a PMR system, both the anode and cathode are enclosed within a furnace and heat insulation material. It is therefore reasonable to assume
that the two sides of the reactor maintain approximately the same temperature, leading to negligible heat transfer:

𝑇 𝑎,𝑃 𝑀 𝑅 ≈ 𝑇 𝑐 ,𝑃 𝑀 𝑅 (55a)

𝑄̇𝑎,𝑃 𝑀 𝑅
𝑐 ≈ 𝑄̇𝑐 ,𝑃 𝑀 𝑅

𝑎 ≈ 0 (55b)

where 𝑄̇𝑎,𝑃 𝑀 𝑅
𝑐 and 𝑄̇𝑐 ,𝑃 𝑀 𝑅

𝑎 represent the heat transfer rate from the cathode to anode and the heat transfer rate from the anode to cathode,
respectively.

Based on Eqs. (32), (46), (50a), (51), (52), (53a), (54) and (55b), the dynamic temperature equation for the anode can be calculated with the
following equation:

𝑇̇ 𝑎,𝑃 𝑀 𝑅 =
𝑓 𝑎,𝑃 𝑀 𝑅
ℎ 𝐼2𝑓𝑅𝑓 +

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 ∫ 𝑇 𝑎,𝑃 𝑀 𝑅

𝑇 𝑎,𝑃 𝑀 𝑅
0

𝐶𝑝,𝑖 𝑑 𝑇 ′ − 𝑟1𝑊𝑐 𝑎𝑡𝛥𝐻1(𝑇 𝑎,𝑃 𝑀 𝑅) − 𝑟2𝑊𝑐 𝑎𝑡𝛥𝐻2(𝑇 𝑎,𝑃 𝑀 𝑅)
∑

𝜌𝑎,𝑃 𝑀 𝑅
𝑖 𝐶𝑝,𝑖𝑉 𝑎,𝑃 𝑀 𝑅

+
𝑈𝑎,𝑃 𝑀 𝑅
ℎ 𝐴𝑎,𝑃 𝑀 𝑅

ℎ (𝑇 𝑎 − 𝑇 𝑎,𝑃 𝑀 𝑅) + 1
2 𝐼

2
𝑚𝑅𝑚 + 𝐼𝑚

4𝐹𝑎
𝑅𝑇 𝑎,𝑃 𝑀 𝑅 ln ( 𝑃 𝑐 ,𝑃 𝑀 𝑅

𝑃 𝑎,𝑃 𝑀 𝑅 )
∑

𝜌𝑎,𝑃 𝑀 𝑅
𝑖 𝐶𝑝,𝑖𝑉 𝑎,𝑃 𝑀 𝑅

(56)

where 𝑖 = CH4,H2O,CO,H2,CO2,Ar.
Similarly, for the cathode, based on Eqs. (36) and (40), the total volumetric flowrate (𝑞𝑐) is calculated as follows:

𝑞𝑐 ,𝑃 𝑀 𝑅 =
(

∑

𝐹 𝑐 ,𝑃 𝑀 𝑅
𝑙 ,0 +

𝐼𝑚
2𝐹𝑎

)

𝑅𝑇 𝑐 ,𝑃 𝑀 𝑅
𝑃 𝑐 ,𝑃 𝑀 𝑅 + 𝑉 𝑐 ,𝑃 𝑀 𝑅

𝑇 𝑐 ,𝑃 𝑀 𝑅 𝑇̇ 𝑐 ,𝑃 𝑀 𝑅 (57)
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Fig. 4. Schematic describing the molar flow of the anodic dry gas mixture passing through the bubbler apparatus to generate a humidified wet mixture of CH4 and H2 reactants.

According to Eqs. (34) and (40), the dynamic model for gas species concentrations in the cathode is given by the following equation:

𝑪̇𝒄 ,𝑷 𝑴 𝑹 = 1
𝑉 𝑐 ,𝑃 𝑀 𝑅

(

𝑭 𝒄 ,𝑷 𝑴 𝑹
𝟎 − 𝑞𝑐 ,𝑃 𝑀 𝑅 𝑪𝒄 ,𝑷 𝑴 𝑹 + 𝑭 𝒆𝒙

)

(58a)

𝑪𝒄 ,𝑷 𝑴 𝑹 =
⎡

⎢

⎢

⎣

𝐶𝑐 ,𝑃 𝑀 𝑅
H2O

𝐶𝑐 ,𝑃 𝑀 𝑅
H2

⎤

⎥

⎥

⎦

, 𝑭 𝒄 ,𝑷 𝑴 𝑹
𝟎 =

⎡

⎢

⎢

⎣

𝐹 𝑐 ,𝑃 𝑀 𝑅
H2O,0

𝐹 𝑐 ,𝑃 𝑀 𝑅
H2 ,0

⎤

⎥

⎥

⎦

, 𝑭 𝒆𝒙 =

[

0
𝐼𝑚
2𝐹𝑎

]

(58b)

Based on Eqs. (37), (50b). (51), (52b), (53b), (54) and (55b), the energy balance for the cathode is defined as:

𝑇̇ 𝑐 ,𝑃 𝑀 𝑅 =
𝑓 𝑐 ,𝑃 𝑀 𝑅
ℎ 𝐼2𝑚𝑅𝑓 +

∑

𝐹 𝑐 ,𝑃 𝑀 𝑅
𝑖,0 ∫ 𝑇 𝑐 ,𝑃 𝑀 𝑅

𝑇 𝑐 ,𝑃 𝑀 𝑅
0

𝐶𝑝,𝑖 𝑑 𝑇 ′ + 𝐼𝑚
2𝐹𝑎

∫ 𝑇 𝑐 ,𝑃 𝑀 𝑅
𝑇 𝑎,𝑃 𝑀 𝑅 𝐶𝑝,H2

𝑑 𝑇 ′

∑

𝜌𝑐 ,𝑃 𝑀 𝑅
𝑖 𝐶𝑝,𝑖𝑉 𝑐 ,𝑃 𝑀 𝑅

+
𝑈 𝑐 ,𝑃 𝑀 𝑅
ℎ 𝐴𝑐 ,𝑃 𝑀 𝑅

ℎ (𝑇 𝑎 − 𝑇 𝑐 ,𝑃 𝑀 𝑅) + 1
2 𝐼

2
𝑚𝑅𝑚 + 𝐼𝑚

4𝐹𝑎
𝑅𝑇 𝑐 ,𝑃 𝑀 𝑅 ln ( 𝑃 𝑐 ,𝑃 𝑀 𝑅

𝑃 𝑎,𝑃 𝑀 𝑅 )
∑

𝜌𝑐 ,𝑃 𝑀 𝑅
𝑖 𝐶𝑝,𝑖𝑉 𝑐 ,𝑃 𝑀 𝑅

(59)

Therefore, the dynamic first principles model state for the PMR can be expressed as:

𝒙𝑷 𝑴 𝑹 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪𝒂,𝑷 𝑴 𝑹
𝑇 𝑎,𝑃 𝑀 𝑅
𝑪𝒄 ,𝑷 𝑴 𝑹
𝑇 𝑐 ,𝑃 𝑀 𝑅

⎤

⎥

⎥

⎥

⎥

⎦

(60)

3.3. Bubbler model

A bubbler is commonly used in gas-phase systems to generate steam, functioning as an efficient vaporizer for liquids such as water. The primary
steam generation mechanism involves passing dry gases through a liquid reservoir at a controlled temperature. As the gas stream bubbles through
the liquid, it facilitates the transfer of the vapor phase, steam in this case, into the gas stream. This process is highly effective for generating a
consistent and controlled amount of steam, as the rate of vaporization can be modulated by adjusting the bubbler’s temperature, flowrate of the
carrier gas or gas stream, or system pressure. The use of a bubbler for steam generation is particularly advantageous due to its simplicity and ability
to precisely control the partial pressure of gas-phase steam, which is critical in industrial-scale chemical reactions and materials processing.

In Fig. 4, a schematic of the anode bubbler is illustrated. Based on Dolton’s law, the steam flowrate exiting the bubbler (𝐹 𝑏
H2O

) can be estimated
rom the steam partial pressure (𝑃 𝑏

𝑠 ):

𝐹 𝑏
H O =

∑

𝐹 𝑏
𝑖,0 𝑃 𝑏

𝑠 , 𝑖 = CH4,H2 (61)

2 𝑃 𝑏 − 𝑃 𝑏

𝑠
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The steam partial pressure can be calculated using the Antoine equation (Thomson, 1946):

log10(𝑃 𝑏
𝑠 ) = 𝐴𝑎 −

𝐵𝑎

𝑇 𝑏 + 𝐶𝑎
(62)

where 𝐴𝑎, 𝐵𝑎 and 𝐶𝑎 are constant parameters for water. From Eq. (62), the 𝑃 𝑏
𝑠 is directly influenced by the bubbler temperature (𝑇 𝑏). To investigate

he dynamic change of the bubbler temperature, an energy balance is applied to a general bubbler model, as shown in Eq. (63):

𝑇̇ 𝑏 =
𝑄̇𝑏 −

∑

𝐹 𝑏
𝑖,0 ∫

𝑇 𝑏

𝑇 𝑏
0
𝐶𝑝,𝑖𝑑 𝑇 ′ + 𝑈 𝑏𝐴𝑏(𝑇 𝑎 − 𝑇 𝑏)

𝑁𝑏
H2O,𝐿

𝑀H2O𝐶𝑝,H2O + 𝑉 𝑏
𝑔 𝑎𝑠

∑

𝜌𝑏𝑗𝐶𝑝,𝑗
(63)

where 𝑄̇𝑏 represents the heat supply to the bubbler that is modulated to vary the bubbler’s temperature. Steam continuously exits the bubbler
causing a gradual decrease in the liquid water level in the bubbler tank (𝑁𝑏

H2O,𝐿
) and requires a mole balance to account for the change of 𝑁𝑏

H2O,𝐿
.

Within the bubbler, H2O exists in a gas phase (𝑁𝑏
H2O,𝐺

) and a liquid phase (𝑁𝑏
H2O,𝐿

):

𝑁𝑏
H2O

= 𝑁𝑏
H2O,𝐿

+𝑁𝑏
H2O,𝐺

(64)

where 𝑁𝑏
H2O

is denoted as the total moles of water inside the bubbler. Moles of water in the gas phase, can be calculated by the following equations:

𝑁𝑏
H2O,𝐺

= 𝐶𝑏
H2O

𝑉 𝑏
𝐺 (65a)

𝐶𝑏
H2O

=
𝑃 𝑏
𝑠

𝑇 𝑏𝑅
(65b)

𝑉 𝑏
𝑔 𝑎𝑠 = 𝑉 𝑏 −

𝑁𝑏
H2O,𝐿

𝑀H2O

𝜌H2O
(65c)

where the concentration of H2O (𝐶𝑏
H2O

) is calculated by the ideal gas law, and the total gas-phase volume (𝑉 𝑏
𝐺) is the difference of the total bubbler

volume and the liquid-phase volume. Therefore, the overall H2O mole balance for the bubbler follows:

𝑁̇𝑏
H2O

= 𝑑
𝑑 𝑡

⎛

⎜

⎜

⎝

𝑁𝑏
H2O,𝐿

+
𝑃 𝑏
𝑠

𝑇 𝑏𝑅

⎛

⎜

⎜

⎝

𝑉 𝑏 −
𝑁𝑏

H2O,𝐿
𝑀H2O

𝜌H2O

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

=
𝑑 𝑁𝑏

H2O,𝐿

𝑑 𝑡 + 1
𝑅

𝑑
(

𝑃 𝑏
𝑠

𝑇 𝑏

)

𝑑 𝑡

(

𝑉 𝑏 −
𝑁H2O,𝐿𝑀H2O

𝜌H2O

)

−
𝑀H2O

𝑅𝜌H2O

𝑃 𝑏
𝑠

𝑇 𝑏

𝑑 𝑁𝑏
H2O,𝐿

𝑑 𝑡

=

(

1 −
𝑀H2O

𝑅𝜌H2O

𝑃 𝑏
𝑠

𝑇 𝑏

) 𝑑 𝑁𝑏
H2O,𝐿

𝑑 𝑡 +

(

𝑉 𝑏

𝑅
−

𝑁H2O,𝐿𝑀H2O

𝑅𝜌H2O

) 𝑑
(

𝑃 𝑏
𝑠

𝑇 𝑏

)

𝑑 𝑡 = −𝐹 𝑏
H2O

(66)

Assume 𝜆𝑏 = 𝑃 𝑏
𝑠

𝑇 𝑏 , so 𝜆̇𝑏 =
𝑑
(

𝑃𝑏𝑠
𝑇 𝑏

)

𝑑 𝑡 can be calculated via Eq. (67).

