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ABSTRACT

Plasma-enhanced atomic layer deposition (PEALD) has demonstrated its superiority at coating ultra-
conformal high dielectric thin-films, which are essential to the fin field-effect transistors (FinFETs) as well
as the advanced 3D V-NAND (vertical Not-AND) flash memory cells. Despite the growing research interest,
the exploration of the optimal operation policies for PEALD remains a complicated and expensive task.
Our previous work has constructed a comprehensive 3D multiscale computational fluid dynamics (CFD)
model for the PEALD process and demonstrated its potential to enhance the understanding of the process.
Nevertheless, the limitation of computational resources and the relatively long computation time restrict
the efficient exploration of the operating space and the optimal operating strategy. Thus, in this work,
we apply a 2D axisymmetric reduction of the previous 3D model of PEALD reactors with and without the
showerhead design. Furthermore, a data-driven model is derived based on a recurrent neural network
(RNN) for process characterization. The developed integrated data-driven model is demonstrated to ac-
curately characterize the key aspects of the deposition process as well as the gas-phase transport profile
while maintaining computational efficiency. The derived data-driven model is further validated with the
results from a full 3D multiscale CFD model to evaluate model discrepancy. Using the data-driven model,
an operational strategy database is generated, from which the optimal operating conditions can be deter-

mined for the deposition of Hafnium Oxide (HfO,) thin-film based on an elementary cost analysis.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid growth of the semiconductor industry is backed by
the increasing demand for highly compact microelectronic devices.
In order to meet the design challenges of constant device miniatur-
ization, high dielectric constant (high-x) materials are introduced
to resolve the quantum tunneling effects associated with extremely
thin gate oxides (Jeong et al., 2016), like TiO, (Kukli et al., 2000),
HfO, (Liu et al,, 2005), and ZrO, (Yun et al.,, 2004). In particular,
one of the most adopted high-« thin-film materials is HfO, due
to its high thermal stability, extraordinary gate capacitance, good
charge mobility, and very large dielectric constant, which is four to
six times higher than that of SiO,. Nevertheless, the reactions asso-
ciated with the deposition process often have high energy barriers,
which reduces the production throughput, increases the energy
footprint, and introduces design challenges for the traditional ther-
mal atomic layer deposition (ALD) operation policies, especially for
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temperature-sensitive materials (Joo and Rossnagel, 2009). There-
fore, plasma-enhanced atomic layer deposition (PEALD) has been
invented to overcome the aforementioned problems by taking ad-
vantage of the active plasma species (Won et al., 2005).

Derived from the traditional thermal ALD, PEALD follows the
scheme of sequential precursor pulsing and inert gas purging. Con-
ventionally, each precursor pulsing stage is called a half-cycle, dur-
ing which the precursor deposits the corresponding element in a
self-limiting manner under appropriate operating conditions. Purge
steps follow the pulsing half-cycles, where an inert species is in-
troduced into the reactor to clean the unreacted precursor species
and by-products (George, 2009). With the aid of high energy
plasma species, ultra-uniform high-« dielectric thin-films can be
produced under relatively low operating temperatures in a layer-
by-layer manner with high controllability (Ishikawa et al., 2017).
Therefore, many novel precursors for the deposition of HfO, using
PEALD, together with their reaction mechanisms and the associ-
ated PEALD reactor design, have been investigated. For the hafnium
(Hf) half-cycle precursors, amino-based metal-organic compounds
have reaction mechanisms facilitated by H-N bonds. Materials
including tetrakis(dimethylamino)hafnium (TDMAHf) (Liu et al,,
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2003), tetrakis(ethylmethylamino)hafnium (TEMAHf) (Kukli et al.,
2000), tetrakis(diethylamino)hafnium (TDEAHf) (Shi et al., 2011)
have been extensively studied. For the oxygen (O) half-cycle, which
involves plasma species, typical candidates include O3 plasma
(Rai et al,, 2010), H,O plasma (Kanomata et al., 2014), and O,
(Rai et al., 2010) plasma. In addition to precursor selection, the re-
actor design also critically affects the PEALD throughput and effec-
tiveness. Remote plasma reactors have been designed as a balanced
solution for the PEALD process, in which plasma species are gen-
erated from a remote chamber at an appropriate distance from the
substrate surface (Won et al,, 2014). As high energy species travel
across the reactor, their energy is reduced to the desired level
where sputtering can be avoided, while still being high enough
to overcome the reaction energy barrier (Jeon et al., 2007). Thus,
in this work, the discussion will focus on the operation of PEALD
of HfO, thin-film using TDMAHf and oxygen plasma in a remote
plasma reactor.

Due to the great potential of PEALD, various experimental ef-
forts have been carried out to explore, understand, and optimize
the operating policies of the PEALD process to maximize its eco-
nomical benefits. However, the PEALD process is often associated
with high operating costs, complicated process components, and
the absence of efficient monitoring techniques. For example, a
PEALD reactor requires ultra-precise gas flow controllers, complex
radio-frequency (RF) power sources, and sophisticated pumping
systems (Lee et al., 2006; Profijt et al., 2011). Also, the deposition
speed and the properties of the deposited thin-film are highly de-
pendent on both gas-phase transport phenomena and microscopic
surface dynamics. Such relationships are reactor design-specific
and highly complicated to be determined experimentally (Lee
et al., 2006; Zhang et al., 2020a). Moreover, despite the existence
of in-situ analysis techniques such as quartz crystal microbalance
(QCM) and spectroscopic ellipsometry, the amount of data that can
be obtained in real-time is limited (Pittal et al., 1993). Also, ex-situ
microstructure analysis methods such as scanning tunneling mi-
croscopy (STM) and scanning electron microscope (SEM) are often
destructive to the deposited film (Schwille et al., 2017). These dif-
ficulties restrict the effective exploration of PEALD operating con-
ditions.

