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A B S T R A C T

In this research, we present an encrypted iterative distributed model predictive controller (DMPC) to enhance
the computational efficiency and cybersecurity of large-scale nonlinear processes. In this configuration, a
single large process is divided into numerous smaller subsystems, each regulated by a unique Lyapunov-
based MPC (LMPC) that utilizes the complete process model and exchanges control inputs with other LMPCs
to address the interactions between subsystems. Further, to enhance cybersecurity, all communication links
between sensors, actuators, and control input computing units are encrypted. Through a comprehensive
stability analysis of the encrypted iterative DMPC, bounds are established on errors arising from encrypted
communication links, disturbances, and the sample-and-hold implementation of controllers. Practical aspects
such as reducing data encryption time by appropriate key length choices, sampling interval criterion, and
quantization parameter selection are discussed. Simulation results of the proposed control scheme, applied to
a nonlinear chemical process, showcase its effective closed-loop performance in the presence of sensor noise
and process disturbances. Specifically, a non-Gaussian noise distribution is obtained from an industrial data
set and added to the state measurements to justify the practical effectiveness of the proposed approach.
1. Introduction

In recent years, networks have emerged as pivotal components
within manufacturing systems, replacing traditional point-to-point
communications across various levels. At the field level, networks
have elevated connectivity among sensors, actuators, and controllers,
enabling efficient data transfer within the factory floor, while con-
currently reducing wiring and minimizing potential points of failure.
At the supervisory and management level, networks have facilitated
automated plant-wide communication via SCADA (Supervisory Control
and Data Acquisition) systems. This has, in turn, expanded data stor-
age capacities and visibility, enabling operational trend analysis and
improved decision-making for enhanced closed-loop performance, and
has augmented interconnectivity of various parts of the plant.

However, these advantages come with a substantial reliance on
networked communications, whether through the internet or wire-
less local area networks (LAN), which could be vulnerable to cyber
threats. Any compromise within these systems could lead to signifi-
cant consequences, such as critical service disruption, physical harm,
financial loss, and potential threats to public safety. Real-world cyber-
attack instances underscore the need of cybersecurity measures in net-
worked cyber–physical systems. For instance, the 2015 cyberattack on
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Ukraine’s power grid managed by SCADA controls, led to widespread
power outages (Khan, Maynard, McLaughlin, Laverty, & Sezer, 2016).
Similarly, in 2021, hackers launched a DarkSide ransomware attack
on Colonial Pipeline by encrypting networked communication and
demanded a ransom for decryption keys. This incident forced Colonial
Pipeline to halt operations, leading to extensive disruptions in fuel
distribution (Tsvetanov & Slaria, 2021).

PID (proportional–integral-Derivative) controllers and PLCs (Pro-
grammable Logic Controllers) have been extensively used and continue
to be utilized for controlling system states in a decentralized man-
ner. Their decentralized operation reduces computational burden and
interdependencies between different controllers. However, in systems
with highly coupled process states, where the control inputs applied
by one controller directly impacts the controlled states of another
controller, traditional controllers might not yield adequate closed-loop
performance. To overcome this constraint, complex processes have
been effectively managed using model predictive controllers (MPCs).
MPCs utilize a mathematical model of the process, obtained from either
first-principles or data, to predict future closed-loop state evolution
within a defined horizon. Subsequently, control inputs are optimized
based on real-time sensor feedback, considering interactions between
967-0661/© 2024 Elsevier Ltd. All rights reserved.
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all states and inputs. This methodology enhances control precision
while minimizing utility costs.

For systems regulated by MPCs, at each sampling instance, a nonlin-
ear optimization problem has to be solved to compute optimal control
input trajectories, which can be very complex for large-scale systems
involving numerous states and control inputs. To cope with this, dis-
tributed MPCs have been proposed (Liu, de la Peña, & Christofides,
2010). Networked communication has facilitated distributed control
systems to be easily established within a SCADA control architecture
by enhancing connectivity and data transfer between different con-
trollers without needing elaborate wired communication. However, as
mentioned earlier, this has also made the system more vulnerable to
cyberattacks with the evolution of technology. Considerable research
efforts have been dedicated to areas such as employing linear en-
crypted controllers (Darup, 2020; Darup, Redder, & Quevedo, 2018),
developing machine learning-based cyberattack detectors (Al-Abassi,
Karimipour, Dehghantanha, & Parizi, 2020; Dutta, Choraś, Pawlicki, &
Kozik, 2020), utilizing encrypted decentralized MPCs (Kadakia, Alnajdi,
Abdullah and Christofides, 2023), and creating cyberattack-resilient
controllers (Paridari et al., 2017).

Addressing the aforementioned challenges, this work focuses on
an encrypted iterative distributed MPC comprising a set of Lyapunov-
based MPCs, utilizing encrypted networked communication for commu-
nication between sensors, actuators, and computing units responsible
for calculating the control inputs. Following the formulation of the
proposed control system, a thorough stability analysis is conducted
to establish bounds, ensuring system stabilization within the desired
stability region. Closed-loop simulations of the encrypted distributed
LMPC system implemented in a nonlinear chemical process network
are presented and compared with an encrypted centralized LMPC.

2. Preliminaries

2.1. Notation

The symbol ‖⋅‖ denotes the Euclidean norm of a vector, and 𝑥⊤

represents the transpose of a vector 𝑥. The sets of real numbers,
integers, and natural numbers are denoted by R, Z, and N, respectively.
The additive groups of integers modulo 𝑀 are represented by Z𝑀 . The
symbol ‘‘∖’’ denotes set subtraction, where 𝐴∖𝐵 represents the set of
elements in set 𝐴 but not within set 𝐵. A function, 𝑓 (⋅), is classified
as 1 when it is continuously differentiable in a defined domain. The
least common multiple of the integers 𝑖 and 𝑗 is denoted by lcm(𝑖, 𝑗).
The greatest common divisor that divides 𝑖 and 𝑗 with no remainder is
denoted by gcd(𝑖, 𝑗).

