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a b s t r a c t 

Plasma-enhanced atomic layer deposition (PEALD) has demonstrated its superiority at coating ultra- 

conformal high dielectric thin-films, which are essential to the fin field-effect transistors (FinFETs) as well 

as the advanced 3D V-NAND (vertical Not-AND) flash memory cells. Despite the growing research interest, 

the exploration of the optimal operation policies for PEALD remains a complicated and expensive task. 

Our previous work has constructed a comprehensive 3D multiscale computational fluid dynamics (CFD) 

model for the PEALD process and demonstrated its potential to enhance the understanding of the process. 

Nevertheless, the limitation of computational resources and the relatively long computation time restrict 

the efficient exploration of the operating space and the optimal operating strategy. Thus, in this work, 

we apply a 2D axisymmetric reduction of the previous 3D model of PEALD reactors with and without the 

showerhead design. Furthermore, a data-driven model is derived based on a recurrent neural network 

(RNN) for process characterization. The developed integrated data-driven model is demonstrated to ac- 

curately characterize the key aspects of the deposition process as well as the gas-phase transport profile 

while maintaining computational efficiency. The derived data-driven model is further validated with the 

results from a full 3D multiscale CFD model to evaluate model discrepancy. Using the data-driven model, 

an operational strategy database is generated, from which the optimal operating conditions can be deter- 

mined for the deposition of Hafnium Oxide (HfO 2 ) thin-film based on an elementary cost analysis. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The rapid growth of the semiconductor industry is backed by 

he increasing demand for highly compact microelectronic devices. 

n order to meet the design challenges of constant device miniatur- 

zation, high dielectric constant (high- κ) materials are introduced 

o resolve the quantum tunneling effects associated with extremely 

hin gate oxides ( Jeong et al., 2016 ), like TiO 2 ( Kukli et al., 20 0 0 ),

fO 2 ( Liu et al., 2005 ), and ZrO 2 ( Yun et al., 2004 ). In particular,

ne of the most adopted high- κ thin-film materials is HfO 2 due 

o its high thermal stability, extraordinary gate capacitance, good 

harge mobility, and very large dielectric constant, which is four to 

ix times higher than that of SiO 2 . Nevertheless, the reactions asso- 

iated with the deposition process often have high energy barriers, 

hich reduces the production throughput, increases the energy 

ootprint, and introduces design challenges for the traditional ther- 

al atomic layer deposition (ALD) operation policies, especially for 
∗ Corresponding author at: Department of Chemical and Biomolecular Engineer- 
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emperature-sensitive materials ( Joo and Rossnagel, 2009 ). There- 

ore, plasma-enhanced atomic layer deposition (PEALD) has been 

nvented to overcome the aforementioned problems by taking ad- 

antage of the active plasma species ( Won et al., 2005 ). 

Derived from the traditional thermal ALD, PEALD follows the 

cheme of sequential precursor pulsing and inert gas purging. Con- 

entionally, each precursor pulsing stage is called a half-cycle, dur- 

ng which the precursor deposits the corresponding element in a 

elf-limiting manner under appropriate operating conditions. Purge 

teps follow the pulsing half-cycles, where an inert species is in- 

roduced into the reactor to clean the unreacted precursor species 

nd by-products ( George, 2009 ). With the aid of high energy 

lasma species, ultra-uniform high- κ dielectric thin-films can be 

roduced under relatively low operating temperatures in a layer- 

y-layer manner with high controllability ( Ishikawa et al., 2017 ). 

herefore, many novel precursors for the deposition of HfO 2 using 

EALD, together with their reaction mechanisms and the associ- 

ted PEALD reactor design, have been investigated. For the hafnium 

Hf) half-cycle precursors, amino-based metal-organic compounds 

ave reaction mechanisms facilitated by H-N bonds. Materials 

ncluding tetrakis(dimethylamino)hafnium (TDMAHf) ( Liu et al., 

https://doi.org/10.1016/j.compchemeng.2020.107148
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107148&domain=pdf
mailto:pdc@seas.ucla.edu
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003 ), tetrakis(ethylmethylamino)hafnium (TEMAHf) ( Kukli et al., 

0 0 0 ), tetrakis(diethylamino)hafnium (TDEAHf) ( Shi et al., 2011 ) 

ave been extensively studied. For the oxygen (O) half-cycle, which 

nvolves plasma species, typical candidates include O 3 plasma 

 Rai et al., 2010 ), H 2 O plasma ( Kanomata et al., 2014 ), and O 2 

 Rai et al., 2010 ) plasma. In addition to precursor selection, the re-

ctor design also critically affects the PEALD throughput and effec- 

iveness. Remote plasma reactors have been designed as a balanced 

olution for the PEALD process, in which plasma species are gen- 

rated from a remote chamber at an appropriate distance from the 

ubstrate surface ( Won et al., 2014 ). As high energy species travel 

cross the reactor, their energy is reduced to the desired level 

here sputtering can be avoided, while still being high enough 

o overcome the reaction energy barrier ( Jeon et al., 2007 ). Thus, 

n this work, the discussion will focus on the operation of PEALD 

f HfO 2 thin-film using TDMAHf and oxygen plasma in a remote 

lasma reactor. 

Due to the great potential of PEALD, various experimental ef- 

orts have been carried out to explore, understand, and optimize 

he operating policies of the PEALD process to maximize its eco- 

omical benefits. However, the PEALD process is often associated 

ith high operating costs, complicated process components, and 

he absence of efficient monitoring techniques. For example, a 

EALD reactor requires ultra-precise gas flow controllers, complex 

adio-frequency (RF) power sources, and sophisticated pumping 

ystems ( Lee et al., 2006; Profijt et al., 2011 ). Also, the deposition

peed and the properties of the deposited thin-film are highly de- 

endent on both gas-phase transport phenomena and microscopic 

urface dynamics. Such relationships are reactor design-specific 

nd highly complicated to be determined experimentally ( Lee 

t al., 2006; Zhang et al., 2020a ). Moreover, despite the existence 

f in-situ analysis techniques such as quartz crystal microbalance 

QCM) and spectroscopic ellipsometry, the amount of data that can 

e obtained in real-time is limited ( Pittal et al., 1993 ). Also, ex-situ 

icrostructure analysis methods such as scanning tunneling mi- 

roscopy (STM) and scanning electron microscope (SEM) are often 

estructive to the deposited film ( Schwille et al., 2017 ). These dif- 

culties restrict the effective exploration of PEALD operating con- 

itions. 

