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Abstract

This article proposes a two-layer framework to maximize economic performance

through dynamic process economics optimization while addressing fluctuating real-

world economics and enhancing cyberattack resilience via encryption in the feedback

control layer for nonlinear processes. The upper layer employs a Lyapunov-based

economic model predictive control scheme, receiving updated economic information

for each operating period, while the lower layer utilizes an encrypted linear feedback

control system. Encrypted state information is decrypted in the upper layer to deter-

mine the economically optimal dynamic operating trajectory through nonlinear opti-

mization. Conversely, the lower layer securely tracks this trajectory in an encrypted

space without decryption. To mitigate the cyber vulnerability of the upper layer, we

integrate a cyberattack detector that utilizes sensor-derived data for attack detec-

tion. We quantify the errors stemming from quantization, disturbances, and sample-

and-hold controller implementation. Simulation results of a nonlinear chemical pro-

cess highlight the robustness and economic benefits of this new control architecture.
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1 | INTRODUCTION

Networked control systems have emerged as a transformative para-

digm in industrial operations, offering numerous advantages.1 By har-

nessing networked communication protocols, these systems

significantly reduce the need for extensive wiring and hardware, lead-

ing to cost savings and streamlined operations. Additionally, they

modernize plant infrastructure by enabling real-time monitoring and

control, thereby enhancing operational efficiency and responsiveness.

With fewer physical components, maintenance issues are minimized,

contributing to improved system reliability and reduced downtime.

Further, the ease of implementation and scalability make networked

control systems accessible to a wide range of applications, from small-

scale operations to large industrial complexes. Given these benefits,

networked control systems have become the standard for control sys-

tems, offering unparalleled flexibility, efficiency, and reliability in man-

aging industrial processes. As technology continues to evolve,

embracing networked control systems remains imperative for organi-

zations aiming to maintain competitiveness and adaptability in an

ever-changing industrial landscape.

While networked communication facilitates seamless and rapid

data transfer, it also introduces vulnerabilities to cyberthreats.

Breaches or compromises in these systems can have severe conse-

quences such as disruptions of essential services or physical harm,

which are threats to public safety. Recent advances in cyberattack

techniques support the imperative of establishing robust cybersecu-

rity protocols.2 Real-world incidents reaffirm the critical need of

cybersecurity in networked cyber-physical systems. For example, the
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2015 BlackEnergy malware attack on SCADA controls overseeing

Ukraine's power grid resulted in widespread power outages.3 Simi-

larly, Colonial Pipeline suffered a ransomware attack by DarkSide

hackers in 2021, when its networked communication was

encrypted and a ransom was demanded for the decryption keys.

Subsequently, Colonial Pipeline had to shut down its fuel distribu-

tion operations, resulting in significant financial losses.4 As cyber

threats continue to evolve, cybersecurity concerns loom over pro-

cess control systems. Modern control systems must be designed

with robust security measures to mitigate the impact of cyberat-

tacks. Some measures include implementing secure communication

protocols, regularly updating software and firmware, and employ-

ing cyberattack detection systems with reconfiguration protocols

in the event of an attack.

In traditional process control frameworks, model predictive con-

trol (MPC) is combined with a real-time optimizer, the latter of which

is tasked with determining economically optimal steady states to be

tracked by the MPC through a comprehensive plant model. How-

ever, as energy consumption and operational efficiency concerns

escalate in industries like chemical and petrochemicals, economic

model predictive control (EMPC) has emerged. EMPC enables

dynamic optimization of economic cost functions while maintain-

ing stability constraints. Extensive research in chemical process

control literature indicates that several industrial processes can

attain greater profits through time-varying operation compared to

steady-state operation.5,6 Also, today's dynamic economic land-

scape is characterized by rapid globalization, technological

advancements, and unforeseen disruptions. Fluctuations in energy

costs, commodity prices, currency values, interest rates, logistics

costs, and market trends can significantly impact businesses and

industries worldwide. By incorporating fluctuating real-world eco-

nomics, EMPC systems can yield superior results, emphasizing the

importance of dynamic optimization techniques for maximizing

economic benefits and maintaining competitiveness in volatile

environments.

Previous studies have explored topics like implementing secure

communication in networked control systems through encryption,7,8

developing cyberattack detectors,9,10 creating cyberattack-resilient

controllers,11 and developing economic MPCs with time-varying

objective functions.6,12 However, these efforts have not yet resulted

in control systems resilient to cyber threats that seamlessly integrate

secure communication, cyberattack detection, nonlinear dynamic eco-

nomic optimization, and real-time fluctuations in economics. Estab-

lishing such capabilities is critical for contemporary control systems to

navigate economic challenges and cyber vulnerabilities in dynamic

environments. This gap motivates our proposal for a new control

framework aimed at effectively addressing this challenge.

Specifically, we introduce an encrypted two-layer control frame-

work comprising a nonlinear Lyapunov-based economic model predic-

tive control (LEMPC) scheme in the upper layer and an encrypted

linear feedback control system in the lower layer. As we cannot per-

form nonlinear computations in an encrypted space, we decrypt state

information in the upper layer to determine the economically optimal

dynamic set point trajectory via nonlinear optimization. Conversely,

the lower layer securely tracks these set points in an encrypted space

without decryption, utilizing the additive homomorphic property of

the Paillier cryptosystem for secure, private communication. To

address the cyber vulnerability of the upper layer, we integrate a

logic-based cyberattack detector. In the event of an attack, the

encrypted lower layer autonomously continues operation, disregard-

ing compromised signals from the upper layer, thus ensuring cyber-

resilient operation. In Reference 6, a two-level EMPC system was

implemented, consisting of an EMPC in the upper level computing the

operating trajectory for the lower-level LMPC to track through

closed-loop feedback. In our framework, the objective is to facilitate

encrypted operating trajectory tracking without decryption using

encrypted feedback at the lower-layer, by employing proportional-

integral (PI) controllers which allow linear mathematical operations to

be performed in an encrypted space without decryption. Unlike the

previous approach which lacked encryption, this method ensures

secure communication. While utilizing LMPC in the lower layer would

enhance control input computation optimization, it would not fortify

against cyberattacks as the computations would occur without

encryption.

The subsequent sections of the article are structured as follows:

in Section 2, we cover preliminaries, including notation, the class of

systems under consideration, system stability assumptions, the cryp-

tosystem employed for encryption, and the effects of quantization. In

Section 3, we discuss the encrypted two-layer control framework, for-

mulate the LEMPC, and present the stability analysis of the proposed

control system. Section 4 presents and analyzes various closed-loop

simulations of a nonlinear chemical process within the encrypted two-

layer control framework.

2 | PRELIMINARIES

2.1 | Notation

The notation x> represents the transpose of a vector x. The sets of

real numbers, integers, and natural numbers are represented by ℝ, ℤ,

and ℕ, respectively. Additionally, ℤM refers to the additive group of

integers modulo M. Set subtraction is indicated by “n”, where AnB
denotes the set of elements in A but not in B. A function denoted by

fð�Þ belongs to the class C1 if it is continuously differentiable within its

domain. Furthermore, a continuous function α : ½0,aÞ! ½0,∞Þ is classi-
fied as class K if αð0Þ¼0, and it is strictly increasing. The terms

lcmði, jÞ and gcdði, jÞ represent the least common multiple and greatest

common divisor of integers i and j, respectively.

2.2 | Class of systems

In this research, we focus on multi-input multi-output (MIMO) non-

linear systems, which are described by a set of ordinary differential

equations (ODEs) in the following manner:
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_x ¼ fðxðtÞ,uðtÞ,wðtÞÞ
y ¼ xþv:

ð1Þ

The state vector is represented by x�ℝn, and y�ℝn denotes the vector

of continuously sampled state measurements. The control input vector,

denoted by u�ℝm, is subject to bounds defined by the set U�ℝm.