As an alternative to the experimental methods, simulation
model is often a low-cost solution and can provide insights
on the entire process operating domain. A variety of attempts
have been made to capture the PEALD dynamics. To model
the plasma generation and transport, (Tinck and Bogaerts, 2011)
created a simulation model for O, plasma in a simplified re-
mote inductively coupled plasma (ICP) reactor configuration, and
Corr et al. (2012) demonstrated a comparison between the ex-
perimental and simulation results of the similar plasma source.
For the macroscopic gas-phase transport domain, computational
fluid dynamics (CFD) softwares are widely utilized (Gerogiorgis
and Ydstie, 2005; Epelle and Gerogiorgis, 2017). For example,
Crose et al. (2015) constructed a CFD model to capture the
chemical vapor deposition of amorphous silicon thin-films, and
Zhang et al. (2019) designed a CFD characterization of the SiO,
ALD and optimized the showerhead reactor geometry. For the mi-
croscopic surface reaction domain, (Shirazi and Elliott, 2014) devel-
oped a small-scale, high accuracy kinetic Monte Carlo (kMC) model
for the ALD of HfO, accounting for the complete set of reactions.
Adding the plasma half-cycle and adopting reduced reaction sets,
(Ding et al., 2020) extended the kMC model to be used for PEALD.
In addition, (Zhang et al., 2020b) recently formulated a brand-new
multiscale CFD model that comprehensively captures all three in-
dividual domains for an industrial-scale PEALD process. Although
the developed model is able to accurately describe the PEALD pro-
cess, the time required to perform the simulation is much longer
than the actual PEALD process time-scale and the computational
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resource needed is not locally obtainable, thus making it infeasi-
ble to be applied in the context of industrial on-line operational
optimization.

In response to the aforementioned difficulty, data-driven mod-
eling has been demonstrated as one of the most promising so-
lutions by taking advantage of machine learning methodologies,
especially neural networks. Attempts have been made to utilize
feedforward neural network (FNN) to characterize the result of
kMC simulation (Djurabekova et al., 2007; Kimaev and Ricardez-
Sandoval, 2019). The previous work by Ding et al. (2019b) de-
veloped a multiscale data-driven model using a decoupled linear
parameter-varying model for the gas-phase domain and an FNN
model for the microscopic domain. Although the FNN model was
able to accurately characterize the steady-state input-output rela-
tionship, the dynamic system provides more information because
of the transient change of the flow field and key thermodynamic
and fluid mechanical properties. Several deep learning formula-
tions like recurrent neural network (RNN) and convolutional neu-
ral network (CNN) are utilized to model sequential and temporal
systems (Wang et al., 2020). Among those deep neural network
models, RNN is intuitively more suitable and has demonstrated its
outstanding performance in text summarization and natural lan-
guage processing (Yin et al., 2017). Recently, it has also been ap-
plied in modeling many industrial systems (Kim et al., 2019). For
example, (Wu et al., 2019) investigated Phthalic Anhydride Synthe-
sis based on CFD simulation and constructed a computationally ef-
ficient RNN characterization of the process. Chen et al. (2020) uti-
lized RNN to characterize a general nonlinear system under cyber-
attack threats. Nevertheless, until this point, such a data-driven
model has not yet been developed for thin film deposition pro-
cesses and especially for the industrial-scale PEALD system.

Motivated by the above considerations, in this work, we first
construct a database using the previously developed multiscale
CFD model (Zhang et al., 2020b). Then, based on the collected
data sets, a data-driven model is developed to incorporate the
gas-phase transport profiles and the microscopic surface dynamics.
Fully integrating both two domains into a unified model, the RNN-
based data-driven model can accurately capture the interaction of
both domains within each timestep. In this way, the data-driven
model is able to fully preserve the input-output relationships be-
tween operating conditions and the deposition profile, while re-
ducing the computational demand by taking advantage of existing
data sets. As a result, the proposed integrated data-driven model
allows both fast prediction of necessary cycle-time to achieve full
coverage, and online estimation of film quality through the em-
bedded information of transient dynamics. A significant amount
of economic benefit can be potentially realized by the developed
model. For example, the cost of precursor and operation to explore
feasible operation conditions, estimated to be millions of dollars,
could be substantially avoided. More importantly, such a method
can serve as a general framework and is easily modifiable and ex-
tendable for other deposition processes.

2. Multiscale CFD modeling of PEALD

While details can be found in Zhang et al. (2020b), this section
will briefly introduce each component of the developed HfO, thin-
film PEALD multiscale CFD model. The simulations of ICP plasma
generation in the remote plasma domain, gas-phase transport phe-
nomena in the main ALD reactor chamber, and microscopic surface
film deposition using kinetic Monte-Carlo (kMC) are reviewed.

2.1. Plasma chamber CFD model

The remote plasma system constructed in
Zhang et al. (2020b) is an inductively coupled plasma (ICP)-
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Fig. 1. Integration of the multiscale computational fluid dynamics model, dataset generation and recurrent neural network development.
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Fig. 2. (a) Plasma generation chamber axis-symmetry. A - gas inlet, B - gas outlet, C - coil circuits, D - circuit wall, E - reactor chamber, and F - relevant surrounding. (b)
Example of number density distribution of O radical, an important plasma species involved in the deposition reaction.

source, which utilizes alternative current (AC)-induced magnetic
field to produce high purity and density plasma. The geometry of
the simulated plasma generator is based on the Gaseous Electron-
ics Conference (GEC) cell, a standard experimental and modeling
prototype, proposed by the National Institute of Standards and
Technology (NIST). For better connectivity to the main reactor, the
outlet is modified as shown in Fig. 2.

