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A B S T R A C T   

This work focuses on enhancing the operational safety, cybersecurity, computational efficiency, and closed-loop 
performance of large-scale nonlinear time-delay systems. This is achieved by employing a decentralized model 
predictive controller (MPC) with encrypted networked communication. Within this decentralized setup, the 
nonlinear process is partitioned into multiple subsystems, each controlled by a distinct Lyapunov-based MPC. 
These controllers take into account the interactions between subsystems by utilizing full state feedback, while 
computing the control inputs only corresponding to their respective subsystem. To address the performance 
degradation associated with input delays, we integrate a predictor with each LMPC to compute the states after 
the input delay period. The LMPC model is initialized with these predicted states. To cope with state delays, the 
LMPC model is formulated using differential difference equations (DDEs) that describe the state-delays in the 
system. Further, to enhance cybersecurity, all signals transmitted to and received from each subsystem are 
encrypted. A stability analysis is carried out for the encrypted decentralized MPC when it is utilized in a time- 
delay system. Bounds are set up for the errors arising from encryption, state-delays, and sample-and-hold 
implementation of the controller. Guidelines are established to implement this proposed control structure in 
any nonlinear time-delay system. The simulation results, conducted on a nonlinear chemical process network, 
illustrate the effective closed-loop performance of the decentralized MPCs alongside the predictor with encrypted 
communication when dealing with input and state delays in a large-scale process.   

1. Introduction 

Numerous large-scale industrial systems, such as power distribution 
grids, mechanical systems, chemical processes, and urban traffic net-
works, present a significant challenge as the system to be controlled is 
too large, resulting in a complex control problem to be solved. This 
challenge cannot be simply solved by using faster computers with larger 
memory. In response, decentralized control strategies have been pro-
posed to address high dimensionality, constraints related to information 
structure, and inherent system delays in such systems (Bakule, 2008). In 
a decentralized setup, the overall system is divided into independent 
sub-systems that may be coupled with each other, but controlled by 
separate controllers, which together constitute a decentralized control 
structure. This provides a practical solution for reducing the computa-
tional complexity of a centralized control problem for a large-scale 
process. 

Alongside dealing with large-scale processes, it is crucial to address 

the various sources of time delays that can impact control systems. These 
sources include the computation of control inputs for large-scale sys-
tems, communication lags during signal transfer, the inherent dynamics 
of material transportation within the process system, and control actu-
ator dynamics. Using a decentralized control structure reduces a large, 
complex control problem into smaller sub-problems which are solved 
independently and simultaneously in different computing units. This 
reduces the delays due to control input computation. Advances in net-
worked communication have simplified the interlinking, connectivity, 
and data transfer in cyber-physical systems and has made time-delays 
from communication negligible. However, delays due to control actu-
ator dynamics in process networks cannot be compensated by smaller 
control input computation times or rapid transport of material in pro-
cesses or rapid networked communication and, hence, need appropriate 
control strategies such as integrating a predictor within the controller 
design (Smith, 1957). Similarly, state delays in process networks cannot 
be completely eliminated by optimizing process layouts, and, hence, 
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need to be accounted in the controller design. 
Networked communication might make data transfer seamless and 

rapid. However, they are prone to cyberthreats. A breach or compromise 
within these systems could result in severe consequences, such as the 
disruption of critical services, physical harm, financial loss, and are also 
a threat to public safety. Recent developments in cyberattack techniques 
underscore the need to establish robust cybersecurity (Gandhi et al., 
2011). Addressing cybersecurity concerns within industrial control 
systems primarily falls under the domain of operational technology 
(OT). Significant progress has been made in enhancing cybersecurity in 
the information technology (IT) sector, which focuses on the software 
aspects of systems, encompassing areas such as network architecture 
and data management. However, the field of cybersecurity within OT is 
currently trailing behind (Conklin, 2016). Various real-world examples 
underscore the importance of cybersecurity in networked cyber-physical 
systems and SCADA (Supervisory Control and Data Acquisition) envi-
ronments. For instance, the cyberattack on SCADA controls responsible 
for managing the power grid in Ukraine in 2015 led to widespread 
power outages (Khan et al., 2016). Similarly, in the DarkSide ransom-
ware attack on Colonial Pipeline in 2021, hackers encrypted its net-
worked communication and demanded a ransom for the decryption 
keys. Consequently, Colonial Pipeline had to halt operations, causing 
disruptions in fuel distribution and financial losses (Tsvetanov and 
Slaria, 2021). 

Extensive research has been conducted in areas such as developing 
machine learning-based cyberattack detectors (Al-Abassi et al., 2020; 
Dutta et al., 2020), using reachable set-based detection schemes (Nar-
asimhan et al., 2023), employing linear encrypted controllers (Darup 
et al., 2018; Darup, 2020), analyzing the safety of process equipment 
when the system is under a cyberattack (Nieman et al., 2023), control 
switching techniques for attack detection (Narasimhan et al., 2022), 
process state recovery post cyberattack (Wu et al., 2020), and creating 
cyberattack-resilient controllers (Paridari et al., 2017). However, to the 
best of our knowledge, the development of cybersecure decentralized 
controllers for large-scale nonlinear processes with input and state de-
lays remains an unexplored area, prompting our proposal for a novel 
control structure to address this challenge. 

Specifically, we propose a decentralized control structure consisting 
of a set of Lyapunov-based MPCs, integrated with a predictor, utilizing 
encrypted networked communication. MPC is an advanced control 
strategy that achieves superior performance compared to traditional 
controllers via constraints, and optimizes critical performance metrics in 
multi-input multi-output systems. These advantages are derived from 
the utilization of a nonlinear mathematical model to predict future 
system behavior, and optimizing control inputs by minimizing a cost 
function with constraints. For large-scale systems, the control problem 
to be solved by a centralized MPC would be too complex. In contrast, a 
decentralized MPC divides this intricate problem into smaller, inde-
pendent segments, concurrently solved in different edge computing 
units. In this configuration, we assume the presence of secure edge 
computers responsible for computing control inputs. Integrating a pre-
dictor within this setup serves to offset performance degradation due to 
input delays. To mitigate the influence of state-delays resulting from 
material transportation in systems, the process model employed by the 
LMPCs in the decentralized framework is based on differential difference 
equations. These equations account for the inherent state-delays present 
in the system. Further, the incorporation of encryption within the net-
worked communication channels enhances cybersecurity as each edge 
computing unit receives and transmits encrypted signals. 

The remainder of the paper is organized as follows: Section 2 pre-
sents preliminaries on notation, the general class of nonlinear systems 
considered, the system stabilizability assumptions, the cryptosystem 
used for employing encryption, and the effect of quantization. The 
encrypted decentralized MPC design, formulation of the MPCs, and 
stability analysis of the control scheme are presented in Section 3. In 
Section 4, closed-loop simulations of a nonlinear chemical process 

network with input and state delays under the encrypted decentralized 
LMPC system with and without predictor feedback are presented and 
discussed. 

2. Preliminaries 

2.1. Notation 

The symbol ‖ ⋅ ‖ represents the Euclidean norm of a vector. x⊤ de-
notes the transpose of a vector x. R, Z, and N represent the sets of real 
numbers, integers, and natural numbers, respectively. ZM denotes the 
additive groups of integers modulo M. Set subtraction is indicated by the 
symbol “\”, where A\B represents the set of elements that are in set A but 
not in set B. A function, f( ⋅ ), falls under the class C 1 if it is continuously 
differentiable within its defined domain. The term lcm(i, j) denotes the 
least common multiple of the integers i and j, while gcd(i, j) signifies the 
greatest common divisor, that divides i and j without any remainder. 

