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A B S T R A C T

This study presents an encrypted two-tier control architecture integrated with a machine learning (ML)
based cyberattack detector to enhance the operational safety, cyber-security, and performance of nonlinear
processes. The upper tier of this architecture employs an encrypted nonlinear Lyapunov-based model predictive
controller (LMPC) to enhance closed-loop performance, while the lower tier utilizes an encrypted set of
linear controllers to stabilize the process. Encrypted signals from the sensors are decrypted at the upper
tier for plain text control input computation, while the lower tier computes control inputs in an encrypted
space, due to its exclusive use of linear operations. While this design enhances closed-loop performance, it
exposes the upper tier to potential cyberattacks. To mitigate this risk, an ML-based detector is developed in
the form of a feed-forward neural network, utilizing sensor-derived data for attack detection. Upon attack
detection, the control system logic deactivates the performance-enhancing upper tier and relies solely on the
cybersecure lower tier for system stabilization. The study also includes a comprehensive stability analysis of
the two-tier control structure, establishing error bounds related to quantization and sample-and-hold controller
implementations. The proposed control framework can be extended to any nonlinear process that is controlled
by a combination of linear and nonlinear controllers to enhance the system cybersecurity. Guidelines such as
quantization parameter selection, cyberattack detector development, and sampling time criteria are included to
facilitate practical implementation. Simulation results of a nonlinear chemical process network demonstrated
the robustness of the encrypted control architecture and cyberattack detector, as well as its ability to detect
previously unseen attack patterns.
1. Introduction

The swift advancements in technology and the increasing inte-
gration of devices have made interconnected cyber–physical systems
essential elements of vital infrastructure in various sectors like energy,
water, transportation, and manufacturing. In particular, systems that
employ SCADA (Supervisory Control and Data Acquisition) technology
play a crucial role in overseeing, directing, and automating intricate
operations, thereby boosting efficiency and productivity. Nonetheless,
the expanded interlinking and fusion of SCADA systems with the inter-
net and corporate networks have made them susceptible to potential
cyber threats. A breach or compromise within these systems could lead
to grave outcomes, including disruption of essential services, physical
harm, financial setbacks, and even jeopardizing public safety. Current
advancements in cyberattack methodologies underscore the importance
of instituting robust cybersecurity measures.

∗ Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA.
E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

While notable strides have been made in tackling cybersecurity
issues within the domain of information technology (IT), the opera-
tional technology (OT) domain is currently lagging behind in terms of
advancements. IT predominantly concentrates on the software aspect
of systems, covering areas like network architecture and data admin-
istration. On the other hand, OT is responsible for maintaining the
seamless functioning of essential infrastructure, such as power grids,
intelligent meters, and distribution networks. Cyberattacks on OT in-
frastructure can result in consequences such as operational shutdowns,
service disruptions, data leaks, and potentially catastrophic explosions.
As an illustration, consider the case of the Stuxnet malware, which was
uncovered in 2010. This particular malicious software was designed
with a specific focus on infiltrating SCADA systems. Stuxnet managed
to breach programmable logic controllers (PLCs) within Iranian nuclear
facilities, collecting valuable information about the industrial system
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and ultimately causing the high-speed centrifuges to burnout (Kush-
ner, 2013). Another noteworthy incident involves the cyberattack on
the Ukrainian power grid in 2015. During this event, hackers infil-
trated SCADA systems to remotely shutdown substations, resulting in
power failures. A more recent occurrence took place in 2021, con-
cerning the Colonial Pipeline, a major operator of fuel pipelines in
the United States. This company fell victim to a ransomware attack,
orchestrated by hackers who gained entry through the use of the Dark-
Side ransomware. The attackers proceeded to encrypt the networked
communication of the pipeline, demanding a ransom payment in return
for the decryption keys. Consequently, Colonial Pipeline had to cease
its operations, resulting in interruptions to fuel distribution and causing
notable financial loss. These examples underscore the imperative for
robust cybersecurity protocols in OT infrastructures.

Extensive research efforts continue to focus on various domains,
such as the design of backup controllers in a two-tier safety-
performance control architecture (Chen et al., 2020), the creation of
machine learning-based cyberattack detectors (Huang et al., 2007;
Omar et al., 2013; Agrawal and Agrawal, 2015; Wu et al., 2018),
the recovery of process states following a cyberattack (Wu et al.,
2020), the development of cyberattack-resilient controllers (Durand,
2018; Durand and Wegener, 2020), and encrypted control (Suryavanshi
et al., 2023). However, this research aims to integrate some of these
approaches, particularly machine-learning based cyberattack detection
in a two-tier encrypted control architecture, to create a robust and
cyber-secure control scheme applicable to nonlinear processes.

Networked communication lines are vulnerable to cyberattacks
when data is transmitted in its regular plaintext form. To address this,
encryption emerges as a solution, effectively safeguarding data during
its transfer. Within control systems, data serves as the foundation for
computing control inputs. While encryption offers enhanced security,
it also introduces limitations, allowing only linear computations—a
drawback that can hamper the utilization of advanced controllers like
model predictive control (MPC) in complex systems characterized by
nonlinear dynamics.

MPC ensures closed-loop stability (confinement of system states
within a level set of the control Lyapunov function), optimizes critical
performance metrics, handles multi-input multi-output scenarios, and
manages constraints on system states and inputs. These advantages
stem from the deployment of a mathematical model to predict future
behavior and consequently optimize control inputs by minimizing a
cost function. However, for the application of MPC, decryption becomes
necessary to provide the required measurements for prediction and
optimization at the end of the controller. While a linear control law
provides the ability to calculate control inputs in an encrypted space,
eliminating the need for decryption and ensuring a more secure ap-
proach, the advantages of nonlinear model predictive control cannot be
ignored. Moreover, a delicate balance exists between improving system
cybersecurity and enhancing closed-loop performance. Thoughtful as-
sessments are necessary, taking into account the improvement achieved
with the nonlinear controller, the level of cybersecurity in the process
setting, and, most crucially, the adherence to the necessary physical
safety standards for the process. Similarly, the selection of a nonlinear
controller, even with the aim of improving closed-loop control perfor-
mance, might not be justified if it increases the vulnerability of the
system to cyberthreats.

To reconcile the benefits of both paradigms, we propose an en-
crypted two-tier control architecture coupled with ML-based cyberat-
tack detection. In this setup, the lower tier is composed of an encrypted
linear control scheme capable of calculating control inputs within an
encrypted space, eliminating the requirement for decryption in the
network. This self-contained lower tier is capable of independently sta-
bilizing the system. Conversely, the upper tier comprises an encrypted
nonlinear controller (e.g., MPC) that receives encrypted signals which
are decrypted to plaintext upon arrival to compute control inputs. The
2

computed plaintext control inputs are subsequently encrypted before
transmission to the actuator. It is crucial to emphasize that the plaintext
data received by the MPC and the computed plaintext control inputs are
both susceptible to cyberattacks in the networked upper tier.

However, with ML-based cyberattack detection integrated in the
encrypted control architecture, when a cyberattack is detected, the
compromised upper tier is deactivated, and exclusively the secure and
stabilizing lower tier is utilized to regain system stability. This approach
enables us to amalgamate the strengths of cyber-secure encrypted
linear control and advanced nonlinear control, to create a cyber-secure,
advanced nonlinear control scheme that fortifies the system against cy-
berattacks. Beyond ML-based cyberattack detection, alternative detec-
tion strategies can be considered. These include a reachable set-based
detection scheme as explored in the work of Narasimhan et al. (2023),
where a set is created that includes all possible states that a system can
reach or achieve under specific control inputs and initial conditions.
Deviations from these expected states could indicate a potential cyber-
attack. However, this method is restricted to linear systems. Another
approach involves employing a controller switching technique, wherein
controller-observer parameter switching occurs between nominal sys-
tem parameters and attack-sensitive system parameters to facilitate
attack detection (Narasimhan et al., 2022a,b). However, this method
may fail to detect intelligent cyberattacks which are designed to avoid
detection by conventional metrics such as residual errors. However, this
study only focuses on intelligent cyberattacks, which are discussed in
Section 4.

In the previous work of Suryavanshi et al. (2023), it was assumed
that the computing unit responsible for decrypting states and com-
puting control inputs is cybersecure. However, in this current study,
we have developed a more robust control framework. Even if the
computing unit is not secure and comes under a cyberattack, our
control system logic deactivates the upper-tier controller and solely
relies on the encrypted lower-tier controller to stabilize the system.
This lower-tier control is linear and operates within an encrypted
space and does not share access to public and private keys with the
computing unit, unlike the upper-tier controller, which is nonlinear.
Consequently, even in scenarios where the environment for computing
control inputs is not considered cybersecure, our proposed control
framework can be used to enhance cybersecurity. As an alternative to
a secure encrypted lower tier, a locally secure tier with backup sensors
could potentially be employed (Chen et al., 2020). However, employing
an encrypted lower tier ensures a continuous and seamless flow of
encrypted network communication, which can solely be accessed by
authorized personnel equipped with the required private keys necessary
for decryption. Consequently, this approach eliminates the necessity for
secure local communication that is isolated from the network, which
poses challenges in terms of access. This distinctive aspect underscores
the novelty and significance of this research.

The subsequent sections of this paper are structured as follows:
in Section 2, we present the notation, describe the class of systems
employed, explain the cryptosystem applied for encryption, and the
implications of quantization; In Section 3 we elaborate on the architec-
ture design of the encrypted two-tier control, outline the formulation
of both the encrypted lower tier and upper tier, followed by a stability
analysis to identify sources of errors in the control framework and set
bounds to it; In Section 4 we describe the various launched cyberattacks
and the machine-learning-based cyberattack detector; in Section 5, we
showcase the application of the proposed control scheme on a nonlinear
chemical process network, explain the important points to be consid-
ered while implementing the control framework in nonlinear systems,
and put forth the computational load arising from the incorporation of
ML-based detection within the encrypted control scheme.

2. Preliminaries

2.1. Notation

The symbol ‖⋅‖ represents the Euclidean norm of a vector. The
⊤
transpose of the vector 𝑥 is denoted by 𝑥 . R, Z, and N denote
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the sets of real numbers, integers, and natural numbers, respectively.
Moreover, the notations Z𝑀 and Z∗

𝑀 are used to represent the additive
nd multiplicative groups of integers modulo 𝑀 , correspondingly. The
peration of subtracting sets is indicated by the symbol ‘‘∖’’, such that
∖𝐵 denotes the set of elements present in 𝐴 but not in 𝐵. A function

denoted as 𝑓 (⋅) is categorized as belonging to class 1 if it possesses
continuous differentiability within its domain. A function 𝛼 ∶ [0, 𝑎) →
[0,∞) is categorized within the class  when it is strictly increasing
and 𝛼(0) = 0. The term lcm(𝑖, 𝑗) indicates the least common multiple of
the integers 𝑖 and 𝑗. The term gcd(𝑖, 𝑗) indicates the greatest common
divisor, which identifies the highest positive integer that divides 𝑖 and
𝑗 without any remainder.

2.2. Class of systems

The focus of this research is on nonlinear continuous-time systems
featuring multiple inputs and multiple outputs (MIMO), characterized
by a collection of nonlinear first-order ordinary differential equations
(ODEs) of the form,

̇ = 𝐹 (𝑥, 𝑢𝑡1, 𝑢𝑡2) = 𝑓 (𝑥) + 𝑔1(𝑥)𝑢𝑡1 + 𝑔2(𝑥)𝑢𝑡2 (1)

The system is described by a state vector 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑛] ∈ R𝑛,
a lower-tier control input vector 𝑢𝑡1 ∈ R𝑚1 and an upper-tier control
input vector 𝑢𝑡2 ∈ R𝑚2 . The system inputs, denoted as 𝑢𝑡1 and 𝑢𝑡2, are
bounded by their respective sets 𝑈1 ⊂ R𝑚1 and, 𝑈2 ⊂ R𝑚2 , where
𝑈1 ∶= {𝑢𝑡1 ∈ 𝑈1|𝑢𝑡1min,𝑖

≤ 𝑢𝑡1𝑖 ≤ 𝑢𝑡1max,𝑖
,∀; 𝑖 = 1, 2,… , 𝑚1} and 𝑈2 ∶=

{𝑢𝑡2 ∈ 𝑈2|𝑢𝑡2min,𝑖
≤ 𝑢𝑡2𝑖 ≤ 𝑢𝑡2max,𝑖

,∀; 𝑖 = 1, 2,… , 𝑚2}. The quantities
𝑡1min,𝑖

and 𝑢𝑡1max,𝑖
correspond to the lowest and highest thresholds for

ach controlled input in the lower tier, respectively. Similarly, the
alues 𝑢𝑡2min,𝑖

and 𝑢𝑡2max,𝑖
pertain to the minimum and maximum values

llowed for each controlled input in the upper tier. The functions 𝑓 (⋅),
1(⋅), and 𝑔2(⋅) are assumed to be sufficiently smooth vector functions,
espectively. For the purpose of simplicity without loss of generality, we
ntroduce the assumption that 𝑓 (0) = 0, effectively treating the origin
s a steady state of Eq. (1). For the sake of convenience, we establish
he initial time as zero (𝑡0 = 0). Furthermore, the domain of continuous
unctions that map the interval [𝑎, 𝑏] to R𝑛 is designated as 𝐶([𝑎, 𝑏],R𝑛).
dditionally, we define the set 𝑆(𝛥) as the assortment of piece-wise
onstant functions characterized by a period of 𝛥.