𝜆̇𝑏 = 𝜕 𝜆𝑏
𝜕 𝑇 𝑏

̇𝑇 𝑏 (67)

where 𝜕 𝜆𝑏
𝜕 𝑇 𝑏 can be calculated as follows:
𝜕 𝜆𝑏
𝜕 𝑇 𝑏 =

(

ln(10) ⋅
(

𝐵𝑎

(𝑇 𝑏 + 𝐶𝑎)2

)

⋅ 𝑇 𝑏 − 1
)

⋅
𝑃 𝑏
𝑠

(𝑇 𝑏)2
(68)

Based on Eqs. (61), (66) and (67), the expression of the liquid water inside the bubbler can be presented as:

𝑁̇H2O,𝐿 =

(

𝑁H2O,𝐿𝑀H2O

𝑅𝜌H2O
− 𝑉 𝑏

𝑅

)

𝜆̇𝑏 −
𝑃 𝑏
𝑠
∑

𝐹 𝑏
𝑖,0

𝑃 𝑏−𝑃 𝑏
𝑠

1 − 𝑃 𝑏
𝑠 𝑀H2O

𝑅𝑇 𝑏𝜌H2O

(69)

For most cases,
𝑃 𝑏
𝑠 𝑀H2O

𝑅𝑇 𝑏𝜌H2O
≪ 1. Therefore, this equation can be simplified to:

𝑁̇H2O,𝐿 ≈

(

𝑁H2O,𝐿𝑀H2O

𝑅𝜌H2O
− 𝑉 𝑏

𝑅

)

𝜆̇𝑏 −
𝑃 𝑏
𝑠
∑

𝐹 𝑏
𝑖,0

𝑃 𝑏 − 𝑃 𝑏
𝑠

(70)

Thus, the first principles model state for the bubbler can be expressed as:

𝒙𝒃 =
[

𝑇 𝑏

𝑁H2O,𝐿

]

(71)

and the overall first principles model state for the PMR system can be expressed as:

𝒙𝒇 𝒑 =
[

𝒙𝑷 𝑴 𝑹
𝒙𝒃

]

(72)
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Fig. 5. Steady state anode gas compositions without hydrogen separation for the PMR model and experiments at 1 bar. Error bars represent the standard deviations of five GC
measurements at every steady state temperature.

3.4. PMR model validation

The first principles model for the PMR process (𝒙𝑷 𝑴 𝑹) was validated by comparing experimental data with the corresponding simulation results
or SMR with and without electrochemical H2 extraction. To validate the steady state solutions for the dynamic PMR model, the reformer operating
emperature was incrementally increased from 522 to 772 ◦C in the absence of an electric current. Fig. 5 provides the gas product composition
or six steady state temperatures throughout the PMR operating range, and the process model was fitted to the experimentally generated data by
hoosing the catalyst weight parameter that minimized the error between the model predictions for gas species exiting the reactor and the observed
pecies compositions measured by the GC. Using 66 mg as the active catalyst weight, the volumetric flowrates of H2 and CO align with the PMR

model predictions. However, the model overpredicts the consumption of CH4 and the generation of CO2 by 1–2 sccm on average. Given the CH4
nd CO2 absolute errors are within the range of experimental measurement error, and the model calculations and observed volumetric flowrates

follow the same trend in response to a reactor temperature change, the PMR process model is sufficiently predictive for MPC applications.
After fitting the steady state data to the PMR model for the zero-extraction case, and to test the transient accuracy of the PMR model, a dynamic

xperiment was conducted to supply 0 to 8 A of current from the potentiostat to the PMR unit. Fig. 6 validates the PMR application of the CST-MR
odel, the H2 extraction rate correlation, and the reactor temperature model derived from the PMR energy balance. The underprediction of the
2 generation rate was 6 sccm, on average, for all currents. It is thought that the catalytic performance of the membrane improved from the initial

teady state experiments due to the further reduction of NiO surface sites during the reactor downtime in pure H2 and 400 ◦C anode gas stream
conditions. The underprediction of H2 extraction into the cathode likely originated from measurement drift in the flow sensor as a consequence
f a sluggish thermocouple in the sensing device. Still, the deviations are within the expected experimental error, and the dynamics of the reactor
rocess variables closely align with the overall kinetic, extraction, and energy dynamics of the PMR model (Fig. 6).

4. Feedback controller design and results

In this section, feedback controllers are designed to address realistic challenges encountered in industrial chemical production plants, such as
ractical input constraints, controller response speed, computational costs, and common process disturbances. In the feedback control simulations,
he experimental conditions listed in the model validation exercise are adjusted to reflect the industrial implementation of the PMR system. The
nitial operating conditions for computational feedback control are as follows: 20 sccm of 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
and 12.5 sccm of 𝐹 𝑎,𝑃 𝑀 𝑅

H2 ,0
are sent to the anode

ubbler, while 10 sccm of 𝐹 𝑐 ,𝑃 𝑀 𝑅
H2 ,0

is sent to the cathode bubbler. Each bubbler is assumed to have a 1 liter total volume with 80% of the total
olume being liquid-phase water. The temperatures of both bubblers are 157 ◦C and 227 ◦C for the anode and cathode, respectively. These bubbler
emperatures correspond to 60% and 66.7% steam mixtures according to Eqs. (61) and (62). Heating rates of 67.7 W and 98.6 W are needed to

maintain these temperatures. The inlet temperatures of the reformer (𝑇 𝑎,𝑃 𝑀 𝑅
0 , 𝑇 𝑐 ,𝑃 𝑀 𝑅

0 ) are both 735 ◦C, and the temperatures inside the reformer
are 788 ◦C and 813 ◦C for the anode and cathode, respectively. To compress hydrogen upon separation, the anode pressure is 10 bar and the
cathode pressure is 40 bar. For the first 5 min of each control simulation, all process variables are at steady state and the controllers are inactive.
After 𝑡 = 5 min, the controllers are activated.
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Fig. 6. Comparison of the PMR model predictions with dynamic experimental data at 1 bar with an initial reactor temperature of 777 ◦C.

4.1. Control scenario

In a practical PMR process, the cathode hydrogen flowrate (𝐹 𝑐 ,𝑃 𝑀 𝑅
H2

), representing the extracted and collected hydrogen product, must be
egulated. Experimentally, 𝐹 𝑐 ,𝑃 𝑀 𝑅

H2
can be directly measured by the digital flowmeter discussed in Section 2.7.2, providing real time feedback for

ontrol. Only the H2 extracted (𝐹H2 ,𝑒𝑥) through the membrane is used as the control target, so the inlet H2 in the cathode is subtracted from the
sensor reading:

𝐹H2 ,𝑒𝑥 = 𝐹 𝑐 ,𝑃 𝑀 𝑅
H2

− 𝐹 𝑐 ,𝑃 𝑀 𝑅
H2 ,0

(73)

In the model, the control target can be estimated by transforming the state variables as follows:

𝐹H2 ,𝑒𝑥 = 𝑞𝑐 ,𝑃 𝑀 𝑅𝐶̂𝑐 ,𝑃 𝑀 𝑅
H2

− 𝐹 𝑐 ,𝑃 𝑀 𝑅
H2 ,0

(74)

where 𝑞𝑐 ,𝑃 𝑀 𝑅 and 𝐶̂𝑐 ,𝑃 𝑀 𝑅
H2

are the estimated volumetric flowrate and H2 concentration in the cathode. In industry, hydrogen production setpoints
re selected for economic optimization. For the experimental case, a 120 sccm production rate is assumed to be the optimal value of 𝐹H2 ,𝑒𝑥 and
he target setpoint (𝐹H2 ,𝑒𝑥,𝑠𝑝 = 120 sccm).

Another key parameter in this process is hydrogen recovery (𝐻 𝑅). 𝐻 𝑅 is defined as the percentage of the extracted H2 to the theoretical
aximum H (𝐹 ) that can be recovered. In the case of the PMR system, 𝐹 is the sum of the extracted hydrogen flow (𝐹 ) and the
2 H2 ,𝑚𝑎𝑥 H2 ,𝑚𝑎𝑥 H2 ,𝑒𝑥
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hydrogen contained in the anode exhaust gas (𝐹 𝑎,𝑃 𝑀 𝑅
H2

). Therefore:

𝐻 𝑅 =
𝐹H2 ,𝑒𝑥

𝐹H2 ,𝑚𝑎𝑥
⋅ 100% =

𝐹H2 ,𝑒𝑥

𝐹 𝑎,𝑃 𝑀 𝑅
H2

+ 𝐹H2 ,𝑒𝑥
⋅ 100% (75)

Attaining a high 𝐻 𝑅 is critical for optimal H2 extraction and for minimal H2 product loss to the anode exhaust stream. The removal of anodic H2
also shifts the reaction (Eq. (22)) equilibrium towards enhanced conversion of reactants such as CO and CH4. In the simulation, a 𝐻 𝑅 setpoint of
8% is chosen (𝐻 𝑅𝑠𝑝 = 98%), and 𝐹 𝑎,𝑃 𝑀 𝑅

H2
is measured in real time using an automated GC with an 18-min sampling interval and a 15-min delay,

s described in Section 2.7.2. Additionally, the 𝐹H2 ,𝑒𝑥 is measured and calculated with a digital flow meter and Eq. (73) for real time feedback.
By combining Eq. (74), the 𝐻 𝑅 is estimated by transforming the process state variables in the following manner:

𝐻 𝑅 =
𝐹H2 ,𝑒𝑥

𝐹H2 ,𝑚𝑎𝑥
⋅ 100% =

𝑞𝑐 ,𝑃 𝑀 𝑅𝐶̂𝑐 ,𝑃 𝑀 𝑅
H2

− 𝐹 𝑐 ,𝑃 𝑀 𝑅
H2 ,0

𝑞𝑎,𝑃 𝑀 𝑅𝐶̂𝑎,𝑃 𝑀 𝑅
H2

+ 𝑞𝑐 ,𝑃 𝑀 𝑅𝐶̂𝑐 ,𝑃 𝑀 𝑅
H2

− 𝐹 𝑐 ,𝑃 𝑀 𝑅
H2 ,0

⋅ 100% (76)

Except for 𝐹H2 ,𝑒𝑥 and HR, the steam inlet flowrate (𝐹 𝑎,𝑃 𝑀 𝑅
H2O,0

) plays a pivotal role in the PMR process, as an increased flowrate shifts the equilibrium
f both the SMR (Eq. (22a)) and WGS (Eq. (22b)) reactions, leading to enhanced conversion of CO and CH4. Moreover, a higher steam flowrate

improves membrane conductivity by ensuring sufficient hydration, as demonstrated by Malerød-Fjeld et al. (2017). Additionally, the 𝑆∕𝐶 ratio
effectively mitigates carbon deposition on the catalyst, a prevalent issue in SMR processes (Meloni et al., 2020; Jeon et al., 2018). On the other
hand, excessive steam dilutes the reactants, lowering their partial pressures and reducing the overall reaction rate. To balance this phenomenon,
the 𝑆∕𝐶 ratio, defined as the ratio of inlet steam to methane flowrates, is regulated:

𝑆∕𝐶 =
𝐹 𝑎,𝑃 𝑀 𝑅
H2O,0

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

(77)

An 𝑆∕𝐶 ratio of 2.5 is targeted to balance these effects (𝑆∕𝐶𝑠𝑝 = 2.5). This ratio ensures sufficient anodic steam to simultaneously drive reactant
conversion and maintain membrane conductivity. Thus, precise control of the 𝑆∕𝐶 ratio is crucial for optimizing thermal and electrochemical
reaction performance.