As an alternative to the experimental methods, simulation 

odel is often a low-cost solution and can provide insights 

n the entire process operating domain. A variety of attempts 

ave been made to capture the PEALD dynamics. To model 

he plasma generation and transport, ( Tinck and Bogaerts, 2011 ) 

reated a simulation model for O 2 plasma in a simplified re- 

ote inductively coupled plasma (ICP) reactor configuration, and 

orr et al. (2012) demonstrated a comparison between the ex- 

erimental and simulation results of the similar plasma source. 

or the macroscopic gas-phase transport domain, computational 

uid dynamics (CFD) softwares are widely utilized ( Gerogiorgis 

nd Ydstie, 2005; Epelle and Gerogiorgis, 2017 ). For example, 

rose et al. (2015) constructed a CFD model to capture the 

hemical vapor deposition of amorphous silicon thin-films, and 

hang et al. (2019) designed a CFD characterization of the SiO 2 

LD and optimized the showerhead reactor geometry. For the mi- 

roscopic surface reaction domain, ( Shirazi and Elliott, 2014 ) devel- 

ped a small-scale, high accuracy kinetic Monte Carlo (kMC) model 

or the ALD of HfO 2 accounting for the complete set of reactions. 

dding the plasma half-cycle and adopting reduced reaction sets, 

 Ding et al., 2020 ) extended the kMC model to be used for PEALD.

n addition, ( Zhang et al., 2020b ) recently formulated a brand-new 

ultiscale CFD model that comprehensively captures all three in- 

ividual domains for an industrial-scale PEALD process. Although 

he developed model is able to accurately describe the PEALD pro- 

ess, the time required to perform the simulation is much longer 

han the actual PEALD process time-scale and the computational 
2 
esource needed is not locally obtainable, thus making it infeasi- 

le to be applied in the context of industrial on-line operational 

ptimization. 

In response to the aforementioned difficulty, data-driven mod- 

ling has been demonstrated as one of the most promising so- 

utions by taking advantage of machine learning methodologies, 

specially neural networks. Attempts have been made to utilize 

eedforward neural network (FNN) to characterize the result of 

MC simulation ( Djurabekova et al., 2007; Kimaev and Ricardez- 

andoval, 2019 ). The previous work by Ding et al. (2019b) de- 

eloped a multiscale data-driven model using a decoupled linear 

arameter-varying model for the gas-phase domain and an FNN 

odel for the microscopic domain. Although the FNN model was 

ble to accurately characterize the steady-state input-output rela- 

ionship, the dynamic system provides more information because 

f the transient change of the flow field and key thermodynamic 

nd fluid mechanical properties. Several deep learning formula- 

ions like recurrent neural network (RNN) and convolutional neu- 

al network (CNN) are utilized to model sequential and temporal 

ystems ( Wang et al., 2020 ). Among those deep neural network 

odels, RNN is intuitively more suitable and has demonstrated its 

utstanding performance in text summarization and natural lan- 

uage processing ( Yin et al., 2017 ). Recently, it has also been ap-

lied in modeling many industrial systems ( Kim et al., 2019 ). For 

xample, ( Wu et al., 2019 ) investigated Phthalic Anhydride Synthe- 

is based on CFD simulation and constructed a computationally ef- 

cient RNN characterization of the process. Chen et al. (2020) uti- 

ized RNN to characterize a general nonlinear system under cyber- 

ttack threats. Nevertheless, until this point, such a data-driven 

odel has not yet been developed for thin film deposition pro- 

esses and especially for the industrial-scale PEALD system. 

Motivated by the above considerations, in this work, we first 

onstruct a database using the previously developed multiscale 

FD model ( Zhang et al., 2020b ). Then, based on the collected 

ata sets, a data-driven model is developed to incorporate the 

as-phase transport profiles and the microscopic surface dynamics. 

ully integrating both two domains into a unified model, the RNN- 

ased data-driven model can accurately capture the interaction of 

oth domains within each timestep. In this way, the data-driven 

odel is able to fully preserve the input-output relationships be- 

ween operating conditions and the deposition profile, while re- 

ucing the computational demand by taking advantage of existing 

ata sets. As a result, the proposed integrated data-driven model 

llows both fast prediction of necessary cycle-time to achieve full 

overage, and online estimation of film quality through the em- 

edded information of transient dynamics. A significant amount 

f economic benefit can be potentially realized by the developed 

odel. For example, the cost of precursor and operation to explore 

easible operation conditions, estimated to be millions of dollars, 

ould be substantially avoided. More importantly, such a method 

an serve as a general framework and is easily modifiable and ex- 

endable for other deposition processes. 

. Multiscale CFD modeling of PEALD 

While details can be found in Zhang et al. (2020b) , this section 

ill briefly introduce each component of the developed HfO 2 thin- 

lm PEALD multiscale CFD model. The simulations of ICP plasma 

eneration in the remote plasma domain, gas-phase transport phe- 

omena in the main ALD reactor chamber, and microscopic surface 

lm deposition using kinetic Monte-Carlo (kMC) are reviewed. 

.1. Plasma chamber CFD model 

The remote plasma system constructed in 

hang et al. (2020b) is an inductively coupled plasma (ICP)- 
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Fig. 1. Integration of the multiscale computational fluid dynamics model, dataset generation and recurrent neural network development. 

Fig. 2. (a) Plasma generation chamber axis-symmetry. A - gas inlet, B - gas outlet, C - coil circuits, D - circuit wall, E - reactor chamber, and F - relevant surrounding. (b) 

Example of number density distribution of O radical, an important plasma species involved in the deposition reaction. 
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ource, which utilizes alternative current (AC)-induced magnetic 

eld to produce high purity and density plasma. The geometry of 

he simulated plasma generator is based on the Gaseous Electron- 

cs Conference (GEC) cell, a standard experimental and modeling 

rototype, proposed by the National Institute of Standards and 

echnology (NIST). For better connectivity to the main reactor, the 

utlet is modified as shown in Fig. 2 . 

The AC generator operates at a power of 20 0 0 W, and the cur-

ent radio-frequency (RF) is 13.56 MHz. The changes in the electric 

eld and the current density caused by the AC generate a magnetic 

eld, which can be described by the Ampere-Maxwell equation as 
3 
ollows: 

�
 

 (ε f 
�
 B ) = 

�
 J + ε0 

∂ � E 

∂t 
(1) 

here ε f is the electric permeability of materials, � B is the magnetic 

eld, � J is the current density, ε0 is the electric permeability of free 

pace, and t is the time. 