.3. Paillier cryptosystem

In this research, we employ the Paillier cryptosystem (Paillier,
999) to implement encryption and decryption procedures on state
easurements of the process (denoted as 𝑥) as well as control inputs

represented as 𝑢𝑡1 and 𝑢𝑡2). More importantly, we leverage the semi-
omomorphic property of additive homomorphism within the Paillier
ryptosystem to conduct linear additive operations within an encrypted
pace in the lower tier. Similar to numerous other encryption methods,
he Paillier cryptosystem’s functionality centers on the encryption of
laintext data in the format of natural numbers. The encryption pro-
edure is initiated with the creation of public and private keys. Within
he Paillier cryptosystem, integer messages are encrypted to ciphertexts
y utilizing the public key during the encryption process. In contrast,
he private key facilitates the decryption of ciphertexts, to recover the
nitial integer messages. The public and private keys are generated as
er the following steps:

1. Choose two large prime integers (𝑝 and 𝑞) randomly, ensuring
they meet the requirement gcd(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1.

2. Compute the outcome of multiplying these integers, indicated as
𝑀 = 𝑝𝑞.

3. Choose an arbitrary integer 𝑔 in a manner that 𝑔 ∈ Z
𝑀2 , with

Z
𝑀2 denoting the multiplicative group of integers modulo 𝑀2.

4. Compute 𝜆 = lcm(𝑞 − 1, 𝑝 − 1).
̄

3

5. Specify 𝐿(𝑥) = (𝑥 − 1)∕𝑀 .
6. Verify whether the subsequent modular multiplicative inverse is
present:
𝑢 = (𝐿̄(𝑔𝜆 mod𝑀2))−1 mod 𝑀 .

7. Should the inverse not exist, revisit step 3 and opt for an alter-
nate value of 𝑔. If the inverse exists, we acquire the public key
(𝑀,𝑔) and the private key (𝜆, 𝑢).

pon acquiring the keys, the public key is disseminated to the in-
ended recipients responsible for carrying out the encryption procedure.
imilarly, the private key is shared with the authorized recipients
esponsible for decrypting the data. Encryption is performed as follows:

𝑀 (𝑚, 𝑟) = 𝑐 = 𝑔𝑚𝑟𝑀 mod 𝑀2 (2)

here 𝑟 is a randomly selected integer from the set Z𝑀 , and 𝑐 represents
he ciphertext achieved through the encryption of 𝑚. The decryption
rocedure for the ciphertext 𝑐 ∈ Z𝑀2 is executed in the subsequent
anner:

𝑀 (𝑐) = 𝑚 = 𝐿̄(𝑐𝜆 mod 𝑀2)𝑢 mod 𝑀 (3)

.4. Quantization

To utilize the Paillier cryptosystem, it becomes imperative to repre-
ent the data to be encrypted as natural numbers, a subset designated as
𝑀 . However, the signal measurements before encryption are available

n the form of floating-point numbers. Consequently, we use the process
f quantization to map these floating-point numbers into elements
f the set Z𝑀 . To construct this mapping, we use signed fixed-point
umbers represented in binary form. The parameters of quantization,
amely 𝑙1 and 𝑑, signify the total count of bits (integer and frac-
ional) and the number of fractional bits, respectively. Employing these
uantization parameters, we create a set denoted as Q𝑙1 ,𝑑 . This set
ncompasses rational numbers spanning from −2𝑙1−𝑑−1 to 2𝑙1−𝑑−1−2−𝑑 ,
ith each rational number separated by a step of 2−𝑑 . A rational
umber 𝑞 that resides within the Q𝑙1 ,𝑑 set can be articulated as 𝑞 ∈ Q𝑙1 ,𝑑 ,
here, ∃𝛽 ∈ {0, 1}𝑙1 and 𝑞 = −2𝑙1−𝑑−1𝛽𝑙1+

∑𝑙1−1
𝑖=1 2𝑖−𝑑−1𝛽𝑖. In order to map

real number data point 𝑎 onto the Q𝑙1 ,𝑑 set, we employ the function
𝑙1 ,𝑑 , illustrated by the equation,

𝑔𝑙1 ,𝑑 ∶ R → Q𝑙1 ,𝑑

𝑙1 ,𝑑 (𝑎) ∶= arg min
𝑞∈Q𝑙1 ,𝑑

|𝑎 − 𝑞| (4)

to acquire the nearest quantized rational number to a specific real
number data point. After this, the quantized data is converted into a
collection of integers via a one-to-one (bijective) mapping referred to
as 𝑓𝑙2 ,𝑑 , as described in the work of Darup et al. (2017). This mapping
guarantees that the quantized data undergoes a transformation that
places it within a subset of the message space Z𝑀 . The one-to-one
mapping can be defined as follows:

𝑓𝑙2 ,𝑑 ∶ Q𝑙1 ,𝑑 → Z2𝑙2

𝑓𝑙2 ,𝑑 (𝑞) ∶= 2𝑑𝑞 mod 2𝑙2
(5)

The encryption process involves encrypting integer plaintext messages
using the set 𝑍2𝑙2 , and the resulting ciphertexts can be decrypted
back into the same set 𝑍2𝑙2 . Once the upper-tier controller and actu-
ator receive the encrypted signals, the ciphertexts undergo decryption
to extract integer plaintext messages that represent quantized states
and inputs, respectively. Consequently, it becomes essential to remap
these decrypted plaintext messages back to the set Q𝑙1 ,𝑑 . The inverse
mapping, denoted as 𝑓−1

𝑙2 ,𝑑
, is defined as follows:

𝑓−1
𝑙2 ,𝑑

∶ Z2𝑙2 → Q𝑙1 ,𝑑 (6)

𝑓−1
𝑙2 ,𝑑

(𝑚) ∶= 1
𝑑

{

𝑚 − 2𝑙2 if 𝑚 ≥ 2𝑙2−1
(7)
2 𝑚 otherwise
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Fig. 1. Visualization of the encryption–decryption process and effect of quantization
hen applied to a floating-point real number.

To illustrate the process of encryption and decryption, we can refer
o the example shown in Fig. 1. For this specific instance, the selected
uantization parameters are as follows: 𝑑 = 3, 𝑙1 = 18, and 𝑙2 = 30.
et us consider the rational number 𝑎 = −1.31752. The impact of
uantization is demonstrated in Fig. 1, where the quantization error,
𝑎 − 𝑞| = 0.05748, is evident.

. Design of the encrypted two-tier control architecture

In the closed-loop framework of the encrypted two-tier control
rchitecture, illustrated in Fig. 2, the signals, 𝑥1(𝑡) and 𝑥2(𝑡) are trans-
itted from the sensors to the lower and upper tier, respectively,

or the purpose of computing control inputs. The lower and upper
ier correspond to the encrypted network tiers 1 and 2 respectively,
n Fig. 2. These signals 𝑥1(𝑡) and 𝑥2(𝑡) undergo encryption using

public keys 1 and 2 respectively before they are transmitted to the
lower tier consisting of a set of encrypted proportional–integral (PI)
controllers and the upper tier comprising a model predictive controller
(MPC), respectively. These two tiers operate independently for control
input computations, utilizing distinct public and private keys for signal
encryption and decryption. Further, both tiers manipulate a distinct set
of control inputs, eliminating any concerns related to balancing control
signals among actuators. Once the lower tier receives the encrypted
data, denoted as 𝑐1, it performs control input calculations within an
encrypted space, without decryption, employing additive homomorphic
operations. The encrypted control input 𝑐′1 is then transmitted to the
actuator, where it undergoes decryption using private key 1 to yield
the quantized control input 𝑢̂1(𝑡). Concurrently, the upper tier decrypts
the ciphertext 𝑐2 and employs the quantized states 𝑥̂2(𝑡) to determine
the control input. These quantized states are used to initialize the
process model within the MPC at the time 𝑡. Following this, the MPC
calculates the optimized control inputs 𝑢2(𝑡), which undergo encryption
4

before being transmitted to the actuator. Upon receipt of the encrypted |
control input 𝑐′2, the actuator decrypts it using private key 2, leading
to the quantized input 𝑢̂2(𝑡), which is then applied to the process. The
presented architecture introduces two potential points within the upper
tier where cyberattacks could be initiated: one by manipulating the
decrypted state values received by the MPC, and the other by manip-
ulating the control inputs computed by the MPC before encryption. To
counteract this vulnerability, an ML-based detector is incorporated at
the process site. It intercepts sensor signals prior to their encryption and
transmission to the network, thereby ensuring its security. Its role is
to detect cyberattacks and subsequently reconfigure the control system
in the event of cyberattack detection. This reconfiguration involves
deactivating the compromised upper tier and relying solely on the
secure, encrypted lower tier to restore the desired closed-loop behavior.

Remark 1. The encrypted data, in the form of ciphertexts, could
potentially be subject to manipulation by an attacker. However, due
to the encryption, the attacker gains no information about the pro-
cess states or the system stability. Any attempts to manipulate the
encrypted data would lead to significant deviations from actual values.
The manipulated encrypted data after decryption could yield infeasible
values for certain states, and some control inputs could fall outside
the actuation bounds. Such alterations have the potential to destabilize
the system, and they can be easily identified by imposing constraints
on the control Lyapunov function, eliminating the need for advanced
detection techniques. However, in this research, we focus on intel-
ligent cyberattacks that do not force the system out of its stability
region. These attacks require the attacker to possess some knowledge
about the system and its states, information that can only be obtained
through decryption of the states and computation of control inputs
before encryption. Therefore, our discussion is centered around these
scenarios. Further details regarding the types of cyberattacks launched
are provided in Section 4. Additionally, as a proactive measure, a
backup control system can be integrated into this design, operating in
isolation from any network, to address potential cyberattacks aimed at
manipulating encrypted data.

The presented design of the closed-loop system introduces two types
of errors. Initially, there is a quantization error due to the mapping
of state data from R to Q𝑙1 ,𝑑 within the sensor–controller communi-
cation link. Furthermore, the controller–actuator communication link
contributes a control input quantization error as the control input is
mapped from a set of real numbers R to Q𝑙1 ,𝑑 . Both of these quantiza-
tion errors are constrained and can be characterized via the mapping
equation specified in Eq. (4), thereby ensuring that:

|𝑥𝑗 (𝑡) − 𝑥𝑗 (𝑡)| ≤ 2−𝑑−1 (8a)

|𝑢𝑘(𝑡) − 𝑢𝑘(𝑡)| ≤ 2−𝑑−1 (8b)

here 𝑑 is the quantization parameter used for mapping in Eq. (4),
hile 𝑗 and 𝑘 represent the 𝑗th state and 𝑘th control input, respectively.
aking into account the impact of quantization-induced input errors,
he dynamical model under two-tier control architecture employing the
onlinear system of Eq. (1) can be expressed as follows:

𝑥̇ = 𝐹 (𝑥, 𝑢̂𝑡1, 𝑢̂𝑡2) = 𝑓 (𝑥) + 𝑔1(𝑥)𝑢̂𝑡1 + 𝑔2(𝑥)𝑢̂𝑡2
= 𝑓 (𝑥) + 𝑔1(𝑥)(𝑢𝑡1 + 𝑒𝑡1) + 𝑔2(𝑥)(𝑢𝑡2 + 𝑒𝑡2)

(9)

here 𝑒𝑡1 = 𝑢̂𝑡1(𝑡) − 𝑢𝑡1(𝑡), 𝑒𝑡2 = 𝑢̂𝑡2(𝑡) − 𝑢𝑡2(𝑡) and

𝑒𝑡𝑖| ≤ 2−𝑑−1 where 𝑖 = {1, 2} (10)

lso, an additional error will be present in the applied control input, as
he controller receives 𝑥̂ instead of the true state 𝑥. This error will be
onfined by the underlying equation, using the local Lipschitz property,
here 𝐿1 > 0:

−𝑑−1 (11)
𝛷(𝑥̂) −𝛷(𝑥)| ≤ 𝐿1|𝑥̂ − 𝑥| ≤ 𝐿12
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Remark 2. Quantization error arises when the desired value to be
quantized is not exactly found within the Q𝑙1 ,𝑑 set, which comprises
quantized values defined by the quantization parameter 𝑑. The interval
between elements in this set is 2−𝑑 . To ascertain the upper limit of this
error, let us consider the quantization of a value, 𝑥1. We assume that 𝑥1
falls within the range of 𝑦1 and 𝑦1 + 2−𝑑 , where 𝑦1 and 𝑦1 + 2−𝑑 signify
quantized values within Q𝑙1 ,𝑑 . The quantization procedure involves
evaluating the absolute difference between 𝑥1 and 𝑦1 in comparison
to that between 𝑥1 and 𝑦1 + 2−𝑑 . When the distance between 𝑥1 and
𝑦1 is less than the distance between 𝑥1 and 𝑦1 + 2−𝑑 , 𝑥1 is matched
with 𝑦1. Alternatively, it is matched with 𝑦1 + 2−𝑑 . Subsequently, the
quantization error is confined within half of the resolution, |𝑦1+2−𝑑−𝑦1|

2 =
2−𝑑−1. This implies that the maximum difference between the quantized
value 𝑥̂1 and the actual value 𝑥1 is 2−𝑑−1. Thus, selecting a larger
uantization parameter, 𝑑 → ∞, results in a negligible error due to
uantization.

