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A method is developed for model predictive control of nonlinear stochastic partial
differential equations (PDEs) to regulate the state variance, which physically repre-
sents the roughness of a surface in a thin film growth process, to a desired level. Ini-
tially a nonlinear stochastic PDE is formulated into a system of infinite nonlinear sto-
chastic ordinary differential equations by using Galerkin’s method. A finite-dimen-
sional approximation is then derived that captures the dominant mode contribution to
the state variance. A model predictive control problem is formulated, based on the fi-
nite-dimensional approximation, so that the future state variance can be predicted in a
computationally efficient way. To demonstrate the method, the model predictive con-
troller is applied to the stochastic Kuramoto-Sivashinsky equation, and the kinetic
Monte Carlo model of a sputtering process to regulate the surface roughness at a
desired level. © 2008 American Institute of Chemical Engineers AIChE J, 54: 2065-2081, 2008
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Introduction

The height fluctuation of thin film surfaces, which can be
described by the thin film surface roughness, can signifi-
cantly affect the quality of thin films, and is an important
variable from a control and optimization point of view. The
need to improve the quality and microstructure of thin films
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of advanced materials by implementing real-time feedback
control in industrially important materials processes has
motivated extensive research over the last five years on the
development of advanced control and optimization methods
for multiscale process systems using fundamental determinis-
tic/stochastic process models (see, for example, a recent
review article’ and the references therein). Kinetic Monte
Carlo (kMC) models were initially used to develop a meth-
odology for feedback control of thin film surface rough-
ness.”” The method was successfully applied to control sur-
face roughness in a gallium arsenide (GaAs) deposition pro-
cess model,* and to control complex deposition processes
including multiple components with both short-range and
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long-range interactions.” Furthermore, a method for computa-
tionally efficient optimization of thin film growth using
coupled macroscopic and microscopic models was devel-
oped.(’ However, the fact that kMC models are not available
in closed-form makes it very difficult to use them for sys-
tem-level analysis and the design and implementation of
model-based feedback control systems. To achieve better
closed-loop performance, it is desirable to design feedback
controllers on the basis of closed-form process models, which
account for the stochastic nature of the microscopic events.
An approach was reported in”% to identify linear determin-
istic models from outputs of kMC simulators and design con-
trollers using linear control theory. This approach is effective
in controlling macroscopic variables, which are low statistical
moments of the microscopic distributions (e.g., surface cov-
erage, which is the first moment of species distribution on a
lattice). Other results on analysis and control of microscopic
process models include the construction of reduced-order
approximations of the master equation10 and control of a
coupled kMC and finite-difference simulation code of a cop-
per electrodeposition process using empirical deterministic
input-output models."! However, to control higher statistical
moments of the microscopic distributions, such as the surface
roughness (the second moment of height distribution on a lat-
tice), or even the microscopic configuration (such as the sur-
face morphology), deterministic models may not be suffi-
cient, and stochastic partial differential equation (PDE) mod-
els may be needed.

Stochastic PDEs arise naturally in the modeling of the
evolution of the surface height profile of ultra thin films in a
variety of material preparation processes, such as thin film
growth'>™!> and ion sputtering processes.'®!” Recently, it
was demonstrated that covariance control methods can be
applied to stochastic PDEs and result in successful control of
microscopic thin film morphology.'®'® Specifically, a method
for feedback control of surface roughness based on linear
stochastic PDE process models was developed in.'”'® This
method involves reformulation of the linear stochastic PDE
into a system of infinite linear stochastic ordinary differential
equations (ODEs) by using modal decomposition, derivation
of a finite-dimensional approximation that captures the domi-
nant mode contribution to the surface roughness, and state
feedback controller design based on the finite-dimensional
approximation. Furthermore, a systematic identification
approach was developed for linear stochastic PDEs,'® and a
method for construction of linear stochastic PDE models for
thin film growth using first principles-based microscopic sim-
ulations was developed and applied to construct linear sto-
chastic PDE models for thin film deposition processes in
two-dimensional (2-D) lattices.2%2!

While linear control techniques work well for many appli-
cations, nonlinearities exist in many material preparation
processes in which surface evolution can be modeled by sto-
chastic PDEs. Typical examples of such processes include
the sputtering process whose surface height evolution can be
described by the nonlinear stochastic Kuramoto-Sivashinsky
equation (KSE)'®!7 and thin film growth processes described
by nonlinear stochastic PDEs.'* To incorporate the inherent
nonlinearities into the feedback controller design, we recently
developed a method for nonlinear control of surface rough-
ness using nonlinear stochastic PDEs.?* The nonlinear con-
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troller was successfully applied to both the nonlinear stochas-
tic KSE model and the kMC model of an ion-sputtering pro-
cess to regulate the surface roughness to a desired level.
However, this nonlinear controller is not optimal with respect
to a meaningful cost that includes penalty on the control action.