2.2. Class of systems 

This research focuses on multi-input multi-output (MIMO) nonlinear 
time-delay systems, characterized by a set of differential difference 
equations (DDEs), alternatively known as delay differential equations. 
These equations are formulated in the following manner: 

ẋ = F(x, u) = f (x(t), x(t − d1), u(t − d2)) (1)  

The state vector is denoted by x ∈ Rn, while u ∈ Rm represents the 
control input vector bounded by the set, U⊂Rm. d1 > 0 and d2 > 0 are the 
state and input delays, respectively. The vector f( ⋅ ) is a locally Lipschitz 
vector function of its arguments with f(0, 0, 0) = 0, rendering the origin 
as a steady state of Eq. (1). Without loss of generality, we assume the 
initial time as zero (t0 = 0). Additionally, we define the set S(Δ) as the set 
of piece-wise constant functions characterized by a period of Δ. We 
consider j = 1, …, Nsys sub-systems, with each subsystem j consisting of 
states xj which are regulated only by inputs uj but potentially impacted 
by states in other subsystems due to coupling between subsystems. The 
continuous-time nonlinear dynamics of subsystem j is described as 
follows: 

ẋj = Fj(x, uj), xj(t0) = xj0 , ∀j = 1,…,Nsys (2)  

where Nsys denotes the number of subsystems, xj ∈ Rnj and uj ∈ Rmj are 
the state vector and control inputs for subsystem j, respectively. x =

[x⊤
1 …x⊤

Nsys
]
⊤
∈ Rn is the state vector for the entire system, with n =

∑Nsys
j=1nj. u = [u⊤

1 …u⊤
Nsys

]
⊤
∈ Rm is the control input vector for the entire 

system, with m =
∑Nsys

j=1mj. The control input vector constraints are uj ∈

Uj := {umin,ji ≤ uji ≤ umax,ji∀i = 1,…,mj}, ∀j=1,…,Nsys. Hence, the set U 
that constrains the control input vector for the entire system is formed 
by the union of sets Uj, where j = 1, …, Nsys. The system of Eq. (1) can be 
expressed as a perturbed form of the system without delays in the 
following manner: 

ẋ = F(x, u, ξ) = f (x(t), x(t) + ξ1(t), u(t) + ξ2(t)) (3a)  

ξ1 = x(t − d1) − x(t) (3b)  

ξ2 = u(t − d2) − u(t) (3c)  

where ξ⊤ := [ξ⊤1 , ξ
⊤
2 ] ∈ D × U ∈ Rn+m is the bounded perturbation vector 

for the state and input delays, and D is the open neighborhood around 
the origin. 

Remark 1. In this research, we employ differential difference equa-
tions to characterize nonlinear time-delay systems. Differential differ-
ence equations (DDEs) fundamentally differ from ordinary differential 
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equations (ODEs). One key distinction is that a dynamic system with an 
arbitrarily small delay is considered an infinite-dimensional system, 
even though the state vector would have finite dimension. Existing 
literature offers various approaches to describe nonlinear time-delay 
systems, such as first-order plus dead time and second-order plus dead 
time models. However, these methods are specific and assume certain 
linear model structures. Hence, we have opted to utilize nonlinear dif-
ferential difference equations with constant delays in this study to 
ensure a more comprehensive analysis. Nevertheless, it is worth noting 
that other studies have utilized functional differential equations to 
describe nonlinear time-delay systems (Hale and Lunel, 1993), and our 
findings can potentially be extended to encompass such model structures 
as well. 

2.3. Stability assumptions 

Based on how the overall large-scale system is partitioned, there may 
exist interacting dynamics between the subsystems, as the states of one 
subsystem may impact the states of other subsystems. Accounting for 
these interactions, we assume the existence of stabilizing control laws uj 
= Φj(x) ∈ Uj, which regulate the individual subsystems j = 1, …, Nsys, 
such that the origin of the overall system of Eq. (1) with d1 ≡ 0 and d2 ≡

0 is rendered exponentially stable. This signifies the presence of a C 1 

control Lyapunov function V(x) for which the following inequalities 
hold for all x ∈ Rn within an open region D surrounding the origin: 

c1|x|2 ≤ V(x) ≤ c2|x|2, (4a)  

∂V(x)
∂x

f (x, x,Φ(x)) ≤ − c3|x|2, (4b)  

⃒
⃒
⃒
⃒
∂V(x)

∂x

⃒
⃒
⃒
⃒ ≤ c4|x| (4c)  

where c1, c2, c3 and c4 are positive constants, and Φ(x) =

[Φ1(x)⊤…ΦNsys (x)
⊤
]
⊤ is the vector concatenating the stabilizing feed-

back control laws for all Nsys subsystems. For the nonlinear system 
described by Eq. (1), the region of closed-loop stability can be defined as 
a level set, Ωρ, of the control Lyapunov function V, such that Ωρ := {x ∈
D∣V(x)≤ ρ}, where ρ > 0. Hence, originating from any initial condition 
within Ωρ, the control input, Φ(x), guarantees that the state trajectory of 
the closed-loop system remains within Ωρ. 

2.4. Paillier cryptosystem 

In this research, we employ the Paillier cryptosystem (Paillier, 1999) 
to encrypt signals, specifically state measurements (x) and control inputs 
(u), transmitted to and from the controllers. Although we do not make 
use of the semi-homomorphic property of additive homomorphism 
within the Paillier cryptosystem, we employ it so that traditional con-
trollers, such as proportional-integral controllers, which conduct com-
putations in an encrypted space, can be integrated into the overall 
control architecture if required. The encryption procedure is initiated by 
generating the public and private key. The public key is used to encrypt 
integer messages into ciphertexts, and the private key is employed to 
decrypt ciphertexts and retrieve the original integer messages. The 
process of generating the public and private key can be outlined as 
follows:  

1. Choose two large prime integers (p and q) randomly, ensuring, gcd 
(pq, (p − 1)(q − 1)) = 1.  

2. Compute, M = pq. 
3. Choose an arbitrary integer ḡ such that ḡ ∈ ZM2 ,which is the multi-

plicative group of integers modulo M2.  
4. Compute λ = lcm(q − 1, p − 1).  
5. Specify L̄(x) = (x − 1)∕M. 

6. Verify the existence of the subsequent modular multiplicative in-
verse: u = (L̄(ḡλ mod M2))

− 1 mod M.  
7. If the inverse does not exist, revisit step 3 and select an alternate 

value of ̄g. If the inverse exists, (M, ḡ) is the public key and (λ, u) is the 
private key.Once the keys are acquired, the public and private keys 

are distributed to authorized recipients for encryption and decryption, 
respectively. The encryption process is as follows: 

EM(m, r) = c = ḡmrM mod M2 (5)  

where r is a randomly selected integer from the set ZM, and c represents 
the ciphertext achieved through the encryption of m. The decryption 
procedure is as follows: 

DM(c) = m = L̄(cλ mod M2)u mod M (6) 

The aforementioned procedure can be demonstrated in a numerical 
example as follows: 

Key generation steps:  

1. Select 2 prime numbers p = 13, and q = 17.  
2. M = p × q = 13 × 17 = 221.  
3. Chose, ḡ = 8 which can be any integer between 1 and M2.  
4. Calculate λ = lcm(q − 1, p − 1) = lcm(16, 12) = 48.  
5. Verify the existence of u = 172.  
6. The public key is (M, ḡ) = (221,8).  
7. The private key is (λ, u) = (48, 172). 