Inside the plasma chamber, a constant flow of argon is used to 

aintain the baseline pressure. Oxygen is injected through an inlet 

alve and the AC circuit is activated right before the initiation of 

he oxygen cycle. Three types of reactions are associated with the 
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Fig. 3. (a) 2D axisymmetric PEALD reactor geometry. (b) 3D PEALD reactor geometry. (c) Indication of the inner, middle, and outer regions of the wafer. 
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r/O 2 plasma generation: the electron impact reactions, the heavy 

article reactions, and the surface reactions. The detailed reaction 

ets and rate characterization can be found in Zhang et al. (2020b) . 

he developed plasma domain model is simulated in COMSOL Mul- 

iphysics, which integrates the AC/DC module, the laminar flow 

odule, the heat-transfer-in-fluid module, and the plasma reac- 

ion module. A frequency-transient solution is obtained to inves- 

igate the plasma reaction and generation, and it provides the ion 

nd radical profiles throughout the plasma chamber, which is then 

sed as the inlet profile of the subsequent macroscopic gas-phase 

omain. Due to the difference in model time-scales, the plasma 

eneration simulation can be decoupled from the gas transport in 

he main reactor chamber. 

.2. Macroscopic CFD model 

The macroscopic transport phenomena in the main reactor 

hamber directly affect the dynamics of surface reactions as well 

s the surface configuration of the deposited HfO 2 thin-film. The 

ulk reactor geometry used in this work is an optimized design 

ased on the ASM International EmerALD XP reactor ( Lee et al., 

006 ). Specifically, as shown in Fig. 3 ( King, 2011 ), the reactor

hamber design is modified to enhance the uniformity of the gas 

rofile and is scaled up to allow the adoption of 300-mm diameter 

afers. Precursors carried by inert argon gas are injected into the 

eactor from a 1-cm diameter inlet located on the top of the reac- 

or. These gases first enter the upstream of the reactor, where the 

orn-shaped design facilitates the uniform flow distribution. Then, 

he gas species move downward and potentially encounter a show- 

rhead panel, if used. After crossing the reactor downstream, pre- 

ursors reach the substrate surface and deposition reactions occur. 

inally, leftover precursors and carrier gas are pumped out of the 
4 
eactor through the outlet channel. More details regarding meshing 

nd reactor geometry are included in Zhang et al. (2020b) . 

Twelve gas-phase species are characterized in the model: ar- 

on is the purging and carrier gas; TDMAHf is the Hf-cycle pre- 

ursor; oxygen and its ionic and excited states are the O-cycle pre- 

ursors. Volumetric and surface reaction sets involving all species 

re defined in the model, and the relevant reaction sets and pa- 

ameters are reported by Zhang et al. (2020b) . A 60 Pa base op- 

rating pressure is used, which is maintained through a constant 

ow of 300 sccm Ar and outlet pumping. The absolute pressure in 

ach half-cycle may fluctuate due to precursor injection in each cy- 

le. The baseline precursor feed flowrate at the inlet is equivalent 

o the feed from a gas-delivery bubbler at 348.15 K, which is the 

equired temperature for TDMAHf vapor pressure to reach 1 Torr 

 Hausmann et al., 2002 ). Using this setup, the governing transport 

quations are solved to obtain the profiles of velocity, pressure, and 

olar fraction of species in the gas-phase ( Fluent, 2013 ). 

In addition, we use ANSYS Fluent for macroscopic domain sim- 

lation, which applies the finite volume method to solve the cou- 

led governing equations, utilizing previously developed hybrid 

esh ( Eymard et al., 20 0 0 ). Simulation accuracy and efficiency are

reatly affected by the chosen calculation timestep ( Courant et al., 

967 ). The timestep size can be related to the number of cells 

hat the fluid information travels in each timestep, known as the 

ourant number, C, the length of the spatial interval �x, and 

he speed that information travels through the cells, u, accord- 

ng to the Courant-Friedrichs-Lewy (CFL) condition ( Moura and 

ubrusly, 2012 ): 

t = 

C�x 
(2) 
u 
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Fig. 4. Surface slab and approximated lattice. Top: hydroxyl-terminated HfO 2 slab. 

Bottom: The approximated lattice with examples of adsorbed species. PsHf and CsHf 

represent the physisorbed and chemisorbed precursor, respectively, HfL2 represents 

the deposited Hf terminated with two dimethylamino ligands, and PsO1 and PsO2 

represent two distinctively physisorbed oxygens, respectively. 
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FD computation time can be largely reduced when advanced 

FD software is used ( Moura and Kubrusly, 2012 ). Specifically, the 

ressure-based solver in this work uses a Courant number of 50. 

.3. Microscopic surface model 

Besides reactor design and gas-phase transport, substrate sur- 

ace reactions are necessary to be discussed at a microscopic level. 

he microscopic kMC model developed in Ding et al. (2020) accu- 

ately characterizes the key surface reaction mechanisms and the 

eveloped HfO 2 thin-film structures. In the following subsections, 

fO 2 structure, reaction kinetics and pathways, and the 3D kMC 

odel are briefly presented, while more details can be found in 

ing et al. (2020) . 

A monoclinic-alike structure, reported in Kumar et al. (2017) , 

s adopted for the simulation of low-temperature PEALD applica- 

ion. The hydroxyl-terminated (111) surface is assumed to be the 

tarting surface, as shown in Fig. 4 . A 3D triangular on-lattice ap- 

roximation developed in Ding et al. (2019a) is used to efficiently 

epresent this surface as shown in Fig. 4 . The approximated lattice 

etains the connectivities between atoms and the cycle repetition 

attern that are observed in the real lattice structure. The simu- 

ated lattice dimensions are set to be 1200 × 1200 ×N layer to ensure 

ize-independence ( Huang et al., 2010 ). 

Within each half-cycle, precursors associated with the cycle un- 

ergo surface reactions and deposit a layer of atoms of the desired 

lement. Similar to the thermal ALD process, TDMAHf serves as 

he precursor for the Hf-Cycle. However, for the O-cycle, in ad- 

ition to molecular oxygen, atomic oxygen and their excited and 

onized derivatives from the macroscopic scale simulation are also 

nvolved in the deposition reactions. A simplified reaction set, se- 

ected from the complete mechanism reported in Shirazi and El- 

iott (2014) and Jeon and Won (2008) , is used to model the key 

urface dynamics while neglecting the proton diffusion, ligands 
5 
otation, and other detailed features. This simplification dramat- 

cally decreases the computational load, enabling industrial-sized 

afer-scale simulation, and preserving key fidelity to the reaction 

echanisms. The resulting mechanisms are demonstrated in Fig. 5 . 

pecifically, in the Hf-Cycle, TDMAHf goes through two steps of 

issociative chemisorption, binding the hafnium atoms onto sur- 

ace oxygen atoms with two terminating dimethylamine (DMA) 

roups and releasing two remaining DMA groups. In the O-Cycle, 

round state O 2 particles and radicals go through their respective 

eaction pathways and eventually bind the O atoms with terminat- 

ng hydroxyl groups, releasing different byproducts. 