Specifically, U is defined as U¼fu�ℝmjumin
i ≤ ui ≤ umax

i , i¼1,…,mg,
where umin

i and umax
i represent the lower and upper bounds, respec-

tively, of the ith control input in the vector u. Additionally, the distur-

bance vector is denoted by w�ℝw , and the noise vector is denoted

by v�ℝn. Similarly, the disturbance and noise vectors are bounded by

jWðtÞj≤ θ and the set V �ℝn, respectively. The function fð�Þ is locally

Lipschitz and evaluates to zero at the origin fð0,0,0Þ¼0, establishing

it as an equilibrium of Equation (1). We set the initial time as zero

(t0 ¼0). Further, SðΔÞ is defined as the set of piece-wise constant

functions with a period of Δ.

We introduce a dynamic economic optimization and encrypted

feedback control framework to guide the system of Equation (1) in

tracking the reference trajectory representing time-varying operating

set points, xEðtÞ�Ωρ, where Ωρ is defined in the subsequent subsec-

tion. The rate of change of the reference trajectory is bounded by:

j _xEðtÞj≤ γE: ð2Þ

To capture the deviation between the actual state trajectory xðtÞ and
the time-varying reference trajectory xEðtÞ, we introduce,

eðtÞ¼ xðtÞ�xEðtÞ, ð3Þ

and we can characterize its dynamics by

ė ¼ _xðtÞ� _xEðtÞ
¼ fðxðtÞ,uðtÞ,wðtÞÞ� _xEðtÞ
¼ fðeðtÞþxEðtÞ,uðtÞ,wðtÞÞ� _xEðtÞ
¼ gðeðtÞ,xEðtÞ, _xEðtÞ,uðtÞ,wðtÞÞ:

ð4Þ

We assume that Equation (4) is continuously differentiable and pos-

sesses a unique equilibrium point for each fixed xE �Ωρ. In other

words, for every xE there exists a corresponding uE , resulting in e¼0

being an equilibrium of Equation (4). This condition can be expressed

mathematically as

gð0,xE ,0,uE ,0Þ¼0: ð5Þ

Remark 1. Assuming that the system described by

Equation (1) has an equilibrium for each fixed xE �Ωρ is

crucial for enabling the tracking of the reference trajec-

tory. With an EMPC in place, the economically optimal

dynamic state trajectory can be determined for any ini-

tial condition xEðt0Þ�Ωρ, where t0 ¼0. Consequently,

the generated reference state trajectory contains set

points that can be effectively tracked for any xE �Ωρ.

2.3 | Stabilizability assumptions

We assume the existence of an explicit stabilizing feedback control

law, uðtÞ¼ hðeðtÞ,xEðtÞÞ�U, that renders the origin of the system

of Equation (1) with w�0 and v�0 asymptotically stable, for each

xE �Ωρ. This assumption guarantees that the time-varying state trajec-

tory xEðtÞ can be tracked and signifies the existence of a C1 control

Lyapunov function Vðe,xEÞ that satisfies the following inequalities:

α1ðjejÞ≤Vðe,xEÞ≤ α2ðjejÞ, ð6aÞ

∂Vðe,xEÞ
∂e

gðe,xE ,0,hðe,xEÞ,0Þ≤ �α3ð ej jÞ, ð6bÞ

∂V
∂e

����
����≤ α4ð ej jÞ, ð6cÞ

∂V
∂xE

����
����≤ α5ð ej jÞ, ð6dÞ

8e,xE �ℝn in an open region D surrounding the origin. The functions

α1,α2,α3,α4, and α5 belong to the class K. For the system of

Equation (1), the region of closed-loop stability can be defined as a

level set denoted by Ωρ of the control Lyapunov function V. This set

is described as Ωρ :¼fx�DjVðe,xEÞ≤ ρg, where ρ>0. Therefore, start-

ing from any initial condition inside Ωρ, the control input hðe,xEÞ
ensures that the closed-loop state trajectory remains within Ωρ.

Further, considering the local Lipschitz property to the vector

field f and that the manipulated input vector u is bounded within

nonempty convex sets, a positive constant exists such that

jfðx,u,wÞj≤MF , ð7Þ

8x�Ωρ, u�U, and w�W. Extending this to the system of Equation (4),

considering that the rate of change of xEðtÞ is bounded by γE ,

jgðe,xE , _xE ,u,wÞj≤M, ð8Þ

8ðx�xEÞ�Ωρ ∗ , xE �Ωρ, u�U, and w�W. Further, due to the continu-

ous differentiability of the control Lyapunov function Vðe,xEÞ and the

Lipschitz property of f, there exist positive constants

Lw ,L
0
w ,Le,L

0
e,L

0
E ,L

00
E ,L

0
u such that

jgðe,xE , _xE ,u,wÞj� jgðe0,x0E , _xE ,u,0Þj
≤ Leje�e0jþLEjxE�x0EjþLwjwj,

ð9Þ

∂Vðe,xEÞ
∂e

gðe,xE , _xE ,u,wÞ� ∂Vðe0 ,x0EÞ
∂e

gðe0,x0E , _x0E ,u0 ,0Þ
����

����
≤ L0eje�e0jþL0EjxE�x0Ej
þL00Ej _xE� _x0EjþL0wjwj
þL0uju�u0j,

ð10Þ

8xE ,x0E �Ωρ, e,e0 �Ωρ ∗ , j _xEj≤ γE , j _x0Ej≤ γE , u�U, and w�W.
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Remark 2. In various nonlinear systems commonly

encountered in chemical process control systems, Lya-

punov functions have often been formulated using state

variables VðxÞ¼ fðxðtÞÞ. In our study, leveraging the pre-

vious definitions of e and xE , we can also represent the

state vector as xðtÞ¼ xEðtÞ�eðtÞ. Consequently, we

broaden the Lyapunov function to take the form

Vðe,xEÞ, as we proceed to examine the stability of the

system within the proposed control framework in

the following section.

2.4 | Paillier cryptosystem

In this article, we utilize the Paillier cryptosystem13 to encrypt various

signals, including state measurements (y), reference trajectory set

points (xE), and manipulated inputs (u), which are transmitted to and

from the controllers. A key aspect of our approach is utilizing the

semi-homomorphic property of additive homomorphism inherent

in the Paillier cryptosystem. This property enables us to perform

linear additive operations in an encrypted space, particularly

within the lower encrypted feedback control layer. The encryp-

tion process begins with the generation of both public and private

keys. As the Paillier cryptosystem is an asymmetric encryption

scheme, it utilizes two different keys for encryption and decryp-

tion: a public key for encrypting plaintext and a private key for

decrypting ciphertext. The procedure for generating these

keys is:

1. Select two large prime integers (p and q) based on the desired key

bit length, such that, gcdðpq,ðp�1Þðq�1ÞÞ¼1.

2. Calculate, M¼ pq.

3. Search for an arbitrary integer g such that g�ℤ
M2 , that is, the mul-

tiplicative group of integers modulo M2.

4. Calculate λ¼ lcmðq�1,p�1Þ.
5. Define LðxÞ¼ ðx�1Þ=M.

6. Verify the existence of the subsequent modular multiplicative

inverse: u¼ðLðgλmodM2ÞÞ�1
modM.

7. If the inverse does not exist, go back to step 3. If the inverse exists,

ðM,gÞ is the public key and ðλ,uÞ is the private key.