.1. Lower-tier encrypted control system

Within the encrypted two-tier control framework, we assume the
xistence of a feedback controller in the lower tier, represented as
𝑡1 = 𝛷(𝑥) ∈ 𝑈1, that can attain exponential stability at the origin of

the nominal closed-loop system of Eq. (1), with 𝑢𝑡2 ≡ 0. This signifies
the presence of a 1 control Lyapunov function 𝑉 (𝑥) for which the
subsequent inequalities are valid across all 𝑥 ∈ R𝑛 within an open
region 𝐷 surrounding the origin:

𝑐1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2, (12a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥), 0) ≤ −𝑐3|𝑥|
2, (12b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (12c)

here 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are positive constants. For the nonlinear system
escribed by Eq. (1), the region of closed-loop stability can be defined
s a level set of the control Lyapunov function 𝑉 . This stability domain,
abeled as 𝛺𝜌, is defined by 𝛺𝜌 ∶= {𝑥 ∈ 𝐷|𝑉 (𝑥) ≤ 𝜌}, where 𝜌 > 0.
5

ence, originating from any initial condition within 𝛺𝜌, the applied
ontrol input, 𝛷(𝑥) guarantees that the system state trajectory, under
losed-loop conditions, remains confined within 𝛺𝜌.

To perform computations in an encrypted space, classical controllers
sing linear mathematical operations are used to compute control
nputs. Specifically, a set of proportional–integral controllers are used.
he formula is given as:

(𝑡𝑘) = 𝐾𝑐𝑖

(

𝑒𝑖(𝑡𝑘) +
1
𝜏𝑖 ∫

𝑡𝑘

0
𝑒𝑖(𝜏)𝑑𝜏

)

, 𝑒𝑖(𝑡𝑘) = 𝑦𝑠𝑝(𝑡𝑘) − 𝑦𝑖(𝑡𝑘) (13)

sing the recursive rule to approximate the integral term, the overall
ontroller equation is reformulated using only linear mathematical
perations:

𝑡1𝑖 (𝑡𝑘) = 𝐾𝑐𝑖𝑒𝑖(𝑡𝑘) + 𝐼𝑡𝑘
= 𝐾𝑐𝑖𝑒𝑖(𝑡𝑘) +𝐾 ′

𝑐𝑖
𝑒𝑖(𝑡𝑘) + 𝐼𝑡𝑘−1

(14)

here 𝑡𝑘 and 𝑡𝑘−1 represent the sampling instances 𝑘 and 𝑘 − 1, re-
pectively. 𝑢𝑡1𝑖 represents the 𝑖th control input in the lower tier, 𝑦𝑠𝑝(𝑡𝑘)
nd 𝑦𝑖(𝑡𝑘) represent the set point and state measurement at time 𝑡𝑘,
espectively. 𝐾𝑐𝑖 and 𝐾 ′

𝑐𝑖
represent the gains of the proportional and

ntegral terms, respectively. 𝐼𝑡𝑘 represents the integral control action
t time 𝑡𝑘. At 𝑘 = 0, 𝐼𝑡0 is assumed to be 0.

.2. Upper-tier encrypted model predictive control system

This section formulates the feedback LMPC used in the upper tier
f the closed-loop design for the nonlinear system described by Eq. (1).
lthough the LMPC does not compute the control inputs for the lower

ier, it estimates their values using the lower tier control law, 𝑢𝑡1(𝑡) =
(𝑥̃(𝑡)). This estimation results in a more accurate prediction of the

uture states of the system, by accounting in the lower-tier control
nputs. These predicted state values are used to calculate the LMPC cost
unction. Accordingly, the upper-tier control inputs that minimize the
ost function are computed. Control actions are applied to the nonlinear
ystem using a sample-and-hold approach with a sampling period of
(Heidarinejad et al., 2012; Mhaskar et al., 2006). The proposed MPC

s formulated in the subsequent manner:

 = min
𝑡𝑘+𝑁

𝐿(𝑥̃(𝑡), 𝛷(𝑥̃(𝑡)), 𝑢𝑡2(𝑡)) d𝑡 (15a)

𝑢𝑡2∈𝑆(𝛥)∫𝑡𝑘
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s.t. ̇̃𝑥(𝑡) = 𝐹 (𝑥̃(𝑡), 𝛷(𝑥̃(𝑡)), 𝑢𝑡2(𝑡)) (15b)

𝑢𝑡2(𝑡) ∈ 𝑈2, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (15c)

𝑥̃(𝑡𝑘) = 𝑥̂(𝑡𝑘) (15d)
𝑉̇ (𝑥̂(𝑡𝑘), 𝛷(𝑥̂(𝑡𝑘)), 𝑢𝑡2(𝑡𝑘)) ≤ 𝑉̇ (𝑥̂(𝑡𝑘), 𝛷(𝑥̂(𝑡𝑘)), 0), if 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌min

(15e)

𝑉 (𝑥̃(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌min
(15f)

The predicted state trajectory of the LMPC process model is represented
as 𝑥̃. The quantized states, 𝑥̂, serve as the initial conditions for the
LMPC process model to predict the state trajectories. The number of
sampling periods within the prediction horizon is represented as 𝑁 .
The LMPC algorithm computes the optimal input sequence 𝑢∗𝑡2(𝑡|𝑡𝑘)
for the entire prediction horizon 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) but transmits only
the first input of this sequence to the actuator for application to the
system within the interval 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). The rationale behind predicting
state trajectories for extended durations compared to the control input
application period by the actuator is to optimize the existing control
inputs. This optimization aims to minimize the control cost function
not only within the current sampling period but also over the prediction
horizon, thereby enhancing overall performance.

The encrypted LMPC method employs a sequence of specific actions:
it uses quantized states 𝑥̂ to predict the trajectory of the system states as
per Eq. (15b), which is used to integrate the cost function of Eq. (15a) to
calculate optimized control inputs for the entire prediction horizon. The
actuator applies only the control inputs of the first sampling period, and
this process is iterated at each sampling period. Eq. (15c) represents the
constraints imposed on the control inputs. The constraint in Eq. (15d)
uses the quantized states (after decryption) to initialize the plant model
described in Eq. (15b). If the state 𝑥(𝑡𝑘) at time 𝑡𝑘 lies within the set
𝛺𝜌̂ ⧵ 𝛺𝜌min

, where 𝜌min represents a level set of 𝑉 in proximity to the
origin, the Lyapunov constraint outlined in Eq. (15e) ensures that the
time-derivative of the control Lyapunov function of the closed-loop
system under the two-tier control scheme is less than or equal to the
time-derivative of the control Lyapunov function when the system is
controlled by only the lower tier. When the closed-loop state 𝑥(𝑡𝑘)
enters 𝛺𝜌min

, the constraint detailed in Eq. (15f) ensures that this state
remains within 𝛺𝜌min

.

3.3. Lower-tier stability under encryption

Given the occurrence of quantization errors in the links between
sensors and controllers, as well as controllers and actuators, it becomes
imperative to delineate a region of closed-loop stability, denoted as 𝛺𝜌̂,
which is encompassed within the broader 𝛺𝜌 (specifically, 𝜌̂ < 𝜌). The
subsequent theorem establishes that the encrypted lower-tier controller
𝛷(𝑥̂) ∈ 𝑈1 can achieve exponential stability at the origin for the
nonlinear system introduced in Eq. (9).

Theorem 1. Let us consider the nonlinear system introduced in Eq. (9),
which can be represented as 𝑥̇ = 𝐹 (𝑥, 𝑢̂𝑡1, 0) when exclusively under lower-
tier encrypted control. The initial state is 𝑥0 ∈ 𝛺𝜌̂, and the stabilizing control
law is denoted as 𝑢𝑡1 = 𝛷(𝑥) ∈ 𝑈1. Consequently, the equilibrium point
of the closed-loop system derived from Eq. (9) through encrypted control
becomes practically stable for all 𝑥0 ∈ 𝛺𝜌̂. In this context, the closed-loop
state 𝑥(𝑡) remains within 𝛺𝜌 for all instances, and the ensuing inequalities
remain valid:

𝑉̇ ≤ −𝑐5|𝑥|
2 ∀|𝑥| ≥

𝑐4(𝐿1 + 1)2−𝑑−1

𝑐3𝜃
= 𝜇 (16a)

im sup
𝑡→∞

|𝑥| ≤ 𝑏 (16b)

here 𝑑 is the quantization parameter, 𝑐3, 𝑐4, 𝐿1 > 0, 𝑏 is a positive constant
which can be expressed as a class  function of 𝜇), 0 < 𝜃 < 1 and
= (1 − 𝜃)𝑐 .
6

5 3
roof. Based on the nonlinear system of Eq. (9), the time-derivative
f 𝑉 can be written as:

𝑉̇ = 𝜕𝑉
𝜕𝑥

𝐹 (𝑥, 𝑢̂𝑡1, 0)

= 𝜕𝑉
𝜕𝑥

𝐹 (𝑥, 𝑢𝑡1 + 𝑒1, 0)

= 𝜕𝑉
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥̂) + 𝑒1, 0)

= 𝜕𝑉
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥̂) + 𝑒1, 0) −
𝜕𝑉
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥), 0) + 𝜕𝑉
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥), 0)

(17)

Based on Eq. (12b), it follows that

𝑉̇ ≤ 𝜕𝑉
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥̂) + 𝑒1, 0) −
𝜕𝑉
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥), 0) − 𝑐3|𝑥|
2

= 𝜕𝑉
𝜕𝑥

(

𝑓 (𝑥) + 𝑔1(𝑥)(𝛷(𝑥̂) + 𝑒1)
)

− 𝜕𝑉
𝜕𝑥

(

𝑓 (𝑥) + 𝑔1(𝑥)(𝛷(𝑥))
)

− 𝑐3|𝑥|
2

= 𝜕𝑉
𝜕𝑥

(

𝑓 (𝑥) + 𝑔1(𝑥)(𝛷(𝑥̂) + 𝑒1) − 𝑓 (𝑥) − 𝑔1(𝑥)(𝛷(𝑥))
)

− 𝑐3|𝑥|
2

= 𝜕𝑉
𝜕𝑥

(

𝑔1(𝑥)(𝛷(𝑥̂) −𝛷(𝑥))
)

+ 𝜕𝑉
𝜕𝑥

𝑔1(𝑥)𝑒1 − 𝑐3|𝑥|
2

(18)

Applying the inequalities of Eqs. (12c), (10) and (11), it follows that

𝑉̇ ≤ 𝑐4|𝑥|𝐿12−𝑑−1 + 𝑐4|𝑥|2−𝑑−1 − 𝑐3|𝑥|
2

= −𝑐3|𝑥|
2 + 𝑐4|𝑥|(𝐿1 + 1)2−𝑑−1

= −(1 − 𝜃)𝑐3|𝑥|
2 − 𝜃𝑐3|𝑥|

2 + 𝑐4|𝑥|(𝐿1 + 1)2−𝑑−1
(19)

herefore, if the condition of Eq. (16a) on |𝑥| is satisfied i.e., |𝑥| ≥
𝑐4(𝐿1+1)2−𝑑−1

𝑐3𝜃
= 𝜇, it follows that

𝑉̇ ≤ −(1 − 𝜃)𝑐3|𝑥|
2 ≤ 0

≤ −𝑐5|𝑥|
2 ≤ 0

(20)

where 𝑐5 = (1−𝜃)𝑐3. Thus, based on Eq. (20), we have that 𝑉̇ is negative
for all 𝑥 ∈ 𝛺𝜌̂ that satisfy the condition of Eq. (16a).