Model predictive control (MPC) is widely used in chemi-
cal process control due to its capability to handle input and
state constraints, to tolerate model uncertainty and suppress
external disturbances, and to force the closed-loop system to
follow a target trajectory using optimal control action (see
References 2% for surveys of results and references in this
area). In MPC, the control action is obtained by solving
repeatedly, online, a finite horizon constrained open-loop
optimal control problem. Recent efforts on predictive control
of distributed parameter systems have focused on predictive
control of deterministic parabolic PDEs, including linear sys-
tems with distributed®’ and boundary28 control and nonlinear
systems with distributed control.?’ However, results on pre-
dictive control of stochastic distributed parameter systems, to
the best of our knowledge, are not available.

In this work, a method for model predictive control of
nonlinear stochastic PDEs is developed. The control objec-
tive is to regulate the state variance of the PDE, e.g., the
roughness of a surface in a thin film growth process, to a
desired level. To present this method, a nonlinear stochastic
PDE is first formulated into a infinite-dimensional nonlinear
stochastic ODE system by using Galerkin’s method. A finite-
dimensional approximation is then constructed to capture the
dominant mode contribution to the state variance. A model
predictive control problem is formulated based on the finite-
dimensional approximation. In the closed-loop system under
the model predictive control, the control action is computed
by minimizing an objective cost function, which includes
both transient and terminal state penalty. An analysis of the
closed-loop nonlinear infinite-dimensional system is per-
formed to characterize the closed-loop performance
enforced by the model predictive controller. Subsequently,
numerical simulations are performed using the stochastic
KSE to demonstrate the effectiveness of the proposed pre-
dictive controller. In addition, we consider the problem of
surface roughness regulation in a 1-D ion-sputtering pro-
cess described by a kMC model. We first demonstrate that
the spatially distributed control configuration is more effec-
tive for surface roughness regulation compared to the spa-
tially invariant control configuration. Then, a model predic-
tive controller, which is designed based on an identified
stochastic KSE surface model, is applied to the kMC model
of the sputtering process, and is demonstrated to success-
fully regulate the expected surface roughness to a desired level.

Nonlinear Model Predictive Controller Design
Preliminaries

We consider nonlinear dissipative stochastic PDEs with
distributed control of the following form

%: Ah + F(h) +ibi(x)ui(t) +<(x1) )

i=1
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subject to homogeneous boundary conditions, and the initial
condition h(x, 0) = hy(x), where x € [—mn, «] is the spatial
coordinate, ¢ is the time, A(x, t) is the height of the surface at
position x and time 7, A is a dissipative spatial differential
operator, F is a nonlinear function, u,(¢) is the i manipu-
lated input, p is the number of manipulated inputs, and b;(x)
is the i" actuator distribution function (i.e., bi(x) determines
how the control action computed by the i control actuator,
u,(t), is distributed (e.g., point or distributed actuation) in the
spatial interval [—m7, 7]). &(x, ) is a Gaussian white noise
with the following expressions for its mean and covariance

(€(x0) =0

/ 2 / / (2)
(E(x, e, 1))y =070(x —x")o(t = 1)
where ¢ is a real number, 6(-) is the Dirac delta function,
and (-) denotes the expected value. Note that although (-) is
used to denote the expected value in literature (see, for
example,14'17’3o’3l), an alternative notation E(-), is also com-
monly used (see, for example,***%). Throughout this work,
we use (-) for the expected value.
The eigenvalue problem for A is defined as

A, =4, j=1,2,---,00 3)

where /; and ¢; denote the jth eigenvalue and eigenfunction,
respectively. To simplify our development and motivated by
most practical applications, we consider stochastic PDEs for
which A is a highly dissipative operator (i.e., a second-order
or fourth-order linear self-adjoint operator) and has eigenval-
ues, which are real numbers. The eigenspectrum of A, o(A),
is defined as the set of all eigenvalues of A, i.e.,
o(A) = {41, 42, ---}. Assumption 1 states that the eigens-
pectrum of A can be partitioned into a finite-dimensional
part consisting of m