The AC generator operates at a power of 2000 W, and the cur-
rent radio-frequency (RF) is 13.56 MHz. The changes in the electric
field and the current density caused by the AC generate a magnetic
field, which can be described by the Ampere-Maxwell equation as

follows:
)

where ¢ is the electric permeability of materials, B is the magnetic
field, J'is the current density, €, is the electric permeability of free
space, and ¢ is the time.

Inside the plasma chamber, a constant flow of argon is used to
maintain the baseline pressure. Oxygen is injected through an inlet
valve and the AC circuit is activated right before the initiation of
the oxygen cycle. Three types of reactions are associated with the

v(efﬁ) =]_)+ Eog—f,
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Fig. 3. (a) 2D axisymmetric PEALD reactor geometry. (b) 3D PEALD reactor geometry. (c) Indication of the inner, middle, and outer regions of the wafer.

Ar/O, plasma generation: the electron impact reactions, the heavy
particle reactions, and the surface reactions. The detailed reaction
sets and rate characterization can be found in Zhang et al. (2020b).
The developed plasma domain model is simulated in COMSOL Mul-
tiphysics, which integrates the AC/DC module, the laminar flow
module, the heat-transfer-in-fluid module, and the plasma reac-
tion module. A frequency-transient solution is obtained to inves-
tigate the plasma reaction and generation, and it provides the ion
and radical profiles throughout the plasma chamber, which is then
used as the inlet profile of the subsequent macroscopic gas-phase
domain. Due to the difference in model time-scales, the plasma
generation simulation can be decoupled from the gas transport in
the main reactor chamber.

2.2. Macroscopic CFD model

The macroscopic transport phenomena in the main reactor
chamber directly affect the dynamics of surface reactions as well
as the surface configuration of the deposited HfO, thin-film. The
bulk reactor geometry used in this work is an optimized design
based on the ASM International EmerALD XP reactor (Lee et al.,
2006). Specifically, as shown in Fig. 3 (King, 2011), the reactor
chamber design is modified to enhance the uniformity of the gas
profile and is scaled up to allow the adoption of 300-mm diameter
wafers. Precursors carried by inert argon gas are injected into the
reactor from a 1-cm diameter inlet located on the top of the reac-
tor. These gases first enter the upstream of the reactor, where the
horn-shaped design facilitates the uniform flow distribution. Then,
the gas species move downward and potentially encounter a show-
erhead panel, if used. After crossing the reactor downstream, pre-
cursors reach the substrate surface and deposition reactions occur.
Finally, leftover precursors and carrier gas are pumped out of the

0

5 10

reactor through the outlet channel. More details regarding meshing
and reactor geometry are included in Zhang et al. (2020b).

Twelve gas-phase species are characterized in the model: ar-
gon is the purging and carrier gas; TDMAH( is the Hf-cycle pre-
cursor; oxygen and its ionic and excited states are the O-cycle pre-
cursors. Volumetric and surface reaction sets involving all species
are defined in the model, and the relevant reaction sets and pa-
rameters are reported by Zhang et al. (2020b). A 60 Pa base op-
erating pressure is used, which is maintained through a constant
flow of 300 sccm Ar and outlet pumping. The absolute pressure in
each half-cycle may fluctuate due to precursor injection in each cy-
cle. The baseline precursor feed flowrate at the inlet is equivalent
to the feed from a gas-delivery bubbler at 348.15 K, which is the
required temperature for TDMAHf vapor pressure to reach 1 Torr
(Hausmann et al., 2002). Using this setup, the governing transport
equations are solved to obtain the profiles of velocity, pressure, and
molar fraction of species in the gas-phase (Fluent, 2013).

In addition, we use ANSYS Fluent for macroscopic domain sim-
ulation, which applies the finite volume method to solve the cou-
pled governing equations, utilizing previously developed hybrid
mesh (Eymard et al., 2000). Simulation accuracy and efficiency are
greatly affected by the chosen calculation timestep (Courant et al.,
1967). The timestep size can be related to the number of cells
that the fluid information travels in each timestep, known as the
Courant number, C, the length of the spatial interval Ax, and
the speed that information travels through the cells, u, accord-
ing to the Courant-Friedrichs-Lewy (CFL) condition (Moura and
Kubrusly, 2012):

_ CAx
T

At
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Fig. 4. Surface slab and approximated lattice. Top: hydroxyl-terminated HfO, slab.
Bottom: The approximated lattice with examples of adsorbed species. PsHf and CsHf
represent the physisorbed and chemisorbed precursor, respectively, HfL2 represents
the deposited Hf terminated with two dimethylamino ligands, and PsO1 and PsO2
represent two distinctively physisorbed oxygens, respectively.

CFD computation time can be largely reduced when advanced
CFD software is used (Moura and Kubrusly, 2012). Specifically, the
pressure-based solver in this work uses a Courant number of 50.

2.3. Microscopic surface model

Besides reactor design and gas-phase transport, substrate sur-
face reactions are necessary to be discussed at a microscopic level.
The microscopic kMC model developed in Ding et al. (2020) accu-
rately characterizes the key surface reaction mechanisms and the
developed HfO, thin-film structures. In the following subsections,
HfO, structure, reaction kinetics and pathways, and the 3D kMC
model are briefly presented, while more details can be found in
Ding et al. (2020).