Given that 𝛺𝜌̂ is a level set of 𝑉 and its derivative, 𝑉̇ , is negative for
all 𝑥 ∈ 𝛺𝜌̂, it can be inferred that the state of the closed-loop system,
denoted as 𝑥(𝑡), remains within 𝛺𝜌̂ throughout all time. Moreover,
referencing Theorem 4.18 in Khalil (2002), it can be deduced that:

lim sup
𝑡→∞

|𝑥(𝑡)| ≤ 𝑏 (21)

Hence, as the quantization parameter 𝑑 → ∞, following the definition
of 𝜇 from Eq. (16a), 𝜇 → 0 and, therefore, the ultimate bound ap-
proaches zero, proving that larger values of the quantization parameter
𝑑 results in a smaller error between the state and input trajectories of
the encrypted control system and the non-encrypted control system.
This proves that the closed-loop states of the nonlinear system of Eq. (9)
are ultimately bounded under the stabilizing controller 𝑢𝑡1 = 𝛷(𝑥̂) ∈ 𝑈1
for sufficiently large 𝑑. □

3.4. Two-tier stability under encryption

Theorem 2. Taking into consideration the two-tier encrypted control
architecture for the system of Eq. (9), we examine its behavior within the
context of the closed-loop encrypted LMPC design detailed in Eq. (15) for
the upper tier. This design relies on a stabilizing lower-tier controller denoted
as 𝑢𝑡1 = 𝛷(𝑥̂) ∈ 𝑈1, which adheres to the inequalities outlined in Eq. (12).
Furthermore, we assume that the initial state 𝑥0 resides within the region 𝛺𝜌̂.
For the purpose of our analysis, we introduce 𝛥 > 0, 𝜖𝑤 > 0, and parameters
̂ > 𝜌min > 𝜌𝑠 that fulfill the following conditions.

−
𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑢𝛿 ≤ −𝜖𝑤

𝜌min = max{𝑉 (𝑥(𝑡 + 𝛥))|𝑉 (𝑥(𝑡)) ≤ 𝜌𝑠}
(22)

Then, the closed-loop state 𝑥(𝑡) remains bounded in 𝛺𝜌̂ and is ultimately
bounded in 𝛺 .
𝜌min
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Proof. Consider the state 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂ ⧵ 𝛺𝜌𝑠 . The time-derivative of 𝑉
under the control inputs calculated by the LMPC of Eq. (15) for the
nonlinear system of Eq. (9) at 𝑡𝑘 can be written as:

𝑉̇ =
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝐹
(

𝑥(𝑡), 𝛷(𝑥(𝑡𝑘)) + 𝑒𝑡1, 𝑢𝑡2(𝑡𝑘) + 𝑒𝑡2
)

𝑉̇ =
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹
(

𝑥(𝑡𝑘), 𝛷(𝑥(𝑡𝑘)), 𝑢𝑡2(𝑡𝑘)
)

+
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝐹
(

𝑥(𝑡), 𝛷(𝑥(𝑡𝑘)) + 𝑒𝑡1, 𝑢𝑡2(𝑡𝑘) + 𝑒𝑡2
)

−
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹
(

𝑥(𝑡𝑘), 𝛷(𝑥(𝑡𝑘)), 𝑢𝑡2(𝑡𝑘)
)

(23)

for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1]. Here, 𝑒𝑡1 and 𝑒𝑡2 represent the error in the control
inputs of the lower and upper tiers, respectively, due to quantization.
Based on Eqs. (18) and (19), the error 𝑒𝑡1 can be bounded by (𝐿1 +
1)2−𝑑−1. Similarly, the error 𝑒𝑡2 can be bounded by 𝜂2−𝑑−1. Based on
the inequality of Eq. (12b), it follows from Eq. (23) that:

𝑉̇ ≤ −𝑐3|𝑥(𝑡𝑘)|
2 +

𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝐹
(

𝑥(𝑡), 𝛷(𝑥(𝑡𝑘)) + 𝑒𝑡1, 𝑢𝑡2(𝑡𝑘) + 𝑒𝑡2
)

−
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹
(

𝑥(𝑡𝑘), 𝛷(𝑥(𝑡𝑘)), 𝑢𝑡2(𝑡𝑘)
)

(24)

In the encrypted LMPC, the constraint of Eq. (15e) ensures that, if
𝑥(𝑡𝑘) ∈ 𝛺𝜌̂⧵𝛺𝜌min

, then the closed-loop state is driven towards the origin
at 𝑡𝑘+1 (to a lower level set of 𝑉 ). Based on the fact that the errors |𝑒𝑡1|
and |𝑒𝑡2| are bounded, using the Lipschitz condition and the inequality
of Eq. (12a), it follows from Eq. (24) that:

𝑉̇ ≤ −
𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥|𝑥(𝑡) − 𝑥(𝑡𝑘)| + 𝐿′

𝑢1(𝐿1 + 1)2−𝑑−1 + 𝐿′
𝑢2𝜂2

−𝑑−1 (25)

where 𝐿′
𝑥, 𝐿

′
𝑢1, 𝐿

′
𝑢2 > 0. Due to the continuity of 𝑥(𝑡) ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), we

can write that |𝑥(𝑡) − 𝑥(𝑡𝑘)| ≤ 𝑀𝐹𝛥 ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). Using this bound, it
follows from Eq. (25) that:

𝑉̇ ≤ −
𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑢𝛿 (26)

where 𝐿′
𝑢 =

(

𝐿′
𝑢1(𝐿1+1)+𝐿′

𝑢2𝜂
)

is a positive constant. 𝛿 = 2−𝑑−1 is also a
positive constant, dependent on the quantization parameter 𝑑 selected.
As evident, the magnitude of the error due to quantization, represented
by the last term of Eq. (26), will be smaller as 𝑑 → ∞. Hence, selecting
a higher quantization parameter is advisable whenever possible. Thus,
if −

𝑐3
𝑐2

𝜌𝑠 +𝐿′
𝑥𝑀𝐹𝛥+𝐿′

𝑢𝛿 ≤ −𝜖𝑤, then 𝑉̇ ≤ −𝜖𝑤 for any 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂ ⧵𝛺𝜌𝑠 .
This establishes that, if the conditions of Eq. (22) are met, the state
of the closed-loop system is always bounded in 𝛺𝜌̂, and it ultimately
converges to 𝛺𝜌𝑠 ⊆ 𝛺𝜌min

and remains there. □

4. Cyberattack types and machine learning-based detection

The upper-tier control system, where encrypted sensor signals are
decrypted upon receipt and further transmitted to the MPC in decrypted
form, could be susceptible to cyberattacks. Similarly, the control inputs
computed by the MPC prior to encryption might also face vulnerability
to cyber threats. These signals, transmitted in plaintext, could poten-
tially be manipulated by an attacker if the control room responsible for
decryption and encryption lacks full cyber–physical security.

In contrast, the lower tier receives encrypted signals and calculates
control inputs within an encrypted space, transmitting them without
decryption within the lower networked-tier. This approach ensures
complete security, even if the control room receiving and transmit-
ting the encrypted signals is not entirely secure, as the data remains
encrypted throughout the networked communication within the lower
tier. Also, as depicted in Fig. 2, where the encrypted network tiers 1
and 2 correspond to the lower and upper tiers, respectively, the lower
tier does not necessitate sharing access to its public and private keys
with the control room, in contrast to the upper tier. This distinction
contributes to the enhanced cybersecurity of the lower tier, even in sit-
uations where the security of the control room might be compromised.
Upon detecting a cyberattack, the upper-tier control system is disabled,
while only the lower-tier control system remains operational. The latter
is capable of stabilizing the system at its steady state.
7

4.1. Types of cyberattacks

Given the adaptability of intelligent cyberattacks to process and
control system behaviors, it is assumed that these attacks possess the
potency to access information regarding the stability region of the two-
tier controlled process. The scope of cyberattacks in the encrypted
two-tier control architecture typically encompasses manipulation of
signal data, where data received by the MPC and the control inputs
computed by it could potentially be subjected to tampering. This study
addresses attacks directed at both the sensor signals received by the
MPC and the control inputs computed by it.

In regular operational scenarios, decrypted sensor signals accurately
reflect the true state data. However, if this data is tampered with, it
can lead to control actions driving the process away from its steady
state. Likewise, manipulation of control inputs can deviate process
states by withholding the necessary control action. Intelligent cyber-
attacks are designed in a manner such that, when launched on sensor
signals, the controller is capable of calculating an appropriate control
action, within the actuation bounds, using the attacked state. Similarly,
when launched on control inputs, the manipulated data avoids falling
beyond actuation limits, thereby evading detection by conventional
mechanisms. To address these challenges, advanced machine learning
algorithms utilizing neural networks are used for cyberattack detection.
Some commonly launched attacks are considered below.

4.1.1. Min–max cyberattack
Min–Max cyberattacks are specifically crafted to maximize destabi-

lizing impact within the shortest timeframe while evading detection.
To maintain their concealment from conventional detection methods,
min–max attacks target the lower value of the following two conditions:

1. A window around equilibrium: This condition centers around
a window encompassing the equilibrium point of the affected
state(s), representing a range of realistic physical operational
conditions.

2. Extreme state values: The second condition revolves around state
values situated farthest from the equilibrium point, whether they
are minimum or maximum values. The intention is to ensure that
the system remains within the closed-loop stability region 𝛺𝜌.

By introducing attacks based on the aforementioned conditions, it is
guaranteed that the state measurements received by the controller
after manipulation remain inside the stability region delineated by
the configured operational window. Furthermore, these attacks circum-
vent setting off any conventional detection alarms rooted in boundary
values.

The formulation of the min–max attack is expressed in the following
manner:

𝑥̄(𝑡𝑖) = min
{

arg max
𝑥∈R𝑛

{𝑉 (𝑥(𝑡𝑖)) ≤ 𝜌}, arg max
𝑥∈R𝑛

{𝑥(𝑡𝑖) ∈ 𝜒}
}

,

∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (27a)

̄𝑡2(𝑡𝑖) = min
{

arg max
𝑢𝑡2∈R𝑚2

{𝑉 (𝑥(𝑡𝑖)) ≤ 𝜌}, arg max
𝑢𝑡2∈R𝑚2

{𝑢𝑡2(𝑡𝑖) ∈ 𝑈2}
}

,

∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (27b)

here 𝜌 defines the region of the Lyapunov function 𝑉 (𝑥) that char-
cterizes the stability boundaries of the closed-loop system under the
wo-tier control architecture. The notation 𝜒 = {𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢}
epresents the desired operating range for the system states, where 𝑥
epresents the compromised sensor signals to be received by the MPC
fter decryption at each time step. The value 𝑖𝑜 marks the time when the
ttack is introduced, and 𝐿𝑎 denotes the duration of the attack in terms
f sampling periods. Similarly, the symbol 𝑢𝑡2(𝑡𝑖) signifies the control
nput that has been tampered with before encryption. The symbols 𝑥̄(𝑡𝑖)
nd 𝑢̄𝑡2(𝑡𝑖) correspond to the altered or manipulated values of the sensor
ignal and control input of the upper tier, respectively.
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4.1.2. Replay cyberattack
In a replay attack, the attacker initially captures portions of the

system output aligned with a regular operational state marked by
substantial oscillations. Subsequently, the attacker intervenes to in-
tercept and restore the present process state measurements to the
previously recorded values. Replay attacks can be represented using the
subsequent equations:

𝑥̄(𝑡𝑖) = 𝑥(𝑡𝑘), ∀𝑘 ∈ [𝑘𝑜, 𝑘𝑜 + 𝐿𝑎], ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (28a)

̄𝑡2(𝑡𝑖) = 𝑢𝑡2(𝑡𝑘), ∀𝑘 ∈ [𝑘𝑜, 𝑘𝑜 + 𝐿𝑎], ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (28b)

here 𝑥(𝑡𝑘) and 𝑢𝑡2(𝑡𝑘) are the true plant measurement and control
nput, respectively. 𝐿𝑎 denotes the extent of the attack as measured
n terms of sampling intervals. 𝑥̄(𝑡𝑖) and 𝑢̄𝑡2(𝑡𝑖) denote the sequence
f replay attacks initiated at time 𝑡𝑖𝑜 by duplicating prior plant mea-
urements and control inputs recorded commencing from time 𝑡𝑘𝑜 .
s the previous plant outputs are derived from authentic closed-loop
easurements and obtained via secure sensors, these state values are
ypothesized to fall within the stability region and operating bounds.
onsequently, by reproducing these values and reintroducing them

nto the controller, conventional detectors are unlikely to detect the
nomaly.

