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A B S T R A C T

This research focuses on encrypted distributed control architectures, aimed at enhancing the operational
safety, cybersecurity and computational efficiency of large-scale nonlinear systems, where only partial state
measurements are available. In this setup, a distributed model predictive controller (DMPC) is utilized to
partition the process into multiple subsystems, each controlled by a distinct Lyapunov-based MPC (LMPC).
To consider the interactions among different subsystems, each controller receives and shares with the other
controllers control inputs computed for its particular subsystem. As full state feedback is not available, we
integrate an extended Luenberger observer with each LMPC, initializing the LMPC model with complete
state estimate information provided by the observer. Furthermore, to enhance cybersecurity, wireless signals
received and transmitted by the controllers are encrypted. Guidelines are established to implement this
proposed control structure in any large-scale nonlinear chemical process network. Simulation results, conducted
on a specific nonlinear chemical process network, demonstrate the effective closed-loop performance of the
encrypted DMPC with state estimation, utilizing partial state feedback with sensor noise. This is followed by a
comprehensive comparison of the closed-loop performance, control input computational time, and suitability
of encrypted centralized, decentralized, and distributed MPC frameworks.
1. Introduction

Industrial control systems for large-scale processes have been sub-
ject to extensive research over the past decades, with the primary
objectives of enhancing operational safety, promoting environmen-
tal sustainability, optimizing profitability, and economizing on utility
costs. Nonetheless, the evolution of technology has led to the inte-
gration and interlinking of industrial control systems with corporate
networks and the internet, to create cyber–physical systems that have
streamlined monitoring, control, and automation of complex processes,
enhancing productivity and operational efficiency. However, the in-
creased connectivity and linking of these systems have made them
vulnerable to cyberthreats, given their extensive reliance on networked
communication. A breach or compromise in these systems can have
severe consequences, including the disruption of essential services,
physical damage, financial losses, and are even a threat to public safety.
As a result, the past few years have witnessed a surge in research ef-
forts directed towards enhancing the cybersecurity of industrial control
systems.

Recent developments in cyberattack techniques underscore the need
to establish robust cybersecurity (Gandhi et al., 2011). Dealing with
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cybersecurity issues within industrial control systems is mainly within
the realm of operational technology (OT). While there have been
notable advancements in improving cybersecurity in the information
technology (IT) sector, which centers on the software elements of
systems, including aspects like network architecture and data man-
agement, cybersecurity within the OT domain is currently trailing
behind (Conklin, 2016). Numerous real-world examples highlight the
need of cybersecurity in networked cyber–physical systems and SCADA
(Supervisory Control and Data Acquisition) systems. These include the
2015 cyberattacks on SCADA controls responsible for managing the
power grid in Ukraine, leading to widespread power outages (Khan
et al., 2016). Likewise, in the 2021 DarkSide ransomware attack on
Colonial Pipeline, cyberattackers encrypted its networked communi-
cation and demanded a ransom for the decryption keys. As a result,
Colonial Pipeline was compelled to suspend its operations, resulting in
interruptions to fuel distribution and financial losses (Tsvetanov and
Slaria, 2021).

Traditional control systems, like proportional–integral–derivative
(PID) control, have long been used in chemical plants to control pro-
cesses with a decentralized structure. In this setup, each controller uses
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one process measurement and calculates actions to control that specific
state at its desired set point. However, PIDs do not consider how the
controlled variable interacts with other states, limiting their ability to
optimize control inputs for a multi-input-multi-output (MIMO) system.
To address this limitation, model predictive controllers (MPCs) have
been applied to manage complex processes. MPCs employ models,
derived from first principles, data, or mathematical representations, to
predict future states within a specified horizon. They then optimize
control inputs using real-time sensor feedback while accounting for
interactions among all the process states and inputs. This approach
not only elevates control precision but also mitigates utility expenses,
ultimately enhancing overall process performance.

However, acquiring sensor measurements for all states in large pro-
cesses can incur significant costs. Furthermore, installing the necessary
instrumentation and equipment to collect and transmit measurements
may not always be feasible, particularly in specific areas of the plant or
process. As a result, extensive research has been carried out on state es-
timation techniques, enabling real-time prediction of unmeasured states
though deterministic and stochastic estimation methods. Notably, the
extended Kalman Filter (EKF) and extended Luenberger observer (ELO)
stand out as commonly used state estimators for nonlinear processes.
The EKF utilizes a stochastic approach, employing a linearized approx-
imation from continuous time to a discrete-time system to estimate the
state. This method can account for system and measurement noise using
probabilistic approaches. Conversely, the ELO adopts a deterministic
approach, using nonlinear model dynamics to estimate states without
explicitly addressing stochastic disturbances or measurement noise.
While the EKF can account for sensor noise better, the ELO handles non-
linearity by directly incorporating it in the observer equations. More
details on the advantages, drawbacks, and similarities about various
state estimation methods has been discussed in the works of Radke and
Gao (2006) and Ali et al. (2015). To attain the desired performance
using these methods, a mathematical model for the specific system
is typically required to describe process dynamics within a defined
operating range. Nevertheless, when integrated with MPC, the MPC
model can be extended for use by the state estimator, and vice versa,
enabling a collaborative and effective solution.

Since MPCs employ nonlinear optimization for control input opti-
mization in nonlinear processes, in large-scale systems, where numer-
ous control inputs must be calculated, the control problem can become
too extensive and intricate to be solved within the given sampling time.
As a response, decentralized and distributed MPC strategies have been
introduced to break down the complex problem into smaller segments,
handled by different computing units. In such arrangements, the system
to be controlled is partitioned into smaller subsystems, where the
control input of each subsystem is computed separately. Decentralized
MPCs compute control inputs for their respective subsystems without
any knowledge of the control inputs being applied by other subsystems.
This limits the controller from taking into account interactions among
different process subsystems and only considers interactions within its
specific subsystem. In contrast, distributed controllers share informa-
tion about the control inputs computed for their subsystem, enabling
other controllers to optimize their control inputs accordingly. This
collaborative approach improves the handling of interdependencies
among various process subsystems.

Significant research efforts have been devoted to various domains
of cybersecurity, and process control, including the development of
machine learning-based cyberattack detectors (Al-Abassi et al., 2020;
Dutta et al., 2020), the implementation of nonlinear encrypted central-
ized MPCs (Suryavanshi et al., 2023), the utilization of sequential and
iterative DMPCs (Liu et al., 2010), and the application of nonlinear state
estimators (Zeitz, 1987; Kazantzis and Kravaris, 1998). However, to
the best of our knowledge, the development of distributed control sys-
tems that employ encrypted networked communication for large-scale
nonlinear processes with partial state feedback remains an unexplored
2

area, prompting our proposal for a novel control structure to address
this challenge. Specifically, we propose a distributed control structure
comprising a set of Lyapunov-based MPCs, integrated with an extended
Luenberger observer, utilizing encrypted networked communication. In
this configuration, we assume the presence of secure edge computers
responsible for computing control inputs and receiving and trans-
mitting encrypted signals. Integrating observer-based state estimation
within this setup serves to provide each LMPC with complete state
information in real-time. To address interactions within different sub-
systems in large processes and reduce the complexity associated with
centralized control problems, we employ a distributed MPC. Further,
the incorporation of encryption within the networked communication
channels enhances cybersecurity as each edge computing unit receives
and transmits encrypted wireless signals.

The remainder of this paper is structured as follows: In Section 2,
we provide an overview of various aspects, including notation, the con-
sidered class of nonlinear systems, system stabilizability assumptions,
the formulation of the extended Luenberger observer, the employed en-
cryption cryptosystem, and the implications of quantization. Section 3
delves into the design of the encrypted distributed MPC, outlining the
formulation of sequential and iterative DMPCs utilizing state estimates
from the observer, and further detailing the extended Luenberger ob-
server. In Section 4, we present and discuss closed-loop simulations for
a nonlinear chemical process network with partial state feedback in the
presence of sensor noise with the encrypted sequential and iterative
DMPCs. In Section 5, we conduct a comparative assessment of the
encrypted control strategies, encompassing centralized, decentralized,
and distributed MPCs.

2. Preliminaries

2.1. Notation

The symbol ‖⋅‖ represents the Euclidean norm of a vector. 𝑥⊤

denotes the transpose of a vector 𝑥. R, Z, and N represent the sets of
real numbers, integers, and natural numbers, respectively. Z𝑀 denotes
the additive groups of integers modulo 𝑀 . Set subtraction is indicated
by the symbol ‘‘∖’’, where 𝐴∖𝐵 represents the set of elements that are
in set 𝐴 but not in set 𝐵. A function, 𝑓 (⋅), falls under the class 1 if it is
continuously differentiable within its defined domain. The term lcm(𝑖, 𝑗)
denotes the least common multiple of the integers 𝑖 and 𝑗, while gcd(𝑖, 𝑗)
signifies the greatest common divisor, that divides 𝑖 and 𝑗 without any
remainder.