After obtaining the keys, authorized recipients receive the public and

private keys for encryption and decryption, respectively. The message

m is encrypted as follows:

EMðm, rÞ¼ c¼ gmrMmodM2, ð11Þ

where r is a random integer from the set ℤM, and c is the resulting

ciphertext obtained by encrypting m. Decryption is performed as fol-

lows to obtain m:

DMðcÞ¼m¼ LðcλmodM2ÞumodM: ð12Þ

2.5 | Quantization

Prior to encrypting data using the Paillier cryptosystem, it must be

processed to natural numbers in ℤM. However, signal values are typ-

ically in floating-point format before encryption. As a result, a process

known as quantization is employed to convert the floating-point num-

bers into ℤM.
8 This involves creating a set, denoted as Ql1,d, which is

characterized by two parameters: l1, representing the total bit count

(combining integer and fractional bits), and d, indicating the number of

fractional bits. The set, Ql1,d, comprises rational numbers ranging from

�2l1�d�1 to 2l1�d�1�2�d, with intervals of 2�d. A rational number q

within Ql1,d can be expressed as q�Ql1,d, where ∃β� f0,1gl1 , and
q¼�2l1�d�1βl1 þ

P l1�1
i¼1 2i�d�1βi. The function, gl1,d maps a real number

data point a to q�Ql1,d as follows:

gl1,d :ℝ!Ql1,d

gl1,dðaÞ:¼ arg min
q � Ql1 ,d

ja�qj: ð13Þ

Subsequently, we convert the quantized data to a set of positive inte-

gers using a one-to-one (bijective) mapping referred to as fl2,d, as

described in.8 This mapping is structured to ensure that the quantized

data is translated into a subset of the message space, ℤM, and is per-

formed as follows:

fl2 ,d :Ql1 ,d !ℤ2l2

fl2,dðqÞ :¼2dqmod2l2 :
ð14Þ

In the encryption process, plaintext messages from the set Z2l2 are

transformed to ciphertexts, which can subsequently be decrypted

back into the original set Z2l2 . Next, to retrieve the original data from

the set Ql1,d, an inverse mapping, labeled as f�1
l2,d

, is performed as

follows:

f�1
l2,d

:ℤ2l2 !Ql1,d: ð15Þ

f�1
l2,d

ðmÞ :¼ 1

2d

m�2l2 ifm≥2l2�1

m otherwise

(
: ð16Þ

To illustrate the process of encryption and decryption, we can refer to

the example shown in Figure 1. For this specific instance, the selected

quantization parameters are as follows: d¼3, l1 ¼18, and l2 ¼30. Let

us consider the rational number a¼�1:31752. The impact of quanti-

zation is demonstrated in Figure 1, where the quantization error,

ja�qj ¼0:05748, is evident.

Remark 3. Quantization-related errors tend to accumu-

late in multiplicatively homomorphic encryption

schemes like ElGamal, due to the compounding nature

of multiplication and associated scaling operations. In

contrast, additive homomorphism, like in the Paillier

4 of 17 KADAKIA ET AL.
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scheme employed in this article, is generally less prone

to quantization error accumulation, as addition does not

involve scaling or compounding of errors through multi-

plication. To mitigate this effect, one can select a higher

quantization parameter.

3 | DEVELOPMENT OF THE ENCRYPTED
TWO-LAYER CONTROL FRAMEWORK

In this section, we describe the design of the proposed encrypted

two-layer control framework, formulate the LEMPC and encrypted

feedback controller, and perform a stability analysis of the encrypted

control system.

3.1 | Design and implementation

In the encrypted control framework illustrated in Figure 2, at time tk ,

sensor signals xðtkÞ undergo encryption to form ciphertext c1 using a

public key. These encrypted signals are then transmitted to a cloud

hardware security module (HSM), a dedicated hardware device uti-

lized for managing cryptographic keys and securely performing cryp-

tographic operations within a cloud computing environment. After

decryption using the private key, the quantized sensor signals x̂ðtkÞ
are sent to the cloud server responsible for nonlinear EMPC computa-

tions, aimed at determining economically optimal dynamic set points

xEðtÞ for t¼ ½tk ,tkþ t0Þ, where t0 represents the EMPC operating

period. Following this, the set points xEðtÞ are encrypted into cipher-

text c01 using the public key within another cloud HSM. Subsequently,

these encrypted set points are transmitted to a set of PI (propor-

tional-integral) controllers in the encrypted lower feedback control

layer. Operating with a sampling period Δ significantly smaller than

the operating period t0 , this lower layer computes control inputs to

track the set point trajectory using encrypted sensor signals c2, sam-

pled at intervals of Δ. These control input computations take place

within an encrypted space without decryption, leveraging the additive

m = 1,073,741,813

m = 1,073,741,813
�������	
�

�������	
�

F IGURE 1 Visualization of the encryption-decryption process
and effect of quantization when applied to a floating-point real
number.

F IGURE 2 A block diagram of the proposed encrypted two-layer control framework.
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homomorphic property of the Paillier cryptosystem. At the actuator,

encrypted control inputs c3 are decrypted to obtain the quantized

input ûðtkÞ, which is then applied to the process. This cycle within the

lower layer continues until it receives a new encrypted state trajec-

tory from the EMPC in the upper layer at the end of the operating

period.

The closed-loop design depicted in Figure 2 has three potential

points vulnerable to cyberattacks for data manipulation: the updated

economic information containing the weights of the EMPC objective

function, the decrypted sensor signal received from the cloud HSM,

and the computed set points of the EMPC before transmission to the

cloud HSM. To detect potential threats initiated against the vulnera-

ble upper layer, a logic-based cyberattack detector is integrated into

the lower layer, which utilizes sensor-derived data for attack detec-

tion. Upon detection, the control system logic reconfigures, disregard-

ing signals received from the compromised upper layer, and operates

independently. Detailed information of the cyberattack detector and

reconfiguration mechanism is provided in Section 4.

Further, this design introduces three sources of error: one stem-

ming from state quantization in the sensor-to-upper layer EMPC link,

another arising from set point quantization in the upper layer EMPC-

to-lower layer feedback controller link, and a third originating from

control input quantization in the lower layer feedback controller-

to-actuator link. These errors are bounded by:

jxðtkÞ� x̂ðtkÞj ≤2�d�1: ð17aÞ

jxEðtkÞ� x̂EðtkÞj ≤2�d�1: ð17bÞ

juðtkÞ� ûðtkÞj ≤2�d�1: ð17cÞ

The bounds of the quantization error, as detailed in Equation (17), are

derived in Remark 5. Further, an additional error is introduced in the

applied control input. This stems from the lower layer feedback con-

troller, hðe,xEÞ, that uses the quantized error ê¼ x̂� x̂E to compute

control inputs in an encrypted space. This error will be bounded by:

je� êj¼ jðx�xEÞ�ðx̂� x̂EÞj
¼ jðx� x̂Þþðx̂E�xEÞj
≤ 2�d�1þ2�d�1

≤ 2�d:

ð18Þ

Remark 4. The two-layer encrypted dynamic optimiza-

tion and control framework outlined in our work is

adaptable and can be applied when other dynamic opti-

mization strategies are used in the upper-layer to calcu-

late the set points (current values of the operating

trajectory) of the lower-layer control system, not just

the economic MPC scheme employed in this article. The

key objective of this structure is to facilitate nonlinear

control and optimization within an encrypted system. In

this framework, the upper layer computes set points

through nonlinear dynamic optimization (which cannot

be performed in an encrypted space), then encrypts

these set points and transmits them to the lower layer.

The lower layer, without decrypting the set points, uti-

lizes encrypted measurement feedback to track these

set points, integrating encryption with nonlinear

dynamic optimization and control.

Remark 5. Quantization error occurs when a value

intended for quantization does not precisely match any

value in the set Ql1 ,d, which is spaced apart by 2�d. Sup-

pose the value to be quantized is denoted as a, which is

positioned between b and bþ2�d. If the absolute differ-

ence between a and b is smaller than that between a

and bþ2�d, then a is assigned to b; otherwise, it is

assigned to bþ2�d. As a result, the maximum potential

difference between the actual and quantized values is

half the resolution, or 2�d�1. Therefore, increasing the

value of d reduces the quantization error.

