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A B S T R A C T

Hydrogen plays a crucial role in improving sustainability and offering a clean and efficient energy carrier
that significantly reduces greenhouse gas emissions. However, the primary method of industrial hydrogen
production, steam methane reforming (SMR), relies on the combustion of hydrocarbons as the heating source
for the reforming reactions, resulting in significant carbon emissions. To address this issue, an experimental
setup of an electrically-heated steam methane reformer (e-SMR) has been constructed at UCLA, and a lumped
first-principle dynamic process model was built based on parameters estimated from the experimental data
in a previous study. Subsequently, the first-principle dynamic process model was implemented into the
computational model predictive control (MPC) scheme, successfully driving the hydrogen production rate to the
desired setpoint. While these works are important and pave the way for developing MPC for large-scale e-SMR
processes, the first-principle process model may not accurately reflect the actual process behavior, particularly
as the process behavior changes with time. Therefore, the development and establishment of an adaptive
data-driven approach for implementing model predictive control in the e-SMR process is necessary. To address
this need, the present work investigates the construction of recurrent neural network (RNN) models for an e-
SMR process in-depth, utilizing data from an experimentally-validated first-principle model. Specifically, a long
short-term memory (LSTM) layer was utilized in the RNN model to effectively capture the complex correlations
present in long-term sequential data. Subsequently, this LSTM-based RNN process model was employed to
design an MPC, and its performance was evaluated through comparison with proportional–integral (PI) control.
To address potential disturbances and variability in a typical e-SMR process, three distinct approaches were
developed: MPC with an integrator, MPC with real-time online retraining (transfer learning), and offset-free
MPC. These approaches effectively eliminated the offset caused by disturbances. Overall, this study underscores
the effectiveness of utilizing RNN models to capture process dynamics in an experimental e-SMR process. It
also outlines strategies for employing RNN-based control and multiple approaches to address disturbances in
general processes with partially infrequent and delayed measurement feedback. This approach is particularly
valuable in scenarios where developing first-principle models for a new process may be challenging.
1. Introduction

Hydrogen (H2) is recognized for its clean and efficient emissions
properties and is crucial in addressing global climate change and
supporting the urgent energy revolution (Zhou et al., 2022). As an
ideal energy carrier (Lubitz and Tumas, 2007), hydrogen substantially
contributes to the establishment of environmentally friendly industries,
offering a sustainable alternative to traditional fossil fuels. Moreover,
its pivotal roles in transportation (Tanç et al., 2019), manufactur-
ing (Green, 1982), energy storage and production (Rasul et al., 2022)
underscore its significant contribution to decarbonization. However, in
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modern industry, nearly 95% of H2 is produced through steam methane
reforming (SMR) (Nieva et al., 2014). Steam methane reforming is
a classic industrial process used to produce hydrogen from natural
gas. During the traditional SMR reaction process, the combustion of
fossil fuels creates the high temperatures required to heat the reactions
in large-volume industrial reactors, which significantly contributes to
greenhouse gas accumulation and climate change. To address this issue,
a novel electrically-heated SMR (e-SMR) system is considered as an
alternative green hydrogen production method. Instead of utilizing
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heat from natural gas combustion, electricity is used as the energy
source to heat the reformer. This electricity is generated from var-
ious clean energy sources, including solar energy, wind power, and
hydropower (Pazheri et al., 2014). Therefore, substantially decreased
carbon emissions are achieved since no carbon is generated to sup-
ply the necessary heat for the e-SMR. Additionally, when compared
to conventional SMR reactors, Meloni et al. (2022) also mentioned
enhanced catalytic performance in an e-SMR setup due to direct heat-
ing of the catalyst. Moreover, electrification can eliminate the need
for a combustion furnace, resulting in a significantly reduced reactor
volume (Wismann et al., 2019).

To build an energy plant based around an e-SMR unit, a controller
must be designed to maintain a stable hydrogen production rate, ad-
dressing challenges such as start-up procedures, catalyst deactivation,
and setpoint modulation. At UCLA, the experimental setup for the
e-SMR was constructed for e-SMR-based hydrogen production in an
experimental process, and research work was conducted to achieve
the desired hydrogen production using model predictive control (MPC)
based on first-principle models, leading to a successful experimental
implementation and desired control behavior (Çıtmacı et al., 2024a,b;
Cui et al., 2024). While the integration of the first-principle model
with the MPC controller effectively drives the output to the desired
setpoint in previous studies, the predictions of the first-principle model
may not fully reflect the complexities of real experimental processes.
The discrepancies arise from assumptions made in constructing the
first-principle model, which neglected crucial factors inherent in real
reaction processes, such as mass transfer phenomena and catalyst de-
activation. These uncertainties emphasize the necessity of developing
alternative approaches to accurately simulate the real process. There-
fore, a data-based approach for MPC implementation in the e-SMR
process is investigated in this study.

With the advancements in computational power and the develop-
ment of sophisticated algorithms in the era of big data, the evolution
of machine learning has gained significant attention in the process
modeling area. Over the past decades, the machine learning technique
has evolved from a research-oriented area to a field with various
real-world applications, such as healthcare, finance, manufacturing,
etc (Sarker, 2021). Among various architectures of machine learning
techniques, neural networks have emerged as one of the most powerful
due to their ability to learn and model non-linear and complex data
patterns. The common types of neural networks include feed-forward
neural networks (FNNs), recurrent neural networks (RNNs), and con-
volutional neural networks (CNNs) (Wu et al., 2019b). Specifically,
RNNs have gained significant popularity for modeling a broad class
of nonlinear dynamical systems. The origins of the RNN model date
back to the 1980s, marked by the invention of Hopfield networks for
the purpose of pattern recognition (Hopfield, 1982). Since then, various
types of RNNs have been extensively developed for applications such as
pattern recognition and natural language processing. Today, with the
rapid advancement of computational resources and the availability of
open-source neural network libraries and frameworks like TensorFlow
and Keras, RNNs have been leveraged as one of the most effective
methods to solve regression and classification problems in engineering
fields (Schmidhuber, 2015). For example, Wu et al. (2018) describes
the development of a neural network-based detection system designed
to identify cyberattacks in chemical processes. Zheng et al. (2022) used
RNNs and other networks in an MPC scheme to improve the efficiency
and quality of a cooling crystallization process. Xiao et al. (2021)
introduced an RNN-based MPC framework for a plasma etching process.

Compared to feed-forward and other types of neural networks with
single-directional connections between input and output vector, RNNs
exhibit advantages due to their additional recurrent connections formed
between sequential data, which preserve the memory of the previ-
ous layer. This characteristic allows RNNs to effectively process and
2

learn the information between data points while accounting for time
dependency, making them particularly suited for tasks such as natu-
ral language processing, time series prediction, and pattern recogni-
tion (Wu et al., 2019b). Moreover, the distinctive architecture leverages
RNNs to capture the dynamic behavior of the target process in a
way conceptually similar to the nonlinear state-space ordinary dif-
ferential equation models, making them a valid alternative to the
first-principle model (Miljanovic, 2012). Although a basic RNN model
can be more effective for simulating time-dependent processes than
other neural network models, their structural simplicity may be insuf-
ficient to accurately capture highly complex processes with long-term
data dependencies. Today, various types of modern RNN-based process
models have been developed and incorporated into MPC schemes to
enable long-term control actions on sequential data. The common ar-
chitectures of the modern RNN-based process model are long short-term
memory (LSTM), gated-recurrent unit (GRU), and Encoder–decoder.
LSTM and GRU use a similar gate mechanism to regulate information
flow and manage the long-term time dependencies in sequential data.
According to a study conducted by Zarzycki and Ławryńczuk (2021),
an LSTM and GRU model accurately predicted process outputs and
achieved desired control behaviors to a similar extent when inte-
grated with an MPC scheme for controlling two chemical reactors. The
Encoder–Decoder is a type of special RNN model incorporating two
RNN models in series. Compared to traditional RNNs, the Encoder–
Decoder RNN performs better in processing long-term sequential data
by using a more flexible time window size of input and output (Cho
et al., 2014). Moreover, a study conducted by Zhang et al. (2021a)
found that the Encoder–Decoder outperforms LSTM-based and GRU-
based RNNs in simulating dynamic processes that involve numerous
long-term dependencies. Even though the Encoder–Decoder neural net-
work model overcomes certain limitations of traditional RNN models, it
also has a higher computational cost, while an LSTM-based RNN model
is adequate at capturing most of the dynamic process behavior (Ren
et al., 2022).

In the field of chemical engineering, machine learning techniques
can also make significant contributions. In a study conducted by Çıt-
macı et al. (2023), the LSTM-based RNN process model trained on
experimental data was implemented into a multi-input-multi-output
(MIMO) control scheme to regulate ethylene and carbon monoxide
production in a rotating cylinder electrode reactor for carbon dioxide
(CO2) electrochemical reduction, achieving effective closed-loop con-
trol and approved the feasibility of RNNs in the chemical engineering
context. Nevertheless, there has been limited research on using RNNs to
simulate the e-SMR processes, despite their ability to accurately approx-
imate complex dynamics and non-linearities without the knowledge of
the underlying physics and chemistry principles behind the process.
Thus, this area presents an opportunity for further exploration, which
could make further advancements.

Based on these considerations, RNN-based model predictive control
emerges as a promising approach for the e-SMR process. However,
various unforeseen phenomena can occur during the e-SMR process.
Notably, carbon formation (coking) is a prevalent issue that can deteri-
orate catalyst performance (Zhang et al., 2021b; Ginsburg et al., 2005;
Ashik et al., 2017). These changes introduce disturbances to the actual
e-SMR process, resulting in inaccuracies in the RNN model. Therefore,
strategies designed to address disturbances in an e-SMR process MPC
scheme are required.

To address disturbances in an MPC scheme, several approaches
have been developed. One widely used method in early MPC algo-
rithms is MPC combined with an integrator, which eliminates offset
by adding extra control action derived from error integration (Yang
et al., 2015). Wang et al. (2009) discussed embedding integrators
within designed models, while Qin and Badgwell (2003) applied in-
tegrators in dynamic matrix control (DMC). The offset-free approach
is a more recent innovation for eliminating disturbance-induced offset
compared to conventional methods. Various disturbance models have

been explored and incorporated into this strategy (e.g., Muske and
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Badgwell (2002) and Pannocchia and Rawlings (2003)). Specifically,
the offset-free strategy employs additional disturbance states and a
disturbance observer to estimate and counteract disturbances (Maeder
et al., 2009), thereby effectively addressing offsets. Beyond these gen-
eral methods, online retraining using transfer learning offers another
solution based on the properties of RNNs. This approach involves
retraining the pre-trained RNN model with real-time data, adapting it
to current conditions to manage offset (Wu et al., 2019a; Fekri et al.,
2021). By continuously updating the RNN model with new data, the
control system can effectively respond to disturbances and maintain
desired performance levels. These methodologies handle disturbances
within an MPC scheme sufficiently and can be applied to the e-SMR
process.

In this study, we aim to explore the application of a machine
learning-based model to replace the first-principle model within an
MPC framework for process control. Specifically, an RNN model will
be constructed based on the data generated from the first-principle
model to capture the underlying pattern, which introduces a solid
theoretical background of the actual e-SMR experiment. Subsequently,
the RNN-based process model will be employed in an MPC scheme
to estimate the initial condition of the controller and forecast the
future state values of the process variables as a predictive model within
time horizons. Considering disturbances in an e-SMR process, three
approaches of RNN-based MPC schemes are emphasized for eliminating
the final offset: MPC combined with an integrator, MPC with transfer
learning, and offset-free MPC. These approaches will be analyzed based
on their control performance. Our primary objective is to investigate
the application of the RNN-based process models in the context of
hydrogen production and control.