.1.3. False-data-injection cyberattack
False-data-injection (FDI) cyberattacks involve the insertion of fab-

icated information into authentic data. This intrusion does not neces-
itate familiarity with previous event data or system specifics. Intro-
ucing deceptive data such that 𝑉 (𝑥) ≤ 𝜌 might not lead to system

destabilization, but could merely modify its operational state based on
the process dynamics, rendering them challenging to identify through
conventional alarm threshold approaches. FDI attacks are represented
as follows:

𝑥̄(𝑡𝑖) = 𝑥(𝑡𝑖) + 𝜈, ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (29a)

̄𝑡2(𝑡𝑖) = 𝑢𝑡2(𝑡𝑖) + 𝜈, ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (29b)

here 𝑥(𝑡𝑖) and 𝑢𝑡2(𝑡𝑖) are the true plant measurement and control input,
respectively. 𝜈 represents the false data injected. 𝐿𝑎 represents the
length of the attack in terms of sampling periods. 𝑥̄(𝑡𝑖) and 𝑢̄𝑡2(𝑡𝑖) are
he FDI attacks introduced from time 𝑡𝑖𝑜 up to time 𝑡𝑖𝑜+𝐿𝑎

.

.1.4. Sinusoidal cyberattack
Sinusoidal attack constitutes a form of cyberattack involving the

ntroduction of a sinusoidal signal into authentic data. Due to the
nherent periodic oscillations in a sinusoidal function, these attacks can
e challenging to identify, as they lack the potential to destabilize the
ystem while inducing substantial fluctuations. Moreover, their periodic
attern can evade standard detection mechanisms. Their representation
an be expressed as follows:

𝑥̄(𝑡𝑖) = 𝑥(𝑡𝑖) + 𝑎 sin(2𝜋𝑘𝑡𝑖), ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (30a)

̄𝑡2(𝑡𝑖) = 𝑢𝑡2(𝑡𝑖) + 𝑎 sin(2𝜋𝑘𝑡𝑖), ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (30b)

here 𝑥(𝑡𝑖) and 𝑢𝑡2(𝑡𝑖) are the true plant measurement and control input,
espectively. 𝑘 and 𝑎 are constants. 𝐿𝑎 represents the length of the
ttack in terms of sampling periods. 𝑥̄(𝑡𝑖) and 𝑢̄𝑡2(𝑡𝑖) are the sinusoidal
ttacks introduced from time 𝑡𝑖𝑜 up to time 𝑡𝑖𝑜+𝐿𝑎

.

.1.5. Surge cyberattack
Surge cyberattack is a stealthy cyberattack that cannot be detected

y conventional methods such as cumulative sum (CUMSUM). Surge
ttacks share similarities with min–max attacks in their initial behavior
f maximizing disruptive impact over a brief interval before diminish-
ng to a lower level. In our scenario, the initial duration of the surge,
easured in sampling periods, is denoted as 𝐿𝑠 and is chosen to be

etween 2 and 5 inclusive. This choice helps distinguish surge attacks
8

rom min–max attacks, as the surge exhibits distinct characteristics i
uring its latter phase. After the sampling duration, 𝐿𝑠, a bounded
oise is introduced to the genuine data, resembling the approach used
n a false-data-injection attack. Their representation can be expressed
s follows:

𝑥̄(𝑡𝑖) = min
{

arg max
𝑥∈R𝑛

{𝑉 (𝑥(𝑡𝑖)) ≤ 𝜌}, arg max
𝑥∈R𝑛

{𝑥(𝑡𝑖) ∈ 𝜒}
}

,

∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑠] (31a)

𝑥̄(𝑡𝑖) = 𝑥(𝑡𝑖) + 𝜂(𝑡𝑖), ∀𝑖 ∈ (𝐿𝑠, 𝑖𝑜 + 𝐿𝑎] (31b)

̄𝑡2(𝑡𝑖) = min
{

arg max
𝑢𝑡2∈R𝑚2

{𝑉 (𝑥(𝑡𝑖)) ≤ 𝜌}, arg max
𝑢𝑡2∈R𝑚2

{𝑢𝑡2(𝑡𝑖) ∈ 𝑈2}
}

,

∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑠] (31c)

̄𝑡2(𝑡𝑖) = 𝑢𝑡2(𝑡𝑖) + 𝜂(𝑡𝑖), ∀𝑖 ∈ (𝐿𝑠, 𝑖𝑜 + 𝐿𝑎] (31d)

here 𝑥(𝑡𝑖) and 𝑢𝑡2(𝑡𝑖) are the true plant measurement and control
nput of the upper tier, respectively. The initial surge corresponds to
qs. (31a) and (31c), while the subsequent noise addition is represented
y Eqs. (31b) and (31d). 𝜂𝑙 ≤ 𝜂(𝑡𝑖) ≤ 𝜂𝑢 is the bounded noise added
o the data following the initial surge. 𝐿𝑎 represents the length of the
ttack in terms of sampling periods. 𝑥̄(𝑡𝑖) and 𝑢̄𝑡2(𝑡𝑖) are the surge attacks
ntroduced from time 𝑡𝑖𝑜 up to time 𝑡𝑖𝑜+𝐿𝑎

.

.1.6. Geometric cyberattack
Geometric cyberattacks adhere to a strategy that gradually erodes

he stability of the closed-loop system. It initiates with a gradual decay,
hich then accelerates exponentially as time progresses. This attack

ype attains its highest impact as the attack duration concludes. The
nitial move of the attacker involves introducing a constant value,
abeled as 𝛽, to the genuine data (ensuring 𝛽 remains considerably
ower than the threshold value set within a min–max attack). In each
ubsequent time step, this initial deviation is magnified by a factor
f (1 + 𝛼), where 𝛼 falls within the range (0, 1), until it reaches the
aximum allowable attack magnitude. The two parameters, 𝛼 and
, are prudently selected while accounting for the stability region,
perational boundaries, and attack duration. Geometric attacks can be
ormulated as follows:

𝑥̄(𝑡𝑖) = 𝑥(𝑡𝑖) + 𝛽 × (1 + 𝛼)𝑖−𝑖𝑜 , ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (32a)

̄𝑡2(𝑡𝑖) = 𝑢𝑡2(𝑡𝑖) + 𝛽 × (1 + 𝛼)𝑖−𝑖𝑜 , ∀𝑖 ∈ [𝑖𝑜, 𝑖𝑜 + 𝐿𝑎] (32b)

here the parameters 𝛼 and 𝛽 define the speed and magnitude of the
eometric attack. 𝑥(𝑡𝑖) and 𝑢𝑡2(𝑡𝑖) are the true plant measurement and
ontrol input of the upper tier, respectively. 𝐿𝑎 represents the length
f the attack in terms of sampling periods. 𝑥̄(𝑡𝑖) and 𝑢̄𝑡2(𝑡𝑖) are the
eometric attacks introduced from time 𝑡𝑖𝑜 up to time 𝑡𝑖𝑜+𝐿𝑎

.

.2. Machine-learning-based cyberattack detection

Utilizing a data-driven approach to construct the cyberattack de-
ector offers numerous advantages. Firstly, given the potential access
f attackers to process-behavior information, traditional first-principles
odel-based detection methods relying on predetermined statistical

hresholds and false alarm biases become inadequate. Secondly, in real-
orld scenarios, the structure and parameters of the plant model are

usceptible to alterations due to evolving operational conditions. In this
ontext, adopting a data-centric approach for training the cyberattack
etection mechanism proves resilient against both dynamic process
hanges and intricately crafted attacks.

In the realm of well-established machine learning approaches, neu-
al networks (NN) have showcased their effectiveness in both super-
ised and unsupervised classification scenarios. In this particular study,
e focus on a supervised classification task employing a two-class clas-

ification framework to determine whether a cyberattack has impacted
he upper-tier control system.

When attacks involve data manipulation, they can manifest in var-

ous forms or patterns. Building a model to classify attack types can
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lead to increased computational demands and model intricacy. Since
our primary aim is to ascertain whether the upper-tier control has been
subjected to an attack or not, we opt for a binary classification model.
This approach simplifies the task and facilitates the identification of
attack occurrences. Furthermore, to evaluate the effectiveness of the
detector against attack patterns it has not encountered during training
and validation, we introduce additional attack scenarios in the testing
set that differ from those it has been exposed to previously.

The adopted neural network involves a sequence of nonlinear trans-
formations, where neurons in the first hidden layer are computed from
input data. Subsequent hidden neurons are derived from their pre-
ceding layer, culminating in the output being computed from neurons
in the final hidden layer. These transformations occur in the form of
activation functions involving biases and the weighted sum of inputs
(or neurons from the previous layer). The fundamental structure of the
utilized neural network model is depicted in Fig. 3, where each input
corresponds to the feature-wise normalized control Lyapunov function
computed from state measurements across a sequence of sampling
instances. The control Lyapunov function captures the dynamics of
all states of the system, making it an effective one-dimensional input
feature for attack detection. While training the model, to make it
generic, and to prevent overfitting, we adopted the standard practice of
normalizing the training, testing, and validation datasets. Hence, while
supplying the control Lyapunov function data during operation, this
is normalized with respect to the mean and standard deviation of the
training dataset, which is calculated prior to implementation of the
detector in the process. This approach aids in aligning the data dis-
tributions and mitigates the influence of varying scales across features,
thereby facilitating model training and enhancing model performance.
The resulting output vector denotes the predicted class label, distin-
guishing between ‘‘cyberattack’’ and ‘‘no attack’’. The mathematical
representation of the feed-forward neural network with two hidden
layers can be formulated as:

𝜃(1)𝑗 = 𝑔1

(𝑁𝑇
∑

𝑖=1
𝑤(1)

𝑖𝑗 𝑉 (𝑥(𝑡𝑖)) + 𝑏(1)𝑗

)

(33a)

𝜃(2)𝑗 = 𝑔2

( ℎ1
∑

𝑖=1
𝑤(2)

𝑖𝑗 𝜃
(1)
𝑖 + 𝑏(2)𝑗

)

(33b)

𝜃(3)𝑗 = 𝑔3

( ℎ2
∑

𝑖=1
𝑤(3)

𝑖𝑗 𝜃
(2)
𝑖 + 𝑏(3)𝑗

)

(33c)

ypred =
[

𝜃(3)1 , 𝜃(3)2 ,… ., 𝜃(3)𝐻

]⊤
(33d)

where 𝜃(1)𝑗 , 𝜃(2)𝑗 , and 𝜃(3)𝑗 denote the output of the 𝑗th neuron of the
first hidden layer, the second hidden layer, and the output layer,
respectively. ℎ1 and ℎ2 stand for the neuron counts in the first and
second hidden layers, while 𝐻 signifies the number of class labels,
equal to the number of neurons in the output layer. Within the in-
put layer, the normalized control Lyapunov function of the complete
state measurements at time 𝑡𝑖, denoted as 𝑉 (𝑥(𝑡𝑖)), serves as the input
variable. The index 𝑖 = 1,… , 𝑁𝑇 , with 𝑁𝑇 being the duration of the
time-varying trajectory for each input sample. The connections between
neurons 𝑖 and 𝑗 in successive layers are weighted by 𝑤(𝑘)

𝑖𝑗 , where 𝑘 =
1, 2, 3. Additionally, the bias applied to the 𝑗th neuron in the 𝑘th layer
is represented as 𝑏(𝑘)𝑗 . Each layer receives input from its preceding layer
and processes the input with optimized weights, biases, and nonlinear
activation functions, represented by 𝑔𝑘. Within the output layer, the
vector ypred provides the probabilities for each class label concerning
the analyzed sample. Notably, the neuron with the highest probability
signifies the predicted class label.

The process of calculating training and testing accuracies entails
computing the proportion of accurately classified samples relative to
the total number of samples present within their respective training
and testing datasets. In the development of a neural network model
9

for cyberattack detection, closed-loop values of the control Lyapunov 𝐶
function are gathered over a fixed duration (𝑁𝑇 samples), encom-
passing various randomly initialized initial conditions. This is done
both within and beyond the stability region 𝛺𝜌, ensuring coverage
of a wide spectrum of allowable conditions. Given that 𝑉 (𝑥) captures
the dynamic characteristics of all states, it serves as an effective one-
dimensional input feature for the attack detection problem. To improve
training accuracy, an equivalent number of samples from each class
are assembled. Each sample corresponds to a distinct set of initial
conditions for the closed-loop system simulation. Further details of the
model such as number of input neurons, activation functions, training,
validation and testing accuracies are reported in Section 5.3.

Remark 3. To distinguish between dynamics in the control Lyapunov
function caused by process fluctuations and cyberattacks, Gaussian-
distributed noise is introduced into sensor signal measurements of
the training and testing datasets. This accounts for both sensor noise
and process disturbances, aiding the model to discern cyberattacks
from fluctuations. In addition, a sliding window alarm is implemented,
whereby the upper tier is deactivated only if the model identifies
a cyberattack in three out of four consecutive sampling instances.
This mechanism prevents accidental deactivation of the upper tier due
to inherent process disturbances and ensures that, if inadvertently a
cyberattack is detected at a single sampling instance due to process dis-
turbances, the upper tier remains active. Such strategies are pivotal for
the accurate differentiation of cyberattacks from process fluctuations.