2.2. Class of systems

This study is centered on multi-input multi-output (MIMO) systems,
which are characterized by a category of continuous-time nonlinear
systems represented in state-space form as follows:

�̇� = 𝐹 (𝑥, 𝑢) = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (1a)

𝑦 = ℎ(𝑥) +𝑤 (1b)

The state vector is denoted by 𝑥 = [𝑥1,… , 𝑥𝑛] ∈ R𝑛, while 𝑢 ∈ R𝑚

epresents the control input vector bounded by the set, 𝑈 ⊂ R𝑚. The
utput vector consisting of the state measurements that are continu-
usly sampled is 𝑦 = [𝑦1,… , 𝑦𝑞] ∈ R𝑞 , and 𝑤 ∈ R𝑞 is the measurement

noise vector. 𝐹 (𝑥, 𝑢) is a nonlinear function with respect to 𝑥 and
, rendering the origin as a steady state of Eq. (1). Without loss of
enerality, we assume the initial time as zero (𝑡0 = 0). The functions
(⋅), 𝑔(⋅), and ℎ(⋅) are matrices of dimension 𝑛 × 1, 𝑛 × 𝑚, and 𝑞 × 1,
espectively. Additionally, we define the set 𝑆(𝛥) as the set of piece-
ise constant functions characterized by a period of 𝛥. We consider
= 1,… , 𝑁𝑠𝑦𝑠 sub-systems, where each subsystem 𝑗 is regulated only
y inputs 𝑢𝑗 but potentially impacted by inputs of other subsystems due
o coupling between subsystems. The control input vector for the 𝑗th

ubsystem is 𝑢 ∈ R𝑚𝑗 . 𝑢 = [𝑢⊤ … 𝑢⊤ ]⊤ ∈ R𝑚 is the control input vector
𝑗 1 𝑁𝑠𝑦𝑠
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for the entire system, with 𝑚 =
∑𝑁𝑠𝑦𝑠

𝑗=1 𝑚𝑗 . The control input vector
constraints are 𝑢𝑗 ∈ 𝑈𝑗 ∶= {𝑢min,𝑗𝑖 ≤ 𝑢𝑗𝑖 ≤ 𝑢max,𝑗𝑖 ,∀𝑖 = 1, 2,… , 𝑚𝑗} ∈ R𝑚𝑗 ,
∀𝑗 = 1,… , 𝑁𝑠𝑦𝑠. Hence, the set 𝑈 that constrains the control input
vector for the entire system is formed by the union of sets 𝑈𝑗 , where
𝑗 = 1,… , 𝑁𝑠𝑦𝑠.

2.3. Extended luenberger observer

The extended Luenberger observer (ELO) was introduced as a natu-
ral extension of the Luenberger observer, originally developed based on
a linear approximation of processes (Zeitz, 1987; Dochain, 2003). The
primary objective of a state observer, such as the ELO, is to estimate
the unmeasured internal states of a given system. This estimation is
achieved by leveraging the available measured states from the process,
in combination with the applied inputs. The formulation of the Ex-
tended Luenberger observer for a nonlinear system is expressed through
Eq. (2), presenting a means to capture and estimate the system’s
unmeasured internal states in the following manner:

̇̄ = 𝐹 (�̄�, 𝑢) +𝐾(𝑦 − ℎ(�̄�)) (2)

where �̄� ∈ R𝑛 represents the estimated state vector, and the observer
gain matrix is 𝐾 ∈ R𝑛×𝑞 . Eq. (2) comprises two key components:
the initial term corresponds to the process model dependent on the
estimated states and applied control inputs, while the final term serves
as the output prediction error, functioning as a correction term.

The objective of the ELO is to minimize the estimation error, 𝑒 =
𝑥 − �̄�, in which the time-derivative of the error is determined by the
following equation (Dochain, 2003):

̇ = 𝐹 (�̄� + 𝑒, 𝑢) − 𝐹 (�̄�, 𝑢) −𝐾(ℎ(�̄� + 𝑒) − ℎ(�̄�)) (3)

For the estimation error, 𝑒, to decay to zero, the time-derivative of
he error (shown in Eq. (3)) must also decay to zero. Therefore, the
bserver gain matrix 𝐾 must be designed accordingly. To design 𝐾,
q. (3) can be simplified to the following equation by linearizing the
rocess model at a fixed point:

̇ = (𝐴 −𝐾𝐿)𝑒 (4)

here 𝐴 = 𝜕𝐹 (𝑥,𝑢)
𝜕𝑥

|

|

|𝑥=�̄�
and 𝐿 = dℎ(𝑥)

d𝑥
|

|

|𝑥=�̄�
are linearized terms of the

onlinear system evaluated at a specific reference point (in general,
= 𝜕ℎ(𝑥, 𝑢)∕𝜕𝑥|𝑥=�̄�), typically the operating steady state of the system.

ubsequently, the selection of the observer gain matrix 𝐾 is conducted
in a manner that ensures that all the eigenvalues of the matrix 𝐴−𝐾𝐿
have strictly negative real components.

2.4. Stability assumptions

Based on how the overall large-scale system is partitioned, there
may exist interacting dynamics between the subsystems, as the states
and control inputs of one subsystem may impact the states and con-
trol inputs of other subsystems. Accounting for these interactions, we
assume the existence of an observer and feedback stabilizing control
law 𝑢 = 𝛷(�̄�) for the overall system with 𝑢𝑗 = 𝛷𝑗 (�̄�) ∈ 𝑈𝑗 , which
regulate the individual subsystems 𝑗 = 1,… , 𝑁𝑠𝑦𝑠, such that the origin
of the overall system of Eq. (1) is rendered exponentially stable. This
signifies the presence of a 1 control Lyapunov function 𝑉 (𝑥) for which
the following inequalities hold for all 𝑥, �̄� ∈ R𝑛 within an open region

surrounding the origin:

1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2, (5a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝑓 (𝑥,𝛷(�̄�)) ≤ −𝑐3|𝑥|
2, (5b)

|

|

𝜕𝑉 (𝑥) |
| ≤ 𝑐 |𝑥| (5c)
3

|

|
𝜕𝑥 |

|

4

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are positive constants. 𝛷(�̄�) = [𝛷1(�̄�)⊤,… ,
𝛷𝑁𝑠𝑦𝑠

(�̄�)⊤]⊤ is the vector concatenating the stabilizing feedback con-
trol laws for all 𝑁𝑠𝑦𝑠 subsystems. For the nonlinear system described
by Eq. (1), the region of closed-loop stability can be defined as a level
set, 𝛺𝜌, of the control Lyapunov function 𝑉 , such that 𝛺𝜌 ∶= {𝑥 ∈
𝐷|𝑉 (𝑥) ≤ 𝜌}, where 𝜌 > 0. Hence, originating from any initial condition
within 𝛺𝜌, the control input, 𝛷(�̄�), guarantees that the state trajectory
of the closed-loop system remains within 𝛺𝜌.

Remark 1. The assumption of an output feedback controller satis-
fying Eq. (5) involves two key requirements. First, it mandates that
the observer states remain bounded within the region 𝛺𝜌. Second,
it necessitates that the estimated error, denoted as 𝑒 and defined as
the difference between 𝑥 and �̄�, converges to zero within a finite
timeframe, regardless of the initial condition within 𝛺𝜌. To ensure
the fulfillment of these prerequisites, a series of random closed-loop
trajectories are generated for the nonlinear system described in Eq. (1)
under the observer and state feedback controller, and it is ensured
that all trajectories converge within 𝛺𝜌 in a finite number of sampling
periods with 𝑒 → 0. More details regarding the observer and controller
tuning are presented in Section 4.

2.5. Paillier cryptosystem

In this research, we employ the Paillier cryptosystem (Paillier,
1999) to encrypt signals, specifically state measurements (𝑥) and con-
trol inputs (𝑢), transmitted to and from the controllers. Although we
do not make use of the semi-homomorphic property of additive ho-
momorphism within the Paillier cryptosystem, we employ it so that
traditional controllers, such as proportional-integral controllers, which
can conduct computations in an encrypted space, can be integrated into
the overall control architecture if required. The encryption procedure
is initiated by generating the public and private key. The public key
is used to encrypt integer messages into ciphertexts, and the private
key is employed to decrypt ciphertexts and retrieve the original integer
messages. The process of generating the public and private key can be
outlined as follows:

1. Choose two large prime integers (𝑝 and 𝑞) randomly, ensuring
gcd(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1.

2. Compute 𝑀 = 𝑝𝑞.
3. Choose an arbitrary integer �̄� such that �̄� ∈ Z

𝑀2 , which is the
multiplicative group of integers modulo 𝑀2.

4. Compute 𝜆 = lcm(𝑞 − 1, 𝑝 − 1).
5. Specify �̄�(𝑥) = (𝑥 − 1)∕𝑀 .
6. Verify the existence of the subsequent modular multiplicative

inverse, 𝑢 = (�̄�(�̄�𝜆 mod𝑀2))−1 mod 𝑀 .
7. If the inverse does not exist, revisit step 3 and select an alternate

value of �̄�. If the inverse exists, (𝑀, �̄�) is the public key and (𝜆, 𝑢)
is the private key.

nce the keys are acquired, the public and private keys are distributed
o authorized recipients for encryption and decryption, respectively.
he encryption process is as follows:

𝑀 (𝑚, 𝑟) = 𝑐 = �̄�𝑚𝑟𝑀 mod 𝑀2 (6)

here 𝑟 is a randomly selected integer from the set Z𝑀 , and 𝑐 represents
he ciphertext achieved through the encryption of 𝑚. The decryption
rocedure is as follows:

𝑀 (𝑐) = 𝑚 = �̄�(𝑐𝜆 mod 𝑀2)𝑢 mod 𝑀 (7)

emark 2. The significance of encryption lies in safeguarding data
rivacy against potential cyberattacks, particularly sophisticated at-
acks that might go undetected by traditional cybersecurity measures.
n scenarios where constant values are transmitted during steady-state
perations, conventional methods might result in the transmission of
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the same values after data transformations, mathematical operations or
mapping of data to a certain set. However, in encryption, the generation
of a random number each time data is encrypted ensures that iden-
tical numbers, when encrypted, yield distinct ciphertexts, bolstering
cybersecurity measures significantly.