Encryption:  

1. The message to be encrypted is m = 3.  
2. A random number r = 1 is chosen such that 0 < r < M.  
3. The ciphertext is: c = ḡmrM mod M2 = 831221 mod 2212 = 512. 

Decryption:  

1. The ciphertext to be decrypted is c = 512.  
2. The message is m = L̄(51248 mod 2212)172 mod 221 = 3 

2.5. Quantization 

To use the Paillier cryptosystem, data to be encrypted must be in the 
form of natural numbers in ZM. However, the signal values before 
encryption are in floating-point. Consequently, we employ quantization, 
mapping the floating-point numbers into ZM (Darup et al., 2017). Using 
a signed fixed-point binary representation, we create a set, Ql1 ,d, with 
parameters l1 and d. These parameters define the total bit count (integer 
and fractional) and the fractional bits, respectively. The Ql1 ,d set en-
compasses rational numbers from − 2l1 − d− 1 to 2l1 − d− 1 − 2− d, separated 
by 2− d. A rational number q in Ql1 ,d can be expressed as q ∈ Ql1 ,d, where 
∃β ∈ {0,1}l1 , and q = − 2l1 − d− 1βl1 +

∑l1 − 1
i=1 2i− d− 1βi. To map a real 

number data point a to the Ql1 ,d set, we use the function gl1 ,d, defined by 
the equation, 

gl1 ,d : ℝ →ℚl1 ,d

gl1 ,d(a) := arg min
q∈ℚl1 ,d

∣a − q∣ (7)  

Next, the quantized data is transformed into a set of integers through a 
one-to-one (bijective) mapping known as fl2 ,d, as outlined in Darup et al. 
(2017). The following mapping ensures that the quantized data is 
transformed into a subset of the message space ZM: 

fl2 ,d : ℚl1 ,d→ℤ2l2

fl2 ,d(q) := 2dq mod 2l2 (8)  

During the encryption process, integer plaintext messages from the set 
Z2l2 are converted to ciphertexts, which can be decrypted back into the 
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same set Z2l2 . To recover the original data from the set Ql1 ,d, an inverse 
mapping, denoted as f − 1

l2 ,d, is defined as follows: 

f − 1
l2 ,d : Z2l2 →Ql1 ,d (9)  

f − 1
l2 ,d(m) :=

1
2d

{
m − 2l2 if m ≥ 2l2 − 1

m otherwise (10)  

3. Development of the encrypted decentralized control 
architecture 

In this section, we describe the design of the encrypted decentralized 
control architecture, establish bounds on the errors in the encrypted 
decentralized control structure through a stability analysis, and formu-
late the predictor feedback-based decentralized LMPC. 

3.1. Design of the encrypted decentralized control architecture 

In the encrypted decentralized control architecture, depicted in  
Fig. 1, at time tk, where k represents the sampling instance, signals x(tk) 
from sensors are encrypted to ciphertext c using the public key and 
transmitted to each control subsystem, within its respective edge 
computing unit. Within each unit, the encrypted signals are decrypted 
using the private key, and the quantized states x̂(tk) are used to initialize 
the predictor in the jth control subsystem, where j ranges from 1 to Nsys. 
The predictor computes the states after the input delay period, x̂(tk +
d2). This is used to initialize the nonlinear process model of the jth MPC. 
Subsequently, the jth MPC computes the optimized control input tra-
jectory along the whole prediction horizon and encrypts the control 
input uj(tk + d2). At the actuator, the ciphertext ć is decrypted to the 
quantized input û(tk + d2). However, due to the input delay, d2, the 
control input applied to the process by the actuator is û(tk), which was 
calculated at time tk − d2. Since the data received and transmitted by the 
edge computers through the network remains encrypted, cybersecurity 
is ensured in the presence of secure edge computers. 

The closed-loop design of Fig. 1 introduces two sources of error: one 
from state quantization in the sensor–controller link and another from 
control input quantization in the controller–actuator link. These errors 
are bounded by: 

|x(tk) − x̂(tk)| ≤ 2− d− 1 (11a)  

|u(tk) − û(tk)| ≤ 2− d− 1 (11b)  

The derivation of the upper bounds of the quantization error in Eq. (11) 
has been explained in Remark 3. An additional error arises in the applied 
control input as the predictor, ϕ(x, u), receives x̂ instead of the true state 
x to predict the states after the input delay period. Using the local Lip-
schitz property, this error will be confined by the underlying equation, 
where L′

1 > 0: 

|ϕ(x̂, u) − ϕ(x, u)| ≤ L′
1|x̂ − x| ≤ L′

12− d− 1 (12) 

Remark 2. In this work, a decentralized MPC, without inter- 
controller communication, is proposed to reduce the computational 
time and complexity of a centralized control problem. For possibly su-
perior performance, some level of communication between controllers 
in different subsystems may be necessary to account for coupling effects 
between subsystems in large-scale processes. To establish this, a 
distributed control architecture could be used. However, encrypting- 
decrypting control input trajectories multiple times within a single 
sampling period could significantly increase the communication over-
head due to encryption. To avoid this, a secure Ethernet crossover cable 
connection could be established between different computing units in a 
single control room responsible for computing all the control inputs of a 
particular process. This would avoid the need for encrypting-decrypting 
control inputs as their transmission would be secure, and encryption 
could still be used for signals transmitted to and from the control room. 

Remark 3. Quantization error arises when the value to be quantized is 
not found exactly in the set Ql1 ,d. The elements in this set are separated 
by 2− d. Let us assume the value to be quantized is a, which lies between b 
and b + 2− d. If the absolute difference between a and b is less than that 
between a and b + 2− d, a is mapped to b, while, otherwise, a is mapped 
to b + 2− d. Thus, the maximum potential difference between the actual 
value and the quantized value is half of the resolution or 2− d− 1. Further, 
this bound implies that a higher value of d would result in a smaller error 
due to quantization. 