A monoclinic-alike structure, reported in Kumar et al. (2017),
is adopted for the simulation of low-temperature PEALD applica-
tion. The hydroxyl-terminated (111) surface is assumed to be the
starting surface, as shown in Fig. 4. A 3D triangular on-lattice ap-
proximation developed in Ding et al. (2019a) is used to efficiently
represent this surface as shown in Fig. 4. The approximated lattice
retains the connectivities between atoms and the cycle repetition
pattern that are observed in the real lattice structure. The simu-
lated lattice dimensions are set to be 1200 x 1200xNjg,, to ensure
size-independence (Huang et al., 2010).

Within each half-cycle, precursors associated with the cycle un-
dergo surface reactions and deposit a layer of atoms of the desired
element. Similar to the thermal ALD process, TDMAHf serves as
the precursor for the Hf-Cycle. However, for the O-cycle, in ad-
dition to molecular oxygen, atomic oxygen and their excited and
ionized derivatives from the macroscopic scale simulation are also
involved in the deposition reactions. A simplified reaction set, se-
lected from the complete mechanism reported in Shirazi and El-
liott (2014) and Jeon and Won (2008), is used to model the key
surface dynamics while neglecting the proton diffusion, ligands
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rotation, and other detailed features. This simplification dramat-
ically decreases the computational load, enabling industrial-sized
wafer-scale simulation, and preserving key fidelity to the reaction
mechanisms. The resulting mechanisms are demonstrated in Fig. 5.
Specifically, in the Hf-Cycle, TDMAHf goes through two steps of
dissociative chemisorption, binding the hafnium atoms onto sur-
face oxygen atoms with two terminating dimethylamine (DMA)
groups and releasing two remaining DMA groups. In the O-Cycle,
ground state O, particles and radicals go through their respective
reaction pathways and eventually bind the O atoms with terminat-
ing hydroxyl groups, releasing different byproducts.

The transition state theory (TST) (Cortright and Dumesic, 2001)
and the collision theory are used to characterize the rates of these
reactions. The general Arrhenius-type equation from the TST can
be used to describe thermodynamically activated reactions as fol-
lows:

—E,
Trxn —AeXD< RT ) (3)
where E, is the transition state complex activation energy, A is the
pre-exponential factor, R is the gas constant, and T is the substrate
temperature. In contrast to the TST, the collision theory is used to
describe the gas-surface athermal barrierless reactions such as ph-
ysisorption. The rate formulation provided by the collision theory
is shown as follows:

8RT
Tphs = %,/ ﬂmscNaa (4)

where m is the molar weight of the precursor, o is the unit cell
surface area, Ng is the Avogadro number, and s, is the sticking co-
efficient, as reported in Dorsmann and Kleijn (2007).

The reaction selection and time evolution are then deter-
mined using the modified n-fold hybrid kMC algorithm by
Ding et al. (2019a)to simulate the film growth and the deposition
profile. The total reaction rate r;,, can be calculated as the sum
of each rate:

N
Ttotal = Zri (5)
i=1

where r; represents the respective rate of N individual events. The
reaction selection uses a random number y; € (0, 1] to locate the
event according to its normalized indicator, I; € (0, 1], which is the
sum of the normalized probabilities of the previous events:
Z'fﬂ rimweightedcj .
lizﬁ, i=1,...,N (6)
Zk=1 runweightedck

where the rate of reaction, rypyeighted. Will be adjusted with respect
to the availability of reactant, C, in each reaction, as explained in
the previous work by Ding et al. (2020). In the case where the
selected random number is between [;_; to [;, the ith event will
be executed. For the time evolution, a second random number
y2 € (0, 1] is used to calculate the elapsed time for each event:

At — ﬂ (7)

Ttotal

2.4. Multiscale CFD model customization, workflow and data
generation

Fig. 1 shows the automated workflow of the CFD simulation and
RNN development and provides an overview of how information is
relayed through each domain in this work. The simulation starts
at COMSOL, if it is in the O-cycle, to solve for the plasma profile.
Next, Fluent solves for macroscopic solution for one timestep. The
surface partial pressure and temperature conditions are collected
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Fig. 5. Illustration of reaction mechanisms for the precursor surface reactions. The black arrows denote the reaction pathways, and the red arrows denote potential proton
diffusion. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

for each surface region and then transferred to the microscopic do-
main. Next, the kMC model will simulate the surface reaction and
store the evolution of surface structure within the prescribed time
interval. The synchronized kMC results will then be fed into Flu-
ent to update the boundary condition for the next timestep. The
simulation time clock continuously adds At to itself after each
event until it reaches the designated half-cycle time. The subse-
quent half-cycle specification will then be updated for all domains.
After each timestep, the macroscopic partial pressure of each im-
portant gas-phase species, as well as the surface site information
(the amount of Hf physisorption sites and O physisorption sites),
are collected in the database.

The aforementioned methodology serves as a general-purpose
guideline for the multiscale model construction for the PEALD pro-
cess, and it is subject to customization under various accuracy re-
quirements and computational limitations. In this work, due to
a large amount of potential operating conditions to explore, 2D
axisymmetric CFD models are constructed for reactors with and
without the showerhead. Moreover, surface kMC models are exe-
cuted on the concentric rings at the wafer surface in the 2D multi-
scale CFD domain, instead of the grids as in the 3D multiscale CFD
model, which is shown in Fig. 6. Details regarding the 3D grid par-

tition can be found in Ding et al. (2020). As we will demonstrate
in the latter sections, the reduction from 3D to 2D will not affect
the accuracy of the domain profile without the showerhead due
to its axisymmetric nature. Moreover, for the reactor with shower-
head, despite the existence of noticeable profile deviation, the re-
sults are consistent throughout the operating domain. Therefore,
the 2D multiscale CFD model results for the showerhead reactor
can provide general insights on the realistic 3D operation.