2.2. Class of systems

In this research, we consider a general category of nonlinear systems
regulated by multiple unique sets of control inputs. Each distinct set
of control inputs manages a particular subsystem of the process. To
simplify notations, we examine two subsystems – subsystem 1 and
subsystem 2 – each governed solely by 𝑢1 and 𝑢2, respectively. However,
this same analysis can be extended to any nonlinear system controlled
by 𝑁𝑠𝑦𝑠 subsystems regulated by 𝑁𝑠𝑦𝑠 unique sets of manipulated
inputs. While partitioning a large-scale nonlinear process, manipulated
inputs that have a strong, direct effect on certain states should be
grouped together and be manipulated by the same controller. The
work of Rocha, Oliveira-Lopes, and Christofides (2018) describes such
methods in detail, and can be an area of future research. The overall
nonlinear system is characterized by a set of ordinary differential
equations (ODEs), formulated in the following manner:

̇ = 𝑓 (𝑥(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝑤(𝑡))
(1)
2

𝑦 = 𝑥 + 𝑣
The state vector is denoted by 𝑥 ∈ R𝑛, while 𝑦 ∈ R𝑛 is the vector
of state measurements that are sampled continuously. 𝑢1 ∈ R𝑚1 and
𝑢2 ∈ R𝑚2 represent the sets of control inputs, 𝑤 ∈ R𝑤 is the disturbance
vector, and 𝑣 ∈ R𝑛 is the noise vector. The control input constraints
are defined by 𝑢1 ∈ 𝑈1 ∶= {𝑢min

1𝑖
≤ 𝑢1𝑖 ≤ 𝑢max

1𝑖
, 𝑖 = 1,… , 𝑚1}, ⊂ R𝑚1 , and

𝑢2 ∈ 𝑈2 ∶= {𝑢min
2𝑖

≤ 𝑢2𝑖 ≤ 𝑢max
2𝑖

, 𝑖 = 1,… , 𝑚2}, ⊂ R𝑚2 . 𝑢 = [𝑢1 𝑢2]⊤ ∈ 𝑈
is the bounded control input vector formed by concatenating 𝑢1 and
𝑢2. The vector function 𝑓 (⋅) is locally Lipschitz with respect to its
arguments. We consider 𝑓 (0, 0, 0, 0) = 0, such that the steady state of
Eq. (1) is the origin. Without loss of generality, we set the initial time
to zero (𝑡0 = 0). 𝑆(𝛥) is defined as a collection of piece-wise constant
functions characterized by an interval of 𝛥.

2.3. Stability assumptions

Accounting for interactions between the partitioned subsystems of
the nonlinear process, we assume the existence of stabilizing control
laws 𝑢1 = 𝛷1(𝑥) ∈ 𝑈1, 𝑢2 = 𝛷2(𝑥) ∈ 𝑈2 which regulate subsystems 1 and
2, respectively, such that the system of Eq. (1) with 𝑤 ≡ 0 and 𝑣 ≡ 0 is
rendered exponentially stable, signifying the existence of a 1 control
Lyapunov function 𝑉 (𝑥) that satisfies the subsequent inequalities for all
𝑥 ∈ R𝑛 within 𝐷, which is an open region around the origin:

𝑐1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2, (2a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝑓 (𝑥,𝛷1(𝑥), 𝛷2(𝑥), 0) ≤ −𝑐3|𝑥|
2, (2b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥|, (2c)

where 𝑐𝑖, 𝑖 = {1, 2, 3, 4} are positive constants. In the nonlinear system
of Eq. (1), the closed-loop stability region can be defined as 𝛺𝜌, which
s a level set of the control Lyapunov function 𝑉 . In particular, 𝛺𝜌 ∶=
𝑥 ∈ 𝐷|𝑉 (𝑥) ≤ 𝜌}, where 𝜌 > 0. Thus, starting from any initial condition
n 𝛺𝜌, the control inputs 𝛷1(𝑥) and 𝛷2(𝑥) guarantee that the state
rajectory of the closed-loop system remains inside 𝛺𝜌. Further, based
n the Lipschitz property of 𝑓 (𝑥, 𝑢1, 𝑢2, 𝑤) and the bounds on 𝑢1, 𝑢2, and
, the subsequent inequalities hold for all 𝑥 ∈ 𝛺𝜌, 𝑢1 ∈ 𝑈1, 𝑢2 ∈ 𝑈2 and
∈ 𝑊 with positive constants 𝑀𝐹 and 𝐿′

𝑤:

𝑓 (𝑥, 𝑢1, 𝑢2, 𝑤)| ≤ 𝑀𝐹 , (3a)

|

|

|

|

𝜕𝑉
𝜕𝑥

𝑓 (𝑥, 𝑢1, 𝑢2, 𝑤) − 𝜕𝑉
𝜕𝑥

𝑓 (𝑥, 𝑢1, 𝑢2, 0)
|

|

|

|

≤ 𝐿′
𝑤|𝑤|. (3b)

2.4. Paillier cryptosystem

In this study, we utilize the Paillier cryptosystem (Paillier, 1999)
in order to encrypt all signals that are transmitted through the net-
worked communication established. While we do not leverage the
semi-homomorphic nature of the additive homomorphism within the
Paillier cryptosystem, it is incorporated to enable the integration of con-
ventional controllers, like PI (proportional–integral) controllers, that
can calculate control inputs in an encrypted space, within the control
architecture if needed (Kadakia, Suryavanshi, Alnajdi, Abdullah, &
Christofides, 2024). Prior to encryption, we generate the public key (for
encryption) and the private key (for decryption) and can be outlined as
follows:

(1) Choose two large prime integers (𝑝 and 𝑞) randomly, such that,
gcd((𝑝 − 1)(𝑞 − 1), 𝑝𝑞) = 1.

(2) Define, 𝑀 = 𝑝𝑞.
(3) Select a random integer �̂� ∈ Z

𝑀2 , where Z
𝑀2 is the multiplica-

tive group of integers modulo 𝑀2.
(4) Compute 𝜆 = lcm(𝑝 − 1, 𝑞 − 1).
(5) Specify �̂�(𝑥) = (𝑥 − 1)∕𝑀 .
(6) Verify the existence of the subsequent modular multiplicative

̂ 𝜆 2 −1
inverse: 𝑢 = (𝐿(�̂� mod𝑀 )) mod 𝑀 .
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(7) If the inverse does not exist, revisit step 3 and select an alternate
value of �̂�. If the inverse exists, (𝑀, �̂�) is the public key and (𝜆, 𝑢)
is the private key.

Upon obtaining the keys, authorized recipients receive the public key
for encryption and the private key for decryption. Encryption is exe-
cuted in the following manner:

𝐸𝑀 (𝑚, 𝑟) = 𝑐 = �̂�𝑚𝑟𝑀 mod 𝑀2 (4)

here 𝑟 is an integer randomly chosen from the set Z𝑀 , and 𝑐 denotes
he resulting ciphertext by encrypting 𝑚. Decryption is executed in the
ollowing manner:

𝑀 (𝑐) = 𝑚 = �̂�(𝑐𝜆 mod 𝑀2)𝑢 mod 𝑀 (5)

emark 1. Traditional approaches, such as mapping floating points to
set or applying mathematical transformations to achieve data privacy,
ay prove inadequate in practice. When these methods are used during

teady-state operation, it results in the transmission of identical val-
es. On the other hand, during encryption, a distinct random number
s generated each time data is encrypted. This feature ensures that
ncrypting identical numbers results in different ciphertexts, thereby
ignificantly enhancing cybersecurity measures. While encryption en-
ances privacy, it also enhances cybersecurity by protecting the system
gainst intelligent cyberattacks as discussed in the work of Kadakia
t al. (2024).