However, the 𝑆∕𝐶 ratio cannot be directly measured. Instead, the bubbler temperature (𝑇 𝑏), measured by a thermocouple inside the bubbler,
is used as a proxy for this measurement. Therefore, the relationship between the bubbler temperature and 𝑆∕𝐶 must be developed, with 𝑆∕𝐶𝑠𝑝
and 𝑇𝑏,𝑠𝑝 representing the setpoint of 𝑆∕𝐶 and 𝑇 𝑏, respectively. Based on Eq. (62), the setpoint bubbler temperature can be determined from the
team fraction under the 𝑆∕𝐶 setpoint in the bubbler (𝛬𝑏

H2O,𝑠𝑝
= 𝑓 (𝑆∕𝐶𝑠𝑝)):

𝑇𝑏,𝑠𝑝 =
𝐵𝑎

𝐴𝑎 − log10(𝑃 𝑏 ⋅ 𝛬𝑏
H2O,𝑠𝑝

)
− 𝐶𝑎 (78)

where the 𝛬𝑏
H2O,𝑠𝑝

can be calculated based on Eqs. (61) and (77):

𝛬𝑏
H2O,𝑠𝑝

=
𝑆∕𝐶𝑠𝑝 ⋅ 𝐹

𝑎,𝑃 𝑀 𝑅
CH4 ,0

𝑆∕𝐶𝑠𝑝 ⋅ 𝐹
𝑎,𝑃 𝑀 𝑅
CH4 ,0

+ 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

+
∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0

(79)

where 𝑖 = CO,H2,CO2. Therefore, to achieve the desired 𝑆∕𝐶 ratio, the required bubbler temperature is set.
Overall, based on these considerations, the control target vector (𝒚) is defined as follows:

𝒚 =
⎡

⎢

⎢

⎣

𝑦1
𝑦2
𝑦3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐹H2 ,𝑒𝑥
𝐻 𝑅
𝑇 𝑏

⎤

⎥

⎥

⎦

(80)

The overall control objective is to reach the control target setpoint (𝒚𝒔𝒑) from the initial steady state values (𝒚(0) = [

0 0 157 ◦C
]⊤), by

manipulating the control input vector (𝒖), which is defined in Eq. (81).

𝒖 =
⎡

⎢

⎢

⎣

𝑢1
𝑢2
𝑢3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0
𝐼𝑚
𝑄̇𝑏

⎤

⎥

⎥

⎥

⎦

(81)

Specifically, 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

, 𝐼𝑚 and 𝑄̇ℎ are manipulated via the flow indicator, potentiostat, and heater to the bubbler. The corresponding initial control
nput vector is [

20 sccm 0 67.7 W
]

.
In this control framework, three closed-loop subsystems have been established. The first subsystem aims to achieve the desired 𝐹H2 ,𝑒𝑥 (𝑦1)

y adjusting the input 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

(𝑢1). The first subsystem consists of a CH4 mass flow controller as the actuator and sensor in the feedback loop
that considers the PMR and bubbler units as the process. The second subsystem is designed to attain the target hydrogen recovery rate 𝐻 𝑅 (𝑦2)
through the modulation of the electric current input 𝐼𝑚 (𝑢2). In the second subsystem, the GC and digital flowmeter are feedback sensors, while the
potentiostat serves as the actuator in this subsystem that only considers the PMR process. The third subsystem focuses on reaching the specified
bubbler temperature 𝑇 𝑏 (𝑦3) by controlling the heat input 𝑄̇𝑏 (𝑢3). The 𝑇 𝑏 is measured by a thermocouple, while the heat input is provided by
resistive-heating tape around the bubbler. This subsystem only considers the bubbler as the closed-loop process.

Remark 3. From Eq. (79), 𝛬𝑏
H2O,𝑠𝑝

= 𝑓 (𝑆∕𝐶𝑠𝑝) varies with the manipulation of 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

under the same 𝑆∕𝐶 ratio. Therefore, the setpoint of the

bubbler temperature varies with time throughout the control run (𝑇𝑏,𝑠𝑝 = 𝑇𝑏,𝑠𝑝(𝑡)).
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Remark 4. The three defined subsystems are interdependent. Specifically, within the first control subsystem, the control target 𝐹H2 ,𝑒𝑥 cannot
be directly adjusted by 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
. Instead, 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
influences the total generation of H2 by thermal reactions, thereby altering the 𝐻 𝑅 as defined

in Eq. (75). To achieve the desired level of 𝐻 𝑅, the current (𝐼𝑚) adjusts accordingly, which in turn modifies 𝐹H2 ,𝑒𝑥 to reach the setpoint.

4.2. Control input constraints

Control input constraints are considered in this study to ensure safety, stability, cost-effectiveness, and efficiency. For 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

, a low methane
nlet flowrate leads to slow hydrogen generation, while an excessively high flowrate results in unreacted methane being lost in the exhaust stream
ue to insufficient reaction time. To address this, the methane flowrate is constrained by the residence time (or space time, 𝜏) of the reformer,
nsuring an optimal balance between hydrogen production and methane utilization. Since the reaction only takes place in the anode, the 𝜏 is
efined as the anode volume divided by the anodic volumetric flowrate, which indicates the average time the reactant gases remain inside the
eaction control volume.

𝜏 = 𝑉 𝑎,𝑃 𝑀 𝑅
𝑞𝑎,𝑃 𝑀 𝑅
0

(82)

Combining the ideal gas law, the 𝑞𝑎,𝑃 𝑀 𝑅
0 = 𝑓 (𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
) relation is determined by Eq. (83):

𝑞𝑎,𝑃 𝑀 𝑅
0 (𝑡) =

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 + 𝐹 𝑎,𝑃 𝑀 𝑅

H2O,0
(𝑡) + 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
(𝑡)

∑

𝐶𝑎,𝑃 𝑀 𝑅
𝑖,0

=
(

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 + 𝐹 𝑎,𝑃 𝑀 𝑅

H2O,0
(𝑡) + 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
(𝑡)
) 𝑅𝑇 𝑎,𝑃 𝑀 𝑅

0

𝑃 𝑎,𝑃 𝑀 𝑅

(83)

where 𝑖 = CO,H2,CO2,Ar, represents the constant inlet gas species and 𝑗 = CH4,H2O,CO,H2,CO2,Ar, represents all inlet gas species. The minimum
and maximum residence times are defined as 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥. According to Eqs. (82) and (83), the feasible operating region 𝑈1 of 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
(𝑡) is defined

s follows:

𝑈1 =
{

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

(𝑡) ||
|

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,min(𝑡) ≤ 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
(𝑡) ≤ 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0,max(𝑡), ∀𝑡 ∈ [0,∞)
}

(84a)

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,min(𝑡) =

𝑉 𝑎,𝑃 𝑀 𝑅𝑃 𝑎,𝑃 𝑀 𝑅
𝜏max 𝑅 𝑇 𝑎,𝑃 𝑀 𝑅

0

−
∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 − 𝐹 𝑎,𝑃 𝑀 𝑅

H2O,0
(𝑡) (84b)

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,max(𝑡) =

𝑉 𝑎,𝑃 𝑀 𝑅𝑃 𝑎,𝑃 𝑀 𝑅
𝜏min 𝑅 𝑇 𝑎,𝑃 𝑀 𝑅

0

−
∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 − 𝐹 𝑎,𝑃 𝑀 𝑅

H2O,0
(𝑡) (84c)

where 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,min(𝑡) and 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0,max(𝑡) represent the minimum and maximum limits of 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

(𝑡) corresponding to 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛, respectively.
The membrane current (𝐼𝑚) directly causes the rate of H2 extraction seen in Eq. (40). However, this extraction rate must be constrained to

ensure the safety of the entire process. For convenience and generality, these constraints are initially formulated within the CST-MR framework.
Specifically, the volumetric flowrate and the concentration of the extracted species on the retentate side must remain positive:

𝑞𝑟(𝑡) ≥ 0 ∀ 𝑡 ∈ [0,∞) (85a)

𝐶𝑟
𝑘(𝑡) ≥ 0 ∀ 𝑡 ∈ [0,∞) (85b)

The constraint in Eq. (85a) is achieved in Eq. (86)
∑

𝐹𝑘,𝑟𝑒𝑚(𝑡) ≤
∑

𝐹𝑘,𝑟𝑒𝑚,𝑚𝑎𝑥,1(𝑡), ∀ 𝑡 ∈ [0,∞) (86a)
∑

𝐹𝑘,𝑟𝑒𝑚,𝑚𝑎𝑥,1(𝑡) =
∑

𝐹 𝑟
𝑖,0(𝑡) +

∑

𝑅𝑗 ,𝑔 𝑒𝑛(𝑡) +
∑

𝑅𝑘,𝑔 𝑒𝑛(𝑡) + 𝑉 𝑟

𝑇 𝑟(𝑡)
𝑇̇ 𝑟(𝑡)

∑

𝐶𝑟
𝑖 (𝑡) (86b)

Therefore, the inequalities in Eqs. (86) and (85a) are satisfied by considering Eqs. (30) and (86),

𝑞𝑟 =
(

∑

𝐹 𝑟
𝑖,0(𝑡) +

∑

𝑅𝑗 ,𝑔 𝑒𝑛(𝑡) +
∑

𝑅𝑘,𝑔 𝑒𝑛(𝑡) −
∑

𝐹𝑘,𝑟𝑒𝑚(𝑡)
) 𝑅𝑇 𝑟

𝑃 𝑟 + 𝑉 𝑟

𝑇 𝑟(𝑡)
𝑇̇ 𝑟(𝑡)

≥
(

∑

𝐹 𝑟
𝑖,0(𝑡) +

∑

𝑅𝑗 ,𝑔 𝑒𝑛(𝑡) +
∑

𝑅𝑘,𝑔 𝑒𝑛(𝑡)
) 𝑅𝑇 𝑟(𝑡)

𝑃 𝑟(𝑡)
+ 𝑉 𝑟

𝑇 𝑟(𝑡)
𝑇̇ 𝑟(𝑡)

−
(

∑

𝐹 𝑟
𝑖,0(𝑡) +

∑

𝑅𝑗 ,𝑔 𝑒𝑛(𝑡) +
∑

𝑅𝑘,𝑔 𝑒𝑛(𝑡) + 𝑉 𝑟

𝑇 𝑟(𝑡)
𝑇̇ 𝑟(𝑡)

∑

𝐶𝑟
𝑖 (𝑡)

)

𝑅𝑇 𝑟(𝑡)
𝑃 𝑟(𝑡)

= 0

(87)

To ensure Eq. (85b), the constraint for 𝐹𝑘,𝑟𝑒𝑚 in Eq. (25b) can be rewritten as Eq. (88).