The transition state theory (TST) ( Cortright and Dumesic, 2001 ) 

nd the collision theory are used to characterize the rates of these 

eactions. The general Arrhenius-type equation from the TST can 

e used to describe thermodynamically activated reactions as fol- 

ows: 

 rxn = A exp 

(−E a 

RT 

)
(3) 

here E a is the transition state complex activation energy, A is the 

re-exponential factor, R is the gas constant, and T is the substrate 

emperature. In contrast to the TST, the collision theory is used to 

escribe the gas-surface athermal barrierless reactions such as ph- 

sisorption. The rate formulation provided by the collision theory 

s shown as follows: 

 phs = 

p 

RT 

√ 

8 RT 

πm 

s c N a σ (4) 

here m is the molar weight of the precursor, σ is the unit cell 

urface area, N a is the Avogadro number, and s c is the sticking co- 

fficient, as reported in Dorsmann and Kleijn (2007) . 

The reaction selection and time evolution are then deter- 

ined using the modified n -fold hybrid kMC algorithm by 

ing et al. (2019a) to simulate the film growth and the deposition 

rofile. The total reaction rate r total can be calculated as the sum 

f each rate: 

 total = 

N ∑ 

i =1 

r i (5) 

here r i represents the respective rate of N individual events. The 

eaction selection uses a random number γ1 ∈ (0 , 1] to locate the 

vent according to its normalized indicator, l i ∈ (0 , 1] , which is the

um of the normalized probabilities of the previous events: 

 i = 

∑ i 
j=1 r 

j 

unweighted 
C j ∑ N 

k =1 r 
k 
unweighted 

C k 
, i = 1 , . . . , N (6) 

here the rate of reaction, r unweighted , will be adjusted with respect 

o the availability of reactant, C, in each reaction, as explained in 

he previous work by Ding et al. (2020) . In the case where the 

elected random number is between l i −1 to l i , the i th event will

e executed. For the time evolution, a second random number 

2 ∈ (0 , 1] is used to calculate the elapsed time for each event: 

t = 

− ln γ2 

r total 

(7) 

.4. Multiscale CFD model customization, workflow and data 

eneration 

Fig. 1 shows the automated workflow of the CFD simulation and 

NN development and provides an overview of how information is 

elayed through each domain in this work. The simulation starts 

t COMSOL, if it is in the O-cycle, to solve for the plasma profile. 

ext, Fluent solves for macroscopic solution for one timestep. The 

urface partial pressure and temperature conditions are collected 
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Fig. 5. Illustration of reaction mechanisms for the precursor surface reactions. The black arrows denote the reaction pathways, and the red arrows denote potential proton 

diffusion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

f

m

s

i

e

s

e

q

A

p

(

a

g

c

q

a

a

w

c

s

m  

t

i

t

t

h

s

t

c

3

t

d

s

i

m

T

t

w

t

c

or each surface region and then transferred to the microscopic do- 

ain. Next, the kMC model will simulate the surface reaction and 

tore the evolution of surface structure within the prescribed time 

nterval. The synchronized kMC results will then be fed into Flu- 

nt to update the boundary condition for the next timestep. The 

imulation time clock continuously adds �t to itself after each 

vent until it reaches the designated half-cycle time. The subse- 

uent half-cycle specification will then be updated for all domains. 

fter each timestep, the macroscopic partial pressure of each im- 

ortant gas-phase species, as well as the surface site information 

the amount of Hf physisorption sites and O physisorption sites), 

re collected in the database. 

The aforementioned methodology serves as a general-purpose 

uideline for the multiscale model construction for the PEALD pro- 

ess, and it is subject to customization under various accuracy re- 

uirements and computational limitations. In this work, due to 

 large amount of potential operating conditions to explore, 2D 

xisymmetric CFD models are constructed for reactors with and 

ithout the showerhead. Moreover, surface kMC models are exe- 

uted on the concentric rings at the wafer surface in the 2D multi- 

cale CFD domain, instead of the grids as in the 3D multiscale CFD 

odel, which is shown in Fig. 6 . Details regarding the 3D grid par-
6 
ition can be found in Ding et al. (2020) . As we will demonstrate 

n the latter sections, the reduction from 3D to 2D will not affect 

he accuracy of the domain profile without the showerhead due 

o its axisymmetric nature. Moreover, for the reactor with shower- 

ead, despite the existence of noticeable profile deviation, the re- 

ults are consistent throughout the operating domain. Therefore, 

he 2D multiscale CFD model results for the showerhead reactor 

an provide general insights on the realistic 3D operation. 

. Machine learning-based integrated data-driven model 

Utilizing the data generated by the multiscale CFD model, an in- 

egrated data-driven model can be developed to describe and pre- 

ict both the dynamic surface profile evolution as well as the tran- 

ient gas-phase profile development. Because of the non-linearity 

nvolved with the PEALD process, traditional machine learning 

ethods fail to provide satisfying performance ( Ding et al., 2019b ). 

hus, more advanced machine learning techniques need to be used 

o characterize the dynamic time series. The recurrent neural net- 

ork model (RNN) and its variations are tailored for the predic- 

ion of time sequences and can be utilized to capture the compli- 

ated input-output relationship between operating conditions and 
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Fig. 6. Comparison of 2D and 3D surface region partition. Color from yellow to 

blue represents the distance between the center of the region to the center of the 

wafer. (a) 2D surface concentric rings region representation. Each ring represents a 

separate kMC model. (b) 3D surface grid region representation. Each grid represents 

a separate kMC model. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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eposition profiles. According to the universal approximation the- 

rem, it can be proved that an RNN model with enough neurons 

an capture any given nonlinear dynamic system over finite time 

 Sontag, 1992 ). A simplistic view of the standard RNN structure is 

 stack of feedforward neural networks (FNN), where the output of 

he FNN is used repeatedly, along with additional real-time infor- 

ation, as the input to the network. The reused information is the 

idden state, h, and the information fed in real-time is the input, 

 . Both values are used to predict the state of the system for the

ext timestep, of which the mathematical formulation is shown as 

ollows: 