.5. Quantization

For the utilization of the Paillier cryptosystem, the data intended for
ncryption is required to be in the form of natural numbers within Z𝑀 .
owever, prior to encryption, the signal values exist in floating-point

ormat. Thus, we implement quantization, to map the floating-point
umbers into Z𝑀 (Darup, Redder, Shames, Farokhi, & Quevedo, 2017).
mploying a signed fixed-point binary representation, we establish a
et, Q𝑙1 ,𝑑 , characterized by parameters 𝑙1 and 𝑑. The parameter 𝑙1 is
efined as the total bit count (integer and fractional), and 𝑑 denotes the
ractional bits. The number of fractional bits represent the number of
its used to represent the fractional part of the floating point data. It is
qual to the quantization parameter. The Q𝑙1 ,𝑑 set encompasses rational
umbers ranging from −2𝑙1−𝑑−1 to 2𝑙1−𝑑−1 − 2−𝑑 , with increments of
−𝑑 . For a number 𝑞 in Q𝑙1 ,𝑑 , there exists 𝛽 ∈ {0, 1}𝑙1 , such that 𝑞 =
−2𝑙1−𝑑−1𝛽𝑙1+

∑𝑙1−1
𝑖=1 2𝑖−𝑑−1𝛽𝑖. The function 𝑔𝑙1 ,𝑑 maps a real-number data

oint 𝑎 to the set Q𝑙1 ,𝑑 , and is defined by the following equation,

𝑔𝑙1 ,𝑑 ∶ R → Q𝑙1 ,𝑑

𝑙1 ,𝑑 (𝑎) ∶= arg min
𝑞∈Q𝑙1 ,𝑑

|𝑎 − 𝑞| (6)

ollowing this, the quantized data undergoes a transformation into a
et of positive integers (Z𝑀 ) via a bijective mapping (𝑓𝑙2 ,𝑑), as detailed
n (Darup et al., 2017):

𝑓𝑙2 ,𝑑 ∶ Q𝑙1 ,𝑑 → Z2𝑙2

𝑙2 ,𝑑 (𝑞) ∶= 2𝑑𝑞 mod 2𝑙2
(7)

n the encryption process, integer plaintext messages from the set 𝑍2𝑙2
are transformed into ciphertexts, and can then be decrypted back to set
𝑍2𝑙2 . To retrieve the original data point belonging to the set Q𝑙1 ,𝑑 , we
define an inverse mapping denoted as 𝑓−1

𝑙2 ,𝑑
in the following manner:

𝑓−1
𝑙2 ,𝑑

∶ Z2𝑙2 → Q𝑙1 ,𝑑 (8)

𝑓−1
𝑙2 ,𝑑

(𝑚) ∶= 1
𝑑

{

𝑚 − 2𝑙2 if 𝑚 ≥ 2𝑙2−1
(9)
3

2 𝑚 otherwise
Fig. 1. Block diagram of the encrypted iterative distributed LMPC system.

3. Development of the encrypted iterative distributed LMPC

3.1. Design of the encrypted iterative distributed LMPC

Fig. 1 illustrates the control structure of the encrypted iterative
distributed LMPC, where all LMPCs collaboratively optimize control
actions for their respective subsystems. The sampling period represents
the time between two consecutive measurements during which a con-
stant control input is maintained by the actuators in a sample-and-hold
manner. A total of two LMPCs that utilize the complete process model
for computing a set of distinct control inputs has been considered to
present the control strategy. A single iteration of an LMPC corresponds
to an optimal control input computation by an LMPC, which may
be repeated with updated input information from the other LMPC, if
the termination criterion is not satisfied. The control strategy can be
implemented through the following steps:

(1) At time 𝑡 = 𝑡𝑘, where 𝑘 is the current sampling instance,
using public key 1, signals 𝑥(𝑡𝑘) from sensors are encrypted to
ciphertext 𝑐 and transmitted to the computing units of distinct
control subsystems.

(2) In each unit, using private key 1, the encrypted signals are de-
crypted. The resulting quantized states �̂�(𝑡𝑘) initialize the LMPC
model.

(3) At iteration 𝑧 = 1, LMPC 1 computes the optimal control input
trajectory 𝑢∗1(𝑡), using the quantized states �̂�(𝑡𝑘), and assuming
the stabilizing control law 𝑢2(𝑡) = 𝛷2(�̂�(𝑡)) for the second sub-
system, for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), where 𝑁 is the prediction horizon. In
parallel, LMPC 2 computes the optimal control input trajectory
𝑢∗2(𝑡) assuming 𝑢1(𝑡) = 𝛷1(�̂�(𝑡)), the stabilizing controller for the
first subsystem, for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ).

(4) At the end of the first iteration, LMPC 1 and LMPC 2 encrypt
their computed control inputs over the prediction horizon using
public key 2, to the ciphertexts 𝑐1 and 𝑐2, respectively. Subse-
quently, LMPC 1 decrypts 𝑐2 to obtain the quantized control
input of LMPC 2, �̂�∗2(𝑡), and LMPC 2 decrypts 𝑐1 to obtain the
quantized control input of LMPC 1, �̂�∗1(𝑡), for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ).

(5) At iteration 𝑧 = 2, both LMPCs recalculate the optimal control
inputs of their subsystem using the quantized control inputs
(after decryption) of the other subsystems. Subsequently, the
new control input trajectories are again shared with the other
LMPCs, as described previously. The aforementioned steps are
reiterated till a termination condition is satisfied, which could
be the number of iterations, or the difference between computed
control inputs in successive iterations is less than a specified
threshold value.
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(6) Upon meeting this termination condition, both LMPCs encrypt
their optimal control inputs for the subsequent sampling period
(utilizing public key 1) and transmit the ciphertexts to the
corresponding actuators of each of their respective subsystem.

(7) At the actuator, the ciphertext 𝑐 undergoes decryption using
private key 1 to yield �̂�∗(𝑡𝑘), the quantized input, which is
applied to the process.

By encrypting all signals in a distributed setting between the sensors,
controllers, and actuators, secure information exchange is established
between computing units situated at various locations, eliminating the
necessity of a control room.

Remark 2. In the proposed design, sensor-controller and controller-
actuator communication links utilize distinct keys for encryption–
decryption compared to the inter-controller communication link. How-
ever, a single pair of keys may also serve this purpose. The decision to
choose a distinct set of keys aims to meet the specific cybersecurity
requirements based on the cyber–physical needs of the system. For
instance, in transmitting encrypted signals across the entire plant,
higher bit length keys would be recommended. Conversely, when
exchanging encrypted signals between various controllers or computing
units, lower bit length keys might be sufficient.