5. Application to a chemical process

This section showcases the practical application of the suggested en-
crypted two-tier control framework in the context of a large-scale chem-
ical process. We develop a nonlinear dynamical model based on first-
principles modeling fundamentals. Subsequently, we employ it as the
basis for constructing a first-principles-based encrypted LMPC. Along-
side this, a set of encrypted PI controllers, capable of computing control
input in an encrypted space, is formulated, and the control architecture
is augmented with an ML-based cyberattack detector. Subsequently,
we perform closed-loop simulations using the first-principles-based
process model. Throughout these simulations, various cyberattacks are
initiated, leading to the examination of multiple detection and control
scenarios.

5.1. Process description and model development

The process considered is the synthesis of ethylbenzene (EB)
through the conversion of ethylene (E) and benzene (B). The pri-
mary reaction, termed as ‘‘primary’’, is characterized as a second-
order, exothermic, and irreversible reaction, in conjunction with two
supplementary side reactions. These reactions occur within two non-
isothermal, well-mixed continuous stirred tank reactors (CSTRs). The
chemical reactions taking place are articulated as follows:

C2H4 + C6H6 → C8H10 (primary) (34a)

C2H4 + C8H10 → C10H14 (34b)

C6H6 + C10H14 → 2C8H10 (34c)

The state variables are the concentration of ethylene, benzene, ethyl-
benzene, di-ethylbenzene, and the reactor temperature for each CSTR𝑖,
𝑖 = (1, 2), in deviation terms, that is: 𝑥⊤ = [𝐶𝐸1

− 𝐶𝐸1𝑠
, 𝐶𝐵1

−
𝐶𝐵1𝑠

, 𝐶𝐸𝐵1
− 𝐶𝐸𝐵1𝑠

, 𝐶𝐷𝐸𝐵1
− 𝐶𝐷𝐸𝐵1𝑠

, 𝑇1 − 𝑇1𝑠, 𝐶𝐸2
− 𝐶𝐸2𝑠

, 𝐶𝐵2
−

𝐶𝐵2𝑠
, 𝐶𝐸𝐵2

−𝐶𝐸𝐵2𝑠
, 𝐶𝐷𝐸𝐵2

−𝐶𝐷𝐸𝐵2𝑠
, 𝑇2−𝑇2𝑠]. The subscript ‘‘𝑠’’ denotes

he steady-state value. The rate of heat removal for the two reactors
𝑄1−𝑄1𝑠, 𝑄2−𝑄2𝑠] are the control inputs manipulated by the lower tier

using encrypted PI controllers, which are bounded by the closed sets,
[−104 kW, 2 × 103 kW] and [−1.5 × 104 kW, 5 × 103 kW] respectively.

he inlet feed concentrations for each reactor, [𝐶𝐸𝑜1
− 𝐶𝐸𝑜1𝑠

, 𝐶𝐵𝑜1
−

𝐵𝑜1𝑠
, 𝐶𝐸𝑜2

− 𝐶𝐸𝑜2𝑠
, 𝐶𝐵𝑜2

− 𝐶𝐵𝑜2𝑠
], are the control inputs manipulated
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Fig. 3. Feed-forward neural network structure of the proposed ML-based cyberattack detector.
Fig. 4. Process schematic featuring two CSTRs connected in series.
T
O

y the upper tier using an encrypted MPC, which are bounded by the
losed sets [−2.5 kmol∕m3, 2.5 kmol∕m3], [−2.5 kmol∕m3, 2.5 kmol∕m3],
−3 kmol∕m3, 3 kmol∕m3], and [−3 kmol∕m3, 3 kmol∕m3], respectively.
he control objective is to maintain the operation of both CSTRs
t their unstable equilibrium state through the utilization of the en-
rypted two-tier control scheme, employing quantized states and inputs
or computation and actuation. Through the application of mass and
nergy balance principles, the foundational model for the CSTRs is
onstructed. An illustrative visualization of this model is presented in
ig. 4. In particular, the dynamic representation of the initial CSTR
s captured by the subsequent set of ordinary differential equations
ODEs):
d𝐶𝐸1 =

𝐹1𝐶𝐸𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐸1 − 𝑟1,1 − 𝑟1,2 (35a)
10

d𝑡 𝑉1
d𝐶𝐵1

d𝑡
=

𝐹1𝐶𝐵𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐵1

𝑉1
− 𝑟1,1 − 𝑟1,3 (35b)

d𝐶𝐸𝐵1

d𝑡
=

−𝐹𝑜𝑢𝑡1𝐶𝐸𝐵1

𝑉1
+ 𝑟1,1 − 𝑟1,2 + 2𝑟1,3 (35c)

d𝐶𝐷𝐸𝐵1

d𝑡
=

−𝐹𝑜𝑢𝑡1𝐶𝐷𝐸𝐵1

𝑉1
+ 𝑟1,2 − 𝑟1,3 (35d)

d𝑇1
d𝑡

=
𝑇1𝑜𝐹1 − 𝑇1𝐹𝑜𝑢𝑡1

𝑉1
+

3
∑

𝑗=1

−𝛥𝐻𝑗

𝜌1𝐶𝑝
𝑟1,𝑗 +

𝑄1
𝜌1𝐶𝑝𝑉1

(35e)

he dynamic model of the second CSTR is represented by the following
DEs:

d𝐶𝐸2 =
𝐹2𝐶𝐸𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐸1

− 𝐹𝑜𝑢𝑡2𝐶𝐸2 − 𝑟2,1 − 𝑟2,2 (36a)

d𝑡 𝑉2
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Table 1
Parameter values and steady-state values of the first-principles-based dynamic model.
𝑇1𝑜 = 𝑇2𝑜 = 350K 𝑇1𝑠 = 321.15K
𝑉1 = 𝑉2 = 60m3 𝑇2𝑠 = 442.99K
𝐹1 = 43.2m3∕h 𝐹2 = 47.87m3∕h
𝐹𝑜𝑢𝑡1 = 𝐹1 𝐹𝑜𝑢𝑡2 = 𝐹1 + 𝐹2
𝐶𝐸𝑜1 = 4.43 kmol∕m3 𝐶𝐸1𝑠

= 4.33 kmol∕m3

𝐶𝐵𝑜1 = 5.54 kmol∕m3 𝐶𝐵1𝑠
= 5.55 kmol∕m3

𝐶𝐸𝑜2 = 4.02 kmol∕m3 𝐶𝐸2𝑠
= 0.196 kmol∕m3

𝐶𝐵𝑜2 = 5.02 kmol∕m3 𝐶𝐵2𝑠
= 1.31 kmol∕m3

𝐶𝐸𝐵1𝑠
= 0.53 kmol∕m3 𝐶𝐸𝐵2𝑠

= 4.22 kmol∕m3

𝐶𝐷𝐸𝐵1𝑠
= 8.76 × 10−4 kmol∕m3 𝐶𝐷𝐸𝐵2𝑠

= 0.0078 kmol∕m3

𝑘1 = 1.528 × 106 m3 kmol−1 s−1 𝐸1 = 71 160 kJ∕kmol
𝑘2 = 2.778 × 104 m3 kmol−1 s−1 𝐸2 = 83 680 kJ∕kmol
𝑘3 = 0.4167m3 kmol−1 s−1 𝐸3 = 62 760 kJ∕kmol
𝜌1 = 639.153 kg∕m3 𝜌2 = 607.504 kg∕m3

𝛥𝐻1 = −1.04 × 105 kJ∕kmol 𝛥𝐻2 = −1.02 × 105 kJ∕kmol
𝛥𝐻3 = −5.5 × 102 kJ∕kmol 𝐶𝑝 = 2.411 kJ kg−1 K−1

𝑄1𝑠 = −1074.63 kW 𝑄2𝑠 = −6768.83 kW
𝑅 = 8.314 kJ kmol−1 K−1

d𝐶𝐵2

d𝑡
=

𝐹2𝐶𝐵𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐵2

𝑉2
− 𝑟2,1 − 𝑟2,3 (36b)

d𝐶𝐸𝐵2

d𝑡
=

𝐹𝑜𝑢𝑡1𝐶𝐸𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐸𝐵2

𝑉2
+ 𝑟2,1 − 𝑟2,2 + 2𝑟2,3 (36c)

d𝐶𝐷𝐸𝐵2

d𝑡
=

𝐹𝑜𝑢𝑡1𝐶𝐷𝐸𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐷𝐸𝐵2

𝑉2
+ 𝑟2,2 − 𝑟2,3 (36d)

d𝑇2
d𝑡

=
𝑇2𝑜𝐹2 + 𝑇1𝐹𝑜𝑢𝑡1 − 𝑇2𝐹𝑜𝑢𝑡2

𝑉2
+

3
∑

𝑗=1

−𝛥𝐻𝑗

𝜌2𝐶𝑝
𝑟2,𝑗 +

𝑄2
𝜌2𝐶𝑝𝑉2

(36e)

where the reaction rates are calculated by the following expressions:

𝑟𝑖,1 = 𝑘1e
−𝐸1
𝑅𝑇𝑖 𝐶𝐸𝑖

𝐶𝐵𝑖
(37a)

𝑖,2 = 𝑘2e
−𝐸2
𝑅𝑇𝑖 𝐶𝐸𝑖

𝐶𝐸𝐵𝑖
𝑖 = 1, 2 (reactor index) (37b)

𝑖,3 = 𝑘3e
−𝐸3
𝑅𝑇𝑖 𝐶𝐷𝐸𝐵𝑖

𝐶𝐵𝑖
(37c)

The process model parameter values and the corresponding steady-
tate values are given in Table 1.

.2. Implementing encryption in the two-tier control architecture

Prior to integrating encryption–decryption into a process, the selec-
ion of parameters, namely 𝑑, 𝑙1, and 𝑙2 is performed. An evaluation
f the extreme feasible states and inputs guides the derivation of the
nteger bit count, denoted as 𝑙1 − 𝑑. The upper limit in the Q𝑙1 ,𝑑 set

is obtained via the formula 2𝑙1−𝑑−1 − 2−𝑑 , whereas the lower limit
is −2𝑙1−𝑑−1. The choice of the quantization parameter 𝑑 rests on the
desired accuracy and range of state and input values. Additionally,
𝑙2 is chosen to exceed 𝑙1. In alignment with this methodology, for
the CSTR studied in this section, 𝑙1 − 𝑑 is calculated to be 16, from
which 𝑙1 and 𝑑 are then fixed. Within the set Q𝑙1 ,𝑑 , rational numbers
are separated by a resolution of 2−𝑑 , indicating that higher 𝑑 values
result in lower quantization errors. For simulation purposes, we opt
for 𝑑 = 8 as it yields nearly identical closed-loop state trajectories in
comparison to the unencrypted case (Suryavanshi et al., 2023; Kadakia
et al., 2023). These cited works also illustrate how the choice of the
quantization parameter impacts closed-loop performance and stability
across different values of 𝑑. For 𝑑 = 8, we obtain 𝑙1 = 24 and, since
it is imperative that 𝑙2 > 𝑙1 for the subsequent bijective mapping, 𝑙2
is selected as 30. With the quantization parameters defined, the next
step entails the quantization of states and inputs, followed by their
encryption via the Paillier Encryption algorithm. The implementation
of the Paillier Encryption procedure is done through Python’s ‘‘phe’’
module, PythonPaillier (Data61, 2013).
11
Remark 4. As mentioned earlier, the implementation of encryption
requires quantization of real-number valued signals to a fixed dataset
denoted as Q𝑙1 ,𝑑 . The selection of quantization parameter 𝑑 = 8 is
justified by its enhanced control performance in comparison to lower
values of 𝑑. The time needed for encryption computation can be di-
vided into five distinct components, the time spent for: quantization
of real data (𝑔𝑙1 ,𝑑), bijective mapping (𝑓𝑙2 ,𝑑), encryption, decryption,
and inverse mapping (𝑓−1

𝑙2 ,𝑑
). Kadakia et al. (2023) underscored that

the encryption phase, followed by decryption, accounts for the ma-
jority of the time spent. Moreover, the time remains unaffected by
the chosen quantization parameter. The three remaining mathematical
operations contribute only a minimal portion of the total time spent
on encryption–decryption. While the time taken for these operations
does increase with quantization, the increment is insignificant com-
pared to the total time spent, and the advantage of improved control
performance using a higher quantization parameter greatly outweighs
the slight increase in time. Hence, a quantization parameter of 𝑑 = 8 is
adopted across all cases where encryption is implemented in this study.