 (t) = f (h (t − 1) , x (t − 1) , θ ) (8) 

here θ is the model parameter/weights, and the function f is the 

inear combination of hidden state, input, and weights, adjusted by 

he transfer functions, which provide the ability to capture non- 

inearity. The formulation of the RNN is very similar to a state- 

ased model, with the state matrix replaced by a set of network 

eurons. The unrolling of the RNN shows that the cycled formula- 

ion forwards the hidden states, h (t) , and input information, x (t) , 

rom the current timestep to the next timestep. This configuration 

akes it a perfect candidate to model the industrial time-series 

ata, and thus it is selected in this work. 
v

7 
.1. Long and short term memory (LSTM) method 

Despite the intuitive compatibility, a typical challenge encoun- 

ered in the training of RNN is the exploding or vanishing gra- 

ient, which happens because of the rolling vanilla structure. As 

e can see from the unrolling of the RNN, not only the forward 

nformation is cycled, the back-propagation is also repeated and 

assed through the activation functions multiple times. Therefore, 

his repetition leads to a significant accumulated input squeezing 

n the activation function, which further leads to the vanishing or 

xplosion of the gradient and drastically decreases the validity of 

NN. In addition, the traditional RNN treats all input information 

qually, while in reality, long term and short term information can 

rovide quite different insights to the prediction of the new state. 

To deal with these challenges, the long and short term memory 

LSTM) is introduced. In the LSTM structure, the process character- 

stic parameter, θ, in the recurrent cell is replaced with four reg- 

lators: an input modulation gate (G), an input gate (I), an output 

ate (O), and a forget gate (F). These regulators selectively weight 

he long and short term memory (gradient) to avoid ill-conditioned 

ropagation. Specifically, the LSTM weight matrix is comprised of 

our parts: the output gate controls the weights that reveal the 

ell state, the input gate and the input modulation gate control the 

eights that modify the cell state, and the forget gate controls the 

eights that erase the cell. In addition, the sigmoid activation is 

pplied to the O, I, F gates, and the tanh activation is applied to 

he G gate and the final output. It is demonstrated that the LSTM 

unctions perfectly for processing and making predictions for time- 

eries data. The exemplary configuration of an LSTM-based RNN is 

hown in Fig. 7 , and the model can be mathematically formulated 

s follows: 

 = tanh (x t U 

g + h t−1 V 

g ) (9) 

 = σ (x t U 

i + h t−1 V 

i ) (10) 

f = σ (x t U 

f + h t−1 V 

f ) (11) 

 t = s t−1 ◦ f + g ◦ i (12) 

 = σ (x t U 

o + h t−1 V 

o ) (13) 

 t = tanh (s t ) ◦ o (14) 

uring the training step, all input and hidden state information 

ill be provided as training data to the model, while the mem- 

ry states are processed internally. Specifically, in order to cap- 

ure the dynamic profile development in the reactor and on the 

ubstrate surface, three hidden states are selected from the simu- 

ation outputs: surface precursor partial pressure, the number of 

f physisorption sites and the number of O physisorption sites. 

oreover, to correctly characterize the spatial difference of profiles 

n various wafer locations, each variable will be examined at the 

nner, middle, and outer regions of the wafer, which are shown 

n Fig. 3 . The precursor inlet flowrate, v , is used as the input to

he model. Thus, in total ten states are included in the generated 

odel. 

To implement and train this LSTM-structured RNN, we adopt a 

igh-level application programming interface (API), Keras, based on 

he Tensorflow backbend. The Adam optimizer is selected to adap- 

ively minimize the loss function given a momentum estimation 

ethod by using exponentially moving averages from the gradi- 

nts evaluated on the current mini-batch: 

 t = β1 m t−1 + (1 − β1 ) g t 
 t = β2 m t−1 + (1 − β2 ) g 

2 
t 

(15) 
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Fig. 7. Long short-term memory (LSTM) recurrent neural network (RNN) structure. Left: general RNN formulation with LSTM cell. Right: detailed manifestation of the LSTM 

cell. N i are input neurons, N o is the output neuron, C t and C t−1 are the cell state memory for training iteration t and t − 1 , and h t and h t−1 are the hidden state for training 

iteration t and t − 1 . Merging is simple matrix stacking, + denotes the element-wise addition, and circle denotes the element-wise product. 
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here t − 1 indicates the last mini-batch and t indicates the cur- 

ent mini-batch, v and m are the moving averages, g is the gradi- 

nt, and the two betas are the hyperparameters of the model for 

earning rate, which are often selected to be 0.9 and 0.999, respec- 

ively. Then, these moving averages are used to scale the learning 

ates for all the parameters as follows: 

 t = w t−1 − η
m t √ 

v t + ε
(16) 

here w is the model weight, η is the step size of the learning and

is the bias. In addition, to measure the deviation of the predic- 

ion from the provided CFD data, the least square error is chosen 

o be the loss function, which is the common choice in the regres- 

ion application. 

. Integrated data-driven model result and validation 

In the following sections, the training specifications and the 

erformance of the developed RNN-based data-driven model are 

resented. The data-driven model is trained based on the data gen- 

rated from the 2D multiscale CFD model for the reactor without 

he showerhead. The model accuracy is first validated by examin- 

ng the alignment of model prediction with the original 2D multi- 

cale CFD model result. Next, it is further compared with the 3D 

ultiscale CFD model under the same operating parameters and 

eactor geometry. 

.1. 2D Integrated data-driven model for PEALD reactor 

According to the formulation discussed in Section 3 , an RNN 

odel is trained based on the LSTM structure. The final configu- 

ation of the RNN is determined through a grid search, where a 

wo-layer structure consisting of 80 and 50 neurons, respectively, 

s chosen for the Hf-Cycle RNN model, and one layer of 100 neu- 

ons is chosen for the O-Cycle RNN model. The training dataset 

onsists of the aforementioned transient deposition profiles for a 

ange of inlet operating flowrates between 2 . 5 × 10 −6 kg/s and 

 . 0 × 10 −4 kg/s. In total, the training process takes around three 

o four hours on an Intel i7-8700 CPU with 64 GB of RAM, and the

nal normalized training performance, measured in terms of the 

ean standard error, reaches below 1 . 0 × 10 −6 for both half-cycles. 

n addition, one full prediction for an entire time-series is demon- 

trated to take less than a minute to execute, which is a substan- 

ial reduction from the multiscale CFD model that takes about a 

ay to run using 36 CPU cores on a powerful computational clus- 

er. Also, the computational time involved is in line with the ac- 

ual process operation time, thus making it feasible to be applied 
8 
or on-line optimization and control purposes like model predictive 

ontrol (MPC). Moreover, the prediction time can be even further 

hortened by taking advantage of cloud computing and other high- 

erformance computational resources. 