Remark 6. We operate the proposed closed-loop design

under a few assumptions. Firstly, we assume that plain-

text data is vulnerable to cyberattacks, wherein it can

be manipulated or subjected to denial-of-service (DOS)

attacks. However, we do not consider attacks on

encrypted data due to its inherent privacy. Each encryp-

tion process generates a unique ciphertext due to the

random number generated, making manipulation easily

detectable. In case of an attack on encrypted data, the

only recourse is to transfer control to a secure backup

system isolated from any network. Secondly, we assume

that the cloud server where nonlinear computations

occur in plaintext is vulnerable to cyber threats. Lastly,

we assume that the cloud HSMs responsible for housing

cryptographic keys and performing cryptographic opera-

tions are fully secure. Cloud HSMs, offered by leading

providers such as Microsoft Azure, Amazon Web Ser-

vices (AWS), and Google Cloud Platform (GCP), adhere

to stringent security standards like FIPS 140-2/3.14

They are chosen precisely because they are impervious

to cyberattacks, validating this assumption.

Remark 7. While the proposed closed-loop design of

the encrypted two-layer control framework is vulnera-

ble to cyberattacks, it enhances cybersecurity by inte-

grating a cyberattack detection and subsequent

reconfiguration mechanism. Furthermore, it improves

the robustness of the control system by transmitting

data only once during each operating period between

the lower and upper control layers, reducing the poten-

tial for attacks due to less-frequent data transmission.

Additionally, in this design, the cloud server does not

have access to either key, and no component has access

6 of 17 KADAKIA ET AL.
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to both the public and private keys; they only have

access to one or the other. Also, following the prevailing

standard recommended by NIST, it is recommended to

use cryptographic keys with a bit-length greater than

2048 to assure robustness.15

Remark 8. For large-scale processes with numerous

states and inputs, employing a centralized MPC in the

cloud server would entail significant computational

expenses. Alternatively, decentralized and distributed

MPCs could be integrated into the same framework to alle-

viate the computational burden associated with the cen-

tralized approach, as demonstrated in prior works.16,17 In

these works, encrypted data was decrypted at each sam-

pling instance within the nonlinear MPC to compute con-

trol inputs. However, in our approach, decryption only

occurs within the LEMPC of the upper layer at the start of

each operating period, rather than at every sampling

period. Control inputs for tracking the reference trajectory

are then computed without decryption. As a result, the fre-

quency of encryption-decryption operations at the control-

lers is substantially reduced in our proposed framework.

This reduction enhances security by minimizing the oppor-

tunities for manipulating decrypted data.

Remark 9. The duration of the operating period t0 is

established by considering the lowest frequency

required for updating economic data, including energy

prices, raw material costs, product demand, or product

selling prices. Within the EMPC objective function, this

economic information remains constant throughout the

operating period. Additionally, the chosen period can be

shorter than the interval between updates of economic

information. In this scenario, economic data would

remain constant between operating periods. However,

it should still be long enough to compute state trajecto-

ries optimized over a period significantly larger than the

sampling period of the lower feedback layer, where

these trajectories are tracked.

3.2 | Dynamic economic optimization

The optimization problem for the LEMPC in the upper layer of the

proposed control framework is represented as:

J ¼ max
uE � SðΔEÞ

ðtkþNE

tk

Lð~xEðtÞ,uEðtÞÞdt, ð19aÞ

s:t: _~xEðtÞ¼ fð~xEðtÞ,uEðtÞÞ, ð19bÞ

uE �U, 8 t� ½tk ,tkþNE
Þ, ð19cÞ

j _xEðtÞj≤ γE , 8 t� ½tk ,tkþNE
Þ, ð19dÞ

~xEðtkÞ¼ x̂ðtkÞ, ð19eÞ

Vð~xEðtkÞÞ≤ ρsecure, 8 t� ½tk ,tkþNE
Þ,

if ~xEðtkÞ�Ωρsecure

ð19fÞ

_Vð~xEðtkÞ,uEÞ≤ _Vð~xEðtkÞ,Φð~xEðtkÞÞÞ,
if ~xEðtkÞ�ΩρnΩρsecure

ð19gÞ

where ΔE is the LEMPC sampling period. Equation (19e) uses the

quantized state, x̂ðtkÞ, after decryption, to initialize the LEMPC

plant model of Equation (19b). k represents the sampling instance, and

NE represents the number of sampling periods within the LEMPC

prediction horizon. ~xEðtÞ is the predicted state trajectory of the

LEMPC model of Equation (19b). This model is utilized to

integrate the economic objective function of Equation (19a) to calcu-

late the optimized LEMPC control inputs, uEðtÞ, where t� ½tk ,tkþNEÞ.
The LEMPC's goal is to maximize this objective function over the pre-

diction horizon such that it satisfies the constraints of

Equations (19c)–(19g). Equation (19c) represents the constraints

imposed on the control inputs. The constraint of Equation (19d)

ensures that the lower layer can track the reference trajectory xEðtÞ
by limiting its rate of change, _xEðtÞ. From the Lyapunov

constraint of Equation (19f), the LEMPC ensures that, if the state

~xðtkÞ�Ωρsecure at time tk , then it lies within this region for

t� ½tk ,tkþNEÞ, where ρsecure is a level set of the control Lyapunov

function Vð~xEÞ such that Vð~xEÞ≤ ρsecure. If ~xEðtkÞ lies within the set

ΩρnΩρsecure , the Lyapunov constraint of Equation (19g), ensures that

LEMPC drives the predicted state trajectory ~xEðtÞ to the origin at a

rate faster than or at least equal to the stabilizing controller Φð~xEðtkÞÞ
(the existence of Φð�Þ follows from the stabilizability assumption on

the process made in Section 2.3). Following the computation of opti-

mized control inputs uE by LEMPC, the reference trajectory xEðtÞ is

derived by recursively solving the model described in Equation (19b),

where uE is implemented in a sample-and-hold fashion. The xE values

are logged at intervals of Δ, denoting the lower layer's sampling

period, and subsequently relayed to the cloud HSM for encryption

prior to transmission to the encrypted lower-layer control system

for tracking.

Remark 10. The proposed LEMPC operates on feed-

back, as it starts with actual state measurements. How-

ever, in case of an event like a denial-of-service (DOS)

attack where the threat actor blocks the decrypted sen-

sor measurements from reaching the upper layer, we

can initialize the LEMPC using the final value of the pre-

dicted state trajectory from the previous operating

period. This assumes that at the end of the previous

operating period, the deviation between the actual state

trajectory and the reference trajectory is within the

bounds as derived in Section 3.4.
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3.3 | Encrypted feedback control

In the encrypted space, only linear mathematical operations are per-

missible. Consequently, we utilize the recursive rule to approximate

integral terms within the set of proportional-integral controllers of the

encrypted lower layer feedback control system, ensuring strictly linear

mathematical operations, as illustrated below:

uiðtkÞ ¼Kci eiðtkÞþ 1
τi

ðtk
0
eiðτÞdτ

� �
¼Kci eiðtkÞþ Itk
¼Kci eiðtkÞþK0

ci
eiðtkÞþ Itk�1 ,

ð20Þ

where uiðtkÞ is the ith control input of the lower layer. The error of

the ith state at time tk is described by eiðtkÞ¼ xEi ðtkÞ�xiðtkÞ, with

xEi ðtkÞ and xiðtkÞ denoting the set point (value of the economically

optimal trajectory at tk as calculated by the upper-layer EMPC) and

state measurement of the ith state, at time tk , respectively. tk and tk�1

denote the sampling instances k and k�1, respectively. Kci and K0
ci

represent the proportional and integral gains, while Itk denotes the

integral control action at tk . At k¼0, It0 is assumed to be 0. The lower

layer has a sampling period of Δ, and applies the computed control

inputs in a sample-and-hold manner for the time t¼ ½tk ,tkþΔÞ, and
then recomputes the control input with the updated set point and

state feedback at time t¼ tkþ1.

3.4 | Stability analysis

In this subsection, we examine the closed-loop stability of the proposed

two-layer encrypted control framework, with the LEMPC at the upper

layer and the encrypted feedback controller at the lower layer.