Remark 3. Various encryption methods, such as symmetric en-
cryption, fully homomorphic encryption, and partially homomorphic
encryption, can be employed to secure data. Symmetric encryption, like
AES (Advanced Encryption Standard), is a non-homomorphic encryp-
tion technique that does not allow mathematical operations within an
encrypted space. In contrast, fully homomorphic encryption, exempli-
fied by schemes like BGV (Brakerski-Gentry-Vaikuntanathan), permits
both addition and multiplication operations within an encrypted envi-
ronment. Meanwhile, partially homomorphic encryption enables either
multiplication or addition operations within the encrypted domain. For
instance, the Paillier cryptosystem allows addition operations in an en-
crypted space. While our work does not utilize the semi-homomorphic
property of the Paillier cryptosystem, it has been recently consid-
ered for integrating linear controllers like Proportional-Integral (PI)
control in large-scale systems alongside nonlinear controllers such as
MPCs. This integration allows for control input computations for the
linear controller within an encrypted space without decryption, as
demonstrated in the work of Kadakia et al. (2024).

2.6. Quantization

To use the Paillier cryptosystem, data to be encrypted must be
in the form of natural numbers in Z𝑀 . However, the signal values
before encryption are in floating-point. Consequently, we employ quan-
tization, mapping the floating-point numbers into Z𝑀 (Darup et al.,
2017). Using a signed fixed-point binary representation, we create a set,
Q𝑙1 ,𝑑 , with parameters 𝑙1 and 𝑑. These parameters define the total bit
count (integer and fractional) and the fractional bits, respectively. The
Q𝑙1 ,𝑑 set encompasses rational numbers from −2𝑙1−𝑑−1 to 2𝑙1−𝑑−1 − 2−𝑑 ,
separated by 2−𝑑 . A rational number 𝑞 in Q𝑙1 ,𝑑 can be expressed as
𝑞 ∈ Q𝑙1 ,𝑑 , where ∃𝛽 ∈ {0, 1}𝑙1 , and 𝑞 = −2𝑙1−𝑑−1𝛽𝑙1 +

∑𝑙1−1
𝑖=1 2𝑖−𝑑−1𝛽𝑖.

o map a real number data point 𝑎 to the Q𝑙1 ,𝑑 set, we use the function
𝑙1 ,𝑑 , defined by the equation,

𝑔𝑙1 ,𝑑 ∶ R → Q𝑙1 ,𝑑

𝑙1 ,𝑑 (𝑎) ∶= arg min
𝑞∈Q𝑙1 ,𝑑

|𝑎 − 𝑞| (8)

ext, the quantized data is transformed into a set of integers through
one-to-one (bijective) mapping known as 𝑓𝑙2 ,𝑑 , as outlined in Darup

t al. (2017). The following mapping ensures that the quantized data
s transformed into a subset of the message space Z𝑀 :

𝑓𝑙2 ,𝑑 ∶ Q𝑙1 ,𝑑 → Z2𝑙2

𝑙2 ,𝑑 (𝑞) ∶= 2𝑑𝑞 mod 2𝑙2
(9)

uring the encryption process, integer plaintext messages from the set
2𝑙2 are converted to ciphertexts, which can be decrypted back into the

ame set 𝑍2𝑙2 . To recover the original data from the set Q𝑙1 ,𝑑 , an inverse
apping, denoted as 𝑓−1

𝑙2 ,𝑑
, is defined as follows:

−1
𝑙2 ,𝑑

∶ Z2𝑙2 → Q𝑙1 ,𝑑 (10)

−1
𝑙2 ,𝑑

(𝑚) ∶= 1
2𝑑

{

𝑚 − 2𝑙2 if 𝑚 ≥ 2𝑙2−1

𝑚 otherwise
(11)

. Development of the encrypted distributed control architectures
ith state estimation

In this section, we describe the design and formulation of the
ncrypted distributed control architectures, both encrypted sequen-
ial and iterative distributed LMPCs with state estimation, provide
4

dditional details on the extended Luenberger observer.
.1. Design of the encrypted sequential distributed LMPC

The control architecture of the encrypted sequential distributed
MPC is depicted in Fig. 1. In a sequential distributed framework in-
olving various LMPCs, communication is unidirectional. Specifically,
he optimal control trajectory derived from solving the optimization
roblem for one LMPC is transmitted to another LMPC. This informa-
ion is subsequently utilized by the receiving LMPC to proceed with
ts own optimization problem. The control strategy adheres to the
ollowing sequence of steps:

1. At time 𝑡 = 𝑡𝑘, where 𝑘 represents the sampling instance,
signals 𝑦(𝑡𝑘) from sensors are encrypted to ciphertext 𝑐 using the
public key and transmitted to each control subsystem, within its
respective edge computing unit.

2. Within each unit, the encrypted signals are decrypted using the
private key, and the quantized states �̂�(𝑡𝑘) are used by the state
estimator along with the control inputs computed at the previous
sampling instance 𝑢(𝑡𝑘−1) to estimate the current value of the
states �̄�(𝑡𝑘).

3. The LMPC of the 𝑁 th
𝑠𝑦𝑠 subsystem evaluates the optimal control

trajectory 𝑢∗𝑁𝑠𝑦𝑠
using the estimated states �̄� at 𝑡 = 𝑡𝑘, and the

stabilizing control law for the other 𝑁𝑠𝑦𝑠−1 subsystems, encrypts
the control action of the first sampling period 𝑢∗𝑁𝑠𝑦𝑠

(𝑡𝑘) using the
public key, transmits the ciphertext to the corresponding actu-
ator, and transmits the entire optimal trajectory 𝑢∗𝑁𝑠𝑦𝑠

(𝑡|𝑡𝑘), 𝑡 ∈
[𝑡𝑘, 𝑡𝑘+𝑁 ) to the 𝑁𝑠𝑦𝑠 − 1th LMPC through the Ethernet crossover
cable connection established between the different computing
units.

4. The 𝑁𝑠𝑦𝑠−1th LMPC receives the entire optimal trajectory of the
𝑁 th

𝑠𝑦𝑠 LMPC and evaluates the optimal trajectory 𝑢𝑁𝑠𝑦𝑠−1 using
the estimated states �̄�(𝑡𝑘) and the optimal input trajectory of
the 𝑁 th

𝑠𝑦𝑠 subsystem. It assumes the stabilizing control law for
the remaining 𝑁𝑠𝑦𝑠 − 2 subsystems. It then encrypts the optimal
trajectory for its respective subsystem over the next sampling
period using the public key and transmits the complete optimal
trajectory of subsystems 𝑁𝑠𝑦𝑠 and 𝑁𝑠𝑦𝑠−1 to the 𝑁𝑠𝑦𝑠−2th LMPC.

5. This same process is repeated up to the 1st LMPC, which receives
the optimal control input trajectories of all the other subsystems
and computes its own optimal trajectory using the estimated
states �̄�(𝑡𝑘) and the optimal control input trajectories of all the
other subsystems.

6. At the actuator, the ciphertext 𝑐 is decrypted to the quantized
input �̂�(𝑡𝑘) using the private key, which is then applied to the
process.

ormulation of the optimization problem, its constraints, and additional
etails of the encrypted sequential LMPC is presented in Section 3.4.

.2. Design of the encrypted iterative distributed LMPC

The control architecture of the encrypted iterative distributed LMPC
s depicted in Fig. 2. In this framework, all controllers communicate
ith each other to cooperatively optimize the control actions. The

ontrollers solve their respective optimization problems independently
ithin a parallel framework, and solutions for each control problem are
xchanged at the end of each iteration. The control strategy adheres to
he subsequent sequence of steps:

1. At time 𝑡 = 𝑡𝑘, where 𝑘 represents the sampling instance,
signals 𝑦(𝑡𝑘) from sensors are encrypted to ciphertext 𝑐 using the
public key and transmitted to each control subsystem, within its
respective edge computing unit.

2. Within each unit, the encrypted signals are decrypted using the
private key, and the quantized states �̂�(𝑡𝑘) are used by the state
estimator along with the control inputs computed at the previous
sampling instance 𝑢(𝑡𝑘−1) to estimate the current value of all the
system states �̄�(𝑡 ).
𝑘
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Fig. 1. Illustration of the encrypted sequential distributed control structure.
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3. At iteration 𝑧 = 1, the 𝑘th LMPC in the 𝑘th subsystem evaluates
optimal control input trajectories 𝑢∗𝑘(𝑡), using the estimated states
�̄�(𝑡𝑘), and assuming 𝑢𝑗 (𝑡) = 𝛷𝑗 (�̄�(𝑡)) where 𝑗 ∈ {1,… , 𝑁𝑠𝑦𝑠}, 𝑗 ≠
𝑘. At the end of the first iteration, each subsystem transmits its
complete optimal control input trajectory to all 𝑁𝑠𝑦𝑠 subsystems
through the Ethernet crossover cable connection established
between the different control subsystems.

4. At iteration 𝑧 = 2, the 𝑘th LMPC in the 𝑘th subsystem re-evaluates
optimal control input trajectories 𝑢∗𝑘(𝑡) using the estimated states
�̄�(𝑡𝑘), and the optimal control input trajectories 𝑢∗𝑗 (𝑡) where
𝑗 ∈ {1,… , 𝑁𝑠𝑦𝑠}, 𝑗 ≠ 𝑘. At the end of the second iteration,
each subsystem transmits its complete optimal control input
trajectory to all 𝑁𝑠𝑦𝑠 subsystems. This process is continued until
a termination criterion is satisfied. The termination criterion can
be either that the number of iterations, denoted as 𝑧, must not
exceed the maximum number of iterations, denoted as 𝑧max, or
that the difference in the value of the cost function between two
consecutive iterations is smaller than a threshold value.