After the training is completed, the resulting models are vali- 

ated with a set of test conditions. One of the most important in- 

icators of the overall deposition progress is the availability of the 

hysisorption sites. During the Hf-Cycle, Hf physisorption sites are 

he candidates for Hf precursor physisorption, while O physisorp- 

ion sites are the product of the Hf-Cycle reactions and will be ph- 

sisorbed in the following O-Cycle. Therefore, throughout the Hf- 

ycle, the number of Hf physisorption sites will decrease while the 

umber of O physisorption sites will increase, and vice versa in the 

-cycle. The RNN accuracy for the prediction of the physisorption 

ites is demonstrated by comparing the RNN outputs with the mul- 

iscale CFD model results, as shown in Fig. 8 . A random flowrate, 

 . 3 × 10 −6 kg/s, is chosen for testing and demonstration of the ra- 

ially distributed thin-film growth profile of the Hf-Cycle. It can 

e seen from Fig. 8 that, the model successfully predicts the sur- 

ace deposition profile at all wafer regions. Specifically, for Hf pre- 

ursor physisorption sites, all regions are accurately captured by 

he model. For the O precursor physisorption sites, the prediction 

f the inner and middle wafer regions closely corresponds to the 

FD results. Although the prediction of the dynamic profile for the 

uter wafer region has some deviations, the steady-state achieving 

ime is accurately captured, as indicated by the top intersection of 

he green and red labels in Fig. 8 . 

Additionally, the prediction of the average partial pressure and 

hysisorption sites are demonstrated in Fig. 9 , which corresponds 

o the profiles of Hf-Cycle at 6 . 8 × 10 −5 kg/s and O-Cycle at 4 . 3 ×
0 −5 kg/s. As shown in Fig. 9 , the RNN predictions and CFD re- 

ults closely match with each other, especially for O-Cycle. Due to 

he more complicated reaction routes in Hf-Cycle, the RNN model 

or Hf-Cycle has a slightly higher deviation. However, the model 

s able to capture the overall trend and accurately determine the 

teady-state achieving times for both the Hf physisorption sites 

nd the precursor partial pressure. In addition, it is worth noting 

hat, compared to the linear parameter-varying model developed 

n Ding et al. (2019b) , this RNN-based data-driven model fully in- 

egrates the microscopic domain and the macroscopic domain and 

s able to achieve higher accuracy. 

.2. Validation using 3D multiscale model 

Although the RNN-based integrated data-driven model shows a 

ood match with the 2D multiscale CFD model results, it is desir- 

ble to further validate the data-driven model with results com- 
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Fig. 8. Comparison between RNN prediction and CFD simulation result without the showerhead for Hf-Cycle at inner, middle, and outer wafer regions, corresponding to 

(a), (b), and (c), respectively. The x -axis represents the time in a half-cycle, and the y -axis represents the fraction of sites. The blue and orange dashed lines represent the 

fraction of available sites for Hf precursor physisorption from CFD simulation and RNN prediction, respectively. The green and red triangles represent the fraction of available 

sites for O precursor physisorption from CFD simulation and RNN prediction, respectively. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 9. Comparison of RNN for two half-cycles in the reactor without the showerhead: (a) Hf-Cycle (b) O-Cycle. The x -axis represents the time within a half-cycle and the 

y -axis represents the normalized property value (partial pressure and physisorption sites availability). The blue and orange dashed lines represent the averaged precursor 

surface partial pressure from CFD simulation and RNN prediction, respectively. The green and red triangles represent the averaged surface physisorption sites availability 

from CFD simulation and RNN prediction, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

9 
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Fig. 10. Comparison of 3D multiscale CFD model O-Cycle result with RNN-based data-driven model prediction under the inlet flowrate of 1.25 ×10 −5 kg/s. Surface profiles 

over a duration of 5 s are demonstrated and surface steady-state is achieved towards the end of the cycle. x -axis represents the time, and y -axis represents the predicted 

profile. (a), (b), and (c) correspond to the profile development of physisorption sites at inner, middle, and outer regions of the wafer, respectively. (d) corresponds to the 

overall averaged pressure profile. 
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uted from a full 3D multiscale CFD model. Thus, in this sec- 

ion, the data-driven model is compared with the computation re- 

ult from the previously developed 3D multiscale CFD model by 

hang et al. (2020b) . As shown in Fig. 3 , the 3D multiscale model

eometry can be viewed as the rotation of the 2D geometry around 

he central axis, and all the characteristic dimensions (wafer diam- 

ters, reactor size, outlet shape, etc.) are preserved. 

For the O-Cycle, the average pressure and surface profiles are 

ompared between the 3D multiscale CFD model and the RNN- 

ased integrated data-driven model at a randomly chosen inlet 

owrate of 1 . 25 × 10 −5 kg/s. The starting point of both models is

ssumed to be the saturated surfaces after one complete Hf-Cycle. 

he deposition profiles of the inner, middle, and outer regions of 

he wafer over five seconds are presented in Fig. 10 . According 

o the CFD model result, film deposition steady-state is achieved 

round 4 s, which is also captured by the RNN model. Again, the 
10 
NN model prediction closely resembles the trend described by 

he 3D multiscale CFD model results. The normalized mean stan- 

ard errors for the prediction of deposition profile at the inner, 

iddle, and outer region and the prediction of the overall pressure 

re 2.54%, 1.19%, 2.85%, and 1.19%, respectively. Moreover, the error 

etween the computed and predicted half-cycle time is 6.18%. 