Theorem 1. Considering the nonlinear system described

in Equation (1), we analyze its stability under the encrypted

lower layer feedback controller ĥðê, x̂EÞ, under the influence

of bounded disturbances. The lower layer feedback control-

ler hðe,xÞ, operating without encryption, satisfies the inequal-

ities specified in Equation (6). Additionally, we assume that

the initial error êðt0Þ¼ x̂ðt0Þ� x̂Eðt0Þ lies within the region

Ωρ ∗ . For the closed-loop system of Equation (1) under the

encrypted lower layer feedback controller, we can deter-

mine positive real numbers ϵerror,ϵw , for which there exist

Δ,ΔE ,γE , and d, that satisfy the following conditions:

j _xEðtÞj≤ γE <
θ̂α3ðϵerrorÞ

2L00Eþα4ðα�1
1 ðρ ∗ ÞÞþα5ðα�1

1 ðρ ∗ ÞþMΔÞ , ð21Þ

μ¼α�1
3

ð2L00Eþα4ðα�1
1 ðρ ∗ ÞÞþα5ðα�1

1 ðρ ∗ ÞþMΔÞÞγE
θ̂

� �
, ð22Þ

�ð1� θ̂Þα3ðμÞþL0wθþL0eMΔþL0EγEΔEþeq ≤ �ϵw=Δ, ð23Þ

for some θ̂ with 0< θ̂ <1. If ðx̂ðt0Þ� x̂Eðt0ÞÞ�Ωρ ∗ , then

the deviation êðtÞ remains bounded in Ωρ ∗ under the encr-

ypted stabilizing controller and the actual closed-loop state

trajectory x is always bounded in Ωρ. Furthermore, given a

sufficiently large time T, the deviation between the actual

system of Equation (1) and the economically optimal trajectory

is ultimately bounded by jeðtÞj≤ ϵerror for t� ½tk ,tkþ t0Þ.

Proof. We prove that the deviation between the actual

system evolution and economically optimal set point trajec-

tory under the lower layer encrypted feedback controller

(i.e., êðtÞ) is always bounded in Ωρ ∗ and, after a suffi-

ciently large time T < t0 , where t0 is the operating period

of the LEMPC from t0 to t0þ t0, the deviation is bounded

in Bϵerror . Also, based on the bound derived in

Equation (18), we can say eðtÞ is also bounded in Ωρ ∗

as êðtÞ�Ωρ ∗ .

We assume that, at sampling time tk � ½t0,t0þ t0Þ,
êðtkÞ�Ωρ ∗ nBμ. At t0, the LEMPC recomputes a new

optimal trajectory xEðtÞ for the encrypted lower feed-

back layer to track from t0 to t0þ t0. We define two sets

Bϵerror ¼fjeðtÞj≤ ϵerrorg and Bμ ¼fjeðtÞj≤ μg, where μ is

defined in Equation (22) and Bμ �Bϵerror . If the deviation

êðtÞ is bounded in the set Ωρ ∗ nBμ and the conditions of

Equations (21) and (22) are met, the deviation will

decrease along the closed-loop state trajectory, and

after a sufficiently large time T, the deviation will con-

verge to the set Bμ. Furthermore, the deviation eðtÞ is

ultimately bounded in the ball Bϵerror .

The time derivative of the control Lyapunov func-

tion along the deviation of system trajectory of

Equation (3) is, without disturbances or encryption:

_VðeðtkÞ,xðtkÞÞ¼ ∂VðeðtkÞ,xEðtkÞÞ
∂e

ėðtkÞþ ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞ: ð24Þ

Using the Lipschitz property of Equation (6b), after

substituting ėðtkÞ¼ _xðtkÞ� _xEðtkÞ, we get

_VðeðtkÞ,xðtkÞÞ¼ ∂VðeðtkÞ,xEðtkÞÞ
∂e

_xðtkÞ

� ∂VðeðtkÞ,xEðtkÞÞ
∂e

_xEðtkÞ

þ ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞ

≤
∂VðeðtkÞ,xEðtkÞÞ

∂e
gðeðtkÞ,xEðtkÞ,0,hðeðtkÞ,xeðtkÞÞ,0Þ

� ∂VðeðtkÞ,xEðtkÞÞ
∂e

_xEðtkÞ

þ ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞ

≤ �α3ðjeðtkÞjÞ� ∂VðeðtkÞ,xEðtkÞÞ
∂e

_xEðtkÞ

þ ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞ:
ð25Þ
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The time derivative of the control Lyapunov function

along the deviation and economically optimal state tra-

jectory for τ� ½tk ,tkþΔÞ, under the encrypted feedback

controller, with disturbances is

_VðêðτÞ, x̂ðτÞÞ¼ ∂VðêðτÞ, x̂EðτÞÞ
∂e

ėðτÞþ ∂VðêðτÞ, x̂EðτÞÞ
∂xE

_xEðτÞ: ð26Þ

Adding and subtracting Equation (24) to and from

Equation (26), we get

_VðêðτÞ, x̂ðτÞÞ ≤ ∂VðêðτÞ, x̂EðτÞÞ
∂e

ėðτÞ� ∂VðeðtkÞ,xEðtkÞÞ
∂e

ėðtkÞ

þ ∂VðeðtkÞ,xEðtkÞÞ
∂e

ėðtkÞþ ∂VðêðτÞ, x̂EðτÞÞ
∂xE

_xEðτÞ

� ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞÞ

þ ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞÞ:

ð27Þ

Substituting Equation (25) in Equation (27), using the

bound of Equation (2), and using the Lipschitz property

of Equation (10), we get

_VðêðτÞ, x̂ðτÞÞ ≤ �α3ðjeðtkÞjÞ� ∂VðeðtkÞ,xEðtkÞÞ
∂e

_xEðtkÞ

þ ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞ� ∂VðeðtkÞ,xEðtkÞÞ
∂e

ėðtkÞ

� ∂VðeðtkÞ,xEðtkÞÞ
∂xE

_xEðtkÞþ ∂VðêðτÞ, x̂EðτÞÞ
∂e

ėðτÞ

þ ∂VðêðτÞ, x̂EðτÞÞ
∂xE

_xEðτÞ

≤ �α3ðjeðtkÞjÞþ ∂VðêðτÞ, x̂EðτÞÞ
∂e

ėðτÞ

� ∂VðeðtkÞ,xEðtkÞÞ
∂e

ėðtkÞþ ∂VðêðτÞ, x̂EðτÞÞ
∂xE

_xEðτÞ

� ∂VðeðtkÞ,xEðtkÞÞ
∂e

_xEðtkÞ
≤ �α3ðjeðtkÞjÞþL0wjwðτÞjþL0ejêðτÞ�eðtkÞj
þL0Ejx̂EðτÞ�xEðtkÞjþL00Ej _xEðτÞ� _xEðtkÞjþL0ujû�uj
þα5ðjêðτÞjÞγEþα4ðjeðtkÞjÞγE :

ð28Þ

Using the quantization error bounds of

Equations (17) and (18), in Equation (28), we get

_VðêðτÞ, x̂ðτÞÞ ≤ �α3ðjeðtkÞjÞþL0wjwðτÞjþL0ejêðτÞ�eðτÞjþL0ejeðτÞ�eðtkÞj
þL0Ejx̂EðτÞ�xEðτÞjþL0EjxEðτÞ�xEðtkÞj
þ2L00EγEþL0u2