5. After the termination criterion is satisfied, each LMPC encrypts
its control input corresponding to the lowest cost function over
the next sampling period (using the public key), and the en-
crypted ciphertext is transmitted to the corresponding actuators
of that particular subsystem.

6. At the actuator, the ciphertext 𝑐 is decrypted to the quantized
input �̂�(𝑡𝑘) using the private key, which is then applied to the
process.

Formulation of the optimization problem, its constraints, and additional
details for the iterative encrypted DMPC are presented in Section 3.5.

Remark 4. In the closed-loop block diagrams shown in Figs. 1 and
2, Ethernet crossover cable connections facilitate communication be-
tween the computing units of different subsystems. This setup assumes
a secure edge computer(s) within a protected control room, where
encrypted signals from sensors at the process site are received and from
where encrypted control inputs are transmitted to the actuators. How-
ever, communication between subsystems responsible for computing
control inputs remains unencrypted. The rationale behind this deci-
sion is to minimize the communication overhead due to encryption–
5

decryption in the control system. Complete control input trajectories r
ust be communicated multiple times within a single sampling pe-
iod in the case of iterative DMPC. Encrypting and decrypting these
rajectories repeatedly within a single sampling period may not be
easible, particularly for very large systems. Such repetition could lead
o increased communication overhead. Since the primary objective of

DMPC is to distribute the optimization problem among separate
omputing units and solve each one effectively, the assumption of
aving all responsible edge computing units in a secure room with
ecure cable connections between them is reasonable. Alternatively, the
ption to encrypt and decrypt inputs could be considered if the initial
rrangement is not achievable. Further insights into the communica-
ion and computational implications associated with encryption and
ecryption are available in Kadakia et al. (2023).

The closed-loop design of Figs. 1 and 2 introduces two sources of
rror: one from state quantization in the sensor–controller link and
nother from control input quantization in the controller–actuator link.
hese errors are bounded by:

𝑦(𝑡𝑘) − �̂�(𝑡𝑘)| ≤ 2−𝑑−1 (12a)

|𝑢(𝑡𝑘) − �̂�(𝑡𝑘)| ≤ 2−𝑑−1 (12b)

he state estimator, as expressed in Eq. (2), can be written as a function
(�̄�, 𝑦, 𝑢). An additional error arises in the applied control input, as the
tate estimator receives �̂� instead of the true state 𝑦 to estimate all
he system states. Using the local Lipschitz property, this error will be
onfined by the underlying equation, where 𝐿′

1 > 0:

𝜙(�̄�, �̂�, 𝑢) − 𝜙(�̄�, 𝑦, 𝑢)| ≤ 𝐿′
1|�̂� − 𝑦| ≤ 𝐿′

12
−𝑑−1 (13)

emark 5. A quantization error occurs when the value to be quantized
oes not precisely match a member of the set Q𝑙1 ,𝑑 . The elements in this
et are spaced apart by 2−𝑑 , which represents the resolution of the set.
et us assume the value to be quantized is denoted as 𝑎, and it falls
ithin the range of 𝑏 to 𝑏 + 2−𝑑 . If the absolute difference between
and 𝑏 is smaller than the difference between 𝑎 and 𝑏 + 2−𝑑 , 𝑎 is

ssigned to the value 𝑏. Otherwise, it is assigned to the value 𝑏 + 2−𝑑 .
onsequently, the maximum potential discrepancy between the actual
nd quantized values is half of the resolution, which is equal to 2−𝑑−1.
his limitation also implies that a greater value of 𝑑 would lead to a

educed quantization error.
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Fig. 2. Illustration of the encrypted iterative distributed control structure.
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3.3. Extended luenberger observer-based state estimation

An extended Luenberger observer (ELO) is employed to estimate
all the states of the nonlinear system, as detailed in Eq. (1). This
estimation process relies on noisy partial state feedback obtained from
sensors after decryption. Consequently, each subsystem’s computing
unit integrates an ELO, initializing the LMPC model of each subsystem
with a complete state estimate (through the ELO) denoted as �̄�. In
the design of Eq. (2), the observer necessitates a process model of the
nonlinear system. Interestingly, the LMPC model can be extended and
utilized within the observer, or vice versa. This dual utilization presents
an effective approach for large-scale processes, reducing the number
of required measured states through the ELO, and enhancing closed-
loop performance and ensuring stability through the constraints of a
Lyapunov-based MPC.

The typical sequence of actions executed by an ELO within the
computing unit assigned to compute control inputs for a particular
subsystem is as follows:

1. At time 𝑡 = 𝑡𝑘, where 𝑘 is the sampling instance, the ELO process
model is initialized using all the estimated states of the system at
the previous sampling instance �̄�(𝑡𝑘−1), and all the control inputs
computed at the previous sampling instance 𝑢(𝑡𝑘−1).

2. The ELO process model predicts the state at the next integration
time step �̄�(𝑡𝑘−1 + ℎ𝑐 ), where ℎ𝑐 represents the integration time
step. A correction term ℎ𝑐 × 𝐾(�̂�(𝑡𝑘) − ℎ(�̄�(𝑡𝑘−1 + ℎ𝑐 ))) is added
to the estimated state �̄�(𝑡𝑘−1 + ℎ𝑐 ). Here, �̂�(𝑡𝑘) is the quantized
measured state vector after decryption at time 𝑡 = 𝑡𝑘.

3. The above step is reiterated 𝛥∕ℎ𝑐 times, with 𝛥 representing the
sampling period, in order to compute the final estimated state at
𝑡𝑘, denoted as �̄�(𝑡𝑘). It is important to note that the control input
𝑢(𝑡𝑘−1) remains constant within a single sampling period, as it is
applied in a sample-and-hold manner and does not undergo any
change during this interval.

During the initial sampling period, denoted as 𝑡0, we make the assump-
tion that the control inputs and the initial estimated states are set to
their steady-state values. This assumption is necessary as no prior data
6

is accessible for this specific sampling instance.
Remark 6. The procedure outlined in Remark 1 involves linearizing
the nonlinear system described in Eq. (1) around its steady state. The
observer gains are adjusted in such a way that the matrix 𝐴 − 𝐾𝐿
in Eq. (4) possesses eigenvalues with negative real components. How-
ever, since the observer is intended to be applied to a nonlinear system,
further fine-tuning of the gains might be required. To achieve this,
multiple simulations of the observer integrated within the nonlinear
system, along with the state feedback controller, are conducted. These
simulations encompass random initial conditions within the set 𝛺𝜌.
During this process, the observer gains are refined to ensure that the
error 𝑒 = 𝑥 − �̄� tends to zero or a sufficiently small threshold, within

finite number of iterations for each randomly initialized simulation.
ach iteration corresponds to a sampling period. Furthermore, with
hese newly fine-tuned observer gains, it is ensured that the matrix
−𝐾𝐿 continues to possess eigenvalues with negative real components.

This adjustment is particularly necessary for nonlinear systems because
the assumptions and properties of a linear system cannot be directly
extrapolated to nonlinear systems.

3.4. Encrypted sequential distributed LMPC

In order to mitigate the computational time and complexity asso-
ciated with a centralized control problem, especially in the context
of large-scale systems featuring multiple states and control inputs, we
propose the establishment of a sequential distributed LMPC system,
where the optimization problem for the 𝑗th LMPC is delineated as
follows:

 = min
𝑢𝑑𝑗 ∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), 𝛷𝑚(�̃�(𝑡)), 𝑢𝑑𝑛 (𝑡)) d𝑡,

where 𝑚 = 1,… , 𝑗 − 1 and 𝑛 = 𝑗,… , 𝑁𝑠𝑦𝑠 (14a)

.t. ̇̃𝑥(𝑡) = 𝐹 (�̃�(𝑡), 𝛷𝑚(�̃�(𝑡)), 𝑢𝑑𝑛 (𝑡)) (14b)

̇̄𝑥(𝑡) = 𝐹 (�̄�(𝑡), 𝛷𝑚(�̄�(𝑡)), 𝑢𝑑𝑛 (𝑡)) +𝐾(�̂�(𝑡) − ℎ(�̄�(𝑡))) (14c)

𝑢𝑑𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (14d)

�̃�(𝑡𝑘) = �̄�(𝑡𝑘) (14e)
�̇� (�̄�(𝑡𝑘), 𝛷𝑚(�̄�(𝑡𝑘)), 𝑢𝑑𝑛 (𝑡𝑘)) ≤ �̇� (�̄�(𝑡𝑘), 𝛷𝑚(�̄�(𝑡𝑘)), 𝛷𝑛(�̄�(𝑡𝑘)))
if �̄�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min
(14f)
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𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ),

if �̄�(𝑡𝑘) ∈ 𝛺𝜌min
(14g)