For the Hf-Cycle, the results are compared at another randomly 

hosen inlet flowrate at 4 . 0 × 10 −5 kg/s. The starting surface pro- 

les for both models are assumed to be the fully hydroxylated 

urface. Similar to the O-Cycle, the results over five seconds are 

emonstrated in Fig. 11 . RNN prediction accurately observes the 

rend computed by the multiscale CFD model. The normalized 

ean standard errors for the prediction of deposition profile in 

he inner, middle, outer region, and the prediction of the over- 

ll pressure are 1.85%, 4.60%, 1.50%, and 1.53%, respectively. Addi- 

ionally, the error between the computed and predicted half-cycle 
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Fig. 11. Comparison of 3D multiscale CFD model Hf-Cycle result with RNN-based data-driven model prediction under the inlet flowrate of 4.0 ×10 −5 kg/s. Surface profiles 

over a duration of 5 s are demonstrated and surface steady-state is achieved towards the end of the cycle. x -axis represents the time, and y -axis represents the predicted 

profile. (a), (b), and (c) correspond to the profile development of physisorption sites at inner, middle, and outer region of the wafer, respectively. (d) corresponds to the 

overall averaged pressure profile. 
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ime is 4.86%. Such performance is also quantitatively much bet- 

er than the previously developed linear parameter-varying model, 

f which the errors range around 10%. Therefore, with validation 

y the 3D multiscale CFD model results, we can conclude that the 

eveloped RNN-based integrated data-driven model is capable of 

ccurately characterizing the dynamic deposition profile and the 

ransient gas-phase development in the PEALD reactors. 

. Operation strategy optimization 

Now that the developed data-driven model has been validated, 

e can adopt the prediction capability of the data-driven model 

o identify the optimal operating strategy. In order to optimize the 

roduction throughput of PEALD processes, cycle-times need to be 

inimized, while the required film qualities need to be maintained 

t ideally the best achievable coverage. To satisfy both require- 
11 
ents, the data-driven model is used to predict the system dy- 

amics for a wide range of input flowrates from 2 . 5 × 10 −6 kg/s

o 9 . 75 × 10 −4 kg/s, which is the common range of operating 

owrates used in the experiments. By extracting the final film 

uality and the required cycle-time from the predicted film de- 

osition profile, the range of feasible operating conditions can be 

ummarized. Based on the feasible operating range, an elementary 

ost analysis is performed to determine the optimal operating con- 

ition. 

For the O-Cycle, a database of deposition profiles for 200 

owrates uniformly distributed in the range of 2 . 5 × 10 −6 kg/s 

o 9 . 75 × 10 −4 kg/s is generated using the integrated data- 

riven model. The generated operating database is visualized in 

ig. 12 (a)–(c) for the inner, middle, and outer wafer regions, re- 

pectively. Based on the predicted deposition profiles, the time to 

chieve steady-state and the final cycle progress are identified for 
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Fig. 12. (a), (b), (c) Dynamic profiles for O-Cycle for flowrates between 
[
2 . 50 × 10 −6 , 9 . 75 × 10 −4 

]
kg/s for inner, middle, outer wafer regions, respectively. Each line cor- 

responds to the profile of a specific flowrate. The x -axis is the time and the y -axis is the O-Cycle deposition progress. The blue dots represent the identified steady-state 

achieving time for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid flowrates. The x -axis is the flowrate and the y -axis is the amount of precursor required 

to finish the O-Cycle. The red diamond denotes the optimal operating flowrate to minimize the precursor usage. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 13. (a), (b), (c) Dynamic profiles for Hf-Cycle for flowrates between 
[
2 . 50 × 10 −6 , 9 . 75 × 10 −4 

]
kg/s for inner, middle, outer wafer regions, respectively. Each line cor- 

responds to the profile of a specific flowrate. The x -axis is the time and the y -axis is the O-Cycle deposition progress. The blue dots represent the identified steady-state 

achieving time for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid flowrates. The x -axis is the flowrate and the y -axis is the amount of precursor required 

to finish the O-Cycle. The red diamond denotes the optimal operating flowrate to minimize the precursor usage. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

e

P

t

s

d

C

t

h

e

c

m

w

ach operating flowrate. The conventional half-cycle time for the 

EALD process is taken to be five seconds. Therefore, only flowrates 

hat allow the film to achieve full half-cycle coverage within five 

econds are considered to be feasible, which are marked with blue 

ots at the steady-state achieving time in Fig. 12 (a)–(c). For O- 

ycle, most flowrates in the given range are feasible except for 
12 
he few lowest operating flowrates. After the feasible flowrates 

ave been identified, an elementary cost analysis is performed to 

valuate the optimal operating flowrate that minimizes the pre- 

ursor usage. To evaluate precursor usage, the inlet flowrate are 

ultiplied by their corresponding steady-state achieving times, 

hich are shown in Fig. 12 (d)–(f) for the inner, middle, and outer 
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Fig. 14. Comparison between RNN prediction and CFD simulation result with the showerhead for O-Cycle at inner, middle, and outer wafer regions, corresponding to (a), (b), 

and (c), respectively. The x -axis represents the time in a half-cycle, and the y -axis represents the fraction of sites. The blue and orange dashed lines represent the fraction of 

available sites for Hf precursor physisorption from CFD simulation and RNN prediction, respectively. The green and red triangles represent the fraction of available sites for 

O precursor physisorption from CFD simulation and RNN prediction, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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afer regions, respectively. Due to the nonlinear relationship be- 

ween flowrate and deposition profile, the dependency of precur- 

or usage on flowrate is also nonlinear, and the corresponding 

owrates for minimal precursor usage at various wafer locations 

re marked with red diamonds in Fig. 12 (d)–(f), which is around 

 . 2 × 10 −5 kg/s for all wafer regions. The reported trend of precur-

or usage over operating flowrates can also be applied in the more 

dvanced cost analysis to customize the optimal operating condi- 

ion, where additional concerns, such as overall expected through- 

ut, specific wafer region quality, and exact precursor costs, are ac- 

ounted for. 