�d�1þα5ðjêðτÞjÞγEþα4ðjeðtkÞjÞγE
≤ �α3ðjeðtkÞjÞþL0wjwðτÞjþL0e2

�dþL0E2
�d�1

þL0ejeðτÞ�eðtkÞjþL0EjxEðτÞ�xEðtkÞj
þ2L00EγEþL0u2

�d�1þα5ðjêðτÞjÞγEþα4ðjeðtkÞjÞγE:
ð29Þ

Due to the continuity of eðtÞ and xEðtÞ8 t� ½tk ,tkþΔÞ,
and from Equation (8), we can write that

jeðτÞ�eðtkÞj≤MΔ, and jxEðτÞ�xEðtkÞj≤ γEΔE 8t�

½tk ,tkþΔÞ. Using these bounds, and the inequalities of

Equation (6), it follows from Equation (29):

_VðêðτÞ, x̂ðτÞÞ ≤ �α3ðjeðtkÞjÞþL0wjwðτÞj
þL0e2

�dþL0E2
�d�1þ2L00EγEþL0u2

�d�1

þL0EγEΔEþL0eMΔþα5ðjêðτÞjÞγEþα4ðjeðtkÞjÞγE:
ð30Þ

As eðtkÞ�Ωρ ∗ nBμ, Equation (30) can be written as,

_VðêðτÞ, x̂ðτÞÞ ≤ �α3ðμÞþL0wθþL0eMΔþL0EγEΔEþeq
þðα4ðα�1

1 ðρ ∗ ÞÞþα5ðα�1
1 ðρ ∗ ÞþMΔÞþ2L00EÞγE ,

ð31Þ

with eq ¼ L0e2
�dþL0E2

�d�1þL0u2
�d�1 representing the

error due to quantization (for performing encryption). If

Equation (21) is satisfied, then there exists a γE such that

the following equation holds:

_VðêðτÞ, x̂ðτÞÞ≤ �ð1� θ̂Þα3ðμÞþL0wθþL0eMΔþL0EγEΔEþeq, ð32Þ

for some positive θ̂ <1. If the condition of Equation (23)

is satisfied, then there exists ϵw >0 such that the follow-

ing inequality holds for êðtkÞ�Ωρ ∗ nBμ:

_VðêðτÞ, x̂ðτÞÞ≤ �ϵw=Δ, 8τ� ½t,tkþ1Þ: ð33Þ

Integrating this bound over t� ½tk ,tkþ1Þ, we get

Vðêðtkþ1Þ, x̂ðtkþ1ÞÞ≤VðêðtkÞ, x̂ðtkÞÞ�ϵw , 8t� ½tk ,tkþ1Þ, ð34Þ

8êðtkÞ�Ωρ ∗ nBμ. Using the above inequalities recur-

sively, if eðtkÞ�Ωρ ∗ nBμ, the deviation between the

actual state trajectory and the economically optimal ref-

erence trajectory will converge to Bμ, within time T,

without exiting the set Ωρ ∗ . Further, there exists a suffi-

ciently large ϵerror > 0, such that if the deviation exits the

ball Bμ, it is still maintained within Bϵerror as the increase

in deviation would be bounded over one sampling

period. From the Lyapunov constraints of the LEMPC in

Equation (19f), and Equation (19g), the reference trajec-

tory xEðtÞ will be bounded in Ωρsecure within time T. As

eðtÞ is always bounded in the set Ωρ ∗ , from Theorem 1,

and xðtÞ¼ xEðtÞþeðtÞ, the closed-loop state trajectory

of the system will converge to the set Ωρe in time T,

where Ωρ <Ωρe <Ωρsecure , and will remain there. ▪

Remark 11. From Equation (31), we can identify five

factors affecting the rate of change of the control Lya-

punov function when êðtkÞ�Ωρ ∗ nBμ: the lower layer

control system and LEMPC sampling periods (Δ and ΔE),

disturbance bound (θ), rate of change of the reference

state trajectory ( _xE), and the quantization parameter (d).

While disturbance is inherent to the system, adjust-
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ments to the other factors can be made to restrict the

deviation between the state trajectory and reference

state trajectory, thus achieving the desired tracking per-

formance. In essence, decreasing the sampling times

and the rate of change of the reference state trajectory

while increasing the quantization parameter can help

reduce the deviation between the actual state trajecto-

ries and reference trajectories.

4 | APPLICATION TO A NONLINEAR
CHEMICAL PROCESS

In this section, we apply the proposed encrypted two-layer control

framework on a nonlinear chemical process with disturbance and sen-

sor noise, operating at an unstable steady state. Multiple simulation

cases are presented and compared to demonstrate the economic ben-

efits and cyber-resilience of the proposed control framework.

4.1 | Process description and model development

Specifically, the process considered is the conversion of reactant A to

product B in a nonisothermal, well-mixed continuous stirred tank reac-

tor (CSTR). This involves an irreversible second-order exothermic

reaction, denoted as A!B, with a reaction rate given by

rB ¼ k0e�
E
RTC2

A. The CSTR is equipped with a heating jacket that can

either supply or remove heat at a rate Q. Using material and energy

balance equations, we define the dynamic model of this process as

follows:

dCA

dt
¼ F
V
ðCA0�CAÞ�k0e

�E
RTC2

A: ð35aÞ

dT
dt

¼ F
V
ðT0�TÞþ�ΔH

ρLCp
k0e

�E
RTC2

Aþ
Q

ρLCpV
: ð35bÞ

denotes the concentration of reactant A, and T represents the reactor

temperature. The reactant A is introduced by the feed with a volumet-

ric flow rate F, concentration CA0, and a temperature of T0. The liquid

in the reactor maintains a constant heat capacity Cp and density ρL.

Parameters such as ΔH, k0, R, and E correspond to the enthalpy of

reaction, pre-exponential constant, ideal gas constant, and activation

energy, respectively. The values of these parameters are given in

Table 1. The state variables, expressed in deviation terms, consist of

the reactant concentration and the reactor temperature, denoted as

x > ¼ ½CA�CAs , T�Ts�, where the subscript “s” denotes the steady-

state value. Initially, the CSTR operates at an unstable steady-state

characterized by ½CAs ,Ts� ¼ ½1:9537 kmol=m3,401:87K�, with inlet feed

concentration and heat input rate denoted as

½CA0s, Qs� ¼ ½4 kmol=m3,0 kJ=hr�. The control inputs are: CA0�CA0s and

Q�Qs, representing deviations from the steady-state inlet

concentration and heat input rate, respectively. These inputs are con-

strained within the closed sets ½�3:5,3:5� kmol=m3 and

½�5�105,5�105� kJ=h, respectively. At the initial time t¼ t0 ¼0, the

system begins at equilibrium (x0 ¼ ½0,0� > ). Process noise, wk , is intro-

duced to the inlet flow rate, F, such that jwkj≤0:1�F. Here, k

denotes the sampling period, and wk is a normally distributed random

variable with zero mean and a SD of 3.5% of the inlet flow rate of

5m3= h. Additionally, non-Gaussian measurement noise, extracted

from industrial data as described in Reference 18, is added to all mea-

sured states. This noise is normalized and scaled by 1% before being

applied to the concentration state, while it is applied to the tempera-

ture state without scaling.

The control objective is to increase the economic profit of the

process described in Equation (35) by manipulating the inlet concen-

tration and heat input rate, while ensuring that the state trajectories

of the closed-loop system remain within the stability region Ωρ at all

times using the two-layer control architecture. Ultimately, the system

should converge to the economically viable region Ωρe and stay there.

The objective function of the LEMPC optimizes the production rate of

B, consumption of reactant A, and the heat input rate Q�Qs as

follows:

LðxE ,uÞ¼A1k0e�
E
RTC2

A�A2ðCA0�CA0s Þ�A3ðQ�QsÞ2, ð36Þ

where A1,A2, and A3 are the potentially time-varying weighting fac-

tors that account for fluctuations in process economics, that is, prod-

uct selling price, reactant cost, and energy cost, respectively. The

control Lyapunov function Vðe,xEÞ¼ x >
E PxE is defined with the follow-

ing positive definite P matrix:

P¼
1060 22

22 0:52

" #
: ð37Þ

The time-varying weights chosen for the example considered are pro-

vided in Table 2.