At time 𝑡 = 𝑡𝑘, where 𝑘 represents the sampling instance, the ELO
in the computing unit corresponding to the 𝑗th LMPC decrypts the
ciphertext 𝑐 to receive the quantized state measurements �̂�(𝑡𝑘). The
ELO uses these along with the computed control inputs at the previous
sampling instance, i.e., 𝛷𝑚(�̄�(𝑡𝑘−1)) and 𝑢𝑑𝑛 (𝑡𝑘−1), where 𝑚 = 1,… , 𝑗 − 1
and 𝑛 = 𝑗,… , 𝑁𝑠𝑦𝑠, and the estimated states at the previous sampling
instance �̄�(𝑡𝑘−1) to predict the states at the current sampling instance,
̄(𝑡𝑘), through Eq. (14c). The 𝑗th LMPC then receives the complete state
estimate �̄�(𝑡𝑘) from the ELO, but only computes the control input of its
subsystem, 𝑢𝑑𝑗 , which is to be applied by the corresponding actuators.
It assumes the stabilizing control law for control inputs of subsystems
1 to 𝑗 − 1, and receives the optimal control input trajectories 𝑢𝑑𝑛′ from
the remaining 𝑛′ subsystems where 𝑛′ = 𝑗 +1,… , 𝑁𝑠𝑦𝑠. �̃� represents the
predicted state trajectory of the process model of the 𝑗th LMPC. The
estimated states, �̄�, serve as the initial conditions for the LMPC process
model to predict the state trajectory as per Eq. (14b), which is used to
integrate the cost function of Eq. (14a) to calculate optimized control
inputs, 𝑢∗𝑑𝑗 (𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), for the entire prediction horizon. However,
the LMPC transmits only the first input of this sequence, 𝑢∗𝑑𝑗 (𝑡𝑘) to the
actuator for application to the system within the interval 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1)
and transmits the entire control input trajectory 𝑢∗𝑑𝑗 (𝑡) along with the
eceived control input trajectory, 𝑢∗𝑑𝑛′

where 𝑛′ = 𝑗 + 1,… , 𝑁𝑠𝑦𝑠 to
he 𝑗 − 1th LMPC. This process is repeated at each sampling period.

represents the number of sampling periods within the prediction
orizon. Eq. (14d) represents the constraints imposed on the control
nputs, and Eq. (14e) uses the quantized states to initialize the plant
odel described in Eq. (14b). The Lyapunov constraint in Eq. (14f)

nsures that, if the state �̄�(𝑡𝑘) at time 𝑡𝑘 lies within the set 𝛺𝜌 ⧵ 𝛺𝜌min
,

here 𝜌min represents a level set of 𝑉 in proximity to the origin, the
ime-derivative of the control Lyapunov function of the closed-loop
ubsystem 𝑗 under the 𝑗th LMPC, and stabilizing control law for the
ther control inputs, is less than or equal to the time-derivative of
he control Lyapunov function when the subsystem is controlled by
he stabilizing controller 𝛷(�̄�). When the closed-loop state �̄�(𝑡𝑘) enters
𝛺𝜌min

, the constraint of Eq. (14g) ensures that this state remains within
𝛺𝜌min

.

Remark 7. Within the proposed framework, a secure edge com-
puter receives the encrypted partial state feedback. This computer then
decrypts the received encrypted partial state feedback and employs
the extended Luenberger observer within the same unit to compute
all states, using the quantized partial state feedback values. Following
this process, the LMPC utilizes the estimated states received from the
observer, all within the same computing unit. Since these operations
occur internally in the same unit, they are not encrypted. However, the
control input computed by the LMPC, to be sent to and applied by the
actuator, is encrypted before transmission. This configuration ensures
that all wireless networked communications remain encrypted, thereby
enhancing the cybersecurity of the control system.

Remark 8. Although state constraints have not been explicitly utilized
n our LMPC formulations (only input constraints are considered), they
an still be integrated if required for both the LMPC and extended
uenberger observer. In the case of the ELO, one feasible approach
ould involve utilizing the estimated states from the observer and
ubsequently applying a post-processing technique (like modifying the
bserver gain and re-running the observer) to ensure adherence to the
efined constraints. Future research can be conducted to identify other
ethods to account for state constraints within the observer.
7

3.5. Encrypted iterative distributed LMPC

An alternative approach to a sequential DMPC is the iterative DMPC,
in which the controllers responsible for computing control inputs for
each subsystem of the overall process share their control inputs at
the end of each iteration until a termination criterion is met. The
optimization problem for the 𝑗th LMPC within the iterative distributed
LMPC structure, for the first iteration, 𝑧 = 1, is described as follows:

 = min
𝑢𝑑𝑗 ∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), 𝛷𝑚(�̃�(𝑡)), 𝑢𝑑𝑗 (𝑡)) d𝑡,

where 𝑚 = 1,… , 𝑁𝑠𝑦𝑠 and 𝑚 ≠ 𝑗 (15a)

s.t. ̇̃𝑥(𝑡) = 𝐹 (�̃�(𝑡), 𝛷𝑚(�̃�(𝑡)), 𝑢𝑑𝑗 (𝑡)) (15b)

̇̄𝑥(𝑡) = 𝐹 (�̄�(𝑡), 𝑢𝑑𝑚 (𝑡), 𝑢𝑑𝑗 (𝑡)) +𝐾(�̂�(𝑡) − ℎ(�̄�(𝑡))) (15c)

𝑢𝑑𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (15d)

�̃�(𝑡𝑘) = �̄�(𝑡𝑘) (15e)
�̇� (�̄�(𝑡𝑘), 𝛷𝑚(�̄�(𝑡𝑘)), 𝑢𝑑𝑗 (𝑡𝑘)) ≤ �̇� (�̄�(𝑡𝑘), 𝛷𝑚(�̄�(𝑡𝑘)), 𝛷𝑗 (�̄�(𝑡𝑘))),

if �̄�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min
(15f)

𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ),

if �̄�(𝑡𝑘) ∈ 𝛺𝜌min
(15g)

t the iteration 𝑧 > 1 following the exchange of the optimized input
rajectories 𝑢∗𝑑𝑚 (𝑡) with the rest of the LMPCs, the optimization problem
f 𝑗th LMPC is modified as follows:

 = min
𝑢𝑑𝑗 ∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), 𝑢𝑑𝑚 (𝑡), 𝑢𝑑𝑗 (𝑡)) d𝑡,

where 𝑚 = 1,… , 𝑁𝑠𝑦𝑠 and 𝑚 ≠ 𝑗 (16a)

.t. ̇̃𝑥(𝑡) = 𝐹 (�̃�(𝑡), 𝑢𝑑𝑚 (𝑡), 𝑢𝑑𝑗 (𝑡)) (16b)

̇̄𝑥(𝑡) = 𝐹 (�̄�(𝑡), 𝑢𝑑𝑚 (𝑡), 𝑢𝑑𝑗 (𝑡)) +𝐾(�̂�(𝑡) − ℎ(�̄�(𝑡))) (16c)

𝑢𝑑𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (16d)

�̃�(𝑡𝑘) = �̄�(𝑡𝑘) (16e)
�̇� (�̄�(𝑡𝑘), 𝑢𝑑𝑚 (𝑡𝑘), 𝑢𝑑𝑗 (𝑡𝑘)) ≤ �̇� (�̄�(𝑡𝑘), 𝛷𝑚(�̄�(𝑡𝑘)), 𝛷𝑗 (�̂�(𝑡𝑘))),

if �̄�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min
(16f)

𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ),

if �̄�(𝑡𝑘) ∈ 𝛺𝜌min
(16g)

he 𝑗th LMPC receives the complete state estimate �̄�(𝑡𝑘) from the ELO,
ut only computes the control input of its specific subsystem, denoted
s 𝑢𝑑𝑗 , which is to be applied by the corresponding actuators. Initially,
or the first iteration, 𝑧 = 1, it assumes the stabilizing control law for
ontrol inputs of 𝑚 subsystems, where 𝑚 = 1,… , 𝑁𝑠𝑦𝑠, and 𝑚 ≠ 𝑗.
ubsequently, for iterations 𝑧 > 1, the 𝑗th LMPC transmits its computed
ontrol input at the previous iteration to all other LMPCs, and receives
he control inputs computed by all other LMPCs at the previous itera-
ion over the entire prediction horizon. The 𝑗th LMPC then recalculates
he control inputs for its respective subsystem, assuming the received
ontrol input trajectories for the other subsystems. At the end of the
urrent iteration, it transmits the updated control input trajectory of its
ubsystem to the other subsystems. This is repeated until a termination
riterion is satisfied. The formulation of the optimization problems
resented in Eqs. (15), and (16) is very similar to Eq. (14), which was
laborated in detail in Section 3.4.

emark 9. In the context of the stability analysis for the introduced
ncrypted distributed LMPC architectures in this study, the bounds re-
ated to encryption-induced errors have been established in Section 3.2.
dditionally, each LMPC in the distributed structure incorporates a
onstraint stipulating that the value of the time-derivative of the control
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Fig. 3. Process schematic featuring two CSTRs connected in series. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Lyapunov function under the LMPC should be more negative than that
of the observer-based stabilizing control law. A comprehensive stability
analysis has previously been conducted for a nonlinear centralized
encrypted system in Suryavanshi et al. (2023). Building on this foun-
dation, a similar stability analysis can be carried out for the encrypted
distributed LMPC, incorporating an observer. It is important to note
that, given our assumption of an observer-based stabilizing control
law, the stability analysis is simplified and does not require elaborate
demonstration; thus, it has been omitted.

4. Application to a nonlinear chemical process network operating
at an unstable steady state

This section demonstrates the proposed encrypted distributed con-
trol architectures, both sequential and iterative distributed LMPCs with
state estimation, on a nonlinear chemical process network with noisy
partial state feedback, operating at an unstable steady state. A nonlin-
ear dynamical model based on first-principles modeling fundamentals
is developed for the state estimator and the LMPCs. Guidelines are
established to implement the encrypted distributed LMPC systems in
any nonlinear process with partial state feedback. We then conduct
closed-loop simulations, employing the distributed LMPCs with state
estimators, and analyze the results.