3. Machine learning-based integrated data-driven model

Utilizing the data generated by the multiscale CFD model, an in-
tegrated data-driven model can be developed to describe and pre-
dict both the dynamic surface profile evolution as well as the tran-
sient gas-phase profile development. Because of the non-linearity
involved with the PEALD process, traditional machine learning
methods fail to provide satisfying performance (Ding et al., 2019b).
Thus, more advanced machine learning techniques need to be used
to characterize the dynamic time series. The recurrent neural net-
work model (RNN) and its variations are tailored for the predic-
tion of time sequences and can be utilized to capture the compli-
cated input-output relationship between operating conditions and
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Fig. 6. Comparison of 2D and 3D surface region partition. Color from yellow to
blue represents the distance between the center of the region to the center of the
wafer. (a) 2D surface concentric rings region representation. Each ring represents a
separate kKMC model. (b) 3D surface grid region representation. Each grid represents
a separate KMC model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

deposition profiles. According to the universal approximation the-
orem, it can be proved that an RNN model with enough neurons
can capture any given nonlinear dynamic system over finite time
(Sontag, 1992). A simplistic view of the standard RNN structure is
a stack of feedforward neural networks (FNN), where the output of
the FNN is used repeatedly, along with additional real-time infor-
mation, as the input to the network. The reused information is the
hidden state, h, and the information fed in real-time is the input,
x. Both values are used to predict the state of the system for the
next timestep, of which the mathematical formulation is shown as
follows:

h(t) = f(h(t —1),x(t - 1).0) (8)

where 6 is the model parameter/weights, and the function f is the
linear combination of hidden state, input, and weights, adjusted by
the transfer functions, which provide the ability to capture non-
linearity. The formulation of the RNN is very similar to a state-
based model, with the state matrix replaced by a set of network
neurons. The unrolling of the RNN shows that the cycled formula-
tion forwards the hidden states, h(t), and input information, x(t),
from the current timestep to the next timestep. This configuration
makes it a perfect candidate to model the industrial time-series
data, and thus it is selected in this work.
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3.1. Long and short term memory (LSTM) method

Despite the intuitive compatibility, a typical challenge encoun-
tered in the training of RNN is the exploding or vanishing gra-
dient, which happens because of the rolling vanilla structure. As
we can see from the unrolling of the RNN, not only the forward
information is cycled, the back-propagation is also repeated and
passed through the activation functions multiple times. Therefore,
this repetition leads to a significant accumulated input squeezing
in the activation function, which further leads to the vanishing or
explosion of the gradient and drastically decreases the validity of
RNN. In addition, the traditional RNN treats all input information
equally, while in reality, long term and short term information can
provide quite different insights to the prediction of the new state.

To deal with these challenges, the long and short term memory
(LSTM) is introduced. In the LSTM structure, the process character-
istic parameter, 6, in the recurrent cell is replaced with four reg-
ulators: an input modulation gate (G), an input gate (I), an output
gate (0), and a forget gate (F). These regulators selectively weight
the long and short term memory (gradient) to avoid ill-conditioned
propagation. Specifically, the LSTM weight matrix is comprised of
four parts: the output gate controls the weights that reveal the
cell state, the input gate and the input modulation gate control the
weights that modify the cell state, and the forget gate controls the
weights that erase the cell. In addition, the sigmoid activation is
applied to the O, I, F gates, and the tanh activation is applied to
the G gate and the final output. It is demonstrated that the LSTM
functions perfectly for processing and making predictions for time-
series data. The exemplary configuration of an LSTM-based RNN is
shown in Fig. 7, and the model can be mathematically formulated
as follows:

g = tanh(x,U8 + h;_1V$) 9)
i=o0U + h_ V) (10)
f=0@U +h_ V) (11)
S=S_10f+goi (12)
0=0(xU°+ h_1V°) (13)
h; = tanh(s¢) o0 (14)

During the training step, all input and hidden state information
will be provided as training data to the model, while the mem-
ory states are processed internally. Specifically, in order to cap-
ture the dynamic profile development in the reactor and on the
substrate surface, three hidden states are selected from the simu-
lation outputs: surface precursor partial pressure, the number of
Hf physisorption sites and the number of O physisorption sites.
Moreover, to correctly characterize the spatial difference of profiles
in various wafer locations, each variable will be examined at the
inner, middle, and outer regions of the wafer, which are shown
in Fig. 3. The precursor inlet flowrate, v, is used as the input to
the model. Thus, in total ten states are included in the generated
model.

To implement and train this LSTM-structured RNN, we adopt a
high-level application programming interface (API), Keras, based on
the Tensorflow backbend. The Adam optimizer is selected to adap-
tively minimize the loss function given a momentum estimation
method by using exponentially moving averages from the gradi-
ents evaluated on the current mini-batch:

meg = ﬁ]mt_] + (1 - ﬁl)gt (15)
U = Bome_r + (1 — Ba)g?
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Fig. 7. Long short-term memory (LSTM) recurrent neural network (RNN) structure. Left: general RNN formulation with LSTM cell. Right: detailed manifestation of the LSTM
cell. N; are input neurons, N, is the output neuron, G; and C;_; are the cell state memory for training iteration t and t — 1, and h; and h,_; are the hidden state for training
iteration t and t — 1. Merging is simple matrix stacking, + denotes the element-wise addition, and circle denotes the element-wise product.

where t — 1 indicates the last mini-batch and t indicates the cur-
rent mini-batch, v and m are the moving averages, g is the gradi-
ent, and the two betas are the hyperparameters of the model for
learning rate, which are often selected to be 0.9 and 0.999, respec-
tively. Then, these moving averages are used to scale the learning
rates for all the parameters as follows:

We =W — (16)

my
7 U+ €
where w is the model weight, 1 is the step size of the learning and
€ is the bias. In addition, to measure the deviation of the predic-
tion from the provided CFD data, the least square error is chosen
to be the loss function, which is the common choice in the regres-
sion application.