𝐹𝑘,𝑟𝑒𝑚(𝑡) ≤ 𝐹𝑘,𝑟𝑒𝑚,𝑚𝑎𝑥,2(𝑡), ∀ 𝑡 ∈ [0,∞) (88a)

𝐹𝑘,𝑟𝑒𝑚,𝑚𝑎𝑥,2(𝑡) = 𝐹 𝑟
𝑘,0(𝑡) + 𝑅𝑘,𝑔 𝑒𝑛(𝑡) (88b)

The satisfaction of Eqs. (88) and (85b) is as follows. Consider Eqs. (25b) and (88),
𝐹 𝑟
𝑘,0(𝑡) + 𝑅𝑘,𝑔 𝑒𝑛(𝑡) = 𝑞𝑟

(

𝑡, 𝐶𝑟
𝑘(𝑡)

)

𝐶𝑟
𝑘(𝑡) + 𝐹𝑘,𝑟𝑒𝑚(𝑡) + 𝑉 𝑟𝐶̇𝑟

𝑘(𝑡)

≤ 𝑞𝑟
(

𝑡, 𝐶𝑟
𝑘(𝑡)

)

𝐶𝑟
𝑘(𝑡) + 𝐹 𝑟

𝑘,0(𝑡) + 𝑅𝑘,𝑔 𝑒𝑛(𝑡) + 𝑉 𝑟𝐶̇𝑟
𝑘(𝑡)

(89)

from which the following condition is obtained:
( )
0 ≤ 𝑞𝑟 𝑡, 𝐶𝑟
𝑘(𝑡) 𝐶𝑟

𝑘(𝑡) + 𝑉 𝑟𝐶̇𝑟
𝑘(𝑡) (90)
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This equation can be rearranged as follows:

0 ≤
𝑞𝑟
(

𝑡, 𝐶𝑟
𝑘(𝑡)

)

𝑉 𝑟 𝐶𝑟
𝑘(𝑡) + 𝐶̇𝑟

𝑘(𝑡) (91)

Let 𝑎(𝑡) be defined as:

𝑎(𝑡) =
𝑞𝑟
(

𝑡, 𝐶𝑟
𝑘(𝑡)

)

𝑉 𝑟 (92)

since 𝑞𝑟
(

𝑡, 𝐶𝑟
𝑘(𝑡)

)

≥ 0 (Eq. (85a)), 𝑎(𝑡) ≥ 0. Eq. (91) can be written as:

𝐶̇𝑟
𝑘(𝑡) + 𝑎(𝑡)𝐶𝑟

𝑘(𝑡) ≥ 0 (93)

This differential equation is solved by using an integrating factor, defined as:

𝜇(𝑡) = exp
(

∫

𝑡

0
𝑎(𝑠) 𝑑 𝑠

)

(94)

The 𝜇(𝑡) is multiplied on both sides of Eq. (93):

𝜇(𝑡) 𝐶̇𝑟
𝑘(𝑡) + 𝜇(𝑡) 𝑎(𝑡)𝐶𝑟

𝑘(𝑡) ≥ 0 (95)

The left-hand side of the inequality is recognized as the derivative of 𝜇(𝑡)𝐶𝑟
𝑘(𝑡), thus simplifying the inequality to:

𝑑
𝑑 𝑡

[

𝜇(𝑡)𝐶𝑟
𝑘(𝑡)

]

≥ 0 (96)

Both sides of this equation can be integrated from 0 to 𝑡 as follows:

𝜇(𝑡)𝐶𝑟
𝑘(𝑡) − 𝜇(0)𝐶𝑟

𝑘(0) ≥ 0 (97)

Since 𝜇(0) = exp
(

∫ 0
0 𝑎(𝑠) 𝑑 𝑠

)

= 1 and 𝐶𝑟
𝑘(0) ≥ 0:

𝐶𝑟
𝑘(𝑡) ≥

𝐶𝑟
𝑘(0)
𝜇(𝑡)

≥ 0 (98)

Therefore, the only condition under which 𝐶𝑟
𝑘(𝑡) → 0 is that 𝐹𝑘,𝑟𝑒𝑚(𝑡) = 𝐹𝑘,𝑟𝑒𝑚,𝑚𝑎𝑥,2(𝑡) and 𝜇(𝑡) → ∞ (i.e., 𝑞𝑟

(

𝑡, 𝐶𝑟
𝑘(𝑡)

)

→ ∞) as 𝑡 → ∞. Hence, Eq. (85b)
is satisfied.

Constraints developed for the CST-MR in Eqs. (86) and (88) can be applied to the current through the membrane in the PMR system based on
q. (40), Table 1, Eqs. (44) and (45), shown in Eq. (99).

𝑈2 =
{

𝐼𝑚(𝑡)
|

|

|

0 ≤ 𝐼𝑚(𝑡) ≤ min
{

𝐼𝑚,𝑚𝑎𝑥,1(𝑡), 𝐼𝑚,𝑚𝑎𝑥,2(𝑡)
}

, ∀𝑡 ∈ [0,∞)
}

(99a)

𝐼𝑚,𝑚𝑎𝑥,1(𝑡) = 2𝐹𝑎

(

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 (𝑡) + 2𝑟1(𝑡)𝑊𝑐 𝑎𝑡 + 𝑃 𝑎,𝑃 𝑀 𝑅𝑉 𝑎,𝑃 𝑀 𝑅

𝑅
(

𝑇 𝑎,𝑃 𝑀 𝑅(𝑡))2
𝑇̇ 𝑎,𝑃 𝑀 𝑅(𝑡)

)

(99b)

𝐼𝑚,𝑚𝑎𝑥,2(𝑡) = 2𝐹𝑎

(

𝐹 𝑎,𝑃 𝑀 𝑅
H2 ,0

+
(

3𝑟1(𝑡) + 𝑟2(𝑡)
)

𝑊𝑐 𝑎𝑡
)

(99c)

The rate of heat to the bubbler is limited by the maximum allowable loading power (𝑄̇𝑏
𝑚𝑎𝑥), so the feasible region for 𝑄̇𝑏 is given by

𝑈3 =
{

𝑄̇𝑏(𝑡) ||
|

0 ≤ 𝑄̇𝑏(𝑡) ≤ 𝑄̇𝑏
max, ∀𝑡 ∈ [0,∞)

}

(100)

Considering Eqs. (84), (99), and (100), the feasible operating region for the control inputs (𝑈) is defined as:

𝑈 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒖(𝑡) =
⎡

⎢

⎢

⎢

⎣

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

(𝑡)
𝐼𝑚(𝑡)
𝑄̇𝑏(𝑡)

⎤

⎥

⎥

⎥

⎦

|

|

|

|

∀𝑡 ∈ [0,∞),

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,min(𝑡) ≤ 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
(𝑡) ≤ 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0,max(𝑡),

0 ≤ 𝐼𝑚(𝑡) ≤ min
{

𝐼H2,max,1
(𝑡), 𝐼H2,max,2

(𝑡)
}

,

0 ≤ 𝑄̇𝑏(𝑡) ≤ 𝑄̇𝑏,max

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(101)

Here, the magnitude of the change in 𝐼𝑚 for two consecutive steps must be constrained, since a sudden change in current will directly change
the PMR reactor temperature, which may lead to catalyst deactivation depending on the magnitude of the instantaneous temperature change.
Consequently, by limiting the absolute maximum of 𝐼𝑚, the shift in the overall reaction equilibrium due to H2 separation is also limited. Therefore,
constraints on the methane flowrate step change (𝛥𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
) are set accordingly. Additionally, a limited step change of 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
ensures the stability

of the entire PMR system. The heat input to the bubbler, 𝛥𝑄̇𝑏, is also constrained, since a small change in the bubbler temperature can result in
significant changes to the 𝑆∕𝐶 ratio and have destabilizing effects. Based on the aforementioned considerations, the control input rate of change
is defined as follows:

𝒖(𝒕𝒌) − 𝜟𝒖𝒍𝒊𝒎𝒊𝒕 ≤ 𝒖(𝒕𝒌+𝟏) ≤ 𝒖(𝒕𝒌) + 𝜟𝒖𝒍𝒊𝒎𝒊𝒕 (102)

where 𝜟𝒖⊤𝒍𝒊𝒎𝒊𝒕 =
[

𝛥𝑢1,𝑙 𝑖𝑚𝑖𝑡 𝛥𝑢2,𝑙 𝑖𝑚𝑖𝑡 𝛥𝑢3,𝑙 𝑖𝑚𝑖𝑡
]

=
[

𝛥𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,𝑙 𝑖𝑚𝑖𝑡 𝛥𝐼H2 ,𝑙 𝑖𝑚𝑖𝑡 𝛥𝑄̇𝑏,𝑙 𝑖𝑚𝑖𝑡

]

. Through multiple simulations, 𝛥𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,𝑙 𝑖𝑚𝑖𝑡, 𝛥𝐼H2 ,𝑙 𝑖𝑚𝑖𝑡 and

𝛥𝑄̇𝑏,𝑙 𝑖𝑚𝑖𝑡 are chosen as 0.1 sccm, 0.1 A and 2 W.

Remark 5. Eq. (85) specifies the theoretical constraints used in our computational analysis. Violations of Eq. (85) would cause changes in the
volumetric flow direction and insufficient concentrations of extracted species, posing significant risks to the system.
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4.3. Proportional–integral control and MPC

Proportional–integral (PI) control is widely used in industrial systems due to its simplicity and ease of implementation. A PI controller adjusts
ontrol actions based on the immediate error (the proportional term) and the accumulation of past errors (the integral term) in relation to the
ontrol target setpoint. The PI control formulation for each subsystem 𝑗 is shown in Eq. (103):

𝑢𝑗 = 𝑢𝑗 ,𝑠𝑝 +𝐾𝑗 ,𝑝 ⋅
(

𝑦𝑗 ,𝑠𝑝 − 𝑦𝑗
)

+𝐾𝑗 ,𝐼 ∫
𝑡

0

(

𝑦𝑗 ,𝑠𝑝 − 𝑦𝑗
)

d𝑡′ for 𝑗 = 1, 2, 3 (103)

where 𝐾𝑗 ,𝑃 and 𝐾𝑗 ,𝐼 represent the proportional gain and the integral gain for each control loop 𝑗, respectively, both of which require tuning
for optimal performance. In this simulation, the Ziegler–Nichols tuning method was employed for the determination of the controller tuning
parameters. In the context of the PMR reactor controller, 𝐾𝑗 ,𝑃 and 𝐾𝑗 ,𝐼 are the proportional gain constants for each control loop, and are not to be
confused with the equilibrium constants 𝐾𝑗 for the SMR and WGS reactions used in the description of reaction kinetics. The control target setpoint
vector is 𝒚⊤𝒔𝒑 =

[

𝑦1,𝑠𝑝 𝑦2,𝑠𝑝 𝑦3,𝑠𝑝
]

=
[

𝐹H2 ,𝑒𝑥,𝑠𝑝 𝐻 𝑅𝑠𝑝 𝑇𝑏,𝑠𝑝
]

, and the corresponding control input setpoint vector is 𝒖⊤𝒔𝒑 =
[

𝑢1,𝑠𝑝 𝑢2,𝑠𝑝 𝑢3,𝑠𝑝
]

=
[

𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0,𝑠𝑝

𝐼H2 ,𝑠𝑝 𝑄̇𝑏,𝑠𝑝

]

, where 𝑗 = 1, 2, 3.
Despite its widespread applicability, PI control has several drawbacks, including slow response time and a limited ability to handle complex

system constraints. To address these limitations, a model predictive control strategy is implemented in this work to achieve the desired control
targets (𝒚𝒔𝒑) by manipulating the control inputs (𝒖), while considering the constraints developed in Section 4.2. The formulation for this MPC scheme
is shown in Eq. (3). Specifically, 𝒙̂ is the state vector of the first principles model, 𝒙𝒇 𝒑, defined in Eq. (72). ̂𝑭 (⋅) represents the first principles model
eveloped in Section 3. 𝒚̂ refers to the estimation vector of 𝒚 defined in Eq. (80). 𝒉(⋅) describes the function vector transforming the 𝒙𝒇 𝒑 to 𝒚̂,
eveloped in Section 4.1. Constraints of control input (𝑈 and 𝜟𝒖𝒍𝒊𝒎𝒊𝒕) are defined in Eqs. (101) and (102), respectively.