Remark 3. The time and computational load required for encrypting
signals increases with longer key bit lengths. A 2048-bit key results in
an approximately 4096-bit ciphertext and requires about 0.066 s for
encryption. On the other hand, a 1024-bit key produces a ciphertext
of around 2048 bits within 0.0096 s. The most recent NIST recommen-
dations suggest using asymmetric keys of 2048 bits, an upgrade from
the previous recommendation of 1024 bits (Barker & Barker, 2019).
The determination of key lengths should be guided by factors like
cyber–physical vulnerability, desired cybersecurity level, and available
computational resources. The time estimates were derived from encryp-
tion processes on an Intel i7-10700K 3.80 GHz computer with 64 GB of
RAM. The computational complexity of encryption–decryption varies
by (�̄�3) as mentioned in the work of Damgård, Jurik, and Nielsen
(2010), where �̄� represents the number of bits of the keys utilized. Thus,
increasing the bits of the keys significantly increases the computational
load for encryption–decryption.

Remark 4. In an industrial setting, the standard approach for en-
cryption would involve employing microcontrollers within sensors and
actuators to encrypt and decrypt signals, respectively. Encrypted signals
are sent to the controllers via RF (radio-frequency) transmission mod-
ules. Similarly, actuators receive signals from the RF receiver module.
To decrease the total computation time for encryption–decryption,
large-scale systems can equip individual sensors and actuators with
dedicated microcontrollers and RF modules. This setup enables parallel
operations for the transmission and reception of encrypted signals.

Remark 5. A ciphertext encrypted using a 2048-bit key will be
roughly 4096 bits or 512 bytes (1 byte = 8 bits). Wireless communi-
cation standards like Wi-Fi 4, Wi-Fi 5, and Wi-Fi 6 offer bandwidths
ranging from hundreds of megabytes per second (MBps) to a few
gigabytes per second. This bandwidth is more than adequate to transmit
multiple encrypted ciphertexts at each sampling instance. For instance,
a 4096-bit ciphertext would require approximately 1 microsecond for
transmission through Wi-Fi with a bandwidth of 500 MBps. Therefore,
the transmission of encrypted signals would not significantly burden es-
tablished communication channels, while reinforcing the cybersecurity
of the control system.

Remark 6. To deal with input delays, a state-predictor can be inte-
grated. The state predictor would estimate the state values after the
period corresponding to the input delay and the LMPC model would
4

s

be initialized with these predicted states. This has been demonstrated
in the work of Kadakia, Alnajdi et al. (2023) using an encrypted
decentralized LMPC. As the LMPC is initialized with the new predicted
states, the same concept can be extended to the encrypted distributed
LMPC presented in this research.

3.2. Quantization errors in the control architecture

The closed-loop configuration presented in Fig. 1 introduces two
error sources: one originating from state quantization in the sensor-
controller link, while another stemming from control input quantiza-
tion within the controller-actuator link, which are bounded as follows:

|𝑥(𝑡𝑘) − �̂�(𝑡𝑘)| ≤ 2−𝑑−1 (10a)

|𝑢(𝑡𝑘) − �̂�(𝑡𝑘)| ≤ 2−𝑑−1 (10b)

he upper bounds for the quantization error in Eq. (10) has been
erived in Kadakia, Suryavanshi, Alnajdi, Abdullah and Christofides
2023). Leveraging the local Lipschitz property, the error for the
tabilizing controller of the 𝑗th subsystem will be bounded by the
ollowing equation, where 𝐿′

𝑗 is a positive constant, for 𝑥 ∈ 𝛺𝜌, the
tability region:

𝛷𝑗 (�̂�) −𝛷𝑗 (𝑥)| ≤ 𝐿′
𝑗 |�̂� − 𝑥| ≤ 𝐿′

𝑗2
−𝑑−1 (11)

.3. Encrypted iterative distributed LMPC system

The optimization task for the 𝑗th LMPC in the iterative distributed
MPC, during the initial iteration (𝑧 = 1), is formulated as:

 = min
𝑢𝑗∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), 𝛷𝑚(�̃�(𝑡)), 𝑢𝑗 (𝑡)) d𝑡,

where 𝑚 = 1, 2 and 𝑚 ≠ 𝑗 (12a)

.t. ̇̃𝑥(𝑡) = 𝑓 (�̃�(𝑡), 𝛷𝑚(�̃�(𝑡)), 𝑢𝑗 (𝑡)) (12b)

𝑢𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (12c)

�̃�(𝑡𝑘) = �̂�(𝑡𝑘) (12d)
�̇� (�̂�(𝑡𝑘), 𝛷𝑚(�̂�(𝑡𝑘)), 𝑢𝑗 (𝑡𝑘)) ≤

�̇� (�̂�(𝑡𝑘), 𝛷𝑚(�̂�(𝑡𝑘)), 𝛷𝑗 (�̂�(𝑡𝑘))),

if �̂�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min
(12e)

𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ),

if �̂�(𝑡𝑘) ∈ 𝛺𝜌min
(12f)

or subsequent iterations 𝑧 > 1, following the exchange of the optimal
ontrol inputs 𝑢∗𝑚(𝑡) with all the other LMPCs, the optimization task for

the 𝑗th LMPC is:

 = min
𝑢𝑗∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), �̂�𝑚(𝑡), 𝑢𝑗 (𝑡)) d𝑡,

where 𝑚 = 1, 2 and 𝑚 ≠ 𝑗 (13a)

.t. ̇̃𝑥(𝑡) = 𝑓 (�̃�(𝑡), �̂�𝑚(𝑡), 𝑢𝑗 (𝑡)) (13b)

𝑢𝑗 (𝑡) ∈ 𝑈𝑗 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (13c)

�̃�(𝑡𝑘) = �̂�(𝑡𝑘) (13d)
�̇� (�̂�(𝑡𝑘), �̂�𝑚(𝑡𝑘), 𝑢𝑗 (𝑡𝑘)) ≤

�̇� (�̂�(𝑡𝑘), 𝛷𝑚(�̂�(𝑡𝑘)), 𝛷𝑗 (�̂�(𝑡𝑘))),

if �̂�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min
(13e)

𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ),

if �̂�(𝑡𝑘) ∈ 𝛺𝜌min
(13f)

he key contrast between Eqs. (12) and (13) is that in the former,
he 𝑗th LMPC computes the optimal control inputs for its respective

ubsystem by assuming the stabilizing control laws for the remaining
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subsystems, while in the latter, the LMPC uses quantized control in-
puts of other LMPCs (after decryption) from the previous iteration,
to calculate the optimal inputs for its subsystem. �̃� denotes the state
rajectory predicted by the LMPC model. The quantized states, denoted
s �̂�, from Eqs. (12d) and (13d), initialize the LMPC model for pre-
icting the state trajectory in accordance with Eqs. (12b) and (13b),
espectively. This prediction is used to calculate the integral of the
ost functions represented by Eqs. (12a) and (13a), respectively, to
etermine the optimized control inputs, 𝑢∗𝑗 (𝑡), throughout the prediction

horizon. However, the LMPC transmits only the first control input of
the sequence which is applied to the system by the actuator within the
interval 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where this process is repeated at each sampling
period. Here, 𝑘 is the sampling instance, while 𝑁 denotes the num-
ber of sampling periods in the prediction horizon. The constraints of
Eqs. (12c) and (13c) bound the control inputs, and it remains consistent
across all iterations for a particular subsystem. The Lyapunov constraint
of Eqs. (12e) and (13e) bounds the state 𝑥(𝑡𝑘) at time 𝑡𝑘 within the
region 𝛺𝜌 ⧵ 𝛺𝜌min

, where 𝜌min is a level set of 𝑉 in proximity to the
origin. Eqs. (12f) and (13f) ensure that the closed-loop state is bounded
within 𝛺𝜌min

once it enters 𝛺𝜌min
.