3.2. Decentralized LMPC 

To reduce the computational time and complexity of a centralized 
control problem, we formulate a decentralized LMPC system as follows: 

J j = min
udj ∈S(Δ)

∫ tk+N

tk
Lj (̃xj(t), udj (t)) dt (13a)  

Fig. 1. Illustration of the encrypted decentralized control structure.  
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s.t. ˙̃xj(t) = Fj(x̃(t), udj (t)) (13b)  

udj (t) ∈ Uj, ∀ t ∈ [tk, tk+N) (13c)  

x∼(tk) = x̂(tk) (13d)  

V̇(x̂(tk), udj (tk)) ≤ V̇(x̂(tk),Φj(x̂(tk))),

if x̂(tk) ∈ Ωρ\Ωρmin

(13e)  

V(x
∼
(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N), if x̂(tk) ∈ Ωρmin (13 f)  

Each LMPC has access to full-state feedback measurements but only 
takes into account the dynamics of its respective subsystem. Conse-
quently, we develop separate first-principles-based models for each 
subsystem j where j = 1, …, Nsys, to predict the states xj and compute the 
control input udj to be applied by the corresponding actuators within the 
jth subsystem. x̃j represents the predicted state trajectory of the process 
model of the jth LMPC. The quantized states, x̂, serve as the initial 
conditions for the LMPC process model to predict the state trajectory as 
per Eq. (13b), which is used to integrate the cost function of Eq. (13a) to 
calculate optimized control inputs, u*dj (t|tk), for the entire prediction 
horizon. However, the LMPC transmits only the first input of this 
sequence to the actuator for application to the system within the interval 
t ∈ [tk, tk+1) and repeats this process at each sampling period. k is the 
sampling instance, and N represents the number of sampling periods 
within the prediction horizon. Eq. (13c) represents the constraints 
imposed on the control inputs, and Eq. (13d) uses the quantized states to 
initialize the plant model described in Eq. (13b). The Lyapunov 
constraint in Eq. (13e) ensures that, if the state x(tk) at time tk lies within 
the set Ωρ⧹Ωρmin , where ρmin represents a level set of V in proximity to the 
origin, the time-derivative of the control Lyapunov function of the 
closed-loop subsystem j under the jth LMPC is less than or equal to the 
time-derivative of the control Lyapunov function when the subsystem is 
controlled by the stabilizing controller Φj(x). When the closed-loop state 
x(tk) enters Ωρmin , the constraint of Eq. (13f) ensures that this state re-
mains within Ωρmin . 

3.3. Robustness of the encrypted decentralized LMPC to time-delay 
systems 

In this subsection, we will focus on the closed-loop stability analysis 
of the perturbed nonlinear system of Eq. (3), taking into consideration 
sufficiently small state delays only (i.e., d2 ≡ 0 and d1 > 0). However, the 
stabilization of the perturbed system of Eq. (3) in the presence of both 
state and input delays will be achieved using an encrypted decentralized 
LMPC with predictor feedback in Section 3.4. We first establish stability 
of the closed-loop system under the encrypted stabilizing controller 
Φ̂(x̂), followed by extending our analysis to stability of the system under 
the encrypted decentralized LMPC system introduced in the previous 
section. 

Theorem 1. Considering the system of Eq. (3) under the encrypted 
stabilizing controller Φ̂(x̂), we examine the stability of the time-delay 
system without any input delay (i.e., d2 ≡ 0 and d1 > 0). The stabiliz-
ing controller Φ(x), without encryption and delays, adheres to the in-
equalities outlined in Eq. (4). Furthermore, we assume that the initial 
state x0 resides within the region Ωρ̂ where ρ̂ < ρ. Given a sufficiently 
large time T > 0, where T is the time needed for x(t) to enter Ωρmin , we 
can determine positive real numbers L′

x,L
′
ξ,L

′
q,MF,Md1 , and et = (L1 + 1) 

2− d− 1, for which there exist Δ, d1, d, and ϵw > 0, such that the following 
conditions are satisfied: 

L′
xMFΔ + L′

ξMd1 d1 + L′
q

⃒
⃒
⃒
⃒et

⃒
⃒
⃒
⃒ −

c3

c2
ρs ≤ − ϵw

ρmin = max{V(x(t + Δ))|V(x(t)) ≤ ρs}

(14)  

where ρ̂ > ρmin > ρs. Then, the closed-loop state x(t) under the encryp-
ted stabilizing controller remains bounded in Ωρ̂ and is ultimately 
bounded in Ωρmin for t ≥ T. Proof. This proof is divided into four 
parts. First, we will establish bounds on the error due to quantization in 
the time-delay system under the encrypted stabilizing controller, keep-
ing the input delay, d2 ≡ 0. Then, we will establish bounds for the error 
due to state delays, followed by limiting the error due to the control 
input being applied in a sample-and-hold manner. Lastly, based on these 
bounds, we can determine the positive constants L′

x,L
′
ξ,L

′
q,MF ,Md1 , and et 

= (L1 + 1)2− d− 1, for which there exist Δ, d1, d, and ϵw > 0, such that the 
state of the closed-loop system from any initial condition x0 ∈ Ωρ̂\Ωρs 

converges within Ωρmin within time T. Under the encrypted stabilizing 
controller, the control input u(t) can be written as u(t) = Φ̂(x̂(tk)). 
Substituting this in the nonlinear system of Eq. (3) without any input 
delay (i.e. d2 ≡ 0), the time-derivative of the control Lyapunov function 
can be written as: 

V̇ =
∂V(x(t))

∂x
f (x(t), x(t) + ξ1(t), Φ̂(x̂(tk))) (15)  

Based on the error bounds resulting from quantization, as derived in Eq. 
(11), Φ̂(x̂(tk)) ≤ Φ(x̂(tk))+ 2− d− 1, 

V̇ ≤
∂V(x(t))

∂x
f
(
x(t), x(t) + ξ1(t),Φ(x̂(tk)) + 2− d− 1)

≤
∂V(x(t))

∂x
f (x(t), x(t) + ξ1(t),Φ(x̂(tk)) − Φ(x(tk)) + Φ(x(tk)) + et) (16)  

using Φ(x̂(tk)) − Φ(x(tk)) ≤ L1
⃒
⃒x̂ − x

⃒
⃒ ≤ L12− d− 1 in Eq. (16): 

V̇ ≤
∂V(x(t))

∂x
f
(
x(t), x(t) + ξ1(t),Φ(x(tk)) + (L1 + 1)2− d− 1)

≤
∂V(x(t))

∂x
f (x(t), x(t) + ξ1(t),Φ(x(tk)) + et)

(17)  

where et = (L1 + 1)2− d− 1 represents the error due to quantization. Using 
the constraints outlined in Eq. (4), Eq. (17) can be re-written as: 

V̇ ≤
∂V(x(t))

∂x
f (x(t), x(t) + ξ1(t),Φ(x(tk)) + et)

−
∂V(x(tk))

∂x
f (x(tk), x(tk),Φ(x(tk)))

+
∂V(x(tk))

∂x
f (x(tk), x(tk),Φ(x(tk)))≤

∂V(x(t))
∂x

f (x(t), x(t) + ξ1(t),Φ(x(tk))

+ et) −
∂V(x(tk))

∂x
f (x(tk), x(tk),Φ(x(tk))) − c3|x(tk)|

2

(18)  

Based on Eq. (18), we can define the following: g(x, ξ1, et) = f(x, x + ξ1, 
Φ(x) + et). In addition, there exist positive constants, L′

x, L′
ξ, and L′

q such 
that the following Lipschitz inequality holds for all x,x′ ∈ Ωρ̂: 
⃒
⃒
⃒
⃒
∂V(x)

∂x
g(x, ξ1, et) −

∂V(x′)
∂x

g(x′, 0, 0)
⃒
⃒
⃒
⃒ ≤ L′

x|x − x′| + L′
ξ|ξ1| + L′

q|et| (19)  

Thus, Eq. (18) can be re-written as: 

V̇ ≤
∂V(x(t))

∂x
g(x(t), ξ1(t), et) −

∂V(x(tk))

∂x
g(x(tk), 0, 0)

− c3|x(tk)|
2

≤ L′
x|x(t) − x(tk)| + L′

ξ|ξ1(t)| + L′
q|et| − c3|x(tk)|

2

(20) 
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The upper bound of the perturbation term ξ1 due to state delays can be 
represented as: 

|ξ1(t)| = ∣x(t − d1) − x(t)∣ ≤ d1Md1 (21)  

where Md1 = max
s∈[− d1 ,0]