To solve the optimization problem in real time, the sequential quadratic programming (SQP) approach is used to iteratively solve a series of
uadratic programming subproblems, thereby decreasing the computational load during solution convergence (Boggs and Tolle, 1995). In Python,

the SQP can be utilized from the ‘‘scipy’’ package.
The results are illustrated in Fig. 7, with the PI control simulation shown as the grey curve and the MPC control curve shown in purple. Initially,

the control inputs are directly driven to the reference input setpoints for the PI controllers. In contrast, even though 𝐼𝑚 and 𝑄̇𝑏 increase, 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

in
the MPC simulation decreases from 20 sccm to 15.9 sccm. This control action discrepancy originates from differences in the control methodologies of
the two algorithms. The PI approach treats each subsystem independently, while the MPC approach is guided by a rigorous optimization framework.
During the first few moments of control action for the CMPC scheme, even though more H2 can be produced by increasing 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
, there is enough

H2 available for extraction in the PMR anode, and the centralized predictive controller sees no initial benefit for more 𝐹H2 ,𝑒𝑥 by increasing 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

.
The lower 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
, in the CMPC scheme, increases the 𝑆∕𝐶 ratio in the anode based on Eq. (79), and decreases the bubbler temperature setpoint

(𝑇𝑏,𝑠𝑝) based on Eq. (78). These factors are considered in the MPC optimization problem, even though the CMPC scheme eventually increases both
the methane flowrate and anodic bubbler temperature to the control target setpoints.

Although both controllers eventually reach the desired setpoints, the MPC algorithm significantly outperforms PI control in terms of response
time. The predictive controller achieves a settling time of 25 min for the H2 extraction flowrate (𝐹H2 ,𝑒𝑥,𝑠𝑝), 22 min for hydrogen recovery (𝐻 𝑅𝑠𝑝),
nd 25 min for the bubbler temperature (𝑇 𝑏

𝑠𝑝). In contrast, the PI controller requires 375 min, 70 min, and 587 min, respectively, to reach the same
etpoints. This substantial reduction in settling time to steady state demonstrates the superior ability of MPC to handle system dynamics efficiently,
aking it a more effective control strategy for processes requiring rapid response and precise regulation. Additionally, MPC ensures that control

nputs remain within the defined operating region, a guarantee that PI control cannot provide.

Remark 6. The PI control parameters, 𝐾𝑗 ,𝑃 and 𝐾𝑗 ,𝐼 , are tuned not only to reach the setpoints without overshoot but also to ensure that all
control inputs remain within the feasible constraints. This tuning leads to a significantly more attenuated response for the PI controller, which
further contributes to its slower settling times compared to the MPC scheme. Also, the satisfaction of PI control constraints cannot be guaranteed,
especially in practice.

4.4. Decentralized MPC

To facilitate real time implementation, a decentralized MPC approach is adopted to simplify the optimization problem, which reduces the time
to solve the optimal control inputs. To do this, the whole system is divided to 3 subsystems, which is shown in Section 4.1. Based on the designated
subsystems, and considering the relationships between 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
and 𝐹H2 ,𝑒𝑥, 𝐼𝑚 and 𝐻 𝑅, 𝑄̇𝑏 and 𝑇 𝑏, models for subsystem 1, 2 and 3 are defined

as the following: 𝒙𝟏 = 𝒙𝒇 𝒑, 𝒙𝟐 = 𝒙𝑷 𝑴 𝑹, and 𝒙𝟑 = 𝒙𝒃. As discussed in Section 4.3 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

cannot contribute to the production of 𝐹H2 ,𝑒𝑥 at the
initial control stage,. Therefore, the expected H2 extraction, denoted as 𝑦′1 = 𝐹H2 ,𝑒𝑥,𝑒𝑥𝑝, is used as the new control target for the first subsystem. The
𝐹H2 ,𝑒𝑥,𝑒𝑥𝑝 is defined as the expected H2 extraction based on the completion of the control task of the second subsystem. Consequently, 𝐻 𝑅(𝑡) = 𝐻 𝑅𝑠𝑝
in the prediction horizons of the first subsystem is assumed, indicating an almost complete extraction. Therefore, Eq. (104):

𝑦′1 = 𝐹H2 ,𝑒𝑥,𝑒𝑥𝑝 = 𝐹H2 ,𝑚𝑎𝑥𝐻 𝑅𝑠𝑝 (104)

From the PMR model, 𝐹H2 ,𝑒𝑥,𝑒𝑥𝑝 can be estimated based on Eqs. (74) and (75) as follows:

𝐹H2 ,𝑒𝑥,𝑒𝑥𝑝 = (𝑞𝑎,𝑃 𝑀 𝑅𝐶𝑎,𝑃 𝑀 𝑅
H2

+ 𝑞𝑐 ,𝑃 𝑀 𝑅𝐶̂𝑐 ,𝑃 𝑀 𝑅
H2

− 𝐹 𝑐 ,𝑃 𝑀 𝑅
H2 ,0

)𝐻 𝑅𝑠𝑝 (105)

Based on this assumption, the control target of the first subsystem (𝑦′1) can be influenced directly by the total H2 generation, which can be governed
by the 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
. At the final steady state, 𝑦1 = 𝑦′1 = 𝑦1,𝑠𝑝 since the assumption is satisfied (𝐻 𝑅(𝑡) = 𝐻 𝑅𝑠𝑝).

A comparison between centralized MPC and decentralized MPC is illustrated in Fig. 8. The DMPC control simulation is represented by the grey
curve, while the CMPC control curve is shown in purple. The behavior of the CMPC during the first hour of control is identical to that depicted
n Fig. 7. In contrast, 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
increases continuously from 20 sccm to 33.8 sccm. This behavior is attributed to the independent control action

f the first subsystem that attempts to increase 𝐹 by increasing 𝐹 𝑎,𝑃 𝑀 𝑅. Due to the significant increase in 𝐹 𝑎,𝑃 𝑀 𝑅

H2 ,𝑒𝑥,𝑒𝑥𝑝 CH4 ,0 CH4 ,0

, the furnace supplies
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Fig. 7. Comparison of PI and MPC for the PMR system at the same inlet conditions (735 ◦C | 10 bar | 20 sccm CH4) and target setpoints (𝐻 𝑅 98% | 𝑆∕𝐶 2.5 | 120 sccm H2
xtraction). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

more heat to the bubbler compared to the CMPC scheme. After increasing 𝐹 𝑎,𝑃 𝑀 𝑅
CH4 ,0

, the steam fraction inside of the bubbler must also increase
to maintain the same value of 𝑆∕𝐶, as indicated in Eq. (79). The temperature setpoint of the bubbler is increased according to Eq. (78). After

𝑎,𝑃 𝑀 𝑅
CH4 ,0

reaches 33.8 sccm, a monotonic decrease of methane is shown until the extraction setpoint, 𝐹H2 ,𝑒𝑥,𝑠𝑝, is reached. The decrease in methane
s caused by the gradual increase in the electric current passed through the membrane that propagates a shift in the thermodynamic equilibrium of
he gas-phase reactions (Eq. (22)), allowing for greater H2 production and thereby reducing the need for 𝐹 𝑎,𝑃 𝑀 𝑅

CH4 ,0
. Although the controlled process

variable trajectories differ, all control outputs reach their setpoints around 𝑡 = 28 min.
To highlight the advantages of DMPC, a detailed comparison is provided in Fig. 9. In this figure, Computational Time refers to the execution

time required to simulate each MPC run, Cost refers to the value of the cost function for the centralized MPC (Eq. (3d)), and Optimizer Failure
ercentage describes the percentage of divergence failures when solving the optimization problem for each MPC run. The comparison demonstrates

that decentralized MPC significantly reduces computational time by a factor of six, though with some compromises in the controller response speed.
The solution of the MPC optimization problem (whether centralized MPC or decentralized MPC) in each sampling time is dependent on the code
optimization and the hardware used to carry out the computations. In the present case, the decentralized MPC control actions were calculated
within the controller sampling time. Moreover, the optimizer performs more reliably due to the simplification of the optimization problem into
subproblems. As seen in the Optimizer Failure Percentage data, the failure rate for solving the optimization problem is approximately three times
higher for the centralized MPC, making DMPC a reliable alternative for real-world implementation.

4.5. State estimation and disturbance compensation

To implement MPC in experimental conditions, it is essential to consider real time feedback information. As detailed in Section 2.7.2, the
easurable variables include the bubbler temperature, anodic gas flowrates, and the cathodic H2 gas flowrate. The anodic gas flowrates are

recorded every 18 min, with a 15-min delay. Therefore, an estimator is required for the MPC control scheme to estimate the complete set of
tate variables accurately, at high frequency. Another challenge is presented when a mismatch exists between the model and the real process
ue to physical disturbances that are rather unpredictable. One of the possible disturbances is membrane degradation. In the experiment, proton

exchange membranes were developed by CoorsTek, Inc. Though the catalysts are fairly stable for up to 750 h of reforming reactions (Malerød-Fjeld
et al., 2017), inevitably, the membrane performance will degrade over time and the electrical resistance of the closed circuit will increase, causing
urther performance loss for reactions and hydrogen separation.

To address unexpected disturbances, a disturbance observer-based model was formulated. The purpose of the disturbance observer is to correct
for any mismatch between model predictions and real-time feedback information from the process.

For the model of the anode, according to Eqs. (7) and (45), the disturbance observer-based anode concentrations ( ̇̃𝑪𝒂,𝑷 𝑴 𝑹 =
𝐶̃𝑎,𝑃 𝑀 𝑅
CH4

𝐶̃𝑎,𝑃 𝑀 𝑅
H2O

𝐶̃𝑎,𝑃 𝑀 𝑅
CO 𝐶̃𝑎,𝑃 𝑀 𝑅

H2
𝐶̃𝑎,𝑃 𝑀 𝑅
CO2

𝐶̃𝑎,𝑃 𝑀 𝑅
Ar

]⊤
) are calculated as follows.

̇̃𝑪𝒂,𝑷 𝑴 𝑹 =
𝑭 𝒂,𝑷 𝑴 𝑹

𝟎 +𝑹 − 𝑞𝑎,𝑃 𝑀 𝑅𝑪𝒂,𝑷 𝑴 𝑹 − 𝑭 𝒆𝒙
+𝑳𝒂,𝑷 𝑴 𝑹(𝒚 − 𝒚̃) + 𝑩𝒂,𝑷 𝑴 𝑹𝒅̃𝒂,𝑷 𝑴 𝑹 (106a)
𝑉 𝑎,𝑃 𝑀 𝑅 𝑪 𝒅 ,𝑪 𝑪
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Fig. 8. Comparison of centralized MPC and decentralized MPC for the PMR system at the same inlet conditions (735 ◦C | 10 bar | 20 sccm CH4) and target setpoints (𝐻 𝑅 98%
𝑆∕𝐶 2.5 | 120 sccm H2 extraction). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison of the PMR-implemented centralized MPC and decentralized MPC computational efficiencies, system energy costs, and the optimizer (software solver) reliability
under both control schemes.
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̇̃𝝃𝒂,𝑷 𝑴 𝑹
𝑪 = 𝑾 𝒂,𝑷 𝑴 𝑹

𝑪 𝝃̃𝒂,𝑷 𝑴 𝑹
𝑪 +𝑳𝒂,𝑷 𝑴 𝑹

𝝃̃,𝑪
(𝒚 − 𝒚̃) (106b)

𝒅̃𝒂,𝑷 𝑴 𝑹
𝑪 = 𝑽 𝒂,𝑷 𝑴 𝑹

𝑪 𝝃̃𝒂,𝑷 𝑴 𝑹
𝑪 (106c)

In this equation, 𝑭 𝒂,𝑷 𝑴 𝑹
𝟎 , 𝑹, 𝑭 𝑒𝑥 are defined in Eq. (45b) and 𝒚 is defined in Eq. (80). Considering the sampling time of each measurement,

=
[

𝑦1 𝑦2 𝑦3
]⊤ =

[

𝑦1(𝑡𝑛1) 𝑦2(𝑡𝑛2) 𝑦3(𝑡𝑛3)
]⊤, where 𝑡𝑛1, 𝑡𝑛2, 𝑡𝑛3 are moment when real time data are received. The corresponding sampling

times are 𝛥𝑡𝑛1 = 1 s, 𝛥𝑡𝑛2 = 18 min, 𝛥𝑡𝑛3 = 1 s. Other vectors and matrices in Eq. (106) are defined in Eq. (107).