The closed-loop stability region for the CSTR is defined as Ωρ,

with ρ¼320, which is characterized as a level set of the Lyapunov

function. The secure operating region Ωρsecure for the LEMPC described

in Equation (19) is defined with ρsecure ¼85. Further, the desired

region of economic feasibility, Ωρe , within which the real state trajec-

tory is to be bounded, is selected to have ρe = 130. The operating

TABLE 1 Parameter values for the chemical process example.

F¼5m3=h V¼1m3

k0 ¼8:46�106 m3=ðkmol hrÞ E¼5�104 kJ/kmol

R¼8:314 kJ/(kmol K) ρL ¼1000 kg=m3

ΔH¼�1:15�104 kJ/kmol T0 ¼300K

Qs ¼ 0 kJ/h CA0s ¼4 kmol/m3

CAs ¼1:9537 kmol/m3 Ts ¼401:87K

Cp ¼0:231 kJ/(kg K)
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period of the LEMPC is t0 ¼1h. The lower layer encrypted control

system operates with a sampling period of 1.8 s, whereas the LEMPC

has a sampling period of 180 s. The prediction horizon for the LEMPC

is set to NE ¼20 sampling periods. The integration step hc chosen to

integrate the LEMPC model using the explicit Euler method is 0.36

s. The positive definite matrix P in V¼ x >
E PxE and the stability region

Ωρ are determined through simulations that search for the largest

invariant set Ωρ in the state-space within which _V is rendered nega-

tive, for all states in Ωρ under the stabilizing controller hðe,xEÞ�U. In

the present example, hðe,xEÞ is a set of PI controllers, ½u1,u2� > of the

form of Equation (20) with proportional gains K1 ¼101 and K2 ¼104,

and integral time constants τ1 ¼10�3 and τ2 ¼10�6.

4.2 | Performing encryption in the two-layer
control framework

Before encrypting and decrypting the data, parameters such as d, l1,

and l2 are carefully selected. The integer bit count l1�d is determined

from extreme feasible states and control inputs. The upper limit of

Ql1,d is calculated using from 2l1�d�1�2�d , while the lower limit can

be obtained from �2l1�d�1. The quantization parameter, d, is selected

depending on the desired level of accuracy and operating range of

state and control input values. Further, l2 is chosen to exceed l1. In

the example presented in this section, l1�d is calculated to be

16, determining l1 and d. In the set Ql1,d, numbers are separated by a

resolution of 2�d. In our simulations, we use d¼8 in all scenarios

except when it is specifically changed and noted to be d¼1. For

d¼8, l1 ¼24, and l2 is selected as 30. Similarly, for d¼1, l1 ¼16, and

l2 is set to 20. Paillier Encryption is implemented using Python's “phe”
module, PythonPaillier.19 To solve the multiconstrained nonconvex

optimization problem of the upper layer LEMPC in the two-layer

encrypted control framework, we utilize the Python module of the

IPOPT software.20

4.3 | Cyberattack detection and system
reconfiguration

A logic-based cyberattack detector is integrated into the lower layer

of the encrypted two-layer control framework. This detector receives

sensor readings every three sampling instances of the lower control

layer and utilizes this data to compute the control Lyapunov function

VðxÞ. Importantly, this computation occurs prior to encryption or

transmission to the cloud HSM, ensuring its security. In the event of a

cyberattack, the objective of the attack is to divert the process from

its operating trajectory while still maintaining it within the stability

region, Ωρ. This may lead to a prolonged cyberattack that could go

undetected, potentially being mistaken for a process disturbance. The

upper layer LEMPC aims to maintain the operating trajectory within a

more conservative region, Ωρsecure , and lacks information about the

bounded region Ωρe as detailed in the earlier section. Therefore, if the

detector records three consecutive instances where the control Lya-

punov function has values VðxÞ≥ ρe, and its value increases compared

to its last recorded value, it declares the process as being under

attack. Subsequently, the control reconfiguration logic rejects the pre-

viously received economically optimal set points from the compro-

mised upper layer. Subsequently, it utilizes the encrypted set points of

the prior operating period when the system operated without attack

detection.

Remark 12. In the proposed control architecture, the

lower-layer control system receives encrypted set-

points (values of the operating trajectory at the current

time) that are maintained at different time intervals. The

control actions implemented on the process by the

lower-layer control system are calculated from

encrypted feedback without decrypting the state infor-

mation or the set points. Since the measured state data

remains encrypted, it is very difficult to implement a

cyberattack in the lower-layer control system; this is an

important advantage of the proposed control architec-

ture. On the other hand, cyberattacks can be launched

in the upper-layer EMPC system that calculates the set-

points for the lower-layer control system and this is

where attack detection mechanisms are implemented to

detect such attacks. With respect to cyberattacks that

can influence encrypted communication, this is an issue

that goes beyond the scope of the present work. It is

important to note that given the linear nature of the

lower-layer control system, alternative, perhaps more

secure, encryption schemes can be used in the lower

layer with similar properties being proved for the

closed-loop system.

Remark 13. Since the lower layer solely receives

encrypted set points from the upper layer and operates

within the defined economically viable region, taking

into account fluctuating economics, identifying cyberat-

tacks that do not push the system outside this region

becomes challenging. However, the absence of informa-

tion in the compromised upper layer concerning the

bounds of this region adds another layer of robustness

to the proposed detection scheme. Detecting attacks

TABLE 2 Time-varying Lyapunov-based economic model
predictive control weights for chemical process example.

Time (t) A1 A2 A3

0 h ≤ t< 1 h 1 17 1�10�8

1 h ≤ t< 2 h 0.99 14 0:8�10�8

2 h ≤ t< 3 h 1.01 5 0:84�10�8

3 h ≤ t< 4 h 0.98 7 0:9�10�8

t≥ 4 h 1.02 9 0:9�10�8
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within this region would necessitate decrypted eco-

nomic information from the upper layer, which could

also be vulnerable to cyberattacks. Therefore, in this

study, we only focus on cyberattacks capable of driving

the system away from the economically viable operating

region while maintaining it within the stable region.

Remark 14. As mentioned in Section 3.1, there are

three potential points of cyberattack where plaintext

data could be manipulated in the presented closed-loop

design of Figure 2. For brevity, we only demonstrate

results when a false-data injection cyberattack is initi-

ated on the data received by the upper layer LEMPC

after decryption, ensuring that the system does not exit

the stability region. Detailed information on the

launched cyberattack and similar classes of cyberattacks

has been discussed in Reference 21. These attacks are

designed to ensure that the system does not exit the

stability region during the attack, making them difficult

to detect.

4.4 | Simulation results of the encrypted two-layer
control framework

The proposed encrypted two-layer control framework is applied to

the nonlinear chemical process example with sensor noise and distur-

bances. Results depicted in Figures 3 and 4 illustrate the proposed

two-layer framework's performance under an LEMPC objective func-

tion whose coefficients (weights) change for each operating period.

Figures 5 and 6 display the closed-loop states and inputs and corre-

sponding state-space trajectories under encrypted lower-layer control

with set-points calculated at the upper layer using steady-state opti-

mization with the same economic objective as in the LEMPC and with

weights changing at each operating period. Furthermore, Figures 7

and 8 show the results under the encrypted two-layer control frame-

work with an LEMPC objective function whose coefficients are set

equal to the ones of the first operating period throughout the five-

period operation. Finally, Figures 9 and 10 illustrate closed-loop

states, inputs and state-space trajectories under encrypted lower-

layer control with set-points calculated at the upper layer using

steady-state optimization with the same economic objective as in the

LEMPC and with weights set equal to the ones of the first operating

period.

Analyzing these results in more detail, the closed-loop simulation

results in Figures 3 and 4 illustrate time-varying operating trajectories

for different operating periods. Initially, when raw material costs are

high, a time-varying operation is preferred to maximize economic

benefits. As raw material costs decrease over successive periods,

steady-state operation becomes more favorable as determined by the

upper-layer LEMPC. Figures 5 and 6 depict how different steady-

states are maintained for each operating period with time-varying

(changing every period and remaining constant within a single period)

weights in the objective function of the steady-state optimizer.