⃒
⃒
⃒
⃒x(t + s)

⃒
⃒
⃒
⃒, ∀t ∈ [0, T]. Substituting the bound on 

∣ξ1(t)∣ derived from Eq. (21), we obtain: 

V̇ ≤ L′
x|x(t) − x(tk)| + L′

ξd1Md1 + L′
q|et| − c3|x(tk)|

2 (22)  

Due to the continuity of x(t) ∀ t ∈ [tk, tk + Δ), we can write that ∣x(t) − x 
(tk)∣≤MFΔ, ∀ t ∈ [tk, tk + Δ). Using this bound and the inequalities of Eq. 
(4), it follows from Eq. (22): 

V̇ ≤ L′
xMFΔ + L′

ξd1Md1 + L′
q|et| −

c3

c2
ρs (23)  

In the above equation, the first term represents the error due to sample- 
and-hold implementation of the control input, the second term repre-
sents the error due to state delays, and the third term represents the error 
due to quantization. All these errors are bounded and can be made 
sufficiently small by constraining the sampling time and state delay to be 
sufficiently small, and using a higher quantization parameter d for 
encryption. Therefore, their sum is also bounded and can be made suf-
ficiently small. This implies that, for the chosen time T, there exist 
positive real numbers Δ, d1, d, and ϵw, such that the following inequality 
holds ∀ t ∈ [0,T]: 

L′
xMFΔ + L′

ξd1Md1 + L′
q|et| −

c3

c2
ρs ≤ − ϵw  

which implies that V̇ ≤ − ϵw for any x(tk) ∈ Ωρ̂⧹Ωρs for all tk ∈ [0, T]. This 
establishes that, if the conditions of Eq. (14) are met, the closed-loop 
system state under the encrypted stabilizing controller is always boun-
ded in Ωρ̂ and converges to Ωρs ⊆ Ωρmin within time T, and remains 
there. Below, we proceed with the stability proof of the closed-loop 
system under the encrypted decentralized MPC. 

Theorem 2. Considering the system of Eq. (3) under the encrypted 
decentralized LMPC of Eq. (13), we examine the stability of the time- 
delay system without any input delay (i.e., d2 ≡ 0 and d1 > 0). We as-
sume that the initial state x0 resides within the region Ωρ̂. Given a suf-
ficiently large time T > 0, where T is the time needed for x(t) to enter 
Ωρmin , we extend the results obtained in Theorem 1 to the encrypted 
decentralized LMPC of Eq. (13) maintaining our previous assumption 
that ρ̂ > ρmin > ρs. Then, if the following conditions are satisfied, 

V̇ ≤ L′
xMFΔ + L′

ξd1Md1 + L′
q|et| −

c3

c2
ρs ≤ − ϵw

ρmin = max{V(x(t + Δ))|V(x(t)) ≤ ρs}

(24)  

the closed-loop state x(t) remains bounded in Ωρ̂ and is ultimately 
bounded in Ωρmin for t ≥ T, under the proposed encrypted decentralized 
LMPC of Eq. (13). Proof. Firstly, within this proof, we establish the 
recursive feasibility of the optimization problem within each decen-
tralized LMPC. Subsequently, under the optimized control actions of the 
encrypted decentralized LMPC of Eq. (13), we will prove the bounded-
ness and convergence of the closed-loop state of the nonlinear system 
within the set Ωρ̂, extending the results of Theorem 1. Initially, we 
consider x(t) ∈ Ωρ̂⧹Ωρmin . The input trajectories Φ̂j(x̂(tk)), j = 1,…,

Nsys for t ∈ [tk, tk+1) are feasible solutions to the optimization problem 
outlined in Eq. (13), as the input constraint of Eq. (13c) and the Lya-
punov constraint of Eq. (13e) are both satisfied. Then, we consider 
x(t) ∈ Ωρmin . The input trajectories Φ̂j(x̃(tk+i)), i = 0,1,…,N − 1, j =
1,…,Nsys for t ∈ [tk, tk+N) satisfy the constraints on the inputs in Eq. 
(13c) and the Lyapunov-based constraint of Eq. (13f). It has been proven 

in Theorem 1 that the states predicted by the LMPC process model of Eq. 
(13b) can remain within Ωρmin under the encrypted stabilizing controllers 
Φ̂j(x̃) for time t ≥ T. Thus, the optimization problem of each decen-
tralized LMPC would be feasible for all x0 ∈ Ωρ̂ and can be solved by 
recursive feasibility for t ∈ [tk, tk+1), i.e., 

∂V(x(t))
∂xj

fj(x(t), x(t) + ξ1(t), ûdj (tk))

≤
∂V(x(t))

∂xj
fj
(
x(t), x(t) + ξ1(t), Φ̂j(x̂(tk))

)
, ∀j = 1,…,Nsys (25)  

The control Lyapunov function for the overall system V(x) may take the 
form of a linear combination of control Lyapunov functions for indi-
vidual subsystems. In this representation, V(x) is expressed as the sum of 
Vj(xj) for each subsystem, where Vj is assumed to be a function of xj only. 
The time-derivative of the control Lyapunov function of the encrypted 
decentralized LMPC can be expressed as follows: 

V̇ =
∑Nsys

j=1

∂V(x(t))
∂xj

fj(x(t), x(t) + ξ1(t), ûdj (tk)) (26)  

Based on the Lyapunov constraint, the following inequality holds: 

V̇ =
∑Nsys

j=1

∂V(x(t))
∂xj

fj(x(t), x(t) + ξ1(t), ûdj (tk))

≤
∑Nsys

j=1

∂V(x(t))
∂xj

fj
(
x(t), x(t) + ξ1(t), Φ̂ j(x̂(tk))

)
(27)  

From Eq. (26) and Eq. (27), the time-derivative of the control Lyapunov 
function under the encrypted decentralized LMPC satisfies the 
inequality, 

∂V(x(t))
∂x

f (x(t), x(t) + ξ1(t), ûd(tk)) ≤
∂V(x(t))

∂x
f (x(t), x(t) + ξ1(t), Φ̂(x̂(tk)))

(28)  

However, from the results of Theorem 1 (Eq. (23)), it follows that the 
right-hand side of Eq. (28) is bounded as follows: 

∂V(x(t))
∂x

f (x(t), x(t) + ξ1(t), ûd(tk)) ≤ L′
xMFΔ + L′

ξd1Md1 + L′
q|et| −

c3

c2
ρs

≤ − ϵw

(29)  

Thus, for the chosen time T, there exist positive real numbers Δ, d1, d, 
and ϵw, such that the following inequality holds ∀ t ∈ [0,T], 