4.1. Process description and model development

The process considered is the synthesis of ethylbenzene (EB) by
reacting ethylene (E) and benzene (B) within two non-isothermal,
well-mixed continuous stirred tank reactors (CSTRs) as depicted in
Fig. 3. The primary reaction, termed as ‘‘primary’’, is characterized as
a second-order, exothermic, and irreversible reaction, in conjunction
with two supplementary side reactions. The chemical reactions taking
place are articulated as follows:

C2H4 + C6H6 → C8H10 (primary) (17a)

2H4 + C8H10 → C10H14 (17b)

6H6 + C10H14 → 2C8H10 (17c)

Details of the steady-state values and model parameter values can be
obtained from Kadakia et al. (2023). The dynamic model of the first
CSTR is described by the following mass and energy balance equations:

�̇�𝐸 =
𝐹1𝐶𝐸𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐸1 − 𝑟1,1 − 𝑟1,2 (18a)
8

1 𝑉1
�̇�𝐵1
=

𝐹1𝐶𝐵𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐵1

𝑉1
− 𝑟1,1 − 𝑟1,3 (18b)

�̇�𝐸𝐵1
=

−𝐹𝑜𝑢𝑡1𝐶𝐸𝐵1

𝑉1
+ 𝑟1,1 − 𝑟1,2 + 2𝑟1,3 (18c)

̇𝐷𝐸𝐵1
=

−𝐹𝑜𝑢𝑡1𝐶𝐷𝐸𝐵1

𝑉1
+ 𝑟1,2 − 𝑟1,3 (18d)

�̇�1 =
𝑇1𝑜𝐹1 − 𝑇1𝐹𝑜𝑢𝑡1

𝑉1
+

3
∑

𝑗=1

−𝛥𝐻𝑗

𝜌1𝐶𝑝
𝑟1,𝑗 +

𝑄1
𝜌1𝐶𝑝𝑉1

(18e)

The dynamic model of the second CSTR is represented by the following
equations:

�̇�𝐸2
=

𝐹2𝐶𝐸𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐸1

𝑉2
−

𝐹𝑜𝑢𝑡2𝐶𝐸2

𝑉2
− 𝑟2,1 − 𝑟2,2 (19a)

�̇�𝐵2
=

𝐹2𝐶𝐵𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐵1

𝑉2
−

𝐹𝑜𝑢𝑡2𝐶𝐵2

𝑉2
− 𝑟2,1 − 𝑟2,3 (19b)

�̇�𝐸𝐵2
=

𝐹𝑜𝑢𝑡1𝐶𝐸𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐸𝐵2

𝑉2
+ 𝑟2,1 − 𝑟2,2 + 2𝑟2,3 (19c)

̇𝐷𝐸𝐵2
=

𝐹𝑜𝑢𝑡1𝐶𝐷𝐸𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐷𝐸𝐵2

𝑉2
+ 𝑟2,2 − 𝑟2,3 (19d)

�̇�2 =
𝑇2𝑜𝐹2 + 𝑇1𝐹𝑜𝑢𝑡1 − 𝑇2𝐹𝑜𝑢𝑡2

𝑉2
+

3
∑

𝑗=1

−𝛥𝐻𝑗

𝜌2𝐶𝑝
𝑟2,𝑗 +

𝑄2
𝜌2𝐶𝑝𝑉2

(19e)

where the reaction rates are calculated by the following expressions:

𝑟𝑖,1 = 𝑘1e
−𝐸1
𝑅𝑇𝑖 𝐶𝐸𝑖

𝐶𝐵𝑖
(20a)

𝑟𝑖,2 = 𝑘2e
−𝐸2
𝑅𝑇𝑖 𝐶𝐸𝑖

𝐶𝐸𝐵𝑖
(20b)

𝑟𝑖,3 = 𝑘3e
−𝐸3
𝑅𝑇𝑖 𝐶𝐷𝐸𝐵𝑖

𝐶𝐵𝑖
(20c)

where 𝑖 = {1, 2} is the reactor index. The state variables are the
concentration of ethylene, benzene, ethylbenzene, di-ethylbenzene, and
the reactor temperature for each CSTR in deviation terms, that is: 𝑥⊤ =
[𝐶𝐸1

−𝐶𝐸1𝑠
, 𝐶𝐵1

−𝐶𝐵1𝑠
, 𝐶𝐸𝐵1

−𝐶𝐸𝐵1𝑠
, 𝐶𝐷𝐸𝐵1

−𝐶𝐷𝐸𝐵1𝑠
, 𝑇1 −𝑇1𝑠, 𝐶𝐸2

−
𝐸2𝑠

, 𝐶𝐵2
−𝐶𝐵2𝑠

, 𝐶𝐸𝐵2
−𝐶𝐸𝐵2𝑠

, 𝐶𝐷𝐸𝐵2
−𝐶𝐷𝐸𝐵2𝑠

, 𝑇2−𝑇2𝑠]. The subscript
‘𝑠’’ denotes the steady-state value. The desired product, ethyl benzene,
nd the CSTR temperature are the measured states corresponding to
⊤ = [𝐶𝐸𝐵1

−𝐶𝐸𝐵1𝑠
, 𝑇1−𝑇1𝑠, 𝐶𝐸𝐵2

−𝐶𝐸𝐵2𝑠
, 𝑇2−𝑇2𝑠]. The measured states

re visually represented in blue in Fig. 3. In contrast, the remaining
tates that are not measured are depicted in red within the same
igure. Bounded white Gaussian noise is added to the measured states
f both CSTRs. The mean of the noise is zero for both states, and the
tandard deviation is 0.003 kmol∕m3 for the measured concentration of
thylbenzene and 0.15K for the measured CSTR temperature, in each
STR. The noise is bounded by the closed sets [-0.01, 0.01] kmol∕m3

nd [-0.5, 0.5] K for the measured ethylbenzene concentration and
emperature states, respectively.

The rate of heat removal for the two reactors [𝑄1 −𝑄1𝑠, 𝑄2 −𝑄2𝑠]
nd inlet feed concentrations for each reactor, [𝐶𝐸𝑜1

− 𝐶𝐸𝑜1𝑠
, 𝐶𝐵𝑜1

−
𝐵𝑜1𝑠

, 𝐶𝐸𝑜2
−𝐶𝐸𝑜2𝑠

, 𝐶𝐵𝑜2
−𝐶𝐵𝑜2𝑠

], are the manipulated inputs of the non-
inear system. These inputs are bounded by the closed sets, [−104, 2 ×
03] kW, [−1.5×104, 5×103] kW, [−2.5, 2.5] kmol∕m3, [−2.5, 2.5] kmol∕m3,
−3, 3] kmol∕m3, and [−3, 3] kmol∕m3, respectively. To assess the sta-
ility of the selected equilibrium state, an open-loop simulation was
onducted. During this simulation, the control inputs remained fixed
t their equilibrium values, and the initial conditions of the system
ere set near the operating equilibrium point, within the region 𝛺𝜌min

.
fter a finite period of time, the system’s states departed from the
tability region 𝛺𝜌, and eventually converged to an entirely different
quilibrium state. This transition signifies the instability of the initial
quilibrium. The rationale for choosing this particular state was its
apability to achieve a significantly high steady-state concentration of
he desired product, ethyl benzene of 4.22 kmol∕m3, at the outlet of
eactor 2, under reasonable operating conditions.
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The overall control of the system was partitioned into two LMPCs.
Both LMPCs utilized a first-principles-based model, and received the
estimated states �̄� from the ELO. Further, LMPC 1 optimizes the control
nputs 𝑢1 = [𝐶𝐸𝑜1

− 𝐶𝐸𝑜1𝑠
, 𝐶𝐵𝑜1

− 𝐶𝐵𝑜1𝑠
, 𝑄1 − 𝑄1𝑠]⊤, while LMPC 2

optimizes the control inputs 𝑢2 = [𝐶𝐸𝑜2
−𝐶𝐸𝑜2𝑠

, 𝐶𝐵𝑜2
−𝐶𝐵𝑜2𝑠

, 𝑄2 −𝑄2𝑠]⊤.
Thus, the partitioning of the overall systems is done such that LMPC 1
manipulates all the control inputs of CSTR 1, while LMPC 2 manipulates
all the control inputs of CSTR 2. In case of the sequential distributed
LMPC system, LMPC 2 assumes the control inputs for LMPC 1 as per
the stabilizing control law, and accordingly computes the optimized
control inputs for its subsystem, CSTR 2. It then transmits the control
input trajectory over the complete prediction horizon to LMPC 1, which
uses this information to compute the control inputs of its respective
subsystem, CSTR 1. On the other hand, in the iterative distributed
LMPC system, in the first iteration, both LMPCs compute the control
inputs of their respective subsystems, assuming the stabilizing control
law for the inputs of the other subsystem. At the second iteration, both
LMPCs, share the control input trajectory over the prediction horizon,
computed for their respective subsystems with each other. Based on the
information received about the control inputs of the other subsystem,
both LMPCs recompute the optimized control inputs of their respective
subsystem. This exchange of information goes on until a termination
criterion is satisfied. In the example demonstrated in this section, we
have used a termination criterion of 2 iterations for the iterative dis-
tributed LMPC. The control objective is to operate both CSTRs at their
unstable equilibrium point through the encrypted distributed control
schemes, sequential and iterative, employing quantized partial state
feedback with sensor noise for computation of the required control
inputs.