Figures 7 and 8 show that with time-invariant weights in the LEMPC

objective function, similar dynamic trajectories are computed and

F IGURE 3 State and control input
profiles under the encrypted two-layer
control framework with an Lyapunov-
based economic model predictive control
objective function whose weights change
for each operating period.
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maintained across operating periods. Figures 9 and 10 demonstrate that

steady-state operation is maintained when a time-invariant objective is

used in the steady-sate optimizer for all operating periods. Comparing the

performance of these scenarios justifies the application of EMPC through

the encrypted two-layer framework to achieve economically optimal

time-varying operation in certain periods over steady-state operation.

More specifically, Table 3 presents the total economic objective

function values for the closed-loop simulations. These results demon-

strate that the proposed framework, particularly with dynamic eco-

nomic optimization, outperforms steady-state optimizers. Notably, the

time-varying LEMPC objective function yields the highest economic

objective function after 5 h of process time, followed by the LEMPC

F IGURE 4 State-space plot for the evolution of the state and
reference trajectories under the encrypted two-layer control
framework with an Lyapunov-based economic model predictive
control objective function whose weights change for each operating
period.

F IGURE 5 State and control input
profiles under encrypted lower-layer

control with set-points calculated at the
upper layer using steady-state
optimization with the same economic
objective as in the Lyapunov-based
economic model predictive control and
with weights changing at each operating
period.

F IGURE 6 State-space plot for the evolution of the state and
reference trajectories under encrypted lower-layer control with set-
points calculated at the upper layer using steady-state optimization
with the same economic objective as in the Lyapunov-based
economic model predictive control and with weights changing at each
operating period.
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with an objective function that uses time-invariant weights (i.e., the

weights are kept the same for all operating periods). In all aforemen-

tioned cases, the lower layer encrypted feedback controllers track the

state trajectory well, and it remains bounded in Ωρe at all times.

Figures 11 and 12 depict results under the encrypted two-layer

control framework with a time-varying LEMPC objective function,

without and with a cyberattack detection and reconfiguration mecha-

nism, respectively. In both cases, a false-data injection attack is initi-

ated at 4 h. With the detection and reconfiguration mechanism, the

state trajectory is promptly returned within Ωρe upon exit as shown in

Figure 12, while without it, the trajectory remains outside Ωρe for an

extended period as depicted in Figure 11. After detection, the lower-

layer controller follows the state trajectory from the previous operat-

ing period, during which no attack was detected, and the closed-loop

state remained within Ωρe at all times. In all these simulations, the

quantization parameter d is maintained at 8. Figure 13 illustrates

results under the encrypted two-layer control framework with a time-

varying LEMPC objective function for d¼1 (corresponding to

increased quantization error), where the state trajectory exits Ωρe at

certain points and struggles to track the operating trajectory effec-

tively, unlike the other cases. All other parameters were maintained

the same as the case presented in Figure 4, for comparison. This high-

lights the need for using a higher quantization parameter and validates

the theoretical results.

Remark 15. As previously mentioned, we have

employed both time-varying and time-invariant coeffi-

cients (weights) in the objective functions across

different scenarios. However, the coefficients remain

the same for the initial operating period in all cases. In

conducting the economic performance comparison pre-

sented in Table 3, we utilized recorded state and control

input trajectory data from the different closed-loop sim-

ulations spanning a process duration of 5 hours. This

data was used to compute the total objective function

value with time-varying (changing from period to period

F IGURE 7 State and control input
profiles under the encrypted two-layer
control framework with an Lyapunov-
based economic model predictive control
objective function that uses the same
weights for each operating period.

F IGURE 8 State-space plot for the evolution of the state and
reference trajectories under the encrypted two-layer control
framework with an Lyapunov-based economic model predictive
control objective function that uses the same weights for each
operating period.
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and staying constant within a single period) coefficients

in all listed scenarios. This approach facilitates a quanti-

tative comparison of the potential loss or gain resulting

from the utilization or omission of time-varying coeffi-

cients in the objective function.

Remark 16. In Figure 13, the actual state trajectory

exits the economically optimal operating region. This is

attributed to the use of a different value for the quanti-

zation parameter, d¼1, as opposed to d¼8, resulting in

a different bounded error and consequently, a distinct

economically optimal region Ωρe . Despite this variation,

we have depicted the same regions for comparison pur-

poses, emphasizing that opting for a higher quantization

parameter enables a stricter bounded error. Similarly,

maintaining lower layer sampling times, and a lower rate

of change of the state reference trajectory can lead to

tighter bounds on the error.

Remark 17. With respect to comparing the proposed

cybersecure, two-layer control architecture to other

F IGURE 9 State and control input
profiles under encrypted lower-layer
control with set-points calculated at the
upper layer using steady-state
optimization with the same economic
objective as in the Lyapunov-based
economic model predictive control and
with fixed weights.

F IGURE 10 State-space plot for the evolution of the state and
reference trajectories under encrypted lower-layer control with set-
points calculated at the upper layer using steady-state optimization
with the same economic objective as in the Lyapunov-based
economic model predictive control and with fixed weights.

TABLE 3 Economic objective values for different simulations at
the end of a 5-h process duration.

Operation type

Objective function

weights Optimization

Total economic
objective

function Increase (%)

Time-varying LEMPC 70,569 47.66

Steady state 56,541 18.30

Time-invariant LEMPC 65,614 37.28

Steady state 47,793 0

Abbreviation: LEMPC, Lyapunov-based economic model predictive

control.
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approaches, it is important to point out that it is not as

optimal as the use of a single-layer EMPC system where

there is no need to impose rate of change constraints in

the operating trajectory calculated by the EMPC. How-

ever, such a single-layer EMPC system (in addition to

requiring a significant computational load at the lower

layer) is fully nonrobust to cyber-attacks as it requires

decrypted signals to carry out calculations in the feed-

back control layer, rendering it vulnerable to cyber-

attacks. If, on the other hand, one were to compare the

two-layer control architecture with encryption at the

lower layer to the same architecture without encryption,

then the performance loss is relatively small when a suf-

ficiently large d value is used as we have demonstrated

above (see also Reference 22).

5 | CONCLUSION

In this research, we introduced an encrypted two-layer framework to

integrate dynamic economic optimization with encrypted control for

nonlinear processes. At the upper layer, an LEMPC with a time-

varying objective function computed the economically optimal state

trajectories to be tracked by the encrypted lower-layer feedback con-

trol system. Through a comprehensive stability analysis, we estab-

lished bounds on the deviation between the actual state trajectory

and reference trajectory, and determined tunable parameters to

achieve the desired bounded error. Theoretical results were demon-

strated and validated using a chemical process example, and the eco-

nomic benefits of the encrypted two-layer control framework were

showcased. Moreover, we demonstrated the cyber-resilience of the

proposed control framework through cyberattack detection and

reconfiguration mechanisms when the process was subjected to a

cyberattack.
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F IGURE 11 State-space plot for the evolution of the state and
reference trajectories under the encrypted two-layer control

framework using an Lyapunov-based economic model predictive
control objective function whose weights change for each operating
period, without cyberattack detection and reconfiguration, when a
cyberattack is initiated at t¼4h.

F IGURE 12 State-space plot for the evolution of the state and
reference trajectories under the encrypted two-layer control
framework using an Lyapunov-based economic model predictive
control objective function whose weights change for each operating
period, with cyberattack detection and reconfiguration, when a
cyberattack is initiated at t¼4h.

F IGURE 13 State-space plot for the evolution of the state and
reference trajectories under the encrypted two-layer control
framework using an Lyapunov-based economic model predictive
control objective function whose weights change for each operating
period, with d¼1.
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