Remark 7. In the LMPC formulation presented, the LMPCs transmit
only the control inputs to be implemented by the actuators over the
next sampling period. To address challenges related to delayed and/or
asynchronous signals, a control logic can be integrated. In instances
where sensor signals are absent, the LMPC transmits the control input
calculated for the subsequent sampling period during the preceding
instance, ensuring continuous operation. This adaptive strategy can be
selectively applied by subsystems experiencing signal reception issues
within a distributed system. Moreover, a control logic can be devised
to transmit the control inputs after the first iteration, if challenges arise
in communicating control inputs with other controllers, switching from
a distributed to a decentralized setup. Consequently, the utilization
of distributed MPC introduces substantial flexibility to adapt control
systems according to diverse conditions and practical requirements, all
without necessitating extensive modifications.

3.4. Robustness of the encrypted distributed LMPC

In this subsection, we will conduct a comprehensive stability anal-
ysis of the nonlinear system of Eq. (1), considering bounded process
disturbances. Initially, we ascertain the closed-loop stability using the
encrypted stabilizing controllers �̂�1(�̂�) and �̂�2(�̂�), and subsequently,
we extend our results to evaluate system stability under the encrypted
iterative distributed LMPC defined by Eqs. (12) and (13).

Theorem 1. We consider the system of Eq. (1) with bounded disturbances
|𝑤| ≤ 𝑤𝑚, to examine the closed-loop system stability under the encrypted
stabilizing controllers �̂�1(�̂�) and �̂�2(�̂�). The stabilizing controllers 𝛷1(𝑥) and
𝛷2(𝑥), without encryption, complies with the inequalities stated in Eq. (2).
Also, the initial state 𝑥0 is assumed to be within the region 𝛺�̂� where
�̂� < 𝜌. For a sufficiently large time 𝑇 > 0, where 𝑇 is defined as the time
taken by 𝑥(𝑡) to enter 𝛺𝜌min

, the positive real numbers 𝐿′
𝑥, 𝐿

′
𝑒1
, 𝐿′

𝑒2
,𝑀𝐹 , 𝐿′

𝑤,
𝑒1 = (𝐿1 + 1)2−𝑑−1, and 𝑒2 = (𝐿2 + 1)2−𝑑−1 can be determined, for which
𝛥,𝑤, 𝑑, and 𝜖𝑤 > 0 exist, such that the subsequent conditions are met:

𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑒1
|𝑒1| + 𝐿′

𝑒2
|𝑒2| + 𝐿′

𝑤|𝑤| −
𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤

𝜌min = max{𝑉 (𝑥(𝑡 + 𝛥))|𝑉 (𝑥(𝑡)) ≤ 𝜌𝑠}
(14)

where 𝜌 > �̂� > 𝜌min > 𝜌𝑠. Then, 𝑥(𝑡), under the encrypted stabilizing
controller, is within 𝛺�̂� and ultimately converges to 𝛺𝜌min

for 𝑡 ≥ 𝑇 .

Proof. The time-derivative of the control Lyapunov function for
the nonlinear system (Eq. (1)) with bounded disturbances under the
5

stabilizing control law is:

�̇� =
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝑓 (𝑥(𝑡), �̂�1(�̂�(𝑡𝑘)), �̂�2(�̂�(𝑡𝑘)), 𝑤)

=
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝑓 (𝑥(𝑡), �̂�1(�̂�(𝑡𝑘)), �̂�2(�̂�(𝑡𝑘)), 𝑤)

−
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝑓 (𝑥(𝑡), �̂�1(�̂�(𝑡𝑘)), �̂�2(�̂�(𝑡𝑘)), 0)

+
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝑓 (𝑥(𝑡), �̂�1(�̂�(𝑡𝑘)), �̂�2(�̂�(𝑡𝑘)), 0).

(15)

Based on the Lipschitz condition in Eqs. (2) and (3b), the subsequent
inequality holds:

�̇� ≤ 𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑓 (𝑥(𝑡), �̂�1(�̂�(𝑡𝑘)), �̂�2(�̂�(𝑡𝑘)), 0) + 𝐿′
𝑤|𝑤| (16)

ubstituting the error bounds resulting due to quantization, as derived
n Eq. (10),

̇ ≤ 𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑓 (𝑥(𝑡), 𝛷1(�̂�(𝑡𝑘))

+ 2−𝑑−1, 𝛷2(�̂�(𝑡𝑘)) + 2−𝑑−1, 0) + 𝐿′
𝑤|𝑤|

(17)

Further, 𝛷𝑗 (�̂�(𝑡𝑘)) = 𝛷𝑗 (�̂�(𝑡𝑘)) −𝛷𝑗 (𝑥(𝑡𝑘)) +𝛷𝑗 (𝑥(𝑡𝑘)) for 𝑗 = {1, 2}. Using
the Lipschitz property, 𝛷𝑗 (�̂�(𝑡𝑘)) − 𝛷𝑗 (𝑥(𝑡𝑘)) ≤ 𝐿𝑗 |�̂� − 𝑥| ≤ 𝐿𝑗2−𝑑−1.
When we substitute this in Eq. (17), we get:

�̇� ≤ 𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑓 (𝑥(𝑡), 𝛷1(𝑥(𝑡𝑘)) + 𝑒1, 𝛷2(𝑥(𝑡𝑘)) + 𝑒2, 0)

+ 𝐿′
𝑤|𝑤|

(18)

here 𝑒1 = (𝐿1 + 1)2−𝑑−1 and 𝑒2 = (𝐿2 + 1)2−𝑑−1 represent the error
ounds from quantization. From the constraints stated in Eq. (2), we
an re-write Eq. (18) as:

̇ ≤ 𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑓 (𝑥(𝑡), 𝛷1(𝑥(𝑡𝑘)) + 𝑒1, 𝛷2(𝑥(𝑡𝑘)) + 𝑒2, 0)

−
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝑓 (𝑥(𝑡𝑘), 𝛷1(𝑥(𝑡𝑘)), 𝛷2(𝑥(𝑡𝑘)), 0)