2. Preliminaries

2.1. Notations

The notation 𝒙 ∈ R5 represents the vector of state variables,
nvolving flow rates with derivation form (𝐹𝑖 − 𝐹𝑠𝑝) of methane (CH4),

carbon monoxide (CO), hydrogen, carbon dioxide and the averaged
reactor temperature (𝑇 −𝑇𝑠𝑝). The notation 𝒙⊺ represents the transpose
f the vector 𝒙. The notation 𝑥̂ is the predicted vector of state variables.
he notation 𝒙̄ is the predicted vector of state variables combined
ith the error tracking terms (𝜽). The notation 𝒖 ∈ R1 represents

he vector of the control action, involving the electric current with
erivation form (𝐼 − 𝐼𝑠𝑝). The notation 𝒖⊺ represents the transpose
f the vector 𝒖. A function 𝑓 (𝒙) belongs to the class 1 if it exhibits
ontinuous differentiability along its domain. 𝐹 (⋅) is the model to be
sed to estimate state values. 𝐹 (⋅) is the modified model to be used
o estimate state values. The notation 𝒚̂ represents the deviation form
f the target output vector predicted by the model. The notation 𝒚̃
epresents the deviation form of measured target output.

.2. Process overview

In our previous work, an electrically heated steam methane re-
ormer was built to convert methane to hydrogen gas carbon emission-
ree from heating (Çıtmacı et al., 2024a). In the electrically heated SMR
etup, methane, water steam, and argon (Ar) gas are fed to a tubular
eactor under different temperatures and pressures to react and produce
ydrogen gas. The overall chemical reactions can be written as follows:

team methane reforming ∶ CH4 + H2O ⇌ 3H2 + CO,

𝐻298 = 206.1 kJ mol−1 (1a)
ater gas shift ∶ CO + H2O ⇌ CO2 + H2, 𝛥𝐻298 = −41.15 kJ mol−1

(1b)
3

where steam methane reforming and water gas shift reactions are
involved. Steam methane reforming is a strongly endothermic reaction
that converts methane and water to hydrogen and carbon monoxide,
and the water gas shift is a slightly exothermic reaction that converts
the carbon monoxide and water to carbon dioxide and hydrogen gas.
Large amounts of energy are needed to initialize the steam methane
reforming reaction (Wei and Iglesia, 2004a,b,c,d), and a highly active
Ni-based catalyst is used in the reactor under high reaction tempera-
tures to reduce activation energies and increase the net SMR reaction
rate.

The e-SMR process of interest outlined in Fig. 1 describes the
transformation of methane and steam reactants to carbon monoxide,
carbon dioxide, and hydrogen products. Though the experimental ar-
gon input is neglected in the RNN model developed in this study, the
inert gas is used as a tracer in the experiments for volumetric flow
rate monitoring. Temperature measurements are taken at the inlet and
outlet of the reformer and are recorded on a per-second basis with
a set of two thermocouples (TC). The average of these experimental
temperature measurements is utilized for modeling the reactor temper-
ature. A DC power supply sends electrical energy through the outer
wall of the experimental reformer which generates the required energy
input for the SMR reactions in the form of resistive-heat, also known
as joule-heating. Temperature control in the reformer is achieved with
a proportional–integral (PI) controller that modulates the electrical
current input using a first-order algorithm that has been derived and
tested by Çıtmacı et al. (2024a). A nickel-embedded zirconia wash-
coat catalyst resides along the inner walls of the reformer to lower
the activation energies of the SMR and WGS reactions. The synthesis
procedure for the washcoat was developed and modeled by Çıtmacı
et al. (2024b). After the product gas mixture exits the reformer tube, the
mixture enters a steam condenser that removes unreacted water vapor
to prepare the gasses for analysis in a gas chromatography (GC) device.
Mole fractions of each product species are measured in a TCD column
as a means for quantifying the compositions of the gas products.

To capture the dynamic behavior of the e-SMR process, a lumped-
parameter dynamic model was constructed in Çıtmacı et al. (2024a)
based on the reaction kinetics developed in Xu and Froment (1989).
SMR, WGS, and gas species adsorption kinetic parameters were exper-
imentally validated in Çıtmacı et al. (2024a,b). Due to the relatively
small scale of the experimental setup, the first-principle model is built
based on a simplified modeling approach, which approximates the
tubular reactor as a continuously stirred tank reactor (CSTR). In the
case of a lumped parameter model, the first-principle model is built
based on the mass balance of each chemical species to simulate a gas-
phase CSTR. Due to the temperature dependency of the reaction rates,
the energy balance was also employed in the first-principle model.
Additionally, 𝑃𝑞 = 𝐹𝑅𝑇 is held at all times to satisfy the ideal gas
law within the flow reactor system, where 𝑃 is the pressure, 𝑞 is the
volumetric flow rate, 𝐹 is the molar flow rate, 𝑅 is the universal gas
constant and 𝑇 is the reactor temperature. The details about the reac-
tion kinetics and the mass balance equations can be found in Çıtmacı
et al. (2024a).

Remark 1. The flow rate of each gas species exiting the reactor
is measured using GC and quantified in the unit of standard cubic
centimeters per minute (SCCM). Considering the analysis time and
cooling period of the GC, an 18-min sampling interval and a 15-min
delay are factored into the process. Consequently, the gas measurement
is characterized by infrequent and delayed data acquisition.

2.3. Model predictive control

Model predictive control works by using a mathematical model of
a system to predict its future behavior over a set time horizon. At
each control step, MPC solves an optimization problem to determine
the sequence of control actions that will minimize a predefined cost
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Fig. 1. Process schematic of the electrified steam methane reformer at UCLA.
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unction, which typically includes terms for tracking desired outputs
nd minimizing control efforts, while satisfying any constraints on
nputs and outputs. Once the optimal sequence is determined, only the
irst control action is implemented, and the process is repeated at the
ext time step with updated system information, effectively moving
he prediction horizon forward and continuously adjusting the control
ctions (Schwenzer et al., 2021). One form of the MPC mathematical
ormulation is represented by the following equations:

= min
𝒖 ∫

𝑡𝑘+𝑁ℎ

𝑡𝑘
𝐿(𝒚̂(𝑡), 𝒖(𝑡)) d𝑡 (2a)

s.t. ̇̂𝒙(𝑡) = 𝐹 (𝒙̂(𝑡), 𝒖(𝑡)) = 𝑓 (𝒙̂(𝑡)) + 𝑔(𝒙̂(𝑡))𝒖(𝑡), 𝒙̂(𝑡𝑘) = 𝒙(𝑡𝑘) (2b)

𝒚̂(𝑡) = ℎ(𝒙̂(𝑡)) (2c)

𝐿(𝒚̂(𝑡), 𝒖(𝑡)) = 𝒚̂⊺(𝑡)𝐴𝒚̂(𝑡) + 𝒖⊺(𝑡)𝐵𝒖(𝑡) (2d)

𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (2e)

‖𝒖(𝑡𝑘) − 𝒖(𝑡𝑘−1)‖ ≤ 𝑢𝑐 (2f)

𝒖(𝑡) ∈ 𝑈 ∀𝑡 ∈ (𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (2g)

where 𝒖 is the control input vector, which is also a variable in the
optimization problem, 𝑁ℎ is the horizon length, 𝐿 is the objective
function to be optimized, which measures the difference between the
setpoint and controlled output prediction over the horizons, 𝒙̂ is the
predicted vector of all state variables by the model, 𝒚̂ is the target
output vector predicted by the model and 𝐹 (⋅) is the model to be used
to estimate state values over the horizon. 𝐴 and 𝐵 are positive definite
weight matrices for the output target values and manipulated control
input, respectively. The objective of the MPC is to find the optimal
control input to minimize the difference between the model predictions
and setpoint. It is crucial to emphasize that this optimization problem
is solved under the rate of change and magnitude constraints on the
control input vector (Eqs. (2f), (2g)). Specifically, Eq. (2f) is employed
to ensure that the control input change remains within a practically
desired range, while Eq. (2g) is implemented to ensure the calculated
control action values adhere to specific limits.

2.4. Offset-free model predictive control

Offset-free model predictive control is a control strategy that aims
to regulate the output from the system to a desired reference while
4
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simultaneously estimating and compensating for unknown disturbances
or offsets. Compared with the traditional MPC scheme, an additional
term (𝜽) is incorporated to augment the system model by tracking
the accumulation of the error between the real data and estimated
values, which solves the steady-state errors resulting from model-plant
mismatch or disturbances. Hence, the model is modified by this error
accumulation term as shown below (Maeder et al., 2009; Wallace et al.,
2016):

̇̂𝒙(𝑡) = 𝐹 (𝒙̂(𝑡), 𝒖(𝑡)) + 𝐺𝜃𝜽(𝑡) (3a)

𝜽̇(𝑡) = 0 (3b)

here 𝜽 is the error accumulation term with its corresponding coef-
icient, 𝐺𝜃 . This augmented model can be further written as follows:

̇̄𝒙(𝑡) = 𝐹 (𝒙̄(𝑡), 𝒖(𝑡)) (4a)

̇̄𝒙(𝑡) =
[ ̇̄𝒙(𝑡)

𝜽̇

]

(4b)

̄ (𝒙̄(𝑡), 𝒖(𝑡)) =
[

𝐹 (𝒙̂(𝑡), 𝒖(𝑡)) + 𝐺𝜃𝜽(𝑡)
0

]

(4c)

This modification subsequently utilizes the updated model in the
ontrol scheme. To estimate the current augmented term in real time
nd improve the estimation of other state variables in the state vector,
Luenberger observer is employed.

̇̄ (𝑡) = 𝐹 (𝒙̄(𝑡), 𝒖(𝑡)) +𝐾
[

𝒚̃(𝑡𝑛) − 𝒚̄(𝑡𝑛)
]

(5a)

𝐾 =
[

𝐾𝒚
𝐾𝜽

]

(5b)

here 𝐾 is the gain matrix of the Luenberger observer, 𝒚̃ is the
easured output, 𝒚̂ is the estimated output, and 𝑡𝑛 is the measurement

ime instant. A constant error between measurement and estimation
s assumed for the interval between two consecutive measurements,
nd the 𝜽 can be deemed as the integral of this error. Consequently,
he model undergoes continuous correction until no mismatch between
easurement and estimation is achieved. The estimated state vector

s utilized for the initial values of the predictions in the MPC. In the
resent work, the offset-free MPC concept is combined with the use of
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neural network models in MPC and it is applied to the electrified SMR
model under disturbances in a later section.

3. Recurrent neural network model

The recurrent neural network is a type of machine learning-based
process model that has been widely applied for modeling nonlinear
dynamic processes. Unlike other neural network (NN) process models,
the RNN process model can memorize the information from a previous
input in the sequence and predict the output based on the ordinal
correlation between different time steps. Due to this advantage, the
RNN process models are more suitable to simulate dynamic processes
involving time-dependent data compared to other NN models. Further-
more, the feedback loop in the RNN models that enables the capture of
the model’s dynamic behavior over time is similar to how non-linear
first-principle models describe the process behavior (Ren et al., 2022).
Therefore, the RNN models are better options than other NN process
models for simulating time-dependent dynamic processes. In our study,
an LSTM-based RNN process model is built to capture the behavior of
a first-principle-based model built in our prior work (Çıtmacı et al.,
2024a), which is a model constructed to simulate the dynamic behavior
of the e-SMR process. Additionally, the LSTM-based RNN process model
is used as an initial condition estimator for the MPC controller, and also
as a predicting model in the MPC schemes to predict the flow rates
of hydrogen products within prediction horizons based on previously
known reaction states, which will be discussed in later chapters. In
this section, the architecture of an LSTM-based RNN process model is
discussed in detail in the following order: Section 3.1 describes the data
generation and preprocessing, Section 3.2 describes model construction
and hyperparameter tuning, Section 3.3 describes the model training
and evaluation process, and Section 3.4 describes the transfer learning
method.