5.2.1. Implementation of the encrypted lower-tier control system
In the lower tier, control input computations are confined to lin-

ear mathematical operations, ensuring their execution within an en-
crypted space that guarantees cyber-security. The selection of lower-tier
controlled inputs, which possess the capability to stabilize the entire
system, is a pivotal task that requires adherence to a well-defined proce-
dure. The procedure includes linearization of the nonlinear dynamical
model about its operating steady-state, yielding a 10-dimensional state
space model mirroring the number of states, governed by two control
inputs—the heat removal rate for each CSTR. A, B, C, and D matrices
were created for the state–space model 𝑥̇ = A𝑥 + B𝑢 and 𝑦 = C𝑥 + D𝑢,
where 𝑦 are the observed measurements from the system. Subsequently,
leveraging the Cohen–Coon tuning method, the control input gains are
calibrated and further refined through multiple simulations conducted
on the nonlinear dynamical model. Subsequently, the integral terms
are omitted, substituting only proportional terms, 𝑢 = K𝑥 in the state–
space model, resulting in 𝑥̇ = A𝑥 + BK𝑥. The eigenvalues of (A + BK)
are then computed and verified to exhibit negative real components.
This ensures asymptotic stability for the controllers when applied to
the linearized model over the operating steady state. The inclusion of
the integral term serves to eradicate offsets, thereby contributing to
the refinement of closed-loop performance. Although excluded in the
eigenvalue computations, the integral terms were meticulously adjusted
through a series of simulations using the nonlinear dynamical model.
Next, via extensive simulations of the nonlinear system under the
lower-tier controller, the controller is verified to adhere to the criteria
outlined in Eq. (12), confirming that it can exponentially stabilize the
system within the two-tier encrypted control framework.

5.2.2. Implementation of the encrypted LMPC in the upper-tier control
system

The first-principles model, expressed by Eq. (35), serves as the foun-
dational process model within the LMPC framework. For solving the
constrained nonlinear, non-convex optimization problem, we leverage
the Python module of the IPOPT software (Wächter and Biegler, 2006).
Consequently, the resultant solution is a local optimum, not a global
one. This is a limitation due to the nature of the optimization that a
global optimum cannot be found for such a problem (Bomze et al.,
2010). The process of solving this optimization problem involves defin-
ing constraints for the LMPC. IPOPT constructs a feasibility region and
employs an iterative methodology to progressively navigate towards
the optimal solution by traversing the interior of the feasibility region.
This approach incorporates two key parameters: the maximum number
of iterations and a validation error. These parameters function as the
stopping criteria within the optimization problem. If either of these
conditions is met, IPOPT employs the final computed value as the

solution for the given instance. Conversely, if neither of these criteria
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Fig. 5. True state value of 𝐶𝐸1
− 𝐶𝐸1𝑠

(green solid line) and state value of 𝐶𝐸1
− 𝐶𝐸1𝑠

received by the MPC (red dashed line) for all the cyberattacks discussed.
is satisfied, IPOPT reports the suboptimal values calculated in the last
iteration, but the LMPC utilizes the control input calculated by the
backup controller.

To assess the cost function of the LMPC over the prediction hori-
zon, the integration step ℎ𝑐 is determined as 10−2 × 𝛥 using the
first-principles model. The positive definite matrix 𝑃 in the control Lya-
punov function 𝑉 = 𝑥⊤𝑃𝑥 is selected as diag [250 500 500 1000 0.3 250
250 500 1000 0.6], drawing from extensive simulations. The LMPC
framework employs a prediction horizon of 𝑁 = 2. The stability
criterion is defined as 𝜌 = 100. Additionally, the criterion 𝜌min = 1 is the
smaller level set of the Lyapunov function where the state is desired to
be trapped. The weight matrices 𝑄1 and 𝑄2 in the LMPC cost function
are chosen as 𝑄1 = diag [2000 2000 5000 5 5 2000 2000 5000 2 2]
and 𝑄2 = diag [1 1 6 8], respectively. The cost function is defined as
𝐿(𝑥, 𝑢𝑡2) = 𝑥⊤𝑄1𝑥 + 𝑢⊤𝑡2𝑄2𝑢𝑡2.

5.2.3. Sampling time criteria with encryption
To implement encryption within a practical context, it is essential

to ensure that the sampling time, 𝛥, surpasses the combined max-
imum duration required for encryption and decryption of all states
and control inputs. Furthermore, it should accommodate the maximum
time necessary for computing control actions at each sampling instance
across the considered quantization parameter (𝑑). This condition holds
true for both the upper- and lower-tier control systems within an
encrypted two-tier control framework. Mathematically,

𝛥 > max (Encryption–decryption time)
12

𝑖 𝑖
+ max (Control input computation time)𝑖 (38)

where 𝑖 = {1, 2}, with 𝑖 = 1 and 𝑖 = 2 representing the lower
and upper control tier, respectively. In the discussed example, the
sampling time 𝛥 is chosen as 30 s. This decision is made while taking
into account the previously mentioned requirement to implement the
encryption process. Eq. (38) does not include the communication time
required for signal transmission. This is because the two-tier encrypted
control architecture, discussed within the context of SCADA systems,
relies on networked communication, which is extremely efficient and
rapid. However, networked communication also exposes the system to
cyberattacks, which is a vulnerability that we aim to mitigate in this
research by introducing encryption to these communication channels.

Remark 5. In the context of the discussed two-tier encrypted con-
trol architecture, the lower and upper tiers operate independently,
maintaining distinct public keys for encryption and private keys for
decryption. Consequently, they possess the flexibility to adopt different
sampling times. For the CSTR example studied in this work, both tiers
maintain identical sampling times. If certain control inputs necessitate
shorter sampling periods and more frequent actuation, it is advisable
to allocate them to the lower tier. The lower tier is a set of linear
controllers and, hence, can compute control inputs more rapidly than
an advanced nonlinear control scheme such as MPC employed in the
upper tier. Also, as the lower tier does not perform encryption and
decryption within the networked communication channels, it has less

stringent sampling time constraints. Furthermore, strategies employing
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Fig. 6. True state values (green solid line) and state value received by the MPC (red dashed line) for CSTR 1 without detection and reconfiguration mechanisms when a geometric
cyberattack is launched at 𝑡 = 0.5 h.
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wo-tier control to address challenges posed by delayed and asyn-
hronous signals have been demonstrated in prior studies of Liu et al.
2008, 2010). For systems incorporating delayed and asynchronous
ignals, these signals can be transmitted to the upper tier while ap-
lying control inputs through a sample-and-hold procedure. However,
he primary motivation behind the adoption of the two-tier design in
his research is the cyber-vulnerability of the upper tier due to the
eed to compute nonlinear control inputs without the safeguard of an
ncrypted computational environment.

.3. Cyberattack detector training and testing

In the upper-tier control system, the cyberattacks take the form of
ata manipulation. The objective involves crafting a detector capable of
ecognizing cyberattacks based on familiar data manipulation patterns
s well as those it has not encountered previously. To accomplish this,
feed-forward neural network (FNN) is used to identify cyberattacks.
he FNN is trained with min–max, replay, sinusoidal, and false-data-

njection attacks. The FNN underwent testing with the aforementioned
ttacks, along with the inclusion of surge and geometric attacks. The
utcome of the FNN is categorized into two classes: ‘‘cyberattack’’ and

‘no attack’’. Each data point in the dataset represents a 1 × 40 array
of 𝑉 (𝑥) values. To instill variability, we employed a spectrum of initial
onditions, mirroring a range of process scenarios. The activation of
n attack was randomly timed between 𝑖𝑜 ∈ [5, 35] to create diverse
urations and occurrences during system operation. Throughout the
raining phase, a randomized approach was adopted, wherein an attack
ould be simulated on a single state measurement for each CSTR at

andom intervals. In the testing phase, a similar random approach
as followed, wherein cyberattacks were introduced on either one or
13

ultiple state measurements or control inputs. b
To build the training and validation set, we conducted extensive
losed-loop simulations, resulting in a dataset comprising 6000 data
oints. Each class (‘‘cyberattack’’ and ‘‘no attack’’) contained 3000
ata points. For the cyberattack class, 750 data points per attack
ype were included in the training. The dataset was divided into an
0:20 ratio for training and validation purposes. Employing feature-
ise normalization prevented overfitting and enhanced results. For

he testing phase, a separate set of 1200 data points was generated
600 for each class and 100 data points for each cyberattack type.

o account for real-world process fluctuations and avoid mistaking
inor variations as cyberattacks, bounded Gaussian white noise was

ncorporated into each sensor measurement, for all the data points.
y bounding the noise, the tail ends of the Gaussian distributed noise
re eliminated before being applied. The cited work of Singh et al.
2023) proposes methods to deal with tail-ends in Gaussian-distributed
oise. The sensor noises were constrained within the following bounds:
𝜔𝑖| ≤ 0.1, ∀𝑖 = {1, 2, 3, 6, 7, 8}; |𝜔𝑖| ≤ 0.0003, ∀𝑖 = {4, 9}; |𝜔𝑖| ≤ 0.35, ∀𝑖 =
5, 10}; these Gaussian noise distributions have zero mean and standard
eviations |𝜎𝑖| ≤ 0.03, ∀𝑖 = {1, 2, 3, 6, 7, 8}; |𝜎𝑖| ≤ 0.0001, ∀𝑖 = {4, 9};
𝜎𝑖| ≤ 0.1, ∀𝑖 = {5, 10}. In this context, the subscripts are associated
ith different system states. Subscripts 1, 2, 3, 4, and 5 denote the

oncentrations of ethylene, benzene, ethylbenzene, di-ethyl benzene,
nd reactor temperature for CSTR 1, respectively. Similarly, subscripts
, 7, 8, 9, and 10 correspond to the concentrations of ethylene, benzene,
thylbenzene, di-ethyl benzene, and reactor temperature for CSTR 2,
espectively.

The design of the feed-forward neural network structure followed
systematic approach. It comprised 40 input neurons, each corre-

ponding to normalized control Lyapunov function values derived from
he previous 40 sampling instances. The FNN was designed with two
idden layers, while the output neurons were set to 2, aligning with the

inary classification task at hand. Fixing the number of neurons in the
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Fig. 7. True state values (green solid line) and state value received by the MPC (red dashed line) for CSTR 2 without detection and reconfiguration mechanisms when a geometric
cyberattack is launched at 𝑡 = 0.5 h.
idden layers, selecting the optimizer, and specifying activation func-
ions before the hidden layers was established through a meticulous
rid search process. The number of epochs was fixed to 100 during the
rid search. The objective was to identify the optimal combination of
yperparameters that yielded the lowest validation loss. Based on the
esults, the configuration of the neural network architecture included
0 neurons in the first hidden layer and 25 neurons in the second
idden layer. To mitigate the risk of overfitting, a dropout ratio of 0.2
as applied after each hidden layer. The activation functions employed
ere as follows: hyperbolic tangent after the input layer, rectified

inear unit (ReLU) after the first hidden layer, and softmax after the
econd hidden layer. Upon tuning with these hyperparameters, the
odel underwent 1000 epochs of training using the Adam optimizer
ith the objective to minimize the sparse categorical cross-entropy

oss. Throughout the training, emphasis was placed on conserving the
odel configuration that exhibited the lowest validation loss. This
eticulous approach facilitated the development of an effective and
ell-optimized neural network model for subsequent testing and eval-
ation. The training, validation, and testing accuracies for the model
re 99.87%, 99.92%, and 99.83, % respectively.

emark 6. As outlined in Section 5.3, the cyberattack is introduced
andomly within the sampling instances ranging from [5, 35], covering

span of 40 instances from which data is gathered for the control
yapunov function for a single data point. Attacks launched after
ampling instance 30 pose a relatively higher challenge for cyberattack
etection algorithms. Within the following sampling instances, these
ttacks may not induce substantial deviations in the process dynamics.
his is due to the model being trained with noisy data to prevent
rdinary process fluctuations from being misidentified as cyberattacks.
owever, as the attacks persist and gradually push the system away
14
from the desired stability region 𝛺𝜌min
(but still within 𝛺𝜌), their

detectability becomes more feasible. Hence, while the accuracies might
not reach 100%, practical implementation within a system reveals the
potential to achieve cyberattack detection with near-perfect accuracy
and very slightly extended response times.

Remark 7. Di-ethyl benzene is an unintended byproduct that emerges
within the reaction scheme elucidated in Eq. (34). It exists in minimal
quantities within both CSTRs and is not a direct control input. Con-
sequently, in the process of randomly initiating cyberattacks on the
state values received by the MPC for training, validation, and testing
datasets, no cyberattacks are launched on the state values of di-ethyl
benzene. This omission stems from the recognition that cyberattacks
on state values of di-ethyl benzene would exert no discernible influ-
ence on the overall process dynamics. For this reason, cyberattacks
are exclusively aimed at the eight other state values received by the
MPC, as well as all four control inputs computed by the MPC in the
upper-tier control system. Given its trace presence, visual depictions
of its concentration are not included in this section. However, di-ethyl
benzene is considered as a system state for the purpose of process
modeling and MPC calculations. Consequently, all results presented
account for its presence within the system.