𝑳𝒂,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,CH4

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,CH4

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,CH4

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2O 𝐿𝑎,𝑃 𝑀 𝑅

𝐻 𝑅,H2O 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2O

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,CO 𝐿𝑎,𝑃 𝑀 𝑅

𝐻 𝑅,CO 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,CO

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,CO2

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,CO2

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,CO2

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,Ar 𝐿𝑎,𝑃 𝑀 𝑅

𝐻 𝑅,Ar 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,Ar

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑳𝒂,𝑷 𝑴 𝑹
𝝃̃,𝑪

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,CH4 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,CH4 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,CH4 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2O,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2O,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2O,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,CO,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,CO,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,CO,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,CO2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,CO2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,CO2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,Ar,𝜉 𝐿𝑎,𝑃 𝑀 𝑅

𝐻 𝑅,Ar,𝜉 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,Ar,𝜉

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝒚̃ =

⎡

⎢

⎢

⎢

⎣

𝐹H2 ,𝑒𝑥

𝐻 𝑅
𝑇̃ 𝑏

⎤

⎥

⎥

⎥

⎦

, 𝑩𝒂,𝑷 𝑴 𝑹
𝒅 ,𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,CH4

0 0 0 0 0

0 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,H2O 0 0 0 0

0 0 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,CO 0 0 0

0 0 0 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,H2

0 0

0 0 0 0 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,CO2

0

0 0 0 0 0 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,Ar

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝒅𝒂,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑑𝑎,𝑃 𝑀 𝑅
CH4

𝑑𝑎,𝑃 𝑀 𝑅
H2O

𝑑𝑎,𝑃 𝑀 𝑅
CO

𝑑𝑎,𝑃 𝑀 𝑅
H2

𝑑𝑎,𝑃 𝑀 𝑅
CO2

𝑑𝑎,𝑃 𝑀 𝑅
Ar

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝝃̃𝒂,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉𝑎,𝑃 𝑀 𝑅
CH4

𝜉𝑎,𝑃 𝑀 𝑅
H2O

𝜉𝑎,𝑃 𝑀 𝑅
CO

𝜉𝑎,𝑃 𝑀 𝑅
H2

𝜉𝑎,𝑃 𝑀 𝑅
CO2

𝜉𝑎,𝑃 𝑀 𝑅
Ar

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑾 𝒂,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑊 𝑎,𝑃 𝑀 𝑅
CH4

0 0 0 0 0

0 𝑊 𝑎,𝑃 𝑀 𝑅
H2O

0 0 0 0

0 0 𝑊 𝑎,𝑃 𝑀 𝑅
CO 0 0 0

0 0 0 𝑊 𝑎,𝑃 𝑀 𝑅
H2

0 0

0 0 0 0 𝑊 𝑎,𝑃 𝑀 𝑅
CO2

0

0 0 0 0 0 𝑊 𝑎,𝑃 𝑀 𝑅
Ar

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑽 𝒂,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉 𝑎,𝑃 𝑀 𝑅
CH4

0 0 0 0 0

0 𝑉 𝑎,𝑃 𝑀 𝑅
H2O

0 0 0 0

0 0 𝑉 𝑎,𝑃 𝑀 𝑅
CO 0 0 0

0 0 0 𝑉 𝑎,𝑃 𝑀 𝑅
H2

0 0

0 0 0 0 𝑉 𝑎,𝑃 𝑀 𝑅
CO2

0

0 0 0 0 0 𝑉 𝑎,𝑃 𝑀 𝑅
Ar

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(107)

Based on this modified first-order derivative of anode concentrations, the corresponding volumetric flowrate (𝑞𝑎,𝑃 𝑀 𝑅) expression is modified
according to Eqs. (28) and (106a) to obey the ideal gas law assumption.

𝑞𝑎,𝑃 𝑀 𝑅 =
(

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 + 2𝑟1𝑊𝑐 𝑎𝑡 −

𝐼𝑚
2𝐹𝑎

)

𝑅𝑇 𝑎,𝑃 𝑀 𝑅
𝑃 𝑎,𝑃 𝑀 𝑅 + 𝑉 𝑎,𝑃 𝑀 𝑅

𝑇̃ 𝑎,𝑃 𝑀 𝑅
̇̃𝑇 𝑎,𝑃 𝑀 𝑅

+ 𝑅𝑇 𝑎,𝑃 𝑀 𝑅𝑉 𝑎,𝑃 𝑀 𝑅
𝑃 𝑎,𝑃 𝑀 𝑅

(

∑

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,𝑖

(

𝐹H2 ,𝑒𝑥 − 𝐹H2 ,𝑒𝑥

)

+
∑

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,𝑖

(

𝐻 𝑅 −𝐻 𝑅)

+
∑

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,𝑖

(

𝑇 𝑏 − 𝑇̃ 𝑏) +
∑

𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,𝑖𝑖 𝑑𝑎,𝑃 𝑀 𝑅

𝑖

)

(108)

Where the 𝑇̃ 𝑎,𝑃 𝑀 𝑅 is calculated by the modified version of the energy balance expression in the anode of the PMR. This modified version is obtained
y combining Eqs. (7) and (56).

̇̃𝑇 𝑎,𝑃 𝑀 𝑅 =
𝑓 𝑎,𝑃 𝑀 𝑅
ℎ 𝐼2𝑓𝑅𝑓 +

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 ∫ 𝑇̃ 𝑎,𝑃 𝑀 𝑅

𝑇 𝑎,𝑃 𝑀 𝑅
0

𝐶𝑝,𝑖 𝑑 𝑇 ′ − 𝑟1𝑊𝑐 𝑎𝑡𝛥𝐻1(𝑇̃ 𝑎,𝑃 𝑀 𝑅) − 𝑟2𝑊𝑐 𝑎𝑡𝛥𝐻2(𝑇̃ 𝑎,𝑃 𝑀 𝑅)
∑ 𝑎,𝑃 𝑀 𝑅 𝑎,𝑃 𝑀 𝑅
𝜌𝑖 𝐶𝑝,𝑖𝑉
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+
𝑈𝑎,𝑃 𝑀 𝑅
ℎ 𝐴𝑎,𝑃 𝑀 𝑅

ℎ (𝑇 𝑎 − 𝑇̃ 𝑎,𝑃 𝑀 𝑅) + 1
2 𝐼

2
𝑚𝑅𝑚 + 𝐼𝑚

4𝐹𝑎
𝑅𝑇 𝑎,𝑃 𝑀 𝑅 ln ( 𝑃 𝑐 ,𝑃 𝑀 𝑅

𝑃 𝑎,𝑃 𝑀 𝑅 )
∑

𝜌𝑎,𝑃 𝑀 𝑅
𝑖 𝐶𝑝,𝑖𝑉 𝑎,𝑃 𝑀 𝑅 +𝑳𝒂,𝑷 𝑴 𝑹

𝑻 (𝒚 − 𝒚̃)

+ 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,𝑇 𝑑𝑎,𝑃 𝑀 𝑅

𝑇 (109a)
̇̃𝜉𝑎,𝑃 𝑀 𝑅
𝑇 = 𝑊 𝑎,𝑃 𝑀 𝑅

𝑇 𝜉𝑎,𝑃 𝑀 𝑅
𝑇 +𝑳𝒂,𝑷 𝑴 𝑹

𝝃̃,𝑻
(𝒚 − 𝒚̃) (109b)

𝑑𝑎,𝑃 𝑀 𝑅
𝑇 = 𝑉 𝑎,𝑃 𝑀 𝑅

𝑇 𝜉𝑎,𝑃 𝑀 𝑅
𝑇 (109c)

Where 𝑳𝒂,𝑷 𝑴 𝑹
𝑻 =

[

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,𝑇

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,𝑇 𝐿𝑎,𝑃 𝑀 𝑅

𝑇 𝑏 ,𝑇

]⊤
and 𝑳𝒂,𝑷 𝑴 𝑹

𝑻 ,𝝃 =
[

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,𝑇 ,𝜉 𝐿𝑎,𝑃 𝑀 𝑅

𝐻 𝑅,𝑇 ,𝜉 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,𝑇 ,𝜉

]⊤
.

For the cathode, concentrations (𝑪̃𝒄 ,𝑷 𝑴 𝑹 =
[

𝐶̃𝑐 ,𝑃 𝑀 𝑅
H2O

𝐶̃𝑐 ,𝑃 𝑀 𝑅
H2

]⊤
) are estimated by combining Eq. (58) with the disturbance observer, shown

as follows:

̇̃𝑪𝒄 ,𝑷 𝑴 𝑹 =
𝑭 𝒄 ,𝑷 𝑴 𝑹

𝟎 − 𝑞𝑐 ,𝑃 𝑀 𝑅 𝑪̃𝒄 ,𝑷 𝑴 𝑹 + 𝑭 𝒆𝒙

𝑉 𝑐 ,𝑃 𝑀 𝑅 +𝑳𝒄 ,𝑷 𝑴 𝑹
𝑪 (𝒚 − 𝒚̃) + 𝑩𝒄 ,𝑷 𝑴 𝑹

𝒅 ,𝑪 𝒅̃𝒄 ,𝑷 𝑴 𝑹
𝑪 (110a)

̇̃𝝃𝒄 ,𝑷 𝑴 𝑹
𝑪 = 𝑾 𝒄 ,𝑷 𝑴 𝑹

𝑪 𝝃𝒄 ,𝑷 𝑴 𝑹
𝑪 +𝑳𝒄 ,𝑷 𝑴 𝑹

𝝃̃,𝑪
(𝒚 − 𝒚̃) (110b)

𝒅̃𝒄 ,𝑷 𝑴 𝑹
𝑪 = 𝑽 𝒄 ,𝑷 𝑴 𝑹

𝑪 𝝃𝒄 ,𝑷 𝑴 𝑹
𝑪 (110c)

where 𝑭 𝒄 ,𝑷 𝑴 𝑹
𝟎 , 𝑭 𝑒𝑥 are defined in Eq. (34b) and 𝒚 is defined in Eq. (80). Both sets of the disturbance observer-related vectors are defined

n Eqs. (107) and (111).