4. Integrated data-driven model result and validation

In the following sections, the training specifications and the
performance of the developed RNN-based data-driven model are
presented. The data-driven model is trained based on the data gen-
erated from the 2D multiscale CFD model for the reactor without
the showerhead. The model accuracy is first validated by examin-
ing the alignment of model prediction with the original 2D multi-
scale CFD model result. Next, it is further compared with the 3D
multiscale CFD model under the same operating parameters and
reactor geometry.

4.1. 2D Integrated data-driven model for PEALD reactor

According to the formulation discussed in Section 3, an RNN
model is trained based on the LSTM structure. The final configu-
ration of the RNN is determined through a grid search, where a
two-layer structure consisting of 80 and 50 neurons, respectively,
is chosen for the Hf-Cycle RNN model, and one layer of 100 neu-
rons is chosen for the O-Cycle RNN model. The training dataset
consists of the aforementioned transient deposition profiles for a
range of inlet operating flowrates between 2.5 x 1076 kg/s and
1.0 x 10~% kg/s. In total, the training process takes around three
to four hours on an Intel i7-8700 CPU with 64 GB of RAM, and the
final normalized training performance, measured in terms of the
mean standard error, reaches below 1.0 x 10-6 for both half-cycles.
In addition, one full prediction for an entire time-series is demon-
strated to take less than a minute to execute, which is a substan-
tial reduction from the multiscale CFD model that takes about a
day to run using 36 CPU cores on a powerful computational clus-
ter. Also, the computational time involved is in line with the ac-
tual process operation time, thus making it feasible to be applied

for on-line optimization and control purposes like model predictive
control (MPC). Moreover, the prediction time can be even further
shortened by taking advantage of cloud computing and other high-
performance computational resources.

After the training is completed, the resulting models are vali-
dated with a set of test conditions. One of the most important in-
dicators of the overall deposition progress is the availability of the
physisorption sites. During the Hf-Cycle, Hf physisorption sites are
the candidates for Hf precursor physisorption, while O physisorp-
tion sites are the product of the Hf-Cycle reactions and will be ph-
ysisorbed in the following O-Cycle. Therefore, throughout the Hf-
Cycle, the number of Hf physisorption sites will decrease while the
number of O physisorption sites will increase, and vice versa in the
O-cycle. The RNN accuracy for the prediction of the physisorption
sites is demonstrated by comparing the RNN outputs with the mul-
tiscale CFD model results, as shown in Fig. 8. A random flowrate,
2.3 x 1076 kg/s, is chosen for testing and demonstration of the ra-
dially distributed thin-film growth profile of the Hf-Cycle. It can
be seen from Fig. 8that, the model successfully predicts the sur-
face deposition profile at all wafer regions. Specifically, for Hf pre-
cursor physisorption sites, all regions are accurately captured by
the model. For the O precursor physisorption sites, the prediction
of the inner and middle wafer regions closely corresponds to the
CFD results. Although the prediction of the dynamic profile for the
outer wafer region has some deviations, the steady-state achieving
time is accurately captured, as indicated by the top intersection of
the green and red labels in Fig. 8.

Additionally, the prediction of the average partial pressure and
physisorption sites are demonstrated in Fig. 9, which corresponds
to the profiles of Hf-Cycle at 6.8 x 10~> kg/s and O-Cycle at 4.3 x
10-5 kg/s. As shown in Fig. 9, the RNN predictions and CFD re-
sults closely match with each other, especially for O-Cycle. Due to
the more complicated reaction routes in Hf-Cycle, the RNN model
for Hf-Cycle has a slightly higher deviation. However, the model
is able to capture the overall trend and accurately determine the
steady-state achieving times for both the Hf physisorption sites
and the precursor partial pressure. In addition, it is worth noting
that, compared to the linear parameter-varying model developed
in Ding et al. (2019b), this RNN-based data-driven model fully in-
tegrates the microscopic domain and the macroscopic domain and
is able to achieve higher accuracy.

4.2. Validation using 3D multiscale model
Although the RNN-based integrated data-driven model shows a

good match with the 2D multiscale CFD model results, it is desir-
able to further validate the data-driven model with results com-
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Fig. 8. Comparison between RNN prediction and CFD simulation result without the showerhead for Hf-Cycle at inner, middle, and outer wafer regions, corresponding to
(a), (b), and (c), respectively. The x-axis represents the time in a half-cycle, and the y-axis represents the fraction of sites. The blue and orange dashed lines represent the
fraction of available sites for Hf precursor physisorption from CFD simulation and RNN prediction, respectively. The green and red triangles represent the fraction of available
sites for O precursor physisorption from CFD simulation and RNN prediction, respectively. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 10. Comparison of 3D multiscale CFD model O-Cycle result with RNN-based data-driven model prediction under the inlet flowrate of 1.25x10~> kg/s. Surface profiles
over a duration of 5 s are demonstrated and surface steady-state is achieved towards the end of the cycle. x-axis represents the time, and y-axis represents the predicted
profile. (a), (b), and (c) correspond to the profile development of physisorption sites at inner, middle, and outer regions of the wafer, respectively. (d) corresponds to the

overall averaged pressure profile.

puted from a full 3D multiscale CFD model. Thus, in this sec-
tion, the data-driven model is compared with the computation re-
sult from the previously developed 3D multiscale CFD model by
Zhang et al. (2020b). As shown in Fig. 3, the 3D multiscale model
geometry can be viewed as the rotation of the 2D geometry around
the central axis, and all the characteristic dimensions (wafer diam-
eters, reactor size, outlet shape, etc.) are preserved.