3.1. Data generation and preprocessing

3.1.1. Data generation
In our previous study published in Çıtmacı et al. (2024a), a first-

principle-based process model was built based on chemical engineer-
ing fundamental principles that included a mole balance and energy
balance around a CSTR control volume. In this work, the first-principle-
based process model was used to simulate the real experimental process
in our MPC scheme. Thus, the data used to train, validate, and test
the RNN model is generated from the open-loop simulation using the
first-principle model. Specifically, the first-principle model generates
reaction states at each time step within a defined time interval, starting
from different initial conditions. Subsequently, the data is transformed
into the desired format to train the RNN model. To consider different
scenarios and improve the generalization of the model, a wide range
of initial conditions (10,000 initial conditions of 7 input variables:
concentrations of CH4, CO, CO2, H2O, H2, Ar, and the reactor tem-
perature (T)) are applied to the first-principle model to conduct the
open-loop simulations for twenty seconds. These results are collected
as the dynamic behavior of the simulated experimental process start-
ing at different initial conditions. Several limits and bounds for each
input variable were applied to the data generalization process to make
the 10,000 initial conditions conceptually reasonable according to the
understanding of the e-SMR process principles. For example, the ideal
gas law principle and its derivative correlation between the mole
fraction and the concentration of each chemical species involved in
the reactor are used to determine the initial concentrations of each
chemical species, as shown in Eq. (6) below:
𝑃

𝑅 ⋅ 𝑇
= 𝐶total (6a)
5

𝑖 = 𝐶total ⋅𝑋𝑖 where 𝑖 = CH4,CO,CO2,H2O,H2,Ar (6b)
∑

𝑋𝑖 = 1 where 𝑖 = CH4,CO,CO2,H2O,H2,Ar (6c)

where 𝑃 , 𝑛, and 𝑇 are the pressure, number of moles, and temperature
within the reactor. 𝐶 i is the concentration of the species 𝑖, and 𝑋i is the
mole fraction of the species 𝑖. The mole fraction of each species takes
value between 0 and 1. The initial conditions of the electric current are
24 and 31 A, and the initial temperature conditions are constrained
between 482 ◦C and 743 ◦C. According to Eq. (6), the sum of the
initial concentrations of each chemical species is equal to the total
concentration, which requires the sum of the fraction of each chemical
species to be 1 to obey the ideal gas law principle. Moreover, the first-
principle process model utilizes concentrations as variables whereas the
RNN model uses flow rates as variables. The RNN model is structured to
accommodate flow rate variables as both inputs and outputs, aligning
with the experimental process where flow rates serve as data points.
Additionally, the control system relies on species flow rate variables as
a control objective to achieve the system behavior. The first principle
model utilizes concentrations as variables because they are directly
involved in the mole balance equations, which are foundational for
constructing an accurate model. Thus, the concentration variables gen-
erated from the first-principle model are converted to flow rates before
being applied to the RNN model. This conversion from concentration
to flow rates involves another important factor that affects the quality
of training data for the RNN: the volumetric flow rate. The equation of
volumetric flow rate (𝑞) is as follows:

𝑞 =
𝐹𝑇 0 + 2𝑟1𝑊

𝑃
𝑅𝑇

+
𝑉𝑅
𝑇

d𝑇
d𝑡

(7)

where 𝐹𝑇 0 is the total inlet molar flow rate, 𝑟1 is the reaction rate of
Eq. (1a), 𝑉𝑅 is the reactor volume. The details of the equation can be
found in Cui et al. (2024). Utilizing this calculated q, the flow rate of
each species can be obtained by Eq. (8):

𝐹𝑖 = 𝑞𝐶𝑖 where 𝑖 = CH4,CO,CO2,H2O,H2,Ar (8)

where 𝐹𝑖 is the flow rate of species 𝑖. Based on the volumetric flow
rate equation (Eq. (7)), an additional condition requiring the calculated
volumetric flow rate to be positive is applied to the initial condition-
generating process. The open-loop simulation data-generation process
yields 200,000 data points of the flow rates of CH4, CO, CO2, H2O, H2,
Ar, reactor temperature, and electric current values.

3.1.2. Data preprocessing
For a sequential forecasting task, the data must be processed in the

model in batches rather than single sequences (Ren et al., 2022). The
sliding window technique is employed to separate and extract the RNN
input and output data from the 200,000 data points generated from the
first-principle model and arrange them into the desired dimensions for
the training process. The sliding function is a data processing technique
that is widely used for preprocessing time-dependent data sets. In our
case, the window size is 10, which is set to equal the time length
of the RNN input, and the step size is 1. Specifically, the sliding-
window technique is applied to the dataset by shifting a ten-second
time window one-time step at a time across the 200,000 data points
collected from the first-principle-based process model. The fixed time
window of ten seconds allows the sliding window technique to extract
the reaction states from 𝑖 seconds to 𝑖 + 9 s time step as a ten-second
scale RNN input data, and the reaction states at 𝑖 + 10 s time step as
a one-second scale output data, where 𝑖 ∈ {0, 1, 2, 3,… , 𝑛 − 11} for n
data. Through this approach, the data points are separated into the size
of (105, 10, 6) as an RNN input and (105, 1, 5) as an output, where
the first index refers to the number of ten-second scale RNN input
data sets generated using the sliding window technique, the second
index represents the size of the time window, and the third index
represents the number of RNN input/output variables. Following this

data arrangement, the model will learn to predict the state variables at
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the immediate time step based on the known data from the previous
ten seconds as the RNN input.

When constructing an RNN model, it is essential to separate the
dataset into training and testing sets. Additionally, a separate validation
set is recommended for tuning hyperparameters to optimize model
performance. In our study, the data is split into training, validation,
and testing datasets by the train-testing split technique. A split ratio of
70/15/15 gives the RNN model 70,000 training inputs/outputs to up-
date the weights and biases, 15,000 validation inputs/outputs to adjust
the hyperparameter of the model, and 15,000 testing inputs/outputs to
evaluate the model performance on unseen data. The data split helps
to prevent data leakage, which can occur when information outside of
the training data, such as mean or standard deviation, influences the
training process and eventually results in a false reflection of the model
performance on unseen data (Ren et al., 2022).

Data normalization is an essential preprocessing step that trans-
forms data to a reasonable scale, enhancing the quality of the training
process. Variations in the dataset can significantly disrupt the learning
process, leading to poor model performance due to exploding or van-
ishing gradients. Normalization mitigates these variations, stabilizing
gradients, improving model generalization, and increasing the conver-
gence rate during optimization. In our case, the dataset is normalized
using the Min–Max scaling method, which scales the data between 0
and 1 according to the following equation:

𝑧𝑛𝑜𝑟𝑚𝑎𝑙𝑧𝑖𝑒𝑑 =
𝑧 − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛
(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) + 𝑓𝑚𝑖𝑛 (9)

where 𝑧𝑚𝑎𝑥 is the maximum value within the dataset, 𝑧𝑚𝑖𝑛 is the
inimum value within the dataset, 𝑧 is the target data point, 𝑓𝑚𝑎𝑥 is

he user-defined maximum value of the data after scaling, and 𝑓𝑚𝑖𝑛
s the user-defined minimum value of the data after scaling. In our
ase, 𝑓𝑚𝑎𝑥 is 1 and 𝑓𝑚𝑖𝑛 is 0. The Min–Max scaler is fitted to the
raining dataset and subsequently applied to transform the training,
esting, and validation datasets. This process scales the original data
o a range between 0 and 1, eventually improving the training process
hile preserving the original data distribution.

emark 2. The data preprocessing process in our study remains simple
ue to the high quality of data generated by the validated first-principle
odel. In scenarios where a first-principle model is unavailable and
oisy experimental data must be utilized, additional data processing
echniques may be necessary to combat the noise and improve the
raining efficiency.

emark 3. It is important to point out that the available experimental
ata are insufficient for directly training an RNN model. Specifically,
he flow rates of the chemical species, which serve as the training data
or the RNN construction, are recorded only once every 18 minutes.
lthough polynomial functions are employed to estimate additional
ata points between these measurements, the resulting dataset remains
nsufficient compared to the extensive simulation data required to train
n RNN model accurately. Thus, the approach of using a first-principles
odel for parameter estimation and subsequently developing the RNN
odel in an MPC scheme is utilized to address the need for extensive
ata input in building the RNN model.

.2. Model construction and hyperparameter tuning

.2.1. Model structure
Depending on the complexity of the dynamic behavior of the process

o capture, different neural network models may be applied. Among
eural networks, the FNN model is the simplest neural network model
hat computes the weights and outputs of neurons by propagating
he information in one direction from input to output. The simple
earning algorithm and basic architecture make it easy to construct
nd implement FNNs; however, this type of neural network is limited
6

c

o capturing complex dynamic behavior involving ordinal datasets.
ompared to the FNN model, the RNN model computes the sequence
f hidden states and updates the weights by including time as an
dditional factor to account for the time-dependent property. In other
ords, the RNN model is considered a two-dimensional model that

ncludes time as an additional factor while the FNN model is one-
imensional (Ren et al., 2022). Like any other type of neural network
odel, the learning algorithm behind the RNN model consists of two

teps: the forward pass and the backward pass. In the forward pass, the
NN model regulates the flow of information between layers, between
ifferent time steps, and passes the information down to the output
ayer to make a final prediction. In the backward pass, the RNN model
ack propagates the difference between the predicted output and the
rue value of the target to update weight parameters. For this reason,
he RNN model has been a popular option to study time series data and
s also suitable for this study. However, as the sequence length of input
ata increases and the weight matrices become larger in the standard
NN model, the output may diverge, leading to either extremely large
gradient exploding) or small (gradient vanishing) gradient estimations
uring backpropagation. One solution to solve this issue is to truncate
he gradient at certain time steps to prevent large matrix computations
nd divergent eigenvalues, yet this may result in losing information
rom earlier steps (Ren et al., 2022). The LSTM-based RNN model is a
pecial type of RNN model that replaces the normal recurrent units with
STM units to solve the gradient vanishing/exploding issue by utilizing
n additional cell state and achieve better performance compared to
tandard RNN models (Çıtmacı et al., 2023). According to Zarzycki
nd Ławryńczuk (2021), the LSTM-based RNN model performed better
han a standard RNN model as a process model in the MPC scheme
o stimulate the experiment process. Thus, an LSTM-based RNN model
s used in our study to capture the nonlinear dynamic behavior of
he first-principle model. In this section, the construction, learning
lgorithm, and hyperparameter tuning of an LSTM-based RNN model
re explained.