𝑳𝒄 ,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎣

𝐿𝑐 ,𝑃 𝑀 𝑅
H2 ,H2O 𝐿𝑐 ,𝑃 𝑀 𝑅

𝐻 𝑅,H2O 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2O

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2

⎤

⎥

⎥

⎦

, 𝑳𝒂,𝑷 𝑴 𝑹
𝝃̃,𝑪

=
⎡

⎢

⎢

⎣

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2O,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2O,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2O,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2 ,𝜉

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2 ,𝜉

⎤

⎥

⎥

⎦

𝒚̃ =

⎡

⎢

⎢

⎢

⎣

𝐹H2 ,𝑒𝑥

𝐻 𝑅
𝑇̃ 𝑏

⎤

⎥

⎥

⎥

⎦

, 𝑩𝒄 ,𝑷 𝑴 𝑹
𝒅 ,𝑪 =

⎡

⎢

⎢

⎣

𝐵𝑐 ,𝑃 𝑀 𝑅
𝑑 ,H2O 0

0 𝐵𝑐 ,𝑃 𝑀 𝑅
𝑑 ,H2

⎤

⎥

⎥

⎦

, 𝒅̃𝒄 ,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎣

𝑑𝑐 ,𝑃 𝑀 𝑅
H2O

𝑑𝑐 ,𝑃 𝑀 𝑅
H2

⎤

⎥

⎥

⎦

𝝃̃𝒄 ,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎣

𝜉𝑐 ,𝑃 𝑀 𝑅
H2O

𝜉𝑐 ,𝑃 𝑀 𝑅
H2

⎤

⎥

⎥

⎦

, 𝑾 𝒄 ,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎣

𝑊 𝑐 ,𝑃 𝑀 𝑅
H2O

0

0 𝑊 𝑐 ,𝑃 𝑀 𝑅
H2

⎤

⎥

⎥

⎦

, 𝑽 𝒄 ,𝑷 𝑴 𝑹
𝑪 =

⎡

⎢

⎢

⎣

𝑉 𝑐 ,𝑃 𝑀 𝑅
H2O

0

0 𝑉 𝑐 ,𝑃 𝑀 𝑅
H2

⎤

⎥

⎥

⎦

(111)

Based on this modified first-order derivative of cathode concentrations, the volumetric flowrate (𝑞𝑐 ,𝑃 𝑀 𝑅) expression is modified according
to Eqs. (28) and (110a) to obey the ideal gas law assumption.

𝑞𝑐 ,𝑃 𝑀 𝑅 =
(

∑

𝐹 𝑐 ,𝑃 𝑀 𝑅
𝑖,0 +

𝐼𝑚
2𝐹𝑎

)

𝑅𝑇̃ 𝑐 ,𝑃 𝑀 𝑅
𝑃 𝑐 ,𝑃 𝑀 𝑅 + 𝑉 𝑐 ,𝑃 𝑀 𝑅

𝑇̃ 𝑐 ,𝑃 𝑀 𝑅
̇̃𝑇 𝑐 ,𝑃 𝑀 𝑅 + 𝑉 𝑐 ,𝑃 𝑀 𝑅

(

∑

𝐿𝑐 ,𝑃 𝑀 𝑅
H2 ,𝑖

(𝐹H2 ,𝑒𝑥 − 𝐹H2 ,𝑒𝑥)

+
∑

𝐿𝑐 ,𝑃 𝑀 𝑅
𝐻 𝑅,𝑖 (𝐻 𝑅 −𝐻 𝑅) +

∑

𝐿𝑐 ,𝑃 𝑀 𝑅
𝑇 𝑏 ,𝑖

(𝑇 𝑏 − 𝑇̃ 𝑏) +
∑

𝐵𝑐 ,𝑃 𝑀 𝑅
𝑑 ,𝑖 𝑑𝑐 ,𝑃 𝑀 𝑅

𝑖

)

𝑅𝑇̃ 𝑐 ,𝑃 𝑀 𝑅
𝑃 𝑐 ,𝑃 𝑀 𝑅

(112)

Where the 𝑇̃ 𝑐 ,𝑃 𝑀 𝑅 is calculated by the modified version of the energy balance expression in the cathode side of PMR. This modified version is
btained by combining Eqs. (7) and (59).

̇̃𝑇 𝑐 ,𝑃 𝑀 𝑅 =
𝑓 𝑐 ,𝑃 𝑀 𝑅
ℎ 𝐼2𝑓𝑅𝑓 +

∑

𝐹 𝑐 ,𝑃 𝑀 𝑅
𝑖,0 ∫ 𝑇 𝑐 ,𝑃 𝑀 𝑅

𝑇 𝑐 ,𝑃 𝑀 𝑅
0

𝐶𝑝,𝑖 𝑑 𝑇 ′ + 𝐼𝑚
2𝐹𝑎

∫ 𝑇 𝑐 ,𝑃 𝑀 𝑅
𝑇 𝑎,𝑃 𝑀 𝑅 𝐶𝑝,H2

𝑑 𝑇 ′

∑

𝜌𝑐 ,𝑃 𝑀 𝑅
𝑖 𝐶𝑝,𝑖𝑉 𝑐 ,𝑃 𝑀 𝑅

+
𝑈 𝑐 ,𝑃 𝑀 𝑅
ℎ 𝐴𝑐 ,𝑃 𝑀 𝑅

ℎ (𝑇 𝑎 − 𝑇 𝑐 ,𝑃 𝑀 𝑅) + 1
2 𝐼

2
𝑚𝑅𝑚 + 𝐼𝑚

4𝐹𝑎
𝑅𝑇 𝑐 ,𝑃 𝑀 𝑅 ln ( 𝑃 𝑐 ,𝑃 𝑀 𝑅

𝑃 𝑎,𝑃 𝑀 𝑅 )
∑

𝜌𝑐 ,𝑃 𝑀 𝑅
𝑖 𝐶𝑝,𝑖𝑉 𝑐 ,𝑃 𝑀 𝑅 +𝑳𝒄 ,𝑷 𝑴 𝑹

𝑻 (𝒚 − 𝒚̃)

+ 𝐵𝑐 ,𝑃 𝑀 𝑅
𝑑 ,𝑇 𝑑𝑐 ,𝑃 𝑀 𝑅

𝑇 (113a)
̇̃𝜉𝑐 ,𝑃 𝑀 𝑅
𝑇 = 𝑊 𝑐 ,𝑃 𝑀 𝑅

𝑇 𝜉𝑐 ,𝑃 𝑀 𝑅
𝑇 +𝑳𝒄 ,𝑷 𝑴 𝑹

𝝃̃,𝑻
(𝒚 − 𝒚̃) (113b)

𝑑𝑐 ,𝑃 𝑀 𝑅
𝑇 = 𝑉 𝑐 ,𝑃 𝑀 𝑅

𝑇 𝜉𝑐 ,𝑃 𝑀 𝑅
𝑇 (113c)

Therefore, for the PMR process, the estimated state vector is defined as

𝒙̃𝑷 𝑴 𝑹 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑪̃𝒂,𝑷 𝑴 𝑹
𝑇̃ 𝑎,𝑃 𝑀 𝑅
𝑪̃𝒄 ,𝑷 𝑴 𝑹
𝑇̃ 𝑐 ,𝑃 𝑀 𝑅

⎤

⎥

⎥

⎥

⎥

⎦

(114)

The bubbler model (𝒙̃𝒃 =
[

𝑇̃ 𝑏 𝑁̃H2O,𝐿
]⊤) is also augmented with the additional disturbance observer terms, shown as

̇̃𝒙𝒃 = 𝑭̃ (𝒙̃𝒃, 𝒖) +𝑳𝒃(𝒚 − 𝒚̃) + 𝑩𝒃
𝒅 𝒅̃

𝒃 (115a)
̇̃𝝃𝒃 = 𝒘𝒃𝝃̃𝒃 +𝑳𝒃

𝝃̃
(𝒚 − 𝒚̃) (115b)

𝒅̃𝒃 = 𝒗𝒃𝝃̃𝒃 (115c)
515 
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Where corresponding vectors are defined as:

𝑭̃ (𝒙̃𝒃, 𝒖) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑄̇𝑏−
∑

𝐹 𝑏
𝑖,0 ∫

𝑇̃ 𝑏

𝑇 𝑏0
𝐶𝑝,𝑖𝑑 𝑇 ′+𝑈𝑏𝐴𝑏(𝑇 𝑎−𝑇̃ 𝑏)

𝑁̃𝑏
H2O,𝐿

𝑀H2O𝐶𝑝,H2O+𝑉 𝑏
𝑔 𝑎𝑠 ∑ 𝜌𝑏𝑗𝐶𝑝,𝑗

(𝑁H2O,𝐿
𝑀H2O

𝑅𝜌H2O
− 𝑉 𝑏

𝑅

)

𝜆̇𝑏−
𝑃𝑏𝑠

∑

𝐹𝑏
𝑖,0

𝑃𝑏−𝑃𝑏𝑠

1−
𝑃𝑏𝑠 𝑀H2O
𝑅𝑇̃ 𝑏𝜌H2O

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑳𝒃 =
⎡

⎢

⎢

⎣

𝐿𝑏
H2 ,𝑇̃ 𝑏 𝐿𝑏

𝐻 𝑅,𝑇̃ 𝑏 𝐿𝑏
𝑇 𝑏 ,𝑇̃ 𝑏

𝐿𝑏
H2 ,𝑁̃H2O,𝐿

𝐿𝑏
𝐻 𝑅,𝑁̃H2O,𝐿

𝐿𝑏
𝑇 𝑏 ,𝑁̃H2O,𝐿

⎤

⎥

⎥

⎦

(116a)

𝑩𝒃
𝒅 =

[

𝐵𝑏
𝑑 ,𝑇̃ 𝑏 0
0 𝐵𝑏

𝑑 ,𝑁̃H2O,𝐿

]

, 𝒅̃𝒃 =

[

𝑑𝑏
𝑇̃ 𝑏

𝑑𝑏
𝑁̃H2O,𝐿

]

, 𝝃̃𝒃 =

[

𝜉𝑏
𝑇̃ 𝑏

𝜉𝑏
𝑁̃H2O

]

𝒘𝒃 =

[

𝑤𝑏
𝑇̃ 𝑏 0
0 𝑤𝑏

𝑁̃H2O

]

, 𝑳𝒃
𝝃̃
=
⎡

⎢

⎢

⎣

𝐿𝑏
H2 ,𝜉 ,𝑇̃ 𝑏 𝐿𝑏

𝐻 𝑅,𝜉 ,𝑇̃ 𝑏 𝐿𝑏
𝑇 𝑏 ,𝜉 ,𝑇̃ 𝑏

𝐿𝑏
H2 ,𝜉 ,𝑁̃H2O

𝐿𝑏
𝐻 𝑅,𝜉 ,𝑁̃H2O

𝐿𝑏
𝑇 𝑏 ,𝜉 ,𝑁̃H2O

⎤

⎥

⎥

⎦

𝒗𝒃 =

[

𝑣𝑏
𝑇̃ 𝑏 0
0 𝑣𝑏

𝑁̃H2O

]

(116b)

Therefore, the overall disturbance observer-based state variables can be summarized as follows:

𝒙̃ =

⎡

⎢

⎢

⎢

⎢

⎣

𝒙̃𝑷 𝑴 𝑹
𝒙̃𝒃

𝝃̃𝑷 𝑴 𝑹
𝝃̃𝒃

⎤

⎥

⎥

⎥

⎥

⎦

(117)

Since the feasible region of current (𝑈2) is derived from the developed model, 𝑈2 should be modified accordingly as 𝑈 ′
2. To satisfy Eq. (85a),

he following should be held:

𝐼𝑚(𝑡) ≤ 𝐼 ′𝑚,𝑚𝑎𝑥,1(𝑡) (118a)

𝐼 ′𝑚,𝑚𝑎𝑥,1(𝑡) = 2𝐹𝑎

(

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 (𝑡) + 2𝑟1(𝑡)𝑊𝑐 𝑎𝑡 + 𝑃 𝑎,𝑃 𝑀 𝑅𝑉 𝑎,𝑃 𝑀 𝑅

𝑅
(

𝑇 𝑎,𝑃 𝑀 𝑅(𝑡))2
𝑇̇ 𝑎,𝑃 𝑀 𝑅(𝑡)

+𝑉 𝑎,𝑃 𝑀 𝑅 (

∑

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,𝑖

(

𝐹H2 ,𝑒𝑥(𝑡𝑛1) − 𝐹H2 ,𝑒𝑥(𝑡)
)

+
∑

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,𝑖

(

𝐻 𝑅(𝑡𝑛2) −𝐻 𝑅(𝑡))

+
∑

𝐿𝑐 ,𝑃 𝑀 𝑅
𝑇 𝑏 ,𝑖

(

𝑇 𝑏(𝑡𝑛3) − 𝑇̃ 𝑏(𝑡)
)