L′
xMFΔ + L′

ξd1Md1 + L′
q|et| −

c3

c2
ρs ≤ − ϵw  

which implies that V̇ ≤ − ϵw for any x(tk) ∈ Ωρ̂⧹Ωρs for all tk ∈ [0, T]. This 
establishes that, if the conditions of Eq. (24) are met, the closed-loop 
system state is always bounded in Ωρ̂, and it converges to Ωρs ⊆ Ωρmin 

within time T, and remains there. This completes the proof for the sta-
bility of the system under the encrypted decentralized LMPC. 
Remark 4. As discussed in Section 3.3, we employ the predictor 
feedback methodology outlined in Section 3.4 to achieve system stabi-
lization in the presence of input delays. The stability analysis does not 
consider the perturbation caused by input delays. However, a similar 
approach to the one used to establish bounds on state delays, as 
demonstrated in Eq. (21), could be employed to account for the influ-
ence of input delays. Incorporating input delay perturbations into the 
proof would establish a very stringent upper limit on the allowable value 
of d2, rendering the proof valid only for relatively small input delays. As 
outlined in Eq. (3), the perturbation resulting from input delays can be 
expressed as ξ2(t) = u(t − d2) − u(t). Consequently, it becomes evident 

Y.A. Kadakia et al.                                                                                                                                                                                                                             



Chemical Engineering Research and Design 200 (2023) 312–324

318

that, as d2 approaches zero, ξ2(t) tends to zero as well. In the interest of 
maintaining a more generalized analysis with established bounds 
applicable even to substantial input delays, we have chosen to omit this 
consideration from the proof. Instead, we opt to address input delay 
challenges by employing a predictor, ensuring the validity of our anal-
ysis across a broader range of scenarios. 

3.4. Predictor feedback decentralized LMPC methodology 

This subsection formulates a predictor feedback-based decentralized 
LMPC for the nonlinear system described in Eq. (1). A first-principles- 
based state predictor is integrated in the closed-loop system to 
compensate for the effect of input delays. At time tk, where k is the 
sampling instance, the predictor of the jth subsystem receives the 
quantized states x̂(tk). It uses the control input trajectory udj (t)
computed previously by the jth LMPC, and estimates the control inputs 
for the other subsystems using the stabilizing control law, Φ(x), over tk 
to tk + d2, to predict the state values of the entire system at tk + d2. 
Additionally, the LMPCs employ a DDE-based nonlinear process model 
specific to their subsystem. Thus, the predictor also transmits values of 
the states from time tk + d2 − d1 to tk + d2, which are used by the DDE 
model to account for the state delays in the system. Within a decen-
tralized control framework, where inter-controller communication is 
absent, the predictor of the jth subsystem only has access to the control 
inputs computed by the jth LMPC. Thus, an estimate of the control inputs 
of the other subsystems can be made through the stabilizing control law, 
utilizing state feedback. The inputs are assumed to be at their steady 
state values from time 0 to d2. The jth LMPC is then initialized with the 
shifted timescale t̄k = tk + d2 to calculate the optimal control input 
trajectory, udj , from t̄k to t̄k+N. The LMPC formulation with the shifted 
time scale is described as follows: 

J j = min
udj ∈S(Δ)

∫ t̄k+N

t̄k

Lj (̃xj(t), udj (t)) dt (30a)  

s.t. ˙̃xj(t) = Fj(x̃(t), udj (t)) (30b)  

udj (t) ∈ Uj, ∀ t ∈ [̄tk, t̄k+N) (30c)  

x̃(̄tk) = x̂(̄tk) (30d)  

V̇(x̂(̄tk), udj (̄tk)) ≤ V̇(x̂(̄tk),Φj(x̂(̄tk))),

if x̂(̄tk) ∈ Ωρ\Ωρmin (30e)  

V(x̃(t)) ≤ ρmin, ∀ t ∈ [̄tk, t̄k+N),

if x̂(̄tk) ∈ Ωρmin

(30 f) 

Remark 5. As mentioned earlier in Section 3.3, we employ the 
predictor feedback methodology outlined in Section 3.4 to achieve 
system stabilization in the presence of input delays. In the absence of a 
predictor, nominal to modest input delays can lead to an oscillatory 
convergence of the closed-loop system states around their respective 
steady states within Ωρ but outside Ωρmin , while larger input delays can 
cause the state to exit Ωρ. However, with a predictor feedback meth-
odology, the closed-loop states can be stabilized within Ωρmin even under 
large input delays. This is demonstrated in the example described in 
Section 4. 

4. Application to a nonlinear chemical process network 
operating at an unstable steady state 

This section demonstrates the proposed encrypted decentralized 
control architecture on a nonlinear chemical process network with input 
and state delays, operating at an unstable steady state. A nonlinear 
dynamical model based on first-principles modeling fundamentals is 

developed for the state predictor and the LMPCs. This model is parti-
tioned into Nsys subsystems to construct first-principles-based process 
models of the decentralized LMPC of each subsystem. Guidelines are 
established to implement the encrypted decentralized LMPC system in 
any nonlinear process with delays. We then conduct closed-loop simu-
lations, employing the decentralized LMPC with and without the pre-
dictor feedback, and analyze the results. 

4.1. Process description and model development 

The process considered is the synthesis of ethylbenzene (EB) by 
reacting ethylene (E) and benzene (B) within two non-isothermal, well- 
mixed continuous stirred tank reactors (CSTRs) as depicted in Fig. 2. The 
primary reaction, termed as “primary”, is characterized as a second- 
order, exothermic, and irreversible reaction, in conjunction with two 
supplementary side reactions. The chemical reactions taking place are 
articulated as follows: 

C2H4 + C6H6→C8H10 (primary) (31a)  

C2H4 + C8H10→C10H14 (31b)  

C6H6 + C10H14→2C8H10 (31c)  

Details of the steady-state values and model parameter values can be 
obtained from Kadakia et al. (2023). The dynamic model of the initial 
CSTR is described by the following mass and energy balance equations: 

ĊE1 (t) =
F1CEo1 (t − d2) − Fout1 CE1 (t)

V1
− r1,1 − r1,2 (32a)  

ĊB1 (t) =
F1CBo1 (t − d2) − Fout1 CB1 (t)

V1
− r1,1 − r1,3 (32b)  

ĊEB1 (t) =
− Fout1 CEB1 (t)

V1
+ r1,1 − r1,2 + 2r1,3 (32c)  

ĊDEB1 (t) =
− Fout1 CDEB1 (t)

V1
+ r1,2 − r1,3 (32d)  

Ṫ1(t) =
T1o F1 − T1(t)Fout1

V1
+

∑3

j=1

− ΔHj

ρ1Cp
r1,j

+
Q1(t − d2)

ρ1CpV1

(32e)  

The dynamic model of the second CSTR is represented by the following 
equations: 

ĊE2 (t) =
F2CEo2 (t − d2)+Fout1 CE1 (t − d1)

V2

−
Fout2 CE2 (t)

V2
− r2,1 − r2,2

(33a) 

Fig. 2. Process schematic featuring two CSTRs connected in series.  
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ĊB2 (t) =
F2CBo2 (t − d2) + Fout1 CB1 (t − d1)

V2

−
Fout2 CB2 (t)

V2
− r2,1 − r2,3

(33b)  

ĊEB2 (t) =
Fout1 CEB1 (t − d1) − Fout2 CEB2 (t)

V2

+r2,1 − r2,2 + 2r2,3

(33c)  

ĊDEB2 (t) =
Fout1 CDEB1 (t − d1) − Fout2 CDEB2 (t)

V2
+ r2,2 − r2,3 (33d)  

Ṫ2(t) =
T2o F2 + T1(t − d1)Fout1 − T2(t)Fout2

V2

+
∑3

j=1

− ΔHj

ρ2Cp
r2,j +

Q2(t − d2)