For the O-Cycle, the average pressure and surface profiles are
compared between the 3D multiscale CFD model and the RNN-
based integrated data-driven model at a randomly chosen inlet
flowrate of 1.25 x 10~ kg/s. The starting point of both models is
assumed to be the saturated surfaces after one complete Hf-Cycle.
The deposition profiles of the inner, middle, and outer regions of
the wafer over five seconds are presented in Fig. 10. According
to the CFD model result, film deposition steady-state is achieved
around 4 s, which is also captured by the RNN model. Again, the

10

RNN model prediction closely resembles the trend described by
the 3D multiscale CFD model results. The normalized mean stan-
dard errors for the prediction of deposition profile at the inner,
middle, and outer region and the prediction of the overall pressure
are 2.54%, 1.19%, 2.85%, and 1.19%, respectively. Moreover, the error
between the computed and predicted half-cycle time is 6.18%.

For the Hf-Cycle, the results are compared at another randomly
chosen inlet flowrate at 4.0 x 10~> kg/s. The starting surface pro-
files for both models are assumed to be the fully hydroxylated
surface. Similar to the O-Cycle, the results over five seconds are
demonstrated in Fig. 11. RNN prediction accurately observes the
trend computed by the multiscale CFD model. The normalized
mean standard errors for the prediction of deposition profile in
the inner, middle, outer region, and the prediction of the over-
all pressure are 1.85%, 4.60%, 1.50%, and 1.53%, respectively. Addi-
tionally, the error between the computed and predicted half-cycle
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Fig. 11. Comparison of 3D multiscale CFD model Hf-Cycle result with RNN-based data-driven model prediction under the inlet flowrate of 4.0x10-5 kg/s. Surface profiles
over a duration of 5 s are demonstrated and surface steady-state is achieved towards the end of the cycle. x-axis represents the time, and y-axis represents the predicted
profile. (a), (b), and (c) correspond to the profile development of physisorption sites at inner, middle, and outer region of the wafer, respectively. (d) corresponds to the

overall averaged pressure profile.

time is 4.86%. Such performance is also quantitatively much bet-
ter than the previously developed linear parameter-varying model,
of which the errors range around 10%. Therefore, with validation
by the 3D multiscale CFD model results, we can conclude that the
developed RNN-based integrated data-driven model is capable of
accurately characterizing the dynamic deposition profile and the
transient gas-phase development in the PEALD reactors.

5. Operation strategy optimization

Now that the developed data-driven model has been validated,
we can adopt the prediction capability of the data-driven model
to identify the optimal operating strategy. In order to optimize the
production throughput of PEALD processes, cycle-times need to be
minimized, while the required film qualities need to be maintained
at ideally the best achievable coverage. To satisfy both require-

1

ments, the data-driven model is used to predict the system dy-
namics for a wide range of input flowrates from 2.5 x 106 kg/s
to 9.75 x 10~* kg/s, which is the common range of operating
flowrates used in the experiments. By extracting the final film
quality and the required cycle-time from the predicted film de-
position profile, the range of feasible operating conditions can be
summarized. Based on the feasible operating range, an elementary
cost analysis is performed to determine the optimal operating con-
dition.

For the O-Cycle, a database of deposition profiles for 200
flowrates uniformly distributed in the range of 2.5 x 1076 kg/s
to 9.75x 10~ kg/s is generated using the integrated data-
driven model. The generated operating database is visualized in
Fig. 12(a)-(c) for the inner, middle, and outer wafer regions, re-
spectively. Based on the predicted deposition profiles, the time to
achieve steady-state and the final cycle progress are identified for
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each operating flowrate. The conventional half-cycle time for the
PEALD process is taken to be five seconds. Therefore, only flowrates
that allow the film to achieve full half-cycle coverage within five
seconds are considered to be feasible, which are marked with blue
dots at the steady-state achieving time in Fig. 12(a)-(c). For O-
Cycle, most flowrates in the given range are feasible except for