+
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝑓 (𝑥(𝑡𝑘), 𝛷1(𝑥(𝑡𝑘)), 𝛷2(𝑥(𝑡𝑘)), 0)

+ 𝐿′
𝑤|𝑤|

(19)

rom Eq. (19), we can define 𝑔(𝑥, 𝑒1, 𝑒2) = 𝑓 (𝑥,𝛷1(𝑥) + 𝑒1, 𝛷2(𝑥) + 𝑒2, 0).
n addition, the positive constants, 𝐿′

𝑥, 𝐿′
𝜉 , and 𝐿′

𝑞 exist, such that the
ubsequent Lipschitz inequality holds for all 𝑥, 𝑥′ ∈ 𝛺�̂�:
|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝑔(𝑥, 𝑒1, 𝑒2) −
𝜕𝑉 (𝑥′)
𝜕𝑥

𝑔(𝑥′, 0, 0)
|

|

|

|

≤

𝐿′
𝑥|𝑥 − 𝑥′| + 𝐿′

𝑒1
|𝑒1| + 𝐿′

𝑒2
|𝑒2|

(20)

Hence, we can re-write Eq. (19) as:

�̇� ≤ 𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑔(𝑥(𝑡), 𝑒1, 𝑒2) −
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝑔(𝑥(𝑡𝑘), 0, 0)

− 𝑐3|𝑥(𝑡𝑘)|
2 + 𝐿′

𝑤|𝑤|

≤ 𝐿′
𝑥|𝑥(𝑡) − 𝑥(𝑡𝑘)| + 𝐿′

𝑒1
|𝑒1| + 𝐿′

𝑒2
|𝑒2|

− 𝑐3|𝑥(𝑡𝑘)|
2 + 𝐿′

𝑤|𝑤|

(21)

rom the continuity property of 𝑥(𝑡) ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥), we have
𝑥(𝑡) − 𝑥(𝑡𝑘)| ≤ 𝑀𝐹𝛥,∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝛥). Utilizing this bound and from the
nequalities of Eq. (2), we can re-write Eq. (21) as follows:

̇ ≤ 𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑒1
|𝑒1| + 𝐿′

𝑒2
|𝑒2| + 𝐿′

𝑤|𝑤| −
𝑐3
𝑐2

𝜌𝑠 (22)

In Eq. (22), the first term signifies the error stemming from the sample-
and-hold control input implementation, the second and third terms
denote quantization errors due to encryption, and the fourth term in-
dicates the error from process disturbances. The aforementioned errors
are constrained and can be effectively minimized by utilizing a lower
sampling time and a higher quantization parameter for encryption. As
a result, the combined sum of these is also constrained and can be
rendered suitably small. Hence, there exist positive real numbers 𝛥, 𝑑,
and 𝜖𝑤, such that the following inequality holds for all 𝑡 ∈ [0, 𝑇 ]:

𝐿′ 𝑀𝐹𝛥 + 𝐿′
|𝑒1| + 𝐿′

|𝑒2| + 𝐿′
|𝑤| −

𝑐3 𝜌𝑠 ≤ −𝜖𝑤
𝑥 𝑒1 𝑒2 𝑤 𝑐2
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implying that �̇� ≤ −𝜖𝑤 for any 𝑥(𝑡𝑘) ∈ 𝛺�̂� ⧵ 𝛺𝜌𝑠 for all 𝑡𝑘 ∈ [0, 𝑇 ].
Thus, upon satisfying the conditions of Eq. (14), under the encrypted
stabilizing controller, the closed-loop system state is confined in 𝛺�̂� and
converges within 𝛺𝜌𝑠 ⊆ 𝛺𝜌min

in time 𝑇 , and stays within the desired
stability region.

Now, we advance to the stability analysis of the closed-loop system
employing the encrypted distributed LMPC.

Theorem 2. We consider the system of Eq. (1) with bounded disturbances
|𝑤| ≤ 𝑤𝑚, to examine the closed-loop stability under the encrypted iterative
distributed LMPCs of Eqs. (12) and (13). The initial state 𝑥0 is assumed to
be within 𝛺�̂�. Utilizing the results derived in Theorem 1, and preserving our
earlier assumption that 𝜌 > �̂� > 𝜌min > 𝜌𝑠, if the ensuing conditions are met,

�̇� ≤ 𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑒1
|𝑒1| + 𝐿′

𝑒2
|𝑒2| + 𝐿′

𝑤|𝑤| −
𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤

𝜌min = max{𝑉 (𝑥(𝑡 + 𝛥))|𝑉 (𝑥(𝑡)) ≤ 𝜌𝑠}
(23)

then the closed-loop state 𝑥(𝑡) remains inside 𝛺�̂� and is ultimately bounded
within 𝛺𝜌min

for 𝑡 ≥ 𝑇 , by implementing the encrypted iterative distributed
LMPCs of Eqs. (12) and (13).

Proof. First, we establish the feasibility of the optimization problem
associated with each LMPC in the encrypted distributed LMPC system,
for all the states bounded within 𝛺�̂�. Subsequently, with the optimized
control inputs from the encrypted distributed LMPC, we will demon-
strate that the closed-loop state of Eq. (1) is bounded and converges to
the stability region 𝛺�̂�, thereby extending the findings presented from
Theorem 1. If 𝑥(𝑡𝑘) ∈ 𝛺�̂� ⧵𝛺𝜌min

, the input trajectories, 𝑢𝑗 (𝑡), where 𝑗 =
{1, 2} for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) are feasible solutions of the optimization problem
of each LMPC, as these trajectories satisfy the constraints of Eqs. (12c)
and (13c), as well as the Lyapunov constraints of Eqs. (12e) and (13e).
Additionally, if 𝑥(𝑡𝑘) ∈ 𝛺𝜌min

, the control inputs 𝑢𝑗 (𝑡), 𝑗 = {1, 2} meet the
constraints imposed in Eqs. (12c) and (13c), as well as the Lyapunov
constraints of Eqs. (12f) and (13f); hence, the predicted states by the
LMPC model are bounded within 𝛺𝜌min

. Thus, for all 𝑥0 ∈ 𝛺�̂�, the LMPC
optimization problems of Eqs. (12) and (13) can be solved recursively
for all iterations with feasible solutions as 𝑥(𝑡) ∈ 𝛺�̂� for all times.