+
∑

𝐵𝑑 ,𝑖𝑑𝑖(𝑡)
))

(118b)

The satisfaction of Eq. (85a) by the constraint shown in Eq. (118) is demonstrated by considering Eqs. (108) and (118),

𝑞𝑎,𝑃 𝑀 𝑅(𝑡) =
∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 (𝑡) + 2𝑟1(𝑡)𝑊𝑐 𝑎𝑡 − 𝐼𝑚(𝑡)

2𝐹𝑎
𝑃 𝑎,𝑃 𝑀 𝑅

𝑅𝑇 𝑎,𝑃 𝑀 𝑅(𝑡)
+ 𝑉 𝑎,𝑃 𝑀 𝑅

𝑇̃ 𝑎,𝑃 𝑀 𝑅(𝑡)
̇̃𝑇 𝑎,𝑃 𝑀 𝑅(𝑡)

+ 𝑉 𝑎,𝑃 𝑀 𝑅
(

∑

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,𝑖

(

𝐹H2 ,𝑒𝑥(𝑡𝑛1) − 𝐹H2 ,𝑒𝑥(𝑡)
)

+
∑

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,𝑖

(

𝐻 𝑅(𝑡𝑛2) −𝐻 𝑅(𝑡))

+
∑

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,𝑖

(

𝑇 𝑏(𝑡𝑛3) − 𝑇̃ 𝑏(𝑡)
)

+
∑

𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,𝑖𝑖 𝑑𝑎,𝑃 𝑀 𝑅

𝑖 (𝑡)

)

≥

∑

𝐹 𝑎,𝑃 𝑀 𝑅
𝑖,0 (𝑡) + 2𝑟1(𝑡)𝑊𝑐 𝑎𝑡 −

𝐼 ′𝑚,𝑚𝑎𝑥,1(𝑡)

2𝐹𝑎
𝑃 𝑎,𝑃 𝑀 𝑅

𝑅𝑇 𝑎,𝑃 𝑀 𝑅(𝑡)
+ 𝑉 𝑎,𝑃 𝑀 𝑅

𝑇̃ 𝑎,𝑃 𝑀 𝑅(𝑡)
̇̃𝑇 𝑎,𝑃 𝑀 𝑅(𝑡)

+ 𝑉𝑎,𝑃 𝑀 𝑅
(

∑

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,𝑖

(

𝐹H2 ,𝑒𝑥(𝑡𝑛1) − 𝐹H2 ,𝑒𝑥(𝑡)
)

+
∑

𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,𝑖

(

𝐻 𝑅(𝑡𝑛2) −𝐻 𝑅(𝑡))

+
∑

𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,𝑖

(

𝑇 𝑏(𝑡𝑛3) − 𝑇̃ 𝑏(𝑡)
)

+
∑

𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,𝑖𝑖 𝑑𝑎,𝑃 𝑀 𝑅

𝑖 (𝑡)

)

= 0

(119)

To ensure Eq. (85b), the constraint shown in Eq. (99c) is modified:

𝐼𝑚(𝑡) ≤ 𝐼 ′𝑚,𝑚𝑎𝑥,2(𝑡) (120a)

𝐼 ′𝑚,𝑚𝑎𝑥,2(𝑡) =2𝐹𝑎

(

𝐹 𝑎,𝑃 𝑀 𝑅
H2 ,0

(𝑡) + (3𝑟1(𝑡) + 𝑟2(𝑡))𝑊𝑐 𝑎𝑡 + 𝑉 𝑎,𝑃 𝑀 𝑅
(

𝐿𝑎,𝑃 𝑀 𝑅
H2 ,H2

(𝐹H2 ,𝑒𝑥(𝑡𝑛1) − 𝐹H2 ,𝑒𝑥(𝑡))

+ 𝐿𝑎,𝑃 𝑀 𝑅 (

𝐻 𝑅(𝑡𝑛2) −𝐻 𝑅(𝑡)) + 𝐿𝑎,𝑃 𝑀 𝑅
𝑏

(

𝑇 𝑏(𝑡𝑛3) − 𝑇̃ 𝑏(𝑡)
)

+ 𝐵𝑎,𝑃 𝑀 𝑅𝑑𝑎,𝑃 𝑀 𝑅(𝑡)
))

(120b)
𝐻 𝑅,H2 𝑇 ,H2 𝑑 ,H2 H2
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Fig. 10. Closed-loop structure of multi-input multi-output decentralized MPC control system.

The feasibility of Eq. (120) is shown by considering Eqs. (106) and (120).

̇̃𝐶𝑎,𝑃 𝑀 𝑅
H2

(𝑡) =
𝐹 𝑎,𝑃 𝑀 𝑅
H2 ,0

+
(

3𝑟1(𝑡) + 𝑟2(𝑡)
)

𝑊𝑐 𝑎𝑡 − 𝑞𝑎,𝑃 𝑀 𝑅(𝑡) 𝐶̃𝑎,𝑃 𝑀 𝑅
H2

(𝑡) − 𝐼𝑚(𝑡)
2𝐹𝑎

𝑉 𝑎,𝑃 𝑀 𝑅
+ 𝐿𝑎,𝑃 𝑀 𝑅

H2 ,H2

(

𝐹H2 ,𝑒𝑥(𝑡𝑛1) − 𝐹H2 ,𝑒𝑥(𝑡)
)

+ 𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2

(

𝐻 𝑅(𝑡𝑛2) −𝐻 𝑅(𝑡))

+ 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2

(

𝑇 𝑏(𝑡𝑛3) − 𝑇̃ 𝑏(𝑡)
)

+ 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,H2

𝑑𝑎,𝑃 𝑀 𝑅
H2

(𝑡)

≥
𝐹 𝑎,𝑃 𝑀 𝑅
H2 ,0

+
(

3𝑟1(𝑡) + 𝑟2(𝑡)
)

𝑊𝑐 𝑎𝑡 − 𝑞𝑎,𝑃 𝑀 𝑅(𝑡) 𝐶̃𝑎,𝑃 𝑀 𝑅
H2

(𝑡) − 𝐼 ′𝑚,𝑚𝑎𝑥,2(𝑡)

2𝐹𝑎

𝑉 𝑎,𝑃 𝑀 𝑅
+ 𝐿𝑎,𝑃 𝑀 𝑅

H2 ,H2

(

𝐹H2 ,𝑒𝑥(𝑡𝑛1) − 𝐹H2 ,𝑒𝑥(𝑡)
)

+ 𝐿𝑎,𝑃 𝑀 𝑅
𝐻 𝑅,H2

(

𝐻 𝑅(𝑡𝑛2) −𝐻 𝑅(𝑡))

+ 𝐿𝑎,𝑃 𝑀 𝑅
𝑇 𝑏 ,H2

(

𝑇 𝑏(𝑡𝑛3) − 𝑇̃ 𝑏(𝑡)
)

+ 𝐵𝑎,𝑃 𝑀 𝑅
𝑑 ,H2

𝑑𝑎,𝑃 𝑀 𝑅
H2

(𝑡)

= −
𝑞𝑎,𝑃 𝑀 𝑅(𝑡) 𝐶̃𝑎,𝑃 𝑀 𝑅

H2
(𝑡)

𝑉 𝑎,𝑃 𝑀 𝑅

(121)

After rearranging Eq. (121), this inequality can be written as:
𝑞𝑎,𝑃 𝑀 𝑅(𝑡) 𝐶̃𝑎,𝑃 𝑀 𝑅

H2
(𝑡)

𝑉 𝑎,𝑃 𝑀 𝑅 + ̇̃𝐶𝑎,𝑃 𝑀 𝑅
H2

(𝑡) ≥ 0 (122)

This inequality is the same type of ODE shown in Eq. (91). Therefore, Eq. (85b) can be derived by following the steps shown in Eqs. (92)–(98).
Therefore, the modified feasible region for the electric current (𝑈 ′

2) is defined as follows:

𝑈 ′
2 =

{

𝐼𝑚(𝑡)
|

|

|

0 ≤ 𝐼𝑚(𝑡) ≤ min
{

𝐼 ′𝑚,𝑚𝑎𝑥,1(𝑡), 𝐼 ′𝑚,𝑚𝑎𝑥,2(𝑡)
}

, ∀𝑡 ∈ [0,∞)
}

(123)

The closed-loop control schematic is illustrated in Fig. 10. All measurable parameters are transformed into the control target vector (𝒚) and
used in the DOB-based model, developed from the error between the estimated and measured feedback (𝒚 − 𝒚̃). The DOB-based model computes
ll unknown state variables required as initial conditions, and the values of the input reference setpoint vector (𝒖𝒔𝒑 in Eq. (4d)) are adaptively

estimated using Eq. (10). These estimated values are then used in decentralized predictive controllers.
To test the disturbance observer design in a decentralized MPC strategy, many disturbances are added to the simulated process. The first added

isturbance increases the reaction activation energies by 5% (Eq. (22)) to simulate a catalyst deactivation process initiated by solid carbon formation
on the catalyst. A 1% higher heat loss term is also added to disturb the temperature of the bubbler (𝑈 𝑏

ℎ𝐴
𝑏
ℎ(𝑇

𝑎 − 𝑇 𝑏) in Eq. (63)) to simulate heat
insulation degradation. A third disturbance provides a 60% increase to the inlet H2 flowrate (𝐹 𝑎,𝑃 𝑀 𝑅

H2 ,0
) to simulate volumetric and concentration

fluctuations to the inlet gas mixture of the PMR.
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Fig. 11. Model predictive control with the disturbance observer versus without the disturbance observer at the same PMR inlet conditions (735 ◦C | 10 bar | 20 sccm CH4) and
target setpoints (𝐻 𝑅 98% | 𝑆∕𝐶 2.5 | 120 sccm H2 extraction).

The effectiveness of this control strategy is demonstrated by comparing its performance to a DMPC scheme without a DOB for model correction,
shown in Fig. 11. In the figure, the grey curve represents the scenario without DOB implementation. While the H2 extraction rate reaches the target
setpoint under three types of disturbance, as the removal rate of H2 is solely governed by Eq. (40), both 𝐻 𝑅 and the bubbler temperature fail to
each their respective setpoints. The deviation from the 𝐻 𝑅 target setpoint for the controllers is caused by the lack of a DOB to correct for the

decrease in catalytic performance. Additionally, changes in heat loss are not incorporated into the energy balance of the original PMR model, so
the model underestimates heat loss and overestimates the bubbler temperature. In contrast, when a DOB is applied to the DMPC scheme, the target
setpoints are successfully reached for all three control outputs, as the model and 𝒖𝒔𝒑 are adaptively corrected over time. This adaptive correction
enables the model to account for disturbances progressively, providing more accurate initial conditions for the MPC and allowing for more accurate
predictions within the MPC horizons.

Remark 7. For frequent and measurable state variables, state estimation is not needed. Therefore, in this case, the measured bubbler temperature
s directly utilized as the initial condition of the MPC without estimation.

5. Conclusion

In this work, a lumped-parameter model was developed for a general CST-MR system and specifically applied to a PMR system. The model was
validated using experimental data, confirming its accuracy. Additionally, a lumped-parameter model was constructed for a general bubbler. Building
on these models, setpoint tracking control for the PMR system was implemented to regulate key parameters relevant to real-world H2 production
processes. The MPC approach was successfully applied, incorporating system constraints and demonstrating faster response times compared to
a traditional PI control strategy. A comprehensive comparison between DMPC and CMPC highlighted the effectiveness of DMPC in significantly
reducing computational costs. Moreover, the disturbance observer-based decentralized MPC, utilizing the developed disturbance observer model,
efficiently estimated the missing state variables and addressed common disturbances in the PMR system. The experimental implementation of the
developed control strategy will be presented in a subsequent work.
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