Similarly, for the Hf-Cycle, a database of deposition profiles for 

nlet operating flowrates within the range of 2 . 5 × 10 −6 kg/s to 

 . 75 × 10 −4 kg/s is collected from the data-driven model predic- 

ion. The result is demonstrated in Fig. 13 (a)–(c) for the inner, mid- 

le, and outer wafer regions, respectively. The notations are sim- 

lar as in the O-Cycle result and only feasible flowrates, marked 

ith blue dots, are picked to identify the required half-cycle time 

nd precursor usage. A flowrate of at least 2 . 5 × 10 −5 kg/s is re-

uired for full half-cycle coverage. The precursor usage is then 

omputed, and a non-linear relationship is observed between pre- 

ursor usage and inlet flowrate. As shown in Fig. 13 (d)–(f), for all 

afer regions, precursor usage increases with the flowrate until 

 × 10 −5 kg/s, and then decreases as flowrate further increases. 

his nonlinear behavior can be attributed to the combination of 

as-phase precursor transport and reaction kinetics in the Hf- 

ycle, which is explained in more detail in Ding et al. (2020) and

hang et al. (2020b) . Therefore, the optimal operating condition to 

inimize precursor usage for Hf-Cycle occurs either at low or high 

owrate, and it is subject to further cost and throughput analysis 

o determine the best operating flowrate in specific scenarios. 
9

13 
.1. Integrated data-driven model for PEALD reactors with the 

howerhead 

Despite the intrinsic physical difference between 2D and 3D 

odels for reactors with the showerhead, the 2D model result can 

till provide some insights for a general operating guideline. Sim- 

lar to the integrated data-driven model built for reactor without 

he showerhead, CFD simulations are performed to collect the op- 

rating profile for showerhead reactors, and the collected results 

re used to generate an RNN-based data-driven model, of which 

he training results are demonstrated in Figs. 14 and 15 . The O ph-

sisorption site characterizations and the final steady-state achiev- 

ng time for both half-cycles, as well as the partial pressure char- 

cterization for O-Cycle, are very accurate. Due to the complicated 

eometry of the showerhead reactor and the more complex reac- 

ion sets in the Hf-Cycle, the prediction of the Hf physisorption 

ites for Hf-Cycle demonstrates an offset from the CFD result. How- 

ver, the RNN prediction captures the exact trend reported by CFD 

imulation and can be adjusted by further post-processing. 

Using the built data-driven model, a range of deposition profiles 

nder various operating flowrates are shown in Fig. 16 and Fig. 17 . 

imilar to the reactor without the showerhead, the precursor us- 

ges under various flowrates are computed using the steady-state 

chieving time determined from the operating database. The trend 

f O-Cycle precursor usage versus operating flowrate for show- 

rhead reactors is very similar to reactors without the shower- 

ead, despite a nonlinear region for low operating flowrates. For 

he Hf-Cycle precursor usage, due to the resistance caused by the 

howerhead panel, the minimal flowrate required to achieve full 

overage is higher than the reactor without the showerhead. As 

bserved in Fig. 17 , the minimal precursor usage occurs around 

 . 0 × 10 −5 kg/s for all wafer regions, and increases for both lower 
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Fig. 15. Comparison of RNN for two half-cycles in the reactor with the showerhead: (a) Hf-Cycle (b) O-Cycle. The x -axis represents the time within a half-cycle and the 

y -axis represents the normalized property value (par tial pressure and physisorption sites availability). The blue and orange dashed lines represent the averaged precursor 

surface partial pressure from CFD simulation and RNN prediction, respectively. The green and red triangles represent the averaged surface physisorption sites availability 

from CFD simulation and RNN prediction, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 16. (a), (b), (c) Dynamic profiles for O-Cycle for flowrates between 
[
2 . 50 × 10 −6 , 9 . 75 × 10 −4 

]
kg/s for inner, middle, outer wafer regions, respectively, in a showerhead 

reactor. Each line corresponds to the profile of a specific flowrate. The x -axis is the time and the y -axis is the O-Cycle deposition progress. The blue dots represent the 

identified steady-state achieving time for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid flowrates. The x -axis is the flowrate and the y -axis is the amount 

of precursor required to finish the O-Cycle. The red diamond denotes the optimal operating flowrate to minimize the precursor usage. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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nd higher flowrates. This nonlinearity could be potentially due to 

he complex competition between gas-phase precursor transport 

nd the surface reaction kinetics. Moreover, despite the alignment 

f the result between the RNN model and the 2D multiscale CFD 

odel, due to the limitation of the 2D showerhead reactor geome- 

ry, the showerhead reactor result does not perfectly reflect the full 

D transport and deposition behaviors. Therefore, the integrated 
c

14 
ata-driven model should only be used as a general guideline for 

he operation of PEALD showerhead reactors. 

. Conclusion 

In this work, an integrated data-driven model based on RNN is 

onstructed using the previously developed multiscale CFD model 
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Fig. 17. (a), (b), (c) Dynamic profiles for Hf-Cycle for flowrates between 
[
2 . 50 × 10 −6 , 9 . 75 × 10 −4 

]
kg/s for inner, middle, outer wafer regions, respectively, in a showerhead 

reactor. Each line corresponds to the profile of a specific flowrate. The x -axis is the time and the y -axis is the Hf-Cycle deposition progress. The blue dots represent the 

identified steady-state achieving time for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid flowrates. The x -axis is the flowrate and the y -axis is the amount 

of precursor required to finish the Hf-Cycle. The red diamond denotes the optimal operating flowrate to minimize the precursor usage. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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or a PEALD process. Based on the datasets generated from CFD, 

he developed RNN is able to accurately predict the film deposi- 

ion profile using the inlet feed flowrate. Although the built data- 

riven model is developed based on 2D axisymmetric CFD com- 

utation results, it is validated with the results from a full 3D 

FD simulation. Specifically, for each half-cycle, an RNN model has 

een tailored to capture the deposition behavior with less than or 

round 5% deviation from the CFD simulation results. Compared 

o the multiscale CFD model, which takes about a day to com- 

ute the profiles for one flowrate, the integrated data-driven model 

nly takes a few seconds to predict the film growth, and thus can 

e incorporated in real-time process control and process monitor- 

ng. Moreover, an operation database is generated using the predic- 

ions from the integrated data-driven model. Using the operation 

atabase and based on industrial standard, a feasible operating re- 

ion is determined in terms of the inlet flowrates. Furthermore, 

n optimal operating strategy is identified in the feasible operating 

omain for each half-cycle based on the precursor usage analysis. 

dditionally, for the showerhead PEALD reactor, a similar method- 

logy has been adopted to generate its corresponding integrated 

ata-driven model. Despite the fundamental geometric difference 

f showerhead between 2D and 3D, the data-driven model can 

till provide a general guideline for the operation of showerhead 

eactors. In closing, it is worth mentioning that the LSTM based 

ata-driven modeling strategy presented in this work is suitable 

or many other similar semiconductor fabrication processes. The 

hallenges for the desired in-situ monitoring and the complexity 

f an exact on-line simulation representation can be avoided by 

xtracting valuable information from combined experimental and 

imulated data at different conditions. In addition, with the devel- 

ped data-driven model, an optimal operating strategy can be es- 

ablished based on the specific industrial need (e.g., optimal man- 

facturing throughput), and on-line control schemes can be ex- 

lored, which can further enhance the process operational perfor- 

ance. 
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