Next, we establish that for any 𝑥0 ∈ 𝛺�̂�, the state of the closed-
loop system remains bounded within 𝛺�̂� for all times, and given a
sufficiently large time 𝑇 > 0, it converges to a small neighborhood
𝛺𝜌𝑠 ⊆ 𝛺𝜌min

and remains there. Under the encrypted iterative dis-
tributed LMPC system, the time derivative of the control Lyapunov
function is:

�̇� =
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝑓 (𝑥(𝑡), �̂�1(𝑡𝑘), �̂�2(𝑡𝑘), 𝑤) (24)

From the Lyapunov constraint of Eqs. (12e) and (13e), the following
inequality holds:

�̇� =
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝑓 (𝑥(𝑡), �̂�1(𝑡𝑘), �̂�2(𝑡𝑘), 𝑤)

≤ 𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝑓 (𝑥(𝑡), �̂�1(�̂�(𝑡𝑘)), �̂�2(�̂�(𝑡𝑘)), 𝑤)
(25)

However, extending the results of Theorem 1, the time-derivative of
the control Lyapunov function under the encrypted iterative distributed
LMPC can be bounded as follows:
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝑓 (𝑥(𝑡), �̂�1(𝑡𝑘), �̂�2(𝑡𝑘), 𝑤) ≤ 𝐿′

𝑥𝑀𝐹𝛥

+𝐿′
𝑒1
|𝑒1| + 𝐿′

𝑒2
|𝑒2| + 𝐿′

𝑤|𝑤| −
𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤
(26)

ence, for the selected time 𝑇 , there exist positive real numbers 𝑑, 𝛥,
nd 𝜖𝑤, such that the subsequent inequality holds ∀ 𝑡 ∈ [0, 𝑇 ],

̇ ≤ 𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑒1
|𝑒1| + 𝐿′

𝑒2
|𝑒2| + 𝐿′

𝑤|𝑤| −
𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤

which implies that �̇� ≤ −𝜖𝑤 for any 𝑥(𝑡𝑘) ∈ 𝛺�̂� ⧵ 𝛺𝜌𝑠 for all 𝑡𝑘 ∈
[0, 𝑇 ]. This confirms that when the conditions of Eq. (23) are satisfied,
6

Fig. 2. Process schematic of the two CSTR network.

the closed-loop system state remains consistently bounded within 𝛺�̂�.
Furthermore, it converges to 𝛺𝜌𝑠 ⊆ 𝛺𝜌min

within time 𝑇 and stays there.
With this, the proof for the stability of the system under the encrypted
distributed LMPC is concluded.

4. Application to a nonlinear chemical process network operating
at an unstable steady state

In this section, we demonstrate the application of the proposed
encrypted iterative distributed LMPC system to a nonlinear chemical
process that is to be operated at an unstable steady state.

4.1. Process description and model development

The process considered involves the production of ethylbenzene
(EB) through the reaction of ethylene (E) and benzene (B) in two
separate non-isothermal continuous stirred tank reactors (CSTRs), con-
nected in series, as illustrated in Fig. 2. The principal reaction, referred
to as ‘‘primary’’, is a second-order, irreversible, and exothermic re-
action, accompanied by two additional side reactions. The chemical
reactions can be described as follows:

C2H4 + C6H6 → C8H10 (primary) (27a)

C2H4 + C8H10 → C10H14 (27b)

C6H6 + C10H14 → 2C8H10 (27c)

Comprehensive information on the first-principles-based dynamic
model, including equations, model parameter values, and steady-state
values are provided in Kadakia, Suryavanshi et al. (2023). The state
variables are the concentration of ethylene, benzene, ethylbenzene, di-
ethylbenzene, and the reactor temperature for each CSTR in deviation
terms, that is: 𝑥⊤ = [𝐶𝐸1

− 𝐶𝐸1𝑠
, 𝐶𝐵1

− 𝐶𝐵1𝑠
, 𝐶𝐸𝐵1

− 𝐶𝐸𝐵1𝑠
, 𝐶𝐷𝐸𝐵1

−
𝐶𝐷𝐸𝐵1𝑠

, 𝑇1 − 𝑇1𝑠, 𝐶𝐸2
− 𝐶𝐸2𝑠

, 𝐶𝐵2
− 𝐶𝐵2𝑠

, 𝐶𝐸𝐵2
− 𝐶𝐸𝐵2𝑠

, 𝐶𝐷𝐸𝐵2
−

𝐶𝐷𝐸𝐵2𝑠
, 𝑇2 − 𝑇2𝑠]. The subscript ‘‘𝑠’’ denotes the steady-state value.

e create two distributed LMPCs to control the overall process. LMPC
optimizes the control inputs 𝑢1 = [𝐶𝐸𝑜1

− 𝐶𝐸𝑜1𝑠
, 𝐶𝐵𝑜1

− 𝐶𝐵𝑜1𝑠
, 𝑄1 −

1𝑠]⊤. These inputs are bounded by the closed sets [−3, 3] kmol∕m3,
−3, 3] kmol∕m3, and [−104, 2×103] kW, respectively. LMPC 2 optimizes
he control inputs 𝑢2 = [𝐶𝐸𝑜2

− 𝐶𝐸𝑜2𝑠
, 𝐶𝐵𝑜2

− 𝐶𝐵𝑜2𝑠
, 𝑄2 − 𝑄2𝑠]⊤. These

anipulated inputs are bounded by the closed sets, [−2.5, 2.5] kmol∕m3,
−2.5, 2.5] kmol∕m3, and [−1.5 × 104, 5 × 103] kW, respectively. The
rimary goal is to manage both CSTRs at their unstable equilibrium
oint by utilizing the encrypted iterative distributed LMPC system. This
nvolves the use of quantized states and control inputs for the purposes
f computation and actuation.
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4.2. Encrypting the distributed control system

Prior to integrating encryption and decryption into a process, the
parameters 𝑑, 𝑙1, and 𝑙2 are chosen, considering the extreme feasible
states and inputs. This involves deriving the integer bit count 𝑙1 − 𝑑.
n the Q𝑙1 ,𝑑 set, the upper limit is 2𝑙1−𝑑−1 − 2−𝑑 , and the lower limit is
2𝑙1−𝑑−1. Within the set, rational numbers are separated by a resolution
f 2−𝑑 . The quantization parameter 𝑑, representing the fractional bit
ount, is determined by the desired precision level and the range of
tate and input values. 𝑙2 is chosen to exceed 𝑙1. For the case discussed
n this section, 𝑙1 − 𝑑 = 16, and subsequently, 𝑙1 and 𝑑 are fixed. Next,
= 8 is chosen for simulations. Accordingly 𝑙1 is 24, and 𝑙2 is 30.

ncryption (Paillier cryptosystem) is implemented using Python’s ‘‘phe’’
odule, PythonPaillier (CSIRO’s Data61, 2013). To solve the multi-

onstrained, non-convex optimization task of the LMPCs, the IPOPT
oftware (Wächter & Biegler, 2006) in Python is utilized.