4.2. Encrypting the distributed control architectures

Prior to integrating encryption and decryption into a process, the
process of parameter selection, specifically involving the variables 𝑑,
𝑙1, and 𝑙2, takes place. By considering the extreme feasible states and
inputs, the integer bit count 𝑙1−𝑑 is determined. The upper limit within
the set Q𝑙1 ,𝑑 is calculated using the formula 2𝑙1−𝑑−1 − 2−𝑑 , while the
lower limit is established as −2𝑙1−𝑑−1. The selection of the quantization
parameter 𝑑, which represents the fractional bit count, depends on
the desired level of precision and the range of state and input values.
Additionally, 𝑙2 is chosen to be greater than 𝑙1. In the context of the
example presented in this section, a value of 16 is determined for 𝑙1−𝑑,
which in turn determines the values of 𝑙1 and 𝑑. Within the set Q𝑙1 ,𝑑 ,
rational numbers are spaced apart by a resolution of 2−𝑑 . For simulation
purposes, we have opted for a value of 𝑑 = 8. With 𝑑 = 8, 𝑙1 is set at 24,
and 𝑙2 is selected as 30. The implementation of the Paillier Encryption
procedure is carried out using the Python ‘‘phe’’ module, specifically
PythonPaillier (Data61, 2013). For solving the multi-constrained, non-
convex optimization problem within the LMPCs operating within the
distributed control framework, we utilize the Python module from the
IPOPT software (Wächter and Biegler, 2006).

While deciding the sampling time (𝛥) for an encrypted distributed
system with state estimation, it is crucial to ensure that it exceeds the
total time required for encryption–decryption of the states and control
inputs, time required by the state estimator to estimate the states, and
the time needed to compute all the control inputs at each sampling
instance for the considered quantization parameter 𝑑. Encryption–
decryption and state estimation is performed in parallel between dif-
ferent edge computing units. Hence, we select the maximum time
from all the different subsystems across all sampling instances. As
control input information is exchanged, control input computation time
is the total time needed to compute all the control inputs, and not
9

just inputs for a particular subsystem. Hence, we select the maximum
time taken to compute all the control inputs at any sampling instance.
Mathematically,

𝛥 >max (encryption–decryption time)𝑗
+ max (State-estimation time)𝑗
+ max (Control input computation time)

(21)

where 𝑗 = {1,… , 𝑁𝑠𝑦𝑠} represents the control subsystem. Details on
how the control input computation time is calculated for the sequential
and iterative DMPCs is provided in the next section. Considering the
above criteria, the sampling time 𝛥 is chosen as 30 s in the discussed
example. In real-world scenarios, the state estimation computations in
a process simulation (not the actual process) could take place on the
specific type of computer intended for the actual usage of these calcula-
tions. The computational time across multiple sampling instances of the
process simulation can be recorded, and the maximum duration among
these instances can be chosen as the maximum state-estimation time.
This same concept can be extended to obtain the maximum encryption-
decryption time. Additionally, to account for precautionary measures,
this value could be multiplied by a factor, such as 1.25.

To calculate the cost function of the LMPCs over the prediction
horizon, an integration time step, ℎ𝑐 = 10−2 ×𝛥, is chosen. The positive
definite matrix 𝑃 in the control Lyapunov function 𝑉 = 𝑥⊤𝑃𝑥 is selected
as diag [200 200 400 1000 2.5 250 250 200 1000 0.5], from extensive
simulations. The LMPCs employ a prediction horizon of 𝑁 = 2 sampling
periods. The stability criterion is defined as 𝜌 = 1800, while 𝜌min = 2 is
the smaller level set of the Lyapunov function where the state is desired
to be confined. The weight matrix in the cost function of LMPCs is
chosen as 𝑄 = diag [1000 1000 1500 5 8 1000 1000 3000 5 110],
𝑅 = diag [2.1 1.95 1.5 × 10−5 10 10 0.5 × 10−4]. The cost function is
defined as 𝐿(𝑥, 𝑢) = 𝑥⊤𝑄𝑥 + 𝑢⊤𝑅𝑢.

4.3. Simulation results of the encrypted distributed control architectures

The proposed encrypted distributed control architecture is applied
to a nonlinear chemical process, and the control inputs are com-
puted using partial state feedback with sensor noise. Figs. 4 to 6
depict the results for the encrypted sequential distributed LMPC sys-
tem with state estimation from the first set of initial conditions,
𝑥0 = [−0.35 kmol∕m3,−0.3 kmol∕m3, 0.2 kmol∕m3, 0 kmol∕m3,−20K,
0.2 kmol∕m3, 0.15 kmol∕m3,−0.25 kmol∕m3, 0 kmol∕m3,−15K]⊤.
Figs. 7 to 9 depict the results for the encrypted iterative distributed
LMPC system with state estimation from the second set of initial con-
ditions, 𝑥0 = [0.5 kmol∕m3, 0.35 kmol∕m3,−0.2 kmol∕m3, 0 kmol∕m3,
20K, 0.45 kmol∕m3, 0.5 kmol∕m3,−0.8 kmol∕m3, 0 kmol∕m3,−30K]⊤.

In Figs. 4, 5, 7 and 8, the blue solid line represents the true state
value, while the red dashed line represents the state value estimated
by the ELO. For both initial conditions, the state estimator (ELO) pro-
vides the distributed LMPCs with fairly accurate state estimates, using
partial state feedback with sensor noise. Minor deviations between the
estimated and predicted states are noticeable in Fig. 5. These deviations
can be attributed to the observer receiving partial state feedback with
sensor noise. Additionally, errors stemming from quantization can also
play a role in this discrepancy. However, it is essential to note that
both sources of error are bounded, as previously indicated, resulting in
the observed deviations being minor in nature. The distributed LMPCs
successfully stabilize the system within the desired closed-loop stability
region 𝛺𝜌min

in approximately 1.5 h for the first set of initial conditions
and 1 h for the second set.

In the case of the first set of initial conditions, the normalized
sum of the control cost function is 1 for the encrypted sequential
distributed LMPC and 0.9907 for the encrypted iterative distributed
LMPC. For the second set of initial conditions, it is 1 for the encrypted
sequential LMPC and 0.9884 for the encrypted iterative LMPC. The
iterative LMPC outperforms the sequential approach because, in the

iterative framework, both LMPCs share and recalculate their control
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Fig. 4. True state profiles (blue solid line) and estimated state profiles (red dashed line) of CSTR 1 under the encrypted sequential distributed LMPC framework for the first set
f initial conditions.
w
t

nputs, while, in the sequential framework, LMPC 2 computes control
nputs based on an assumption of the stabilizing control law for LMPC
. The following section provides a detailed comparative analysis of the
equential and iterative DMPCs. Visual results are provided exclusively
or the encrypted sequential distributed LMPC demonstrating the per-
ormance under the first set of initial conditions and for the encrypted
terative distributed LMPC under the second set of initial conditions.
otably, when the alternative DMPC system was applied to both initial
onditions, the differences in the closed-loop state trajectories were not
ignificant, as evidenced by the close values of the normalized sum of
he control cost functions in both scenarios.

emark 10. The encrypted distributed LMPC systems explored in this
study involved encrypting and decrypting data as outlined in Section 3,
which can lead to errors due to quantization. Suryavanshi et al. (2023)
demonstrated quantization effects in the context of a first-principles-
based LMPC and process model. Additionally, Kadakia et al. (2023)
highlighted the potential for quantization-induced errors to exceed
model mismatch errors when different models are employed in the
LMPC and in the controlled process. To minimize the quantization
error, both works recommended using a higher quantization parameter
10
𝑑. With 𝑑 = 8, both works reported almost identical closed-loop results
ith encryption compared to without encryption. Thus, we have used

he quantization parameter 𝑑 = 8 for all simulations in this work.

Remark 11. Although the LMPC and state estimation models used in
this work are first-principles-based, data-based models employing arti-
ficial neural networks can also be used in the predictor and LMPC. Al-
hajeri et al. (2021) used machine-learning-based models for the ELO
model and LMPC while simulating a first-principles-based process with
partial state feedback, showcasing the effectiveness of the state estima-
tor in the presence of plant/model mismatch.

5. Comparative analysis of encrypted centralized, decentralized,
and distributed LMPC architectures

In this section, we provide a concise overview of the encrypted
centralized and decentralized control architectures, both of which in-
corporate state estimation. Following this, we offer an in-depth com-
parative analysis that covers the encrypted centralized, decentralized,
and distributed LMPCs.
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Fig. 5. True state profiles (blue solid line) and estimated state profiles (red dashed line) of CSTR 2 under the encrypted sequential distributed LMPC framework for the first set
f initial conditions.
.1. Encrypted centralized MPC with state estimation

In Fig. 10, the diagram illustrates the flow of information within an
ncrypted centralized LMPC system that incorporates state estimation.
t time 𝑡 = 𝑡𝑘, where 𝑘 signifies the sampling instance, the sensors
ncrypt the measurements denoted as 𝑦(𝑡𝑘) and transmit the resulting

ciphertext 𝑐 to the computing unit responsible for computing all the
control inputs. Upon arrival, the data is decrypted, and the quantized
states �̂�(𝑡𝑘) are utilized by the state estimator to estimate all states
of the system �̄�(𝑡𝑘). These estimated states initialize the LMPC model,
enabling it to compute the control inputs, 𝑢(𝑡𝑘). Subsequently, these
control inputs are encrypted into the ciphertext 𝑐 and transmitted to
the actuators, where it is decrypted to the quantized control inputs
̂(𝑡𝑘) and applied to the process. Thus, in this approach, only a single
computing unit that receives and transmits encrypted signals is utilized
for all computations. Additional details and formulation of the LMPC
equations of the centralized LMPC can be obtained in Kadakia et al.
(2023).
11
5.2. Encrypted decentralized MPC with state estimation