ρ2CpV2

(33e)  

where the reaction rates are calculated by the following expressions: 

ri,1 = k1e
− E1

RTi (t)CEi (t)CBi (t) (34a)  

ri,2 = k2e
− E2

RTi (t)CEi (t)CEBi (t) (34b)  

ri,3 = k3e
− E3

RTi (t)CDEBi (t)CBi (t) (34c)  

and i = {1, 2} is the reactor index. The state variables are the concen-
tration of ethylene, benzene, ethylbenzene, di-ethylbenzene, and the 
reactor temperature for each CSTR in deviation terms, that is: x⊤ =

[CE1 − CE1s , CB1 − CB1s , CEB1 − CEB1s , CDEB1 − CDEB1s , T1 − T1s,

CE2 − CE2s , CB2 − CB2s , CEB2 − CEB2s , CDEB2 − CDEB2s , T2 − T2s]

The subscript, s, denotes the steady-state value. The state delay, repre-
senting the time needed to transport the output of the initial CSTR to the 
second CSTR, is set at d1 = 0.5 min. The rate of heat removal for the two 
reactors [Q1 − Q1s, Q2 − Q2s] and inlet feed concentrations for each 
reactor, [CEo1 − CEo1s , CBo1 − CBo1s , CEo2 − CEo2s , CBo2 − CBo2s ], are the 
manipulated inputs with input delay d2 = 1 min. These inputs are 
bounded by the closed sets, [− 104, 2 × 103] kW, [− 1.5 × 104, 
5 × 103] kW, [− 2.5, 2.5] kmol∕m3, [− 2.5, 2.5] kmol∕m3, [− 3, 3] 
kmol∕m3, and [− 3, 3] kmol∕m3, respectively. To determine the sta-
bility of the chosen steady-state, an open loop simulation was performed 
where the control inputs were maintained at their steady state values, 
and the system states were initialized at a point close to their operating 
steady-state within Ωρmin . After a finite duration of process time, the 
states exited the stability region, Ωρ, and converged to another steady 
state, implying that the chosen steady-state is an unstable one. 
Furthermore, the rationale for choosing this steady-state was its ability 
to provide a high steady-state concentration (4.22 kmol∕m3) of the 
desired product, ethyl benzene, at reasonable operating conditions, at 
the outlet of reactor 2, making it the economically optimal steady state 
to operate at. 

We create two decentralized LMPCs in our design. The first LMPC 
(LMPC 1) utilizes the first-principles-based model specific to subsystem 
1, which corresponds to the dynamic model of CSTR 1 (Eq. (32)), while 
the second LMPC (LMPC 2) employs a first-principles-based model 
specific to subsystem 2, which corresponds to the dynamic model of 
CSTR 2 (Eq. (33)). LMPC 1 does not require complete state feedback, 
given that the dynamics of its subsystem are entirely independent of 
subsystem 2. However, the evolution of the states within the second 
CSTR is influenced by the states of the first CSTR. Thus, LMPC 1 receives 
x1 = [CE1 − CE1s , CB1 − CB1s , CEB1 − CEB1s , CDEB1 − CDEB1s , T1 − T1s]

⊤and 
optimizes the control inputs u1 = [CEo1 − CEo1s ,CBo1 − CBo1s ,Q1 − Q1s]

⊤. 
LMPC 2 receives full state feedback x, and optimizes the control inputs 
u2 = [CEo2 − CEo2s ,CBo2 − CBo2s ,Q2 − Q2s]

⊤. The control objective is to 
operate both CSTRs at their unstable equilibrium point through the 

encrypted decentralized control scheme, employing quantized states 
and inputs for computation and actuation. 

4.2. Encrypting the decentralized control architecture 

Before implementing encryption–decryption into a process, the se-
lection of parameters, namely d, l1, and l2 is performed. Based on the 
extreme feasible states and inputs, the integer bit count l1 − d is derived. 
The upper limit in the Ql1 ,d set is obtained via the formula 2l1 − d− 1 − 2− d, 
whereas the lower limit is − 2l1 − d− 1. The choice of the quantization 
parameter d, representing the fractional bit count, rests on the desired 
accuracy and range of state and input values. Additionally, l2 is chosen 
to exceed l1. Accordingly, for the example in this section, l1 − d is 
calculated to be 16, from which l1 and d are then fixed. Within the set 
Ql1 ,d, rational numbers are separated by a resolution of 2− d. For simu-
lation purposes, we use, d = 8. For d = 8, l1 = 24 and we select l2 = 30. 
The Paillier Encryption procedure is implemented through Python’s 
“phe” module, PythonPaillier (2013). For solving the constrained 
non-convex optimization problem in the LMPCs within the decentral-
ized control structure, we leverage the Python module of the IPOPT 
software (Wächter and Biegler, 2006). 

While deciding the sampling time (Δ) for an encrypted decentralized 
system, it is crucial to ensure that it exceeds the total time required for 
encryption–decryption of the states and control inputs, time required by 
the predictor to predict the states after the input delay, and the time 
needed to compute the control inputs at each sampling instance for the 
considered quantization parameter d, for any subsystem, as these com-
putations would occur concurrently in different edge computing units. 
Mathematically, 

Δ > max(Encryption-decryption time)j
+max(Control input computation time)j
+max(State-prediction time)j

(35)  

where j = {1, …, Nsys} represents the control subsystem. Considering the 
above criteria, the sampling time Δ is chosen as 30 s in the discussed 
example. 

To calculate the cost function of the LMPCs over the prediction ho-
rizon, the integration step hc = 10− 2 × Δ is chosen. The positive definite 
matrix P in the control Lyapunov function V = x⊤Px is selected as diag 
[250 500 500 1000 2.5 250 250 500 1000 2.5], from extensive simu-
lations. The LMPCs employ a prediction horizon of N = 3 sampling pe-
riods. The stability criterion is defined as ρ = 1000, while ρmin = 2 is the 
smaller level set of the Lyapunov function where the state is desired to be 
confined. The weight matrices in the cost function of LMPCs are chosen 
as Q1 = diag [2000 2000 5000 5 50], Q2 = diag [1000 1000 2500 5 
135], R1 = diag [1 1 5 × 10− 6], and R2 = diag [20 15 2.5 × 10− 4]. The 
cost function is defined as Lj(xj, uj) = x⊤

j Qjxj + u⊤
j Rjuj where j = 1, 2 

represents the LMPC j. As di-ethylbenzene, the undesired product, is 
present in trace amounts in both CSTRs, its trajectories are not depicted. 

4.3. Simulation results of the encrypted decentralized control architecture 

The proposed encrypted decentralized control architecture is applied 
to a nonlinear chemical process with state and input delays. Figs. 3, 4 to  
5 and 6, 7 to 8 depict the results for the encrypted decentralized LMPC 
system without and with predictor feedback, respectively. 

In the absence of a predictor, the states and inputs of both CSTRs 
show considerable oscillations, as shown in Fig. 3 to 5. Additionally, the 
temperatures of both CSTRs overshoot their set-points. With the addi-
tion of the state predictor, the oscillations in both states and inputs are 
negligible as observed in Fig. 6 to 8. Furthermore, there is no overshoot 
of the temperature in CSTR 1, and the overshoot in temperature is 
decreased for CSTR 2. Moreover, the inclusion of the predictor enables 
us to achieve convergence of the states within the targeted stability re-
gion, denoted as Ωρmin . This was not attainable solely with the encrypted 
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decentralized LMPC. While the latter stabilizes the states within Ωρ, it 
falls short of achieving convergence within the desired stability region 
after two hours of process time. 