The RNN process model used in our study is constructed by four
ayers: an input layer, an LSTM layer, an output layer, and a reshape
ayer, as shown in Fig. 2. The input layer serves as the entry of the RNN
odel, accepting sequential data in the form of time-dependent inputs.
he size of our input data is (10,6), representing six input variables
𝐼 , 𝑇 , 𝐹CH4

, 𝐹H2
, 𝐹CO2

, and 𝐹CO) over ten seconds. The LSTM layer is
omposed of 180 units to capture the long-term time dependencies of
he sequential data. The reason for using multiple LSTM units in our
tudy is to capture long-term data dependencies more effectively. Using
simple LSTM unit might result in under-fitting, providing insufficient

apacity to learn the complex patterns underlying the data. Thus,
sing multiple LSTM units helps prevent under-fitting during model
raining, thereby improving overall model performance and achieving
more accurate simulation of the process dynamics. The selection of

he number of neurons will be discussed in detail in Section 3.2.2.
fter the LSTM layer, the dense layer receives all the active neurons

rom the output of the LSTM layer and transforms them into the final
utputs. Eventually, the reshape layer transforms the final output into
he desired data size (1,5), representing five output variables including
, 𝐹CH4

, 𝐹H2
, 𝐹CO2

, and 𝐹CO at one-time step.
Among these layers, the LSTM layer is the key factor in captur-

ng the time-dependent data pattern (Luo et al., 2023). LSTM units
re designed to overcome the limitations of traditional RNN models,
uch as the vanishing and exploding gradient problems (Hochreiter
nd Schmidhuber, 1997). Compared to the basic recurrent units, the
STM unit uses an additional memory cell state, a candidate cell state,
nd a gate mechanism involving three gates (forget gate, input gate,
nd output gate) to control the flow of information and update the
arameters between different time steps (Wu et al., 2019b). A structure
iagram of the LSTM unit showing the correlation between states and
ates can be seen in Fig. 3. In the LSTM unit, the memory cell state and

andidate cell state help to save the relevant information and allow the
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Fig. 2. The structure of the RNN model.
LSTM layers to learn long short-term dependencies in sequential data
more efficiently than traditional recurrent units. The gate mechanism
involving the forget, input and output gate is also crucial in the LSTM
unit to determine the extent of the information to memory or discard.
According to Fig. 3, the 𝐶 𝑙

𝑡−1 and 𝐻 𝑙
𝑡−1 are the memory cell state

and hidden state from the previous time step, 𝑋𝑡, 𝐶 𝑙
𝑡 and 𝐻 𝑙

𝑡 are the
input, cell state, and hidden state at the current time step. For a better
understanding of concepts, the math expression of the memory cell
state 𝐶 t, candidate cell state, and hidden state of the LSTM unit can
be shown as follows:

𝐶̂𝑡 = tanh(𝑋𝑡𝑊𝑥 +𝐻 𝑙
𝑡−1𝑊ℎ + 𝑏𝑐 ) (10a)

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̂𝑡 (10b)

𝐻𝑡 = 𝑜𝑡 ⋅ tanh(𝐶𝑡) (10c)

where 𝑊𝑐 and 𝑏𝑐 are the weight matrix and the bias term of the can-
didate cell state. Based on Fig. 3 and Eq. (10), the candidate cell state
𝐶̂𝑡 is determined by applying a hyperbolic tangent activation function
(tanh) to the weighted sum of the RNN input vector at current time
step 𝑋𝑡, the hidden state at previous time step 𝐻𝑡−1 and the candidate
cell-corresponded biased term 𝑏𝑐 . The cell state at the current time
steps 𝐶𝑡 is computed based on the cell state at the previous time step
𝐶𝑡−1 and 𝐶̂𝑡, which is the candidate cell state at the current time step.
Additionally, 𝑓𝑡 is the forget gate, and 𝑖𝑡 is the input gate. The hidden
state at the current time step 𝐻𝑡 is computed based on the current cell
state 𝐶𝑡 and 𝑜𝑡 output gate. The hyperbolic tangent activation function
used to compute the candidate cell state and hidden state will return a
value between −1 and 1, which helps to stabilize the training process
and also captures both positive (increasing) and negative (decreasing)
changes from the current RNN input and previous hidden states. Unlike
the cell states and hidden states, math formulations of the forget, input,
and output gates use a sigmoid activation and incorporate the current
RNN input vector and previous hidden states according to the equation:

𝑓𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑓 +𝐻 𝑙
𝑡−1𝑊ℎ𝑓 + 𝑏𝑓 ) (11a)

𝑖𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑖 +𝐻 𝑙
𝑡−1𝑊ℎ𝑖 + 𝑏𝑖) (11b)

𝑜𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑜 +𝐻 𝑙
𝑡−1𝑊ℎ𝑜 + 𝑏𝑜) (11c)

where 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the forget gate, input gate, and output gate.
According to Fig. 3 and Eq. (11), the forget gate is determined by
7

the weighted sum of the current input vector 𝑋t and previous hidden
states 𝐻 t–1, where each is multiplied by their corresponding weight
parameters 𝑊 i, and is supplemented by the bias term 𝑏i, then passed
through a sigmoid activation function, which eventually returns a value
between 0 and 1. The forget gate determines how much information
is kept or discarded from the previous cell state. The input gate and
output gate share the same math formulation as the forget gate which
involves the current RNN input vector, previous hidden states, corre-
sponding weights, and biases. Different from the forget gate, the input
gate decides how much new information from the current candidate
cell state should be added to the cell state, whereas the output gate
decides how much of the information restored in the cell state should
be passed to the next hidden states. Depending on the value returned by
the sigmoid function, each gate decides how much of the information
will be discarded or passed down, where 0 indicates all the information
will be discarded and 1 means all the information will be kept and
passed to the next step.

Remark 4. In our study, a simple RNN structure with one LSTM layer
is used to adequately capture the relatively simple behavior of the
process. Typically, the number of layers required in an RNN depends on
the complexity of the target process. For a more complex process, more
than one layer might be necessary to accurately capture the underlying
dynamics. While increasing the number of layers can improve the
model performance based on large datasets, it also raises the risk of
over-fitting, where the model learns the training data too well and
performs poorly on new data. Using fewer layers, on the other hand,
may result in poor model performance which is incapable of capturing
the actual correlation between data points. Thus, finding the optimal
balance in the number of layers is crucial for achieving strong model
performance and preventing over-fitting.

Remark 5. The dropout layer, which randomly deactivates neurons to
improve model performance on unseen data, is a common regulariza-
tion technique to prevent over-fitting (Srivastava et al., 2014). In our
study, various RNN models were tested with different dropout rates.
The best model performance was observed with a dropout rate of zero,
resulting in a loss function error at the scale of 10−8. This minimal
error suggests that the model learns more effectively without dropout.
Therefore, the dropout layer was not utilized in our model. In scenarios
where there are high levels of data noise, the dropout layer may be
crucial to be utilized in the model.
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Fig. 3. The structure of an LSTM unit.
3.2.2. Hyperparameter tuning
Hyperparameter tuning is another important step in constructing

the architecture of the RNN model. Hyperparameters are the parameter
settings defined by users in the machine learning model. For example,
the number of layers, neurons, epochs, type of optimizer, batch size,
and many other parameters are used to build the model. Searching for
the optimal hyperparameter is crucial in improving the model perfor-
mance. Common methods for hyperparameter tuning include random
search, grid search, Bayesian optimization, etc. (Feurer and Hutter,
2019). Grid search and random search are two common hyperparame-
ter tuning approaches. Grid search finds the optimal hyperparameter
by evaluating the model performance based on all combinations of
possible hyperparameters within a user-defined region and saving the
one with the best performance. Random search, on the other hand,
evaluates the model based on a few randomly selected combinations
of hyperparameters. According to Bergstra and Bengio (2012), random
search is more efficient than grid search because it prioritizes tuning
hyperparameters that have a greater impact on model performance,
optimizing the search process by focusing on key parameters rather
than all possible combinations. Thus, the random search method is used
to determine the number of parameters in this study due to the advan-
tage of its lower computational power demands and higher efficiency
compared to other methods. In this section, various hyperparameters
and their approach are discussed.

The number of neurons is critical in determining the learning ca-
pacity and complexity of the model, where more neurons yield a model
that can capture more complex processes, yet require more computa-
tional time and power and also may encounter the issue of vanishing
gradient (Ren et al., 2022). Conversely, fewer neurons simplify the
model, requiring less computation yet possibly limiting its ability to
capture complex patterns. In the LSTM layer, 180 neurons are used
to capture the time dependencies of the data, which is determined by
the random search method. According to Table 1, models containing
64, 128, 180, and 200 neurons are constructed, and the mean squared
error (MSE) of training and testing data are compared. The model with
the smallest training and testing MSE (3.39 × 10−8 and 3.74 × 10−8,
respectively) is found with 180 neurons, which is decided to be the
optimal unit number used in the LSTM layer in our model.

In the output layer, six dense units are used corresponding to the
number of output variables. The hyperbolic tangent is used as the
activation function in the LSTM layer to regulate the cell state updates.
The sigmoid activation function is used as the activation function in
8

Table 1
Testing and training MSE for different neurons.

Number of
neurons

Training mean
squared error

Validation mean
squared Error

64 1.62 × 10−7 1.69 × 10−7

128 4.59 × 10−8 4.89 × 10−8

180 3.39 × 10−8 3.74 × 10−8

200 4.53 × 10−8 5.10 × 10−8

the dense layer to interpret the RNN input in terms of probability,
and eventually transform the probability into meaningful output. The
number of epochs used in the RNN model refers to the number of iter-
ations of a complete training process through the entire data set. One
epoch indicates the model has learned every training data point one
time. The model can be evaluated through epochs based on validation
loss, or MSE value, to determine whether the model is still improving.
Since the EarlyStop function is used in our model, the learning process
will end early when the training MSE stops improving for 15 epochs.
In our case, the maximum number of epochs used is 100. The batch
size refers to the number of data samples processed by RNN to make
predictions and update weights in one forward and backward pass of
the model. Typically, a small batch size provides more frequent updates
to the weights but results in noisier gradient estimates. In contrast, a
large batch size updates the weights less frequently but yields more
accurate gradient estimates. In our case, the default batch size for
TensorFlow/Keras (32 samples) is used. The number of layers, neurons,
mini-batch, and epochs are determined by the random search method.

The optimizer plays an important role in the model structure as
a hyperparameter. It updates the weights in the neural network to
minimize the value of the loss function in the training process. Common
optimizers include stochastic gradient descent (SGD), RMSprop, and
Adam (Ren et al., 2022). Adam optimizer is a type of optimizer that
combines the advantages of SGD and RMSprop optimizer, enabling it
to adapt the learning rate for different parameters based on the gradi-
ent and also momentum to smooth the optimization process (Kingma
and Ba, 2014). Thus, Adam optimizes the process more robustly and
efficiently compared to other optimization methods. In our study, we
used the Adam optimizer, shown in the equation form:

𝑚𝑡 = 𝛽𝑚𝑡−1 + (1 − 𝛽)∇𝐸 (12a)

𝜈 = 𝛾𝜈 + (1 − 𝛾)∇2𝐸 (12b)
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𝜔 = 𝜔 − 𝛼
√

𝜈 + 𝜖
𝑚 (12c)

where 𝜔 is the weight, 𝜈 is the velocity term, m is the momentum of the
gradient, 𝛾 and 𝛽 are the hyperparameters of the momentum and decay
rate, 𝜖 is a coefficient (10−8), 𝛼 is the learning rate, and 𝐸 is the cost
function. According to equation Eq. (12), the momentum improves the
convergence rate in the learning process by accelerating the gradient
vector in the correct direction based on the past gradients. The velocity
term introduces the ability of the adaptive learning rate to adjust the
weight-updating process according to the magnitude of the gradient by
incorporating a squared gradient. Thus, the Adam optimizer can find
the optimal learning rate according to past gradient estimation while
conducting a faster convergence.

Remark 6. The learning rate refers to the step size to update the
weights in the direction of gradients in each epoch during optimization.
A small learning rate will slow the convergence process, while a large
learning rate might skip the optimal points. Therefore, Adam optimizer
can be a good option to find the optimal learning rate based on past
gradient estimation which is affected by the batch size, due to its
adaptive learning rate characteristic.