In Fig. 11, the diagram illustrates the flow of information within an
encrypted decentralized LMPC system with state estimation. Here, the
overall system is divided into multiple subsystems, with each subsys-
tem independently computing its control inputs in separate computing
units. There is no information exchange of the control inputs between
subsystems. At time 𝑡 = 𝑡𝑘, where 𝑘 is the sampling instance, the
sensors encrypt the measurements represented as 𝑦(𝑡𝑘) and transmit
the resulting ciphertext 𝑐 to all the computing units responsible for
calculating the control inputs of different subsystems. The ciphertext
𝑐 is decrypted in each computing unit, and the quantized states �̂�(𝑡𝑘)
are used by the state estimator in each subsystem to estimate all states
of the entire system �̄�(𝑡𝑘). All the state estimators shown in Fig. 11
are identical, as each LMPC in the decentralized control framework
receives full state feedback to compute the control inputs of its respec-
tive subsystem. The LMPC model in each subsystem is then initialized
by these estimated states, and is used to compute the control inputs
of its respective subsystem only, 𝑢𝑗 (𝑡𝑘). Here 𝑗 represents the 𝑗th sub-
system. Subsequently, all control inputs are encrypted and transmitted
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Fig. 6. Control input profiles under the encrypted sequential distributed LMPC framework for the first set of initial conditions.
to their respective actuators, where the ciphertext 𝑐 is decrypted to the
quantized control inputs �̂�(𝑡𝑘) and applied to the process. Thus, multiple
computing units (equal to the number of subsystems) that receive and
transmit encrypted signals are utilized for all computations, which are
carried out in an independent and isolated manner. Additional details
and formulation of the LMPC equations of the decentralized LMPC can
be obtained in Chen et al. (2020).

5.3. Comparison of the encrypted centralized, decentralized, and distributed
LMPCs with state estimation

In our analysis, we applied the same system as the example de-
scribed in Section 4, using the second set of initial conditions men-
tioned in the preceding section. Our objective was to compare the
12
computation time and performance of various control architectures
in computing the control inputs. Table 1 provides a summary of the
total computation time required for computing control inputs and
the normalized sum of the control cost functions for the encrypted
centralized, decentralized, and distributed LMPCs.

To determine the computation time of the centralized framework,
we calculated the time spent by the LMPC in computing the control
inputs for the system at each sampling instance. In the case of the
decentralized framework, we recorded the longer of the two LMPC com-
putation times at each sampling instance. For the sequential distributed
LMPC, we summed the time spent by both LMPCs at each sampling
instance to obtain the total control input computation time for that
specific sampling instance. In case of the iterative distributed LMPC, we
recorded the higher value of the time spent by the two LMPCs at each
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Fig. 7. True state profiles (blue solid line) and estimated state profiles (red dashed line) of CSTR 1 under the encrypted iterative distributed LMPC framework for the second set
of initial conditions.
Table 1
Computational time and performance of the encrypted centralized, decentralized,
sequential distributed, and iterative distributed LMPCs.

Control architecture Average control input
computation time

Normalized sum of the
control cost function

Centralized MPC 15.28 s 1
Decentralized MPC 2.87 s 0.9751
Sequential DMPC 4.03 s 0.9817
Iterative DMPC 5.22 s 0.9703

iteration, and summed these values for the two iterations to calculate
the total time spent for computing control inputs, at a particular
sampling instance. It was ensured that the control input computation
time at any interval was not only smaller than the sampling period of
30 s but also satisfied Eq. (21). Fig. 12 displays the computation times
for all 4 cases at each sampling instance of process operation. Based
on the results from Tables 1 and 12, we can conclude that the de-
centralized LMPC required the shortest computational time, while the
iterative distributed LMPC exhibited the best performance. In contrast,
13

the centralized LMPC not only had the longest computational time but
also demonstrated inferior performance compared to the distributed
and decentralized LMPC systems.

The reason behind the slightly improved performance observed
with the decentralized LMPC can be attributed to the sequential flow
sheet of the process network, featuring two CSTRs in series. This
characteristic renders decentralized LMPC a more suitable and well-
conditioned choice compared to centralized LMPC when addressing
the optimization problem. Furthermore, the iterative distributed LMPC,
which shares control input information with other subsystems dur-
ing each iteration, demonstrates superior performance compared to
both the decentralized LMPC and the sequential distributed LMPC.
It is essential to note that this performance enhancement may not
be universally applicable to all nonlinear systems, but the enhanced
computational efficiency of decentralized and distributed frameworks
over centralized ones can indeed be extended to other large-scale
systems.

In general, the advantages and disadvantages of all 4 control
schemes can be summarized in the following manner:

1. Centralized MPC: It offers the advantage of requiring only a
single computing unit for all computations, simplifying infor-

mation flow and reducing costs, which makes it suitable for
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Fig. 8. True state profiles (blue solid line) and estimated state profiles (red dashed line) of CSTR 2 under the encrypted iterative distributed LMPC framework for the second set
of initial conditions.
small systems. All signals transmitted to and received from the
remote edge computing unit can be encrypted. However, it
comes with a significantly higher computation time compared
to the decentralized and distributed MPCs, making it less viable
for large processes with numerous states and control inputs. It
is, nevertheless, a suitable choice for small-scale systems, where
only a single computing unit is needed.

2. Decentralized MPC: This approach stands out with the short-
est computation time among the four systems, and can even
outperform the closed-loop performance of the centralized MPC
in specific cases. Furthermore, a decentralized MPC framework
does not require communication between different computing
units, making it particularly well-suited for large systems par-
titioned into many subsystems, where the coupling between
subsystems is not very significant. Also, all signals transmit-
ted to and received from the different computing units remain
encrypted. However, its performance may deteriorate in cases
where the overall system is partitioned into highly coupled
subsystems.

3. Sequential DMPC: While a decentralized MPC can perform bet-
ter than the centralized MPC in some cases, it calculates control
14
inputs independently, without any information exchange among
subsystems. The integration of information exchange between
subsystems can be achieved through the use of a sequential
DMPC. In the example discussed, the overall system was only
partitioned into two subsystems, and the control inputs were
computed in series for the two subsystems. However, this ap-
proach may be slower for very large systems partitioned into
numerous subsystems, not making it a viable option in that case.
The major advantage of a sequential DMPC over an iterative
DMPC lies in its reduced communication among subsystems, as
information flows only in one direction (from higher to lower
subsystems). It is suitable for cases where communication be-
tween controllers is necessary, implementing iterative DMPC is
not feasible, and the number of subsystems is not extensive.
Further, it would be more suitable when Ethernet crossover
communication cannot be established between different com-
puting units (if they are placed in different locations) because
the communication load of a sequential DMPC is much less
compared to an iterative DMPC, and, hence, encrypted signals
could be used for internal communication between subsystems,
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Fig. 9. Control input profiles under the encrypted iterative distributed LMPC framework for the second set of initial conditions.
as long as the overall system is not partitioned into a large
number of subsystems.

4. Iterative DMPC: This approach delivers the best overall perfor-
mance, although it entails longer computation times compared
to decentralized and sequential DMPCs. In the example pre-
sented, we considered only two MPCs in the partition, but for
systems with more partitions, it can outperform the sequential
DMPC in terms of computation time. However, implementing
this system requires multiple computing units compared to a
single unit in a centralized MPC. Moreover, these units must be
located in the same room to establish secure Ethernet crossover
communication between them. On the other hand, a decentral-
15

ized MPC allows for computing units to be located in different
locations. Also, the communication load between subsystems in
an iterative DMPC is higher than a sequential DMPC, as control
input trajectories are shared with all other subsystems multiple
times within a single sampling instance. Therefore, it is most
suitable for very large systems partitioned into numerous sub-
systems, especially when these subsystems exhibit a substantial
coupling effect with one another, and in situations where secure
internal communication channels between different subsystems
can be easily established.

To summarize, this section offered a general overview of the advan-
tages, disadvantages, and the suitability of various control architectures
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Fig. 10. Illustration of the encrypted centralized control structure.
Fig. 11. Illustration of the encrypted decentralized control structure.
ith encryption. The decision on which control framework to prac-
ically implement should be based on several factors, such as the
pecific characteristics (size, coupling effect, etc.) of the system to
e controlled, the available resources, the desired level of control
erformance, the budget allocated for computing hardware, and other
ertinent considerations.

. Conclusion

In this study, we introduced and applied encrypted distributed con-
rol architectures, both sequential and iterative, with state estimation,
o a large-scale nonlinear chemical process network utilizing partial
tate feedback with sensor noise. We established practical guidelines
or implementing this control structure in any nonlinear process by
ncluding the selection of key parameters such as 𝑙1, 𝑙2, and 𝑑 for
uantization, and the criterion for setting the sampling time. Through
losed-loop simulations, we demonstrated that both the sequential
nd iterative distributed LMPCs, with encrypted communication be-
ween the sensor–controller and controller–actuator links, could stabi-
ize the system within the desired stability region using the extended
uenberger observer for state estimation, in a finite process simula-
ion time. Furthermore, we conducted a comprehensive comparative
nalysis of various encrypted control strategies, including centralized,
ecentralized, and distributed approaches with state estimation. The
16
computational time, closed-loop performance, and suitability of the
different encrypted control architectures were discussed. In conclusion,
our findings indicate that the encrypted iterative distributed LMPC
emerges as the most suitable choice for enhancing the cybersecu-
rity of large and complex systems, with highly coupled dynamics
between states. This approach reduces the computational complexity
associated with centralized control, leverages controller communica-
tion to improve closed-loop performance, and maintains a reasonable
computation time, while enhancing the cybersecurity of the control
system.
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Fig. 12. Control input computation time for the encrypted centralized, decentralized, sequential distributed, and iterative distributed LMPCs at every sampling instance.
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