5.4. Two-tier control architecture without cyberattack detection and re-
configuration mechanisms

In this section, we illustrate the two-tier control architecture with-
out incorporating any detection and control reconfiguration mech-
anism. Fig. 5 visually illustrates all six discussed cyberattacks. The
cyberattacks are launched at time 𝑡 = 0.5 h. The true state mea-
surements of the concentration of ethylene in CSTR 1 of the process
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Fig. 8. State profiles of CSTR 1 under encrypted two-tier control (red line), encrypted two-tier control under cyberattack (red line with stars), and encrypted lower tier
post-reconfiguration (green line), when a surge attack is launched on the upper-tier control inputs at 𝑡 = 23min.
etwork, depicted by the solid green line, stand in contrast to the
anipulated state values received by the MPC during a cyberattack.
he altered values, indicated by the dashed red line, emerge due to the
anipulation of the true state values received by the MPC during the

yberattack. Evidently, the actual state values and the received values
y the MPC diverge in opposite directions as the actuation is executed
ased on the received values, rather than the authentic state values.

To portray the overall impact of a cyberattack on the system in the
bsence of a detection mechanism, a geometric cyberattack is executed
n two state measurements of the upper tier at time 𝑡 = 0.5 h. The
ttack targets the state values associated with the concentration of
thylene in CSTR 1 and the concentration of benzene in CSTR 2 that
re received by the MPC. As evident from Figs. 6 and 7, the cyberattack
oes not destabilize the system beyond the stability region 𝛺𝜌. The
inal value of the control Lyapunov function 𝑉 (𝑥) at 𝑡 = 2 h is 33.65

which is within the stability limit, 𝜌 = 100. Nevertheless, it does
lead to a continued reduction in the concentration of ethyl benzene
in CSTR 2—the desired product—resulting in economic loss. The lower
tier, responsible for controlling the heat inputs to both CSTRs and is
fully safeguarded against cyberattacks, prevents attacks on the upper
tier from completely destabilizing the system. However, the integration
of a machine learning-based cyberattack detection mechanism can
deactivate the upper tier, thereby ensuring system stabilization within
the desired stability region 𝛺𝜌min

. Furthermore, conventional detection
mechanisms based on fail-safe boundary conditions, like identifying an
attack when the value of the control Lyapunov function surpasses 𝜌 =
100, would prove inadequate in detecting an intelligent cyberattack.

5.5. Simulation results of the encrypted two-tier control architecture with
cyberattack detection and re-configuration mechanisms

In this section, we employ the encrypted two-tier control architec-
ture, featuring a machine learning-based cyberattack detector and a
15
reconfiguration mechanism to disable the upper tier upon cyberattack
detection. Two distinct scenarios are presented: one where the system
operates at an unstable steady-state and the other where the system
is converging to an unstable steady-state while remaining within the
stability region 𝛺𝜌. The objective of intelligent cyberattacks is to inflict
harm on the process yield without causing the system to exit the stabil-
ity region. As a result, we do not delve into cyberattacks launched when
the system states are outside 𝛺𝜌, as conventional detection mechanisms
are sufficient for addressing such cases.

In both scenarios under consideration, the cyberattack is initiated
at 𝑡 = 0.383 h or 23 min of process time. As mentioned, the upper-tier
control inputs are the inlet concentration of ethylene and benzene for
each CSTR and the lower-tier control inputs are the heat removal rates
for each CSTR. Figs. 8–10 depict the first scenario, where the control
inputs computed by the MPC before encryption are manipulated via
a surge attack when the system is operating at its unstable steady-
state. Figs. 11–13 depict the second scenario, where the state values
of the system received by the MPC after decryption are manipulated
via a geometric attack when the system is converging to its unstable
steady state. In all the figures in Section 5.5, the operating control
scheme is illustrated through different colored lines. The red line
depicts the system under the two-tier encrypted control scheme, the red
line marked with stars depicts the system under the two-tier encrypted
control scheme during a cyberattack, and the green line depicts the
system under solely the lower-tier control scheme after the cyberattack
has been detected, and the system has been reconfigured. It is worth
noting that the ML-based cyberattack detector was not trained on the
geometric and surge attack patterns. Yet, the detector demonstrated its
ability to promptly identify these attacks.

In Figs. 8 to 10, during the initial 23 min of the process time,
flat trajectories are observed for all the states and control inputs as
the system is operating at its unstable steady-state under the two-tier



Computers and Chemical Engineering 180 (2024) 108498Y.A. Kadakia et al.

e
s
t
T
𝛺
g
r
2
f
t
2
t
t

t
s
w
i
a
M
p
d
s
t
a
c
c
e
b

Fig. 9. State profiles of CSTR 2 under encrypted two-tier control (red line), encrypted two-tier control under cyberattack (red line with stars), and encrypted lower tier
post-reconfiguration (green line), when a surge attack is launched on the upper-tier control inputs at 𝑡 = 23min.
ncrypted control scheme without any cyberattack. At 𝑡 = 23min, a
urge cyberattack is launched on all four control inputs of the upper
ier by manipulating the MPC control inputs before they are encrypted.
his manipulation deviates the system from its desired stability region,
𝜌min

, without complete destabilization. The cyberattack detector be-
ins detecting the attack status at each sampling instance after 20 min,
equiring data from the preceding 40 sampling instances (equivalent to
0 min of process time). The detector identifies the cyberattack for the
irst time at 25 min, 2 min after the attack was initiated on the upper
ier control inputs. After three consecutive detections at 25, 25.5, and
6 min, the upper tier control is disabled at 26 min. Subsequently, only
he secure, encrypted lower-tier control scheme is employed to guide
he system back to its desired stability region, 𝛺𝜌min

.
For Figs. 11 to 13, during the initial 23 min of the process time,

he state trajectories exhibit swift convergence towards their steady-
tates as they operate under the two-tier encrypted control scheme
ithout any cyberattack. At 𝑡 = 23min, a geometric cyberattack is

nitiated, targeting all 6 concentration states of the upper tier. This
ttack involves manipulating the decrypted state values received by the
PC in their plaintext form, and it deviates the system states from their

rior converging trajectory towards their steady-states. The cyberattack
etection mechanism commences after 20 min of the process, neces-
itating data from the preceding 40 sampling instances (equivalent
o 20 min). The cyberattack detector first identifies the cyberattack
t the 26 min, 3 min after the cyberattack was initiated. After three
onsecutive detection instances at 26, 26.5, and 27 min, the upper-tier
ontrol scheme is disabled at 27 min. Subsequently, only the secure,
ncrypted lower-tier control scheme is employed to guide the system
ack to its desired stability region, 𝛺𝜌min

. Also, in this scenario, when
the cyberattack is launched, the system is in the process of converging
towards its steady state; it has not yet reached its final equilibrium.
16
Importantly, the cyberattack detector remains active and can effectively
identify attacks even during this transitional phase, as illustrated in
Figs. 11 to 13.

Remark 8. The presence of quantization introduces some irregulari-
ties in the curves of certain control inputs and states. For example, in
Fig. 10, noticeable bumps can be observed in the control input response
corresponding to the rate of heat removal in CSTR 1. These bumps
stem from the fact that the quantization error value is multiplied by
the gains of the controller within an encrypted framework. As a result,
these multiplicative effects generate bumps in the trajectories of control
inputs. However, in the case of the rate of heat removal for CSTR 2, this
phenomenon is not as apparent in the same figure. This is attributed
to the significantly larger magnitude of the control input for CSTR 2.
Similarly, this irregularity is not observed in the inlet concentration
control inputs for the CSTRs, as these control inputs are quantized after
the plain text computation by the MPC. This approach prevents the
multiplication of quantized terms, thus mitigating the generation of
bumps due to control input quantization. Although the quantization
effects are less conspicuous in the case of inlet concentration control
inputs, their discontinuous behavior resulting from quantized terms still
exists. This effect is mitigated by selecting a higher quantization param-
eter. As a solution, a quantization parameter of 𝑑 = 8 has been opted
for all the simulations that are being presented. This choice of a higher
quantization parameter helps alleviate the observed irregularities.

5.6. Computational time of ML-based detection compared to encryption–
decryption

This subsection delves into the computational load implications of
incorporating machine-learning-based cyberattack detection within the
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Fig. 10. Control input profiles under encrypted two-tier control (red line), encrypted two-tier control under cyberattack (red line with stars), and encrypted lower tier
post-reconfiguration (green line), when a surge attack is launched on the upper-tier control inputs at 𝑡 = 23min.
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ncrypted control framework. A comparative analysis was conducted
etween the time dedicated to cyberattack detection and the time
llocated to the encryption–decryption of upper-tier states and con-
rol inputs. The lower tier is fully secure as it maintains encrypted
ommunication throughout the network (sensor–controller–actuator),
hus rendering detection algorithms unnecessary for it. Due to the
ndependent operation of the lower tier in relation to the upper tier,
long with the redundancy of cyberattack detection for the lower tier,
he time taken for encryption in it is excluded from this analysis.

Fig. 14 depicts the ratio of the time taken for cyberattack detection
o the time required for encryption–decryption operations for 25 min
f process time, corresponding to 50 consecutive sampling instances.
t is evident from Fig. 14 that the ML-based cyberattack detection
onsumes, on average, less than 1% of the time required for encryption–
ecryption. Consequently, the integration of this detection mechanism
oes not impose a significant computational burden on the overall time
omplexity of the system. Instead, it introduces a crucial cybersecurity
spect, especially in situations where the encrypted upper tier might
17

i

ot be entirely cyber-secure due to the context in which plaintext data
ncryption or decryption occurs within the control architecture.

emark 9. In this research, the lower tier of the two-tier encrypted
ontrol architecture functions as a secure, stabilizing feature in contin-
ous operation throughout the process. When a cyberattack is detected,
nly the upper-tier is deactivated, while the lower tier continues to
tabilize the system without any interruptions. Alternatively, in a dif-
erent framework than the one proposed in this research, the lower tier
ontroller can serve as a backup controller within the architecture if it is
esired for the MPC to exclusively compute all control inputs. In such a
cenario, when a cyberattack is detected, control would be transitioned
rom the upper tier to the lower tier. The lower tier remains inactive
uring normal process operation when no cyberattack is detected.
hus, at any time only one tier would be functional. Nevertheless, as
reviously stated, in this study, both the lower and upper tiers remain
perational in the absence of any cyberattack. In the event of a detected
yberattack, the upper tier is deactivated, while the lower tier continues
ts role in stabilizing the system.
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Fig. 11. State profiles of CSTR 1 under encrypted two-tier control (red line), encrypted two-tier control under cyberattack (red line with stars), and encrypted lower tier
ost-reconfiguration (green line), when a geometric attack is launched on the upper-tier states at 𝑡 = 23min.
6. Conclusions

In this study, we presented an encrypted two-tier control archi-
tecture incorporating an ML-based cyberattack detector to enhance
the operational safety, cybersecurity, and closed-loop performance of
nonlinear process systems. The lower-tier control system comprises a
set of encrypted proportional–integral controllers, while the upper-tier
control system employs an encrypted Lyapunov-based model predictive
controller. This architecture enhances system cybersecurity, even in
settings where control input computations may not be cybersecure.
By integrating both linear and nonlinear controllers with encryption,
the developed two-tier control architecture can be adapted to large-
scale nonlinear processes. Further, we have provided insights into the
framework and formulation of the encrypted lower- and upper-tier
control systems. Through a comprehensive stability analysis, we have
identified potential sources of error and established bounds to ensure
closed-loop system stability. Additionally, we have delved into the
development of an ML-based cyberattack detector, addressed critical
aspects such as quantization parameter selection, sampling time cri-
teria, and computational load assessment. These issues are essential
for the practical implementation of the proposed control system across
nonlinear processes. To validate the efficacy of our control framework,
we subjected it to previously unseen cyberattack patterns within a
nonlinear chemical process network utilized in ethylbenzene produc-
tion. We carried out a detailed simulation study that exposed the
implementation and performance of the two-tier control architecture
18
and the usefulness of the cyberattack detector. In summary, our work
advances control system cybersecurity by integrating ML-based cyber-
attack detection into encrypted control systems with both linear and
nonlinear controllers.
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Fig. 12. State profiles of CSTR 2 under encrypted two-tier control (red line), encrypted two-tier control under cyberattack (red line with stars), and encrypted lower tier
post-reconfiguration (green line), when a geometric attack is launched on the upper-tier states at 𝑡 = 23min.
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Fig. 13. Control input profiles under encrypted two-tier control (red line), encrypted two-tier control under cyberattack (red line with stars), and encrypted lower tier
post-reconfiguration (green line), when a geometric attack is launched on the upper-tier states at 𝑡 = 23min.

Fig. 14. Ratio of the time for ML-based Cyberattack detection to encryption–decryption for 50 consecutive sampling periods.
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