The termination criterion for the distributed LMPCs was set to
iterations. Thus, control inputs are exchanged only once with the

ther LMPC, at the end of the first iteration. For the computation of
he control cost of the distributed LMPCs, the integration step is set
o ℎ𝑐 = 10−2 × 𝛥. We assume a control Lyapunov function of the
orm 𝑉 = 𝑥⊤𝑃𝑥, where 𝑃 is a positive definite matrix chosen as
diag; [200 200 400 1000 2.5 250 250 200 1000 0.5], through
xtensive simulations. Autocorrelated noise, represented as 𝑤𝑘 = 0.75×
𝑘−1 + 𝜉𝑘, was introduced to the inlet flow rates, 𝐹1 and 𝐹2, but

he liquid level remains constant in both CSTRs at all times. Here,
= 1, 2,… denotes discrete time steps of 10−2 × 𝛥, 𝜉𝑘 is a randomly

enerated normally distributed variable with zero mean, and a standard
eviation of 5% of the inlet flow rates. The prediction horizon of both
MPC is set to two sampling periods. The stability region is set as
= 1800, while 𝜌min = 2 represents the smaller region within which

he closed-loop system state is desired to be bounded. The distributed
MPC cost function is defined as 𝐿(𝑥, 𝑢) = 𝑥⊤𝑄𝑥 + 𝑢⊤𝑅𝑢, where 𝑄 =
iag; [1000 1000 1500 5 8 1000 1000 3000 5 110] and 𝑅 =
iag; [2.1 1.95 1.5×10−5 10 10 0.5×10−4]. As the undesired byproduct,
i-ethylbenzene, is present in minimal quantities in both CSTRs, its tra-
ectories are not illustrated. Non-Gaussian measurement noise obtained
rom the noise distribution in Luo (2023) extracted from industrial data,
s added to all the measured states. As this noise is normalized, it was
caled by 2% of the operating steady-state value for each concentration
tate, and no scaling was applied for the temperature states.

It must be ensured that the sampling time (𝛥) exceeds the combined
ime needed for encryption–decryption of the states and control inputs,
long with the time required by the LMPCs to compute the control
nputs at each sampling instance for the given quantization parameter.
n mathematical terms,

>max (encryption–decryption time)
+ max (Control input computation time)

(28)

he control inputs are applied in a sample-and-hold manner throughout
he sampling period. As long as the time required for computing control
nputs and encryption–decryption is shorter than the sampling period,
o lag in the control variables would occur. As explained in Remarks 3
nd 4, the time needed to encrypt–decrypt states and inputs depends on
he bit lengths of the keys, number of microcontrollers, and RF modules
sed, and hence can be decided accordingly. For simulation purposes,
024-bit length keys were used for encrypted communication between
ontrollers, and 2048-bit length keys were utilized for all other en-
rypted communications. Considering the above criteria, assuming all
ncryption–decryption operations to be performed in series, although
t can be done in parallel, the sampling time 𝛥 was selected as 30 s
n this example. Based on the constraint of Eq. (28), the encrypted
istributed LMPC can only be implemented in systems that allow us
o use sufficiently large sampling times that also stabilize the system
s per the constraint of Eq. (26). Eqs. (12e) and (13e) are Lyapunov
onstraints that ensure that the time-derivative of the control Lyapunov
7

Fig. 3. State trajectories of CSTR 1 under the encrypted iterative distributed LMPC
(blue solid line) and encrypted centralized LMPC (orange dashed line).

function is more negative under the encrypted distributed LMPC than
the stabilizing controller for the control input applied over the next
sampling period. The future control input computed by the LMPC
beyond the next sampling period may not yield a more negative time-
derivative of the control Lyapunov function. Hence, we have utilized
the stabilizing controller for the other subsystems in the first iteration.
Moreover, as the system is operated at an unstable equilibrium, stability
is critical. Alternatively, the neighboring LMPCs can utilize the future
control inputs when the system is operated at a stable equilibrium.

4.3. Simulation results of the encrypted distributed LMPC system

Figs. 3, 4, and 5 depict the results of the encrypted iterative dis-
tributed LMPC against the encrypted centralized LMPC. The normalized
sum of the cost function for the encrypted distributed and centralized
LMPCs was 0.9795 and 1, respectively. Also, the average computational
time needed to compute the optimal control inputs by the distributed
LMPC system and the centralized LMPC was 7.33 s and 13.14 s,
respectively. Thus, not only did the distributed LMPC provide better
closed-loop performance, but it also reduced the average computational
time significantly compared to the centralized LMPC. This is evident
with the fewer oscillations observed in the control input trajectories of
the encrypted distributed LMPC in Fig. 5. No significant difference was
observed in the closed-loop state trajectories in both cases, as visible
in Figs. 3 and 4. Nonetheless, in both cases, the system successfully
converges within 𝛺𝜌min

in approximately 1.5 h of process time. We
note that the time of convergence to the steady state for the desired
product ethylbenzene is longer in the second CSTR as it starts with
a low initial concentration; this time may be reduced by modifying
the second reactor design to adjust the residence time to speed up the
second reactor dynamics.

Remark 8. For the encrypted distributed LMPC investigated in this
research, encryption–decryption of data as depicted in Fig. 1 leads to
errors due to quantization. Kadakia, Suryavanshi et al. (2023) empha-
sized the potential for these errors to surpass plant/model mismatch
errors in cases where distinct models are utilized in the controlled
process and the LMPC. To mitigate the error caused by quantization,
a higher quantization parameter 𝑑 was recommended. Adopting 𝑑 = 8
resulted in nearly indistinguishable closed-loop results with encryption
when compared to those without encryption. Therefore, a quantization
parameter of 𝑑 = 8 was uniformly applied in all simulations conducted

in this study.
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Fig. 4. State trajectories of CSTR 2 under the encrypted iterative distributed LMPC
(blue solid line) and encrypted centralized LMPC (orange dashed line).

Fig. 5. Control input trajectories under the encrypted iterative distributed LMPC (black
solid line) and encrypted centralized LMPC (blue dashed line).

5. Conclusion

In this research, we formulated an encrypted iterative distributed
LMPC system employing encrypted signals for data transmission be-
tween sensors, controllers, and actuators. Following a comprehensive
stability analysis, we determined bounds for errors from quantiza-
tion, process disturbances, and the sample-and-hold implementation
of the controller. With these bounds, the system could be stabilized
within the desired stability region. Selection of encryption–decryption
key lengths, quantization parameters, sampling time criterion, and
potential methods to decrease the encryption–decryption time were
discussed to facilitate practical implementation. Closed-loop simula-
tions were performed, comparing the proposed control scheme against
8

the encrypted centralized LMPC. Non-Gaussian sensor noise obtained
from an industrial data set and process disturbances were used to
demonstrate the industrial relevance and suitability of the proposed
approach. The results favor the use of the encrypted distributed LMPC
system, which not only improves closed-loop performance but also
significantly reduces the computational time needed to calculate the
control input, positioning the encrypted iterative distributed LMPC as
an effective solution for improving closed-loop performance, decreas-
ing computational time, and enhancing cybersecurity in large-scale
nonlinear systems.
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