3.3. Model training and evaluation process

After preprocessing the data and determining the right model ar-
chitecture, the training process of the RNN model proceeds to learn
the underlying pattern of the training data. As previously mentioned,
the RNN model captures the information from training data and passes
them down layer by layer to make the predictions in the forward pass
and update the weights to minimize the error in the backward pass dur-
ing the training process. With the validation data used in the training
process, the model performance on the unseen data can be monitored
during the training process. This validation data evaluation can help
to determine whether the model is over-fit or under-fit based on the
validation loss, which can also guide the adjustment of the hyperpa-
rameters. In the training process, we used 70,000 input/output, 15,000
input/output, and 15,000 input/output as training data, validation
data, and testing data, respectively.

To evaluate the model performance and guide the weight updating
in the training process, the loss function is applied in the RNN model
to determine the error of the training model in terms of the average
squared difference between the model predictions and actual results.
During the training process, the loss function is minimized to improve
the model accuracy by updating the weights in the opposite direction
of the gradient in the backpropagation step. The common types of loss
functions are mean absolute error (MAE), mean squared logarithmic
error (MSLE), and mean square error (MSE) (Ren et al., 2022). In our
model, the MSE loss function is used to evaluate and improve model
performance based on training and validation data, where the MSE loss
function could be shown in the equation:

𝑀𝑆𝐸 = 1
𝑁𝑡

𝑁𝑡
∑

𝑖=1

(

𝑦(𝑖) − 𝑦̂(𝑖)
)2 (13)

here 𝑁𝑡 is the number of the training data, 𝑦(𝑖) is the value of the
raining data, and 𝑦̂(𝑖) is the predicted value of the training data. MSE
s a common type of loss function for regression tasks. Like other loss
unctions, the MSE loss function computes the difference between the
redicted value and the actual value in the forward pass and minimizes
he difference by adjusting the weights according to the gradient of the
oss function in the backward pass.

During the training process, the training MSE loss decreases as
ore epochs pass. The MSE loss function also plays an important role

n solving over-fitting and saving the best model by incorporating
arlyStopping and ModelCheckpoint functionalities. The over-fitting is-
ue occurs when the training MSE loss decreases yet the validation MSE
9

loss increases during the training process, indicating poor model perfor-
mance on unseen data. EarlyStopping is a technique that monitors the
validation MSE as a metric and stops the training process once it does
not improve. Our training process stopped at 77 epochs, with no MSE
loss improvement from the previous 15 epochs. ModelCheckpoint is a
technique that records the model during the training process and saves
the best model based on metrics. In our case, the ModelCheckpoint
saves the best model after the MSE validation loss ceases to improve.

To prevent over-fitting, 𝐿1 and 𝐿2 regularization techniques are
commonly applied in training neural network models (Salehin and
Kang, 2023). Both 𝐿1 and 𝐿2 techniques effectively solve the over-
fitting issue by applying different 𝐿𝑝 norms to penalize the cost function
and reduce the large weight parameter. 𝐿1 regularization typically
eliminates very small weights making the weight matrix more sparse,
while 𝐿2 regularization adds a penalty term to the cost function to
prevent large weights (outliers) from dominating (Ren et al., 2022).
𝐿2 regularization is typically more effective with larger datasets, main-
taining model complexity and improving generalization without elim-
inating any values. In our study, we applied various 𝐿2 parameters
within the LSTM layer using a random search method to evaluate
its effectiveness. The best model performance is achieved with a 𝐿2
regularization parameter set to 0, indicating a sufficient model per-
formance without the need for additional regularization in our study.
This outcome is attributed to the high quality and abundance of data
in our training process. In scenarios where data is limited in amounts
and highly affected by noise, additional regularization techniques may
be considered to prevent over-fitting.

The training and validation MSE are 3.39 × 10−8 and 3.74 × 10−8,
respectively. The similarity between the tiny errors of training and
testing data exhibits the successful training process and good model
performance on the unseen data. More testing data for each RNN
input variable (𝐼 , 𝑇 , 𝐹CH4

, 𝐹H2
, 𝐹CO2

, and 𝐹CO) generated in open-loop
simulations using the first-principle model to build step change, ramp
change, and sinusoidal data trends, are employed to further evaluate
the model performance. The comparisons between the RNN and first-
principle predictions in a closed-loop simulation are shown in Figs. 4
and 5. In the beginning, the RNN model is initiated by the testing data.
For each time step, the flow rate of each gas species and temperature
obtained from the RNN output is fed back to the RNN model. The
electric current is updated using the testing data at each time step.
In Figs. 4 and 5, the RNN model is evaluated based on step change,
ramp change trends, and sinusoidal type data. The close alignment
between the RNN predictions and the reference value illustrates the
high accuracy of the model. Small differences between RNN predictions
and first-principle predictions can be observed at step changes in Fig. 4.
For a step change, the first-principle prediction reaches the steady state
immediately, whereas the RNN prediction takes longer to reach the
steady-state conditions. The discrepancy between the RNN and first-
principle model predictions arises from the designated input shape
of the RNN model and the approach of data extraction in the data
preprocessing process. Since RNN and first-principle predictions closely
align, with small averaged relative errors (0.32% for Fig. 4 and 1.05%
for Fig. 5), the difference in the model errors is negligible.

To test the feasibility of this RNN model in the MPC scheme, the
prediction of the RNN was compared to the first-principle model in a
scenario of the MPC scheme. In Fig. 6, the RNN predictions of each
output variable are compared to the first-principle predictions within
two prediction horizons with a 5-s sampling time to align with the
scope and duration of the control actions in our MPC scheme. Also, the
electric current in the RNN input is increased by 0.01 A (maximum limit
change per control action) at the beginning of the second prediction
horizon to simulate the condition of the electric current as a control
variable in our MPC scheme. Based on Fig. 6, the comparisons of the
flow rates of CH4, H2, CO2, CO, and temperature are made between
two models. The close alignments between the RNN predictions and

the first-principle predictions demonstrate the reliability of the RNN



Digital Chemical Engineering 12 (2024) 100173

10

Y. Wang et al.

Fig. 4. RNN model predictions of the flow rates of CH4, H2O, H2, CO and temperature compared to first-principle model predictions based on step change and ramp change
reference data.
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Fig. 5. RNN model predictions of the concentrations of CH4, H2O, H2, CO and temperature compared to first-principle model predictions based on sinusoidal reference data.
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Fig. 6. Comparison between RNN model and first-principles model predictions across two model predictive control horizons, spanning a total of 10 s with distinct control actions
mplemented in each 5-s interval.
odel to be utilized in MPC. Moreover, both RNN and first-principle
redictions slightly increase at the beginning of the second horizon (at
s), in response to the electric current increase. However, it should

e noted that the maximum difference occurs at the beginning of
ach horizon, which is noticeably observed at 𝑡 = 0 s and 𝑡 = 5 s

in the figures of hydrogen flow rate and temperature. This difference
gradually reduces over time as the RNN predictions converge to the
first-principle predictions at the end of each horizon. This observation
shows a similarity to the variations between RNN and first-principle
model observed in Figs. 4 and 5 when the electric current undergoes
a step change, confirming that our RNN model takes a slightly longer
lag to response compared to the first-principle model with the electric
current change. Nevertheless, the difference between the predictions
of the two models is sufficiently small (within an average relative error
of 0.3%) and can be considered insignificant. To evaluate the gener-
alization capability of the RNN model, five different initial conditions
are applied to the scenario. Table 2 presents the average relative errors
of the five output variables for the RNN. The small average relative
error for all five initial conditions demonstrates the good generalization
capability of our RNN model. Overall, the results demonstrate the
accuracy of the RNN model, indicating its learning capacity to fully
capture the underlying pattern of the data and the validation of using
the RNN model to predict the system behavior and aim control actions
12

in the MPC scheme.
Table 2
Average relative errors of 𝐹CH4

, 𝐹H2
, 𝐹CO2

, 𝐹CO, and 𝑇 started at different initial
conditions.

Initial conditions Average relative error (%)

Initial condition 1 0.216
Initial condition 2 0.219
Initial condition 3 0.163
Initial condition 4 0.209
Initial condition 5 0.188

3.4. Transfer learning method

After the training and evaluation process, the predictions of the
LSTM-based RNN model and the first-principle process model exhibit
close correspondence according to the small MSE value determined
based on training and testing data, indicating the accuracy of the RNN
model in capturing the dynamic behavior of the first-principle model.
However, the discrepancies between the true experiment results and the
first-principle model predictions can be observed due to several factors,
including simplifications and assumptions made in the mathematical
formulations of the first-principle model, or unknown phenomena of
the real experiment. Ideally, an RNN model should be built using
real experimental data to capture the actual process behavior, yet the

amount of experimental data is insufficient to build an RNN model
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most of the time. The transfer learning method is an approach used
in machine-learning modeling that utilizes prior knowledge from a
pre-trained model and combines it with new, albeit limited, data to
train a new model. Thus, the transfer learning method is employed to
refine the pre-trained RNN model with limited new data and align the
model predictions closer with the actual experiment results. The com-
mon application of the transfer learning method is to improve model
performance in detecting operational faults of industrial processes,
particularly in multimode chemical processes where the experiment
results and the number of available data points vary for different initial
conditions (Wu and Zhao, 2020; Zhou et al., 2023). The utilization
of the transfer learning method requires the new target process to
share similar configurations with the process captured by the pre-
trained model. By transferring the prior knowledge from the pre-trained
model, the transfer learning method can generalize the model and
achieve new tasks while saving training time. In this study, the transfer
learning method is used in the real-time online retraining MPC scheme
to reduce the discrepancies between the predictions of the RNN model
and actual experiment results. In this section, the transfer learning
method is conducted on the pre-trained RNN model with a small set
of experimental data to ensure its effectiveness in the real-time online
retraining MPC scheme.

In the transfer learning method, the weight initialization is an im-
portant step to utilize the prior information by initializing the weights
and biases of the new model using the weights and biases of the
pre-trained model (Yosinski et al., 2014). If the number of the state
variables or control variables changes in the new model, the weights
of the pre-trained model need to be modified before being used to
initialize the parameters of the new model. In such cases, new fully-
connected layers need to be added before and after the input and
output layers to adapt to the new data dimensions. In our objective, the
transfer learning method is used to compensate for the disturbance that
caused the unexpected discrepancies between the pre-trained model
and the real process. Thus, the dimensions of the input and output of
the new model are the same as the pre-trained model, meaning the
weights of the pre-trained model can be used without further modi-
fications (Alhajeri et al., 2024). In the transfer learning process, the
pre-trained RNN model is fine-tuned with experimental data directly,
without adding new layers. Over 30,000 experimental data points,
which are generated by the first-principle model including disturbance,
are used for fine-tuning the new model with a learning rate of 10−6.
All the hyperparameters remained the same as the pre-trained RNN
model. After the fine-tuning process, the result is shown in Fig. 7,
where the predictions of the transfer learning-based RNN model are
compared to those from the pre-trained RNN model, and the simulation
results under disturbances. According to Figs. 7(a) to 7(d), the flow
rates of each chemical species predicted by the transfer learning-based
RNN model show closer modeling of the simulation results under
disturbances compared to the pre-trained model predictions, indicating
the transfer learning-based RNN model effectively captures the process
behavior. In Figs. 7(e) and 7(f), the temperature predictions also show
a better correspondence to the target values compared the pre-trained
model predictions at the final steady state. This result validates the
effectiveness of the transfer learning method in solving the disturbance
encountered in our case.