To measure the computational time for computing the control inputs 
in the decentralized MPC, we recorded the maximum time taken by the 2 
MPCs at each sampling instance. On average, the decentralized 

controllers spent 2.49 s on control input computation at every sampling 
instance, whereas the centralized controller averaged 10.75 s. We 
ensured that the control input computation time remained below the 30- 
second sampling interval for all sampling times. These results demon-
strate the computational efficiency of a decentralized MPC over a 
centralized MPC. Furthermore, the normalized sum of the control cost 

Fig. 3. State profiles of CSTR 1 under the encrypted decentralized LMPC for state delay d1 = 0.5 min, and input delay d2 = 1 min.  

Fig. 4. State profiles of CSTR 2 under the encrypted decentralized LMPC for state delay d1 = 0.5 min, and input delay d2 = 1 min.  
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function for the centralized and decentralized MPCs without delays was 
recorded as 1 and 0.9798, respectively. The reason for a slightly better 
performance under the decentralized MPC can be attributed to the fact 
that the process network has a sequential flow sheet with 2 CSTRs in 
series, which makes the decentralized MPC a more suitable, well- 
conditioned choice than the centralized MPC with respect to the opti-
mization problem solution. These results validate the effectiveness of the 
proposed decentralized LMPC framework in comparison to a centralized 
LMPC for this particular process network. 

Remark 6. During the initial delay period, where control input in-
formation is not yet available, we assume steady-state values for the 
control inputs. This assumption results in a sharp increase that would 
not typically occur during continuous operation. To mitigate such 
abrupt changes in control inputs, one approach is to introduce a 
constraint on the maximum allowable change in applied control inputs 
between sampling instances. This constraint can help smooth the tran-
sition between steady-state values and actual control inputs initially, 
and also reduce sudden spikes or fluctuations in the system’s behavior 
for the remainder of the operation. 

Remark 7. The encrypted decentralized LMPC explored in this study 
involved encrypting and decrypting data as outlined in Fig. 1, which can 
lead to errors due to quantization. Suryavanshi et al. (2023) demon-
strated quantization effects in the context of a first-principles-based 
MPC. Additionally, Kadakia et al. (2023) highlighted the potential for 
quantization-induced errors to exceed model mismatch errors when 
different models are employed in the MPC and in the controlled process. 
To minimize the quantization error, both works recommended using a 
higher quantization parameter d. With d = 8, both works reported 
almost identical closed-loop results with encryption compared to 
without encryption. Thus, we have used the quantization parameter, d 
= 8 for all simulations in this work. 

Remark 8. In this work, we have assumed the same value of the input 
delay for all the control inputs applied to the nonlinear process. How-
ever, if the input delay values are different for certain control inputs, in 
the proposed encrypted decentralized control structure, the subsystems 
can be partitioned in a manner such that the control inputs manipulated 
by each subsystem have the same input delay values. Thus, the predictor 
of a particular subsystem would predict the states up to the 

Fig. 5. Control input profiles under the encrypted decentralized LMPC for state delay d1 = 0.5 min, and input delay d2 = 1 min.  
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corresponding input delay value of the control inputs manipulated by 
that subsystem. 

Remark 9. Although the LMPC and predictor models used in this work 
are first-principles-based, data-based models employing artificial neural 
networks can also be used in the predictor and LMPC. Alnajdi et al. 

(2023) used machine-learning-based models for the predictor and LMPC 
while simulating a first-principles-based process with state and input 
delays, showcasing the effectiveness of the predictor in the presence of 
plant/model mismatch. 

Fig. 6. State profiles of CSTR 1 under the encrypted decentralized LMPC with predictor feedback for state delay d1 = 0.5 min, and input delay d2 = 1 min.  

Fig. 7. State profiles of CSTR 2 under the encrypted decentralized LMPC with predictor feedback for state delay d1 = 0.5 min, and input delay d2 = 1 min.  

Y.A. Kadakia et al.                                                                                                                                                                                                                             



Chemical Engineering Research and Design 200 (2023) 312–324

323

5. Conclusion 

In this study, we devised and applied an encrypted decentralized 
control architecture to a large-scale nonlinear chemical process network 
with input and state delays. A stability analysis of the encrypted 
decentralized MPC applied to a nonlinear system with state delays was 
conducted, yielding bounds on the errors due to quantization, state 
delays, and sample-and-hold implementation of the controller. Based on 
these bounds, the system can be stabilized within the desired stability 
region. We established guidelines to implement this control structure in 
any nonlinear process, such as selection of parameters l1, l2, and d for 
quantization, and the sampling time criterion. The encrypted decen-
tralized LMPC employs a DDE model to account for state delays in the 
process. Closed-loop simulations are compared with and without the 
incorporation of a predictor into the LMPC design, where the predictor 
predicts the state values after the input delay period. A significant 
improvement in the closed-loop performance was observed with the 
integration of the predictor, as the states and inputs converged to their 
steady state values with negligible oscillations. Also, with the inclusion 
of the predictor, states converged within the desired stability region 

represented by the level set Ωρmin . However, without the predictor, the 
states only stabilize within the larger level set Ωρ and with oscillations. 
Thus, by employing the encrypted decentralized LMPC with predictor 
feedback, we were able to reduce the computation time and complexity 
of the control problem, improve the closed-loop performance, and 
enhance the cybersecurity of the control system. 
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Fig. 8. Control input profiles under the encrypted decentralized LMPC with predictor feedback for state delay d1 = 0.5 min, and input delay d2 = 1 min.  
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Wächter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter line- 
search algorithm for large-scale nonlinear programming. Math. Program. 106, 
25–57. 

Wu, Z., Chen, S., Rincon, D., Christofides, P.D., 2020. Post cyber-attack state 
reconstruction for nonlinear processes using machine learning. Chem. Eng. Res. Des. 
159, 248–261. 

Y.A. Kadakia et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref1
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref1
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref1
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref2
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref2
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref2
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref3
https://github.com/data61/python-paillier
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref4
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref4
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref5
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref5
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref6
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref6
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref7
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref7
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref8
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref8
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref8
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref9
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref9
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref10
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref10
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref10
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref11
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref11
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref11
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref12
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref12
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref12
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref13
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref13
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref13
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref14
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref14
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref14
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref15
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref16
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref16
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref16
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref17
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref17
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref18
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref18
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref18
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref19
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref19
http://refhub.elsevier.com/S0263-8762(23)00677-9/sbref19

	Encrypted decentralized model predictive control of nonlinear processes with delays
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Class of systems
	2.3 Stability assumptions
	2.4 Paillier cryptosystem
	2.5 Quantization

	3 Development of the encrypted decentralized control architecture
	3.1 Design of the encrypted decentralized control architecture
	3.2 Decentralized LMPC
	3.3 Robustness of the encrypted decentralized LMPC to time-delay systems
	3.4 Predictor feedback decentralized LMPC methodology

	4 Application to a nonlinear chemical process network operating at an unstable steady state
	4.1 Process description and model development
	4.2 Encrypting the decentralized control architecture
	4.3 Simulation results of the encrypted decentralized control architecture

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