12

the few lowest operating flowrates. After the feasible flowrates
have been identified, an elementary cost analysis is performed to
evaluate the optimal operating flowrate that minimizes the pre-
cursor usage. To evaluate precursor usage, the inlet flowrate are
multiplied by their corresponding steady-state achieving times,
which are shown in Fig. 12(d)-(f) for the inner, middle, and outer
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Fig. 14. Comparison between RNN prediction and CFD simulation result with the showerhead for O-Cycle at inner, middle, and outer wafer regions, corresponding to (a), (b),
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wafer regions, respectively. Due to the nonlinear relationship be-
tween flowrate and deposition profile, the dependency of precur-
sor usage on flowrate is also nonlinear, and the corresponding
flowrates for minimal precursor usage at various wafer locations
are marked with red diamonds in Fig. 12(d)-(f), which is around
2.2 x 107> kg/s for all wafer regions. The reported trend of precur-
sor usage over operating flowrates can also be applied in the more
advanced cost analysis to customize the optimal operating condi-
tion, where additional concerns, such as overall expected through-
put, specific wafer region quality, and exact precursor costs, are ac-
counted for.
Similarly, for the Hf-Cycle, a database of deposition profiles for
inlet operating flowrates within the range of 2.5 x 1076 kg/s to
9.75 x 10~* kg/s is collected from the data-driven model predic-
tion. The result is demonstrated in Fig. 13(a)-(c) for the inner, mid-
dle, and outer wafer regions, respectively. The notations are sim-
ilar as in the O-Cycle result and only feasible flowrates, marked
with blue dots, are picked to identify the required half-cycle time
and precursor usage. A flowrate of at least 2.5 x 10> kg/s is re-
quired for full half-cycle coverage. The precursor usage is then
computed, and a non-linear relationship is observed between pre-
cursor usage and inlet flowrate. As shown in Fig. 13(d)—(f), for all
wafer regions, precursor usage increases with the flowrate until
5x 107> kg/s, and then decreases as flowrate further increases.
This nonlinear behavior can be attributed to the combination of
gas-phase precursor transport and reaction kinetics in the Hf-
Cycle, which is explained in more detail in Ding et al. (2020)and
Zhang et al. (2020b). Therefore, the optimal operating condition to
minimize precursor usage for Hf-Cycle occurs either at low or high
flowrate, and it is subject to further cost and throughput analysis
to determine the best operating flowrate in specific scenarios.

13

5.1. Integrated data-driven model for PEALD reactors with the
showerhead

Despite the intrinsic physical difference between 2D and 3D
models for reactors with the showerhead, the 2D model result can
still provide some insights for a general operating guideline. Sim-
ilar to the integrated data-driven model built for reactor without
the showerhead, CFD simulations are performed to collect the op-
erating profile for showerhead reactors, and the collected results
are used to generate an RNN-based data-driven model, of which
the training results are demonstrated in Figs. 14 and 15. The O ph-
ysisorption site characterizations and the final steady-state achiev-
ing time for both half-cycles, as well as the partial pressure char-
acterization for O-Cycle, are very accurate. Due to the complicated
geometry of the showerhead reactor and the more complex reac-
tion sets in the Hf-Cycle, the prediction of the Hf physisorption
sites for Hf-Cycle demonstrates an offset from the CFD result. How-
ever, the RNN prediction captures the exact trend reported by CFD

simulation and can be adjusted by further post-processing.

Using the built data-driven model, a range of deposition profiles
under various operating flowrates are shown in Fig. 16 and Fig. 17.
Similar to the reactor without the showerhead, the precursor us-
ages under various flowrates are computed using the steady-state
achieving time determined from the operating database. The trend
of O-Cycle precursor usage versus operating flowrate for show-
erhead reactors is very similar to reactors without the shower-
head, despite a nonlinear region for low operating flowrates. For
the Hf-Cycle precursor usage, due to the resistance caused by the
showerhead panel, the minimal flowrate required to achieve full
coverage is higher than the reactor without the showerhead. As
observed in Fig. 17, the minimal precursor usage occurs around
9.0 x 10> kg/s for all wafer regions, and increases for both lower
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and higher flowrates. This nonlinearity could be potentially due to
the complex competition between gas-phase precursor transport
and the surface reaction kinetics. Moreover, despite the alignment
of the result between the RNN model and the 2D multiscale CFD
model, due to the limitation of the 2D showerhead reactor geome-
try, the showerhead reactor result does not perfectly reflect the full
3D transport and deposition behaviors. Therefore, the integrated

data-driven model should only be used as a general guideline for
the operation of PEALD showerhead reactors.

6. Conclusion

In this work, an integrated data-driven model based on RNN is
constructed using the previously developed multiscale CFD model
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for a PEALD process. Based on the datasets generated from CFD,
the developed RNN is able to accurately predict the film deposi-
tion profile using the inlet feed flowrate. Although the built data-
driven model is developed based on 2D axisymmetric CFD com-
putation results, it is validated with the results from a full 3D
CFD simulation. Specifically, for each half-cycle, an RNN model has
been tailored to capture the deposition behavior with less than or
around 5% deviation from the CFD simulation results. Compared
to the multiscale CFD model, which takes about a day to com-
pute the profiles for one flowrate, the integrated data-driven model
only takes a few seconds to predict the film growth, and thus can
be incorporated in real-time process control and process monitor-
ing. Moreover, an operation database is generated using the predic-
tions from the integrated data-driven model. Using the operation
database and based on industrial standard, a feasible operating re-
gion is determined in terms of the inlet flowrates. Furthermore,
an optimal operating strategy is identified in the feasible operating
domain for each half-cycle based on the precursor usage analysis.
Additionally, for the showerhead PEALD reactor, a similar method-
ology has been adopted to generate its corresponding integrated
data-driven model. Despite the fundamental geometric difference
of showerhead between 2D and 3D, the data-driven model can
still provide a general guideline for the operation of showerhead
reactors. In closing, it is worth mentioning that the LSTM based
data-driven modeling strategy presented in this work is suitable
for many other similar semiconductor fabrication processes. The
challenges for the desired in-situ monitoring and the complexity
of an exact on-line simulation representation can be avoided by
extracting valuable information from combined experimental and
simulated data at different conditions. In addition, with the devel-
oped data-driven model, an optimal operating strategy can be es-
tablished based on the specific industrial need (e.g., optimal man-
ufacturing throughput), and on-line control schemes can be ex-
plored, which can further enhance the process operational perfor-
mance.
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