Remark 7. When additional state and control variables are taken into
account in the new task, new fully connected layers are added before
and after the input and output layers of the pre-trained model to create
a new model that adopts the new variable dimension. Typically, the
procedure of the transfer-learning method starts with only training the
newly added layers by setting the pre-trained layers to non-trainable.
This step saves the prior information of the pre-trained model in the
new model while introducing the new data trends into the newly added
layers. Subsequently, the fine-tuning process further trains the new
13

model by setting the pre-trained layers to be trainable and the newly
added layers to be non-trainable. To prevent dramatically losing the
prior information from the pre-trained layers, the learning rate used in
the fine-tuning process is tuned to be small, typically 10−5 (Gulli and
Pal, 2017). As mentioned in previous sections, a small learning rate
causes a slow convergence rate and eventually results in a long period
of the training process. Therefore, small experiment data sets are used
to fine-tune the pre-trained layers.

4. Recurrent neural network model-based predictive control

In this section, an RNN-based model predictive controller is specif-
ically designed to regulate the H2 production rate by adjusting the
electric current input through the DC power supply. A method to ad-
dress the challenges of infrequent and delayed measurement feedback
is developed. The performance of this model predictive control strategy
is then evaluated by comparing it to a PI controller.

The mathematical formulation of MPC is shown in Eq. (2). Specifi-
cally, derivation forms of flow rates of CH4, CO, H2, and CO2 measured
by the GC, and the average reactor temperature measured by a TC are
set as the vector of state variables, represented as 𝒙. The manipulated
electric current with derivation form actuated by DC power is the
control action represented as 𝑢. This MPC is designed with predictions
of two horizons, each lasting 5 s. In each horizon, the RNN predicts the
vector of state variables based on the previous vector of state values
and control actions. 𝑦 is the process output target with deviation form
required to be controlled, which is the vector of H2 production rate.
𝑢 and 𝑦 are scalars instead of vectors since 𝑢 and 𝑦 only refer to one
element for each.

As discussed in Section 1, catalyst sintering is a common phe-
nomenon in an e-SMR process with a Ni-based catalyst. This issue is
accelerated by higher reactor temperature change rates. Therefore, it
is crucial to set a limit to the reactor temperature. According to Cui
et al. (2024), the corresponding electric current constraint is defined in
Eq. (2f), where 𝑢𝑐 is set to 0.01 A per control action interval, to restrict
the temperature change rate not exceeding 6 ◦C/min. Eq. (2g) ensures
that the electric current magnitude is larger than 0 A and smaller than
40 A, maintaining the feasibility of the operational electric current
range and ensuring the safe working of the entire system. Based on
the constraint and bound, the optimization problem is conducted to
minimize the difference between the H2 production rate and electric
current with their corresponding setpoints within receding horizons
(Eq. (2d)).

This optimization problem is solved by sequential quadratic pro-
gramming (SQP), a type of optimization technique widely used for
solving constrained non-linear optimization problems. By using the SQP
method, the original non-linear optimization problem is transformed
into a series of quadratic programming sub-problems. The constraints
are linearized at each iteration. By solving these new convex quadratic
programming sub-problems with linearized constraints in each itera-
tion, the search direction is determined. This search direction is then
used to update the solution estimates, which progressively lead to the
optimal solution. Due to its strong local convergence properties, SQP
can accurately approximate the optimal solution with high efficiency,
especially when provided with good initial guesses. Thus, the SQP is
a good option for saving computational time in solving optimization
problems that have well-defined constraints and a reasonable initial
guess. In particular, a 5-s control time interval is selected to ensure the
optimization process completes before the subsequent control action
calculation.

To implement this designed controller in regulating H2 production
rate for an e-SMR process, a close-loop MPC scheme is developed,
which is illustrated in Fig. 8. The electric current (𝐼𝑚𝑝𝑐) computed
by the RNN-based model predictive controller is implemented in the
actual process, with the resulting behavior detected by the GC and
TC. In the simulation, the real process is modeled using the lumped

parameter-based dynamic model described in 2.2. Given an 18-min
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Fig. 7. Impact of the transfer learning method on a reference RNN model for capturing real experimental trends, with the flow rates of CH4, H2O, H2, CO and temperature as
he output variables.
ampling interval of the GC, frequent species flow rate feedback from
he measurement cannot be provided to the MPC. Therefore, the RNN
s employed to estimate flow rates every second, based on the same
mplemented control action (𝐼𝑚𝑝𝑐). For each second, the flow rate
redictions are based on the flow rates of CH4, CO, H2, and CO2
rom previous RNN estimations, and reactor temperature values are
xtracted from the TC, which has a sampling time of 1 s. These
stimated flow rates incorporated with the temperature measurements
rom TC serve as feedback information for the MPC. The simulated
low rate measurement data from the GC are utilized to correct the
NN estimation and feedback to MPC. However, the input of the RNN
equires data per second, while the measurement data is reported only
nce every 18 min.

To address this issue, the flow rate data between each discrete
easurement point (18 min) is estimated on a per-second basis, lever-

ging the temperature measurements recorded at each second. This
stimation is determined based on the strong correlation between the
ehaviors of all flow rates and the reactor temperature at each time
14
interval. Given the rapid dynamics of the designed e-SMR process
according to Çıtmacı et al. (2024a) and Cui et al. (2024), the flow
rates quickly reach a steady state corresponding to the new temperature
value whenever the temperature changes, which indicates a strong
correlation between temperature and flow rates and demonstrates that
temperature can be used to estimate flow rates accurately. In de-
tail, a polynomial regression method is utilized and conducted by the
following steps (Saini et al., 2021):

• Data preparation: The GC measurement data obtained every
18 min are collected in a dataset. Additionally, the correspond-
ing reactor temperature values for each GC measurement are
also recorded, considering a 15-min time delay. Consequently,
the dataset containing all simulated GC measurements and the
dataset containing their corresponding reactor temperatures are
established. To ensure the accuracy of the polynomial regression,
the data generation process is triggered when the number of GC
collection times exceeds three.



Digital Chemical Engineering 12 (2024) 100173Y. Wang et al.

F
o
r
R
s
c
r
f
c
a
m
u
i
s
c

c
s
T
S
t
c
s
t
t
b
F
f
f
c
s

Fig. 8. Closed-loop RNN-based model predictive control scheme to regulate the H2 production rate for the e-SMR process.
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• Feature engineering: Feature engineering is the process of cre-
ating new features or transforming existing features to improve
the performance of fitting. Specifically, the reactor temperature
values are transformed to the third-order polynomial. This third-
order polynomial is selected according to the complexity of the
system.

• Linear regression: After transforming the feature, a linear regres-
sion method is employed to predict the trend of H2 production
rate behavior concerning the variations in the transformed tem-
perature values. The prediction of this trend will certainly be
more accurate if more GC data are collected and utilized.

• Data generation: Based on the linear relationship observed be-
tween the featured temperature and H2 production rate, and
real-time temperature data captured every second across three
consecutive GC datasets, the H2 production rate is computed for
each interpolated data point. This computation results in a total
of 1080 data points for flow rates of each gas species.

ollowing these steps, the pre-trained RNN model utilized in MPC
ptimization problem and in the initial condition estimations will be
eplaced by the retrained RNN. Additionally, based on this retrained
NN, flow rates of all gas species per second can be estimated. Con-
idering the time delay, the RNN input at the time step of 15 min ago
an be obtained by combining the last 10 consecutive estimated flow
ates of all gas species (10 consecutive seconds) from the polynomial
unction results with the 10 temperature measurements and 10 electric
urrents from the same time step (10 consecutive seconds 15 min
go). The retrained RNN model subsequently simulates forward in 15-
in intervals, using these data as the initial condition, continuously
pdating its predictions by feeding its output back into the input until
t reaches the present time step. These predictions at the current time
tep are further utilized as the corrected MPC initial conditions and
orrected RNN input

To evaluate the performance of the RNN-based model predictive
ontroller, the MPC is executed over 120 min, with the control action
tarting at 2 min. The setpoint for the H2 production rate is 120 SCCM.
he initial conditions for the RNN model are 25.0 A, 514 ◦C, 30.2
CCM, 2.12 SCMM, 52.8 SCMM, and 7.18 SCMM, corresponding to
he six input variables (𝐼 , 𝑇 , 𝐹CH4

, 𝐹CO2
, 𝐹H2

, and 𝐹CO). The initial
onditions of flow rates and temperature are defined by the steady-
tate value collected when 25.0 A of electric current is applied to
he simulated real process. The MPC result is shown in Fig. 9, where
he flow rates of CH4, CO2, H2, CO, and temperature are compared
etween the experiment results and RNN predictions. According to
ig. 9, the H2 production flow rates of both RNN predictions and results
rom the simulated real-process initially maintain a steady state value
or a brief period before gradually increasing towards the setpoint,
orresponding to the time interval before the control action starts. Sub-
15

equently, the H2 production rates and temperature gradually increase,
hich is consistent with our specified constraint on the electric current
hanges between consecutive control actions. At the settling time of
3.4 min, the H2 production flow rates reached the setpoint within
% offset. The difference in H2 production rates between the RNN
redictions and simulated real-process at the final steady state is 0.02
CCM, representing a 0.02% deviation from the experiment results.
verall, the RNN predictions strongly agree with the simulated real-
rocess, with the largest variation being 0.374 SCCM, which exhibits
utstanding model performance. Consequently, the effectiveness of the
ontrol actions demonstrated in the MPC results validates the accuracy
f the RNN model, and also its suitability for implementation in the
PC scheme to achieve the desired control results.

The PI controller was implemented to provide a comparison with
he MPC scheme. It incorporates a combination of proportional and
ntegral control terms, according to the equation:

= 𝐾𝑐 ⋅
[

(

𝑦𝑠𝑝 − 𝑦̃
)

− 1
𝜏𝐼

⋅ ∫

𝑡

0

(

𝑦𝑠𝑝 − 𝑦̃
)

d𝑡
]

(14a)

𝐼 = 𝑢 + 𝐼𝑠𝑝 (14b)

𝑦𝑠𝑝 = 𝐹H2 , 𝑠𝑝 − 𝐹H2,𝑠
(14c)

̃ = 𝐹H2
− 𝐹H2,𝑠

(14d)

A < 𝐼 < 40 A (14e)

here 𝑢 is the deviation form of the manipulated control input (𝐼−𝐼𝑠𝑝),
̃ is the deviation form of the measured target output, and 𝑦𝑠𝑝 is the
eviation form of the setpoint. 𝐾𝑐 and 𝜏𝑖 are the gain and integral
ime constant, respectively. 𝐹𝐻2,𝑠

and 𝐼𝑠 are the initial steady state
alue of the H2 production rate and electric current, respectively. The
roportional term adjusts the measured output concerning the error
ignal, while the integral term reduces the error of the output by
ccumulating the past error. The integral time constant 𝜏𝐼 and gain
𝑐 are tuned to be 80 s and 0.0014 A/SCCM to drive the hydrogen
roduction rate to the setpoint without overshooting. This PI controller
arameter settings also ensure the quick response of electric current
hile satisfying the constraint on temperature change rate that remains
elow 6 ◦C/min. The comparison between the PI and MPC process
ehavior is shown in Fig. 10, where electric currents and H2 production
ates of two control strategies are compared. The H2 production rates
f both control strategies reached the setpoint. However, the MPC took
settling time of 33.4 min to reach the setpoint, while the PI controller

ook 122 min, which shows the higher efficiency of the MPC strategy.
dditionally, the MPC offers the advantage of ensuring the electric
urrent constraint for each control step, as this constraint is integrated
nto the optimization problem (Eq. (2f)), while there is no guarantee
hat each step of the PI control will satisfy the electric current or
emperature change constraints.

To test the reliability of the polynomial regression method used
or data generation, the flow rate data, generated using polynomial
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Fig. 9. Setpoint tracking control of the H2 production rate with an RNN-based model predictive controller for the e-SMR process.

Fig. 10. Current and H2 production rate behaviors under PI control and MPC for the e-SMR process.
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Fig. 11. Comparison between the generated data from polynomial regression and simulated measurement data for all gas species. Measurement data used for data generation are
he first 3 simulated GC data points during the MPC run.
egression from the first three consecutive simulated measurement
atasets during the MPC simulation, is compared with simulated real
alues for each second in Fig. 11, where the flow rates of CH4, CO,

H2, and CO2 are analyzed. The discrepancies between the generated
ata and the simulated real-process data are 0.585%, 1.14%, 0.671%,
nd 0.815% for CH4, CO, H2, and CO2, respectively. These results

demonstrate the reliability of the polynomial regression method, as
evidenced by the close alignment between the generated data and the
simulated real-process data.

Remark 8. To address the possibility that the optimizer might not
obtain the optimal electric current value within 5 s in real time, a
proportional controller is designed to serve as a backup controller.

Remark 9. Polynomial regression relies on three consecutive simulated
GC measurements: the latest GC measurement combined with the two
preceding ones. Consequently, both data generation and correction esti-
mation via RNN can only proceed when a minimum of three simulated
GC measurements are available.

Remark 10. In practical settings, noise commonly arises from fluctua-
17

tions in the processing system or inherent variability properties of the
sensors, affecting the accuracy of measurement feedback information.
Such variations lead to the generation of noisy signals fed to the
controller, potentially resulting in inaccurate control actions. More-
over, measurement noise adversely impacts the data utilized for the
online retraining of the RNN, posing additional challenges in real-world
applications. Given our experience with the experimental electrified
SMR process at UCLA, noise in the measurements has not been signif-
icant enough to influence the stability and performance of the control
systems used.

5. Disturbance compensation

In this section, a common disturbance for the real e-SMR process
is considered, resulting in a mismatch between the real process and
the RNN model. To address this issue, various approaches for handling
model inaccuracy in the presence of disturbances are explored. Each
method is applied, and their respective outcomes are analyzed.

5.1. Model predictive control under disturbance

For the e-SMR process, a key challenge is catalyst deactivation

(Saeidi et al., 2023). Zhang et al. (2021b) stated that the main causes
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of catalyst deactivation are coking and sintering, leading to a reduced
ability of the catalyst to effectively lower the activation energies of the
SMR and WGS reactions. Consequently, higher activation energies for
SMR reactions (Eq. (1)) are considered as a disturbance for the e-SMR
process. Specifically, a larger value of activation energy (𝐸𝑎) is used
n the simulated real experimental process in our case. Therefore, a
ismatch between the RNN model and the first-principle-based real
rocess model is observed.

In Fig. 12, the MPC results under a disturbance (2% increase in
𝑎 for each reaction) are presented. While the RNN estimation is ap-
roximately the same as in the no-disturbance case, the simulated real-
rocess variables change significantly due to the disturbance. Initially,
he electric current is set to be 25.0 A in both scenarios. Compared
ith the no-disturbance case, the temperature and H2 production after
dding the disturbance results in different values at the initial stage.
he H2 production decreases from 52.7 SCCM to 45.4 SCCM due to
he reduced catalyst performance. Moreover, the reactor temperature
ncreases from 519 to 522 ◦C due to lower methane consumption.
owards the final state, the electric current stabilizes around 28.7 A
or both scenarios. However, in contrast to the no-disturbance case,
he final simulated real H2 production stabilizes around 110 SCCM,
esulting in an offset between the setpoint and the simulated real-
rocess, while the RNN estimation can be driven to the setpoint (120
CCM). This discrepancy arises as the RNN is trained using data that
oes not include disturbances, resulting in a mismatch between its
stimation and the real process which is subjected to disturbances.
ince the RNN estimation is utilized as the initial condition in the MPC,
he MPC can only drive the RNN estimation to the setpoint instead of
he actual process output. Thus, additional strategies are required to
chieve offset-less output tracking.

.2. Model predictive control combined with an integrator

One approach to solve the offset issue is combining the model
redictive controller with an integrator. To correct the control action
ignal from the model predictive controller, an integrator is added to
he control action signal as follows:

𝐼 = 1
𝜏′𝐼 ∫

𝑡

0
(𝐹𝐻2 ,𝑠𝑝 − 𝐹H2

(𝑡𝑛)) d𝜏 (15a)

𝑢 = 𝑢𝑀𝑃𝐶 + 𝑢𝐼 (15b)

𝐼 = 𝑢 + 𝐼𝑠 (15c)

where 𝒖 is the deviation form of the control action vector (electric
current, 𝐼) from the newly designed controller, 𝒖𝑀𝑃𝐶 is the deviation
form of the control action vector from the model predictive controller,
𝐼𝑠 is the initial steady state value of the electric current, 𝜏′𝐼 is the
uning parameter for the integrator, and 𝐹H2

(𝑡𝑛,𝐻2
) is the simulated

2 production at 𝑡 = 𝑡𝑛,𝐻2
, where 𝑡𝑛,𝐻2

is the corresponding time
nstant for the measured value from the simulated GC, involving delay.
he integral term of Eq. (15) can compensate for the offset between
he setpoint and the real-process H2 production by considering the

error accumulation, utilizing the same function as the integrator in PI
control. In this approach, the initial control action from the integrator
(𝑢𝐼 ) is numerically much smaller than the initial control action ob-
tained from MPC (𝑢𝑀𝑃𝐶 ), thus showing less influence on the overall
control action effectiveness compared to MPC action at the beginning
of the closed-loop implementation. Therefore, the H2 production rate is
driven primarily by MPC actions initially until the 𝑢𝑀𝑃𝐶 control action
eaches a plateau, indicating alignment with the setpoint reached by
he H2 production rate estimated by the RNN model integrated with the
PC. After the 𝑢𝑀𝑃𝐶 stabilizes at a constant value, the remaining offset

etween the H2 production rate estimated by the new controller and the
etpoint will be eliminated by the integrator term 𝑢𝐼 . Additionally, a
18

maller limit for the control action change rate in the model predictive 𝜏
Table 3
Settling time and maximum overshoot for different values of activation energies (𝐸𝑎)
under the model predictive controller combined with an integrator scheme.

Activation energy Settling time (min) Maximum overshoot (%)

1.00 𝐸𝑎 563 9.06
1.01 𝐸𝑎 499 6.47
1.02 𝐸𝑎 354 3.47
1.03 𝐸𝑎 47 0
1.04 𝐸𝑎 377 0.19

control algorithm (𝑢𝑐 in Eq. (2f)) and a sufficiently large 𝜏′𝐼 should be
implemented to ensure the absolute value of the temperature change
rate is less than 6 ◦C/min. Based on this consideration, the limit for
the change in control action relative to its previous value is set to be
0.009 A and the 𝜏′𝐼 is set to be 2.71 × 105 A s−1 SCCM−1.

The performance of this approach is shown in Fig. 13. Overall,
he RNN estimation reaches the setpoint rapidly (35.9 min within
% offset), which is similar to the MPC results under disturbance
onditions without the integrator. Compared to the final offset observed
n Fig. 12, the simulated real H2 production rate reaches the setpoint

(top-left figure in Fig. 13), which demonstrates the successful control
outcomes. Moreover, the temperature behaviors observed in the bottom
two figures in Fig. 13 show that the controller action is within the
temperature change rate constraint (6 ◦C/min in the bottom right
figure in Fig. 13), showing the feasibility of this approach. However,
unexpected results are also presented in Fig. 13. Even though the
simulated real H2 production rate reaches the setpoint, it requires
354 min to achieve the simulated real H2 production rate within 1%
offset, which is significantly longer than the time required in previous
control simulations (33.4 min). Additionally, 3.47% overshoot occurs
for the simulated real H2 production rate.

To further analyze this approach, various e-SMR process models un-
er disturbances, simulated by the first-principle model with different
ctivation energies (𝐸𝑎), are evaluated under the designed controller
nd compared. The results for each disturbance case are illustrated in
ig. 14, and Table 3. As evident in the results reported in Table 3,
his approach performs best when the activation energy is increased
y 3%, resulting in a much shorter settling time and no overshoot. In
ontrast, other cases exhibit longer settling times and larger overshoots.
he reason behind this is as follows: in the early stage of the closed-

oop system simulation, the offset between the H2 production rate is
arge compared to the offset when the 𝑢𝑀𝑃𝐶 is constant. Therefore,
he change of control action by the integrator is mainly from the offset
hen the H2 production rate is mainly driven by MPC, multiplied by

he integrator coefficient (𝜏′𝐼 ). If this additive control action can make
he H2 production rate get close to the setpoint when the 𝑢𝑀𝑃𝐶 is
onstant, the time required to further eliminate the offset should be
horter. In the case of a 3% increment in 𝐸𝑎 for the disturbance case,
𝐼 calculated by the integration of error multiplied by the coefficient
𝜏′𝐼 ) can make the real H2 production rate around the setpoint when
𝑀𝑃𝐶 stops changing. Therefore, there is little effort required for the
ntegrator to drive the real H2 production rate to the setpoint, indicat-
ng much less time and no overshoot. For the cases of 0%, 1%, and 2%
ncrements in 𝐸𝑎 for the disturbance, the additive control actions make
he H2 production rate to be higher than the setpoint when the 𝑢𝑀𝑃𝐶
s constant. Therefore, an overshoot and a long settling time cannot be
voided for each of these cases. In the case of a 4% increment in 𝐸𝑎 for
he disturbance, the real H2 production rate is lower than the setpoint
hen the 𝑢𝑀𝑃𝐶 is constant. Therefore, even though there is nearly no
vershoot, a long time to reach the setpoint is still required.

emark 11. Tuning the 𝜏′𝐼 in Eq. (15) is challenging for the scheme of
PC with an integrator. On one side, 𝜏′𝐼 cannot be too small to prevent

ubstantial overshoots in the H2 production rate. Additionally, a small
′

𝐼 can significantly increase the integrator term, causing step changes
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Fig. 12. Setpoint tracking control of the H2 production rate with an RNN-based model predictive controller for the e-SMR process under disturbances.
in the electric current that exceeds the constraint of the electric current
changing rate. On the other side, 𝜏′𝐼 cannot be too large either, since
a large value of 𝜏′𝐼 can lead to minimal changes of electric current,
leading to a much longer time to eliminate the offset.

Remark 12. Even though a sufficiently large 𝜏′𝐼 is utilized to make
he electric current change rate within the constraint, there remains a
isk that the overall control action (𝑢) could still violate the constraints,

indicating a potential concern for applying this method in real e-SMR
processes.

5.3. Model predictive control with RNN real-time online retraining

Instead of modifying the control actions of an MPC scheme, which is
built based on a mismatched RNN model with an additional controller
term, the real-time online retraining method can be utilized to correct
this mismatched RNN model directly. Specifically, the mismatched
RNN model will be corrected by using real-time data from the past.
Eventually, the corrected RNN model will be implemented within the
MPC scheme and estimation of the initial condition of MPC. Therefore,
the obtained control action from MPC can be more accurate and the
offset between the RNN model and the simulated real process can be
eliminated.
19
For the control scheme employed in this approach, the components
and processing flow of the online RNN retraining-based MPC are de-
picted in Fig. 15. Generally, the left orange box represents the MPC
of this system every 5 s, while the right blue box signifies the online
retraining and re-estimation process occurring every sampling time of
the GC (18 min). Retraining and re-estimation are initiated only upon
receiving new GC data. The MPC for the e-SMR process follows a similar
scheme as shown in Fig. 8, but utilizes a simulated process model under
disturbances.

For the online retraining and re-estimation process shown in the
blue box, this process is launched when new simulated measurement
data becomes available. These new data are first used for generating
the flow rates for each second by applying two consecutive past simu-
lated measurement data points into the polynomial function (detailed
descriptions of this process are shown in Section 4). These generated
data have two applications. First, the last 10 generated data points are
used as the initial conditions from 15 min ago (delayed time, 𝑡𝑑) which
are utilized to estimate the corrected 10 data points for the current time
step by the RNN model. Subsequently, these 10 data points are used to
estimate the corrected initial condition of the RNN model and also serve
as the corrected feedback to the controller. Another application for this
data is the adaptive online retraining of the RNN.
The adaptive online retraining process involves several key steps:
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Fig. 13. Setpoint tracking control of the H2 production rate with an RNN-based model predictive controller with an integrator for the e-SMR process under disturbances.
• Buffering module preparation (Fekri et al., 2021): For the online
adaptive RNN strategy, the buffering module is utilized to identify
and store useful data batches when the RNN model has poor
performance. Additionally, this buffering module can also have
an initial data batch to prevent unexpected behavior of the RNN
model after retraining. However, this initial batch should not
contain a large number of data, as the real-time data is typically
limited in practice. A large number of data in the buffering
module would reduce the retraining impact of the real-time data.
In general, the size of the buffering module can be designed and
constrained by the data drift concept. Specifically, by using the
data drift concept, data with the lowest error will be replaced
by the newly collected data when the buffer module reaches its
maximum size. In our case, the data drift concept is not utilized
since the designed maximum size (10,800) of the buffering model
has not been reached.

• Data collection and processing: For real-time control, reactor
temperatures from the TC are obtained every second, while data
from the GC are collected every 18 min. The data generation
process uses polynomial regression to estimate flow rates for each
gas species every second. However, data collected from the GC
and TC must be denoised before being fitted by the polynomial
regression. Additionally, any infeasible data should be removed
to ensure high data quality for training the RNN.
20
• Error-triggering mechanism: An error-triggering mechanism (Ab-
dullah and Christofides, 2023) is applied to evaluate whether the
estimated data set generated by polynomial regression should be
incorporated into the buffering module. This mechanism com-
pares the error between the model and measurement data against
a predefined threshold to determine if online retraining should be
initiated. The Mean Relative Error (MRE) serves as the metric for
this comparison, calculated as follows:

𝑀𝑅𝐸𝑛 =
1
𝑁𝑘

⋅

∑𝑁𝑘−1
𝑖=0

|

|

|

𝐹𝐻2 ,𝑅𝑁𝑁 (𝑡𝑘 − 𝛥𝐺𝐶 ⋅ 𝑖 − 𝑡𝑑,𝐺𝐶 ) − 𝐹𝐻2 ,𝑟𝑝,𝑛−𝑖
|

|

|

𝐹𝐻2 ,𝑟𝑝,𝑎𝑣𝑒

(16)

where 𝑀𝑅𝐸𝑛 is the mean relative error when the 𝑛th measure-
ment data are received, 𝑁𝑘 is the number of measurement data
points that are utilized for calculating the error (in our case,
𝑁𝑘 = 3), 𝐹𝐻2 ,𝑅𝑁𝑁 is the RNN estimation of H2 production rate,
𝑡𝑘 is the time moment for the newly received data point, 𝛥𝐺𝐶
is the GC sampling time (18 min), 𝑡𝑑,𝐺𝐶 is the time delay for
the GC measurement (15 min), 𝐹𝐻2 ,𝑟𝑝,𝑛−𝑖 is the (𝑛 − 𝑖)th real H2
production rate measurement, 𝐹𝐻2 ,𝑟𝑝,𝑎𝑣𝑒 is the average of last 3
consecutive real H2 production rate measurements. If the MRE
is less than the threshold (C), the generated data will not be
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Fig. 14. Setpoint tracking control of the H2 production rate with RNN-based model predictive controller combined with an integrator under different disturbances.
S
p
i

added to the buffering module, indicating that the RNN model is
accurate. Conversely, if the MRE exceeds the threshold, it signifies
that the RNN model is inaccurate and requires retraining based on
newly generated data. In this case, the threshold is chosen as the
2% of the average of the 3 consecutive GC measurement data:

𝐶 = 2% ⋅

∑𝑁𝑘−1
𝑖=0 𝐹𝐻2 ,𝑟𝑝,𝑛−𝑖

𝑁𝑘
(17)

• Retraining: The retraining process, also known as the transfer
learning process, adjusts the RNN model based on real-time data.
The training process is detailed in Section 3.4. Before retrain-
ing, the data in the buffering module must be preprocessed by
the window-sliding technique and normalization techniques. It is
crucial to ensure that data from different batches are not mixed
within the same sliding window. Additionally, a much lower
learning rate (𝛼 = 6 × 10−6) and fewer epochs (10) are utilized to
prevent the dramatic changes in the behavior of the RNN model
21

resulting from retraining with new data.
Upon completion of retraining, the new RNN model will replace the
existing RNN model that is used for state variable estimation as inputs
to the MPC, and also the RNN model integrated within the MPC which
predicts state variables within the prediction horizons. Additionally, the
new RNN model is used to re-estimate all initial state values for the
MPC and the initial state values for the RNN model.

The simulation results of this control scheme are presented in
Fig. 16. At the initial electric current value of 25.0 A, there is a
significant difference between the RNN estimation of the H2 production
rate (52.7 SCCM) and the actual process (45.5 SCCM), as shown in the
top-right sub-figure. This discrepancy arises because the RNN model
fails to reflect the real process under process conditions subjected to
disturbances. This difference persists until the first retraining process
is triggered when the third GC sample is obtained at 𝑡 = 54 min.
ubsequently, the RNN estimation aligns more closely with the actual
rocess value, indicating improved accuracy. After the first retrain-
ng process, the feedback and predicted values of the H2 production

rate fall below the setpoint, successfully reflecting the process behav-
ior under disturbances due to the RNN model parameter adaptation.
Consequently, the electric current increases, as shown in the top-left
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Fig. 15. Setpoint tracking control of the H2 production rate with an RNN-based model predictive controller using online RNN retraining by utilizing real-time data for the e-SMR
process under disturbances: components and processing flow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
sub-figure, leading to a rise in the simulated reactor temperature,
depicted in the bottom-left sub-figure. These adjustments occur every
18 min until the MRE, calculated by Eq. (16), falls below the threshold
determined by Eq. (17). Ultimately, the H2 production rate reaches
the setpoint with a settling time of 58.9 min and zero overshoot. The
bottom-right sub-figure demonstrates that the control is maintained
within the temperature constraint, preventing damage to the Ni-based
catalyst.

Remark 13. In the case of real-time control, the online retraining
process and MPC simulation must be executed concurrently when the
retraining event is triggered to ensure the MPC operates within the five-
second sampling time. In the Python implementation, the command
‘‘subprocess.Popen’’ is utilized to execute a separate Python script,
thereby preventing the retraining process from interfering with the con-
trol process. A 2-min sampling time is applied to the retraining process
to ensure its completion, assuming that this duration is sufficient for
the training process. Specifically, the RNN is replaced with the newly
trained model 2 min after the beginning of the retraining process. After
the replacement, subsequent RNN estimations are generated from this
retrained RNN model

5.4. Offset-free model predictive control

The offset-free model predictive controller is also designed to elim-
inate the offset. The detailed algorithm for this approach is shown in
Section 2.4. Specifically, in Eq. (3), 𝐹 (⋅) is the RNN model and 𝜽 is
used to compensate for the error between the RNN estimation and the
experimental data. This error vector can be combined with the vector
of state variables to form a new vector of state variables, 𝒙̄ in Eq. (4).
Additionally, the new corrected model can also be written as Eq. (4c).
These new versions of the state variable vector and the model are
utilized in the MPC.

The Luenberger observer is employed to improve the estimation of
state variables and minimize error accumulation (Eq. (5)). Specifically,
the differences in temperature and H2 production rate between the
22

process measurements and model estimates are used as the error.
Due to the sampling frequency of the GC, the temperature is updated
every second to compensate for the discrepancy, whereas updates for
the H2 production rate difference occur every 18 min. This difference in
sampling time may lead to discrepancies in the H2 production rate. To
account for this potential discrepancy, the coefficients of the observer
terms (𝐾) are tuned sufficiently small to ensure that the state values do
not change excessively as a result of the correction term. Eventually,
these gain parameters result in model estimation that closely matches
the simulated process data. Specifically, the parameters are chosen as
given by Eqs. (18a) and (18b) in Box I where 𝐺⊺

𝜃 is the transpose of the
coefficient matrix for the argument term (𝜽) and 𝐾⊺ is the transpose of
the coefficient matrix for the differences in the H2 production rate and
reactor temperature terms. Results for this offset-free model predictive
control of this specific e-SMR process are illustrated in Fig. 17. At 𝑡
= 0 min, the same electric current (𝐼𝑀𝑃𝐶 ) is utilized for the RNN
estimation model and the process under disturbances. In the top-right
figure of Fig. 17, the corresponding offset is observed initially. While
the H2 production rate estimated by RNN reaches the setpoint (within
1% offset) at 𝑡 = 33.4 min, the H2 production rate from the simulated
process gradually approaches the setpoint due to the correction of the
model by the offset-free MPC approach, indicating an improved control
performance compared to the constant offset shown in Fig. 12.

As the model utilized in the MPC and the initial state value esti-
mation is progressively corrected, the 𝐼𝑀𝑃𝐶 calculated from the MPC
is gradually corrected accordingly. The adjustment of 𝐼𝑀𝑃𝐶 shown in
the top-left figure of Fig. 17, results in the gradual alignment of the
simulated real-process H2 production rate with the setpoint, as shown
in the top-right figure of Fig. 17. At 𝑡 = 88.2 min, the H2 production
rate of the simulated real-process reaches the setpoint with a deviation
within 1%. The bottom two figures illustrate the reactor temperature
behaviors, demonstrating that the applied electric current from the
MPC is safe for the catalyst, as the temperature change rate remains
within the permissible limit of 6 ◦C/min.

Remark 14. With the accumulation of the 𝜽, the H2 production rate
from the model estimation also changes. However, since the coefficients



Digital Chemical Engineering 12 (2024) 100173Y. Wang et al.

(
q
s

6

c
r
v
l

Fig. 16. Setpoint tracking control of the H2 production rate with an RNN-based model predictive controller using online RNN retraining by utilizing real-time data for the e-SMR
process under disturbances: simulation results.
𝐺𝑇
𝜃 = [0 − 0.004 0.003 0.025 0.001] (18a)

𝐾𝑇 =
[

0 −0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01
0 0.01 0 −0.01 0.01 0 0 0 0 0

]

(18b)

Box I.
𝐾 and 𝐺𝜃) are small and the corresponding MPC responses are fre-
uent, the model estimation values remain nearly constant within its
ampling time.

. Conclusion

In this work, a recurrent neural network model was developed to
apture the dynamic behavior of an electrically heated steam methane
eforming process using time-series data from an experimentally-
alidated lumped parameter dynamic model. Specifically, the LSTM
ayer was utilized to learn the long-term dependencies in sequential
23
data. The accuracy of this model was further validated. To regulate the
H2 production rate, a setpoint tracking control was implemented using
an RNN-based predictive control strategy, which effectively handled
infrequent and delayed flow rate measurements. This control strategy
demonstrated significantly better performance compared to a PI control
scheme. Building on the developed RNN-based MPC strategy, three
distinct approaches were successfully developed to manage the e-
SMR process under disturbance conditions: MPC combined with an
integrator, MPC with transfer learning applied to the RNN model,
and offset-free MPC. These approaches have been demonstrated to
effectively eliminate the offset caused by disturbances.
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Fig. 17. Setpoint tracking control of the H2 production rate with an RNN-based offset-free model predictive controller for the e-SMR process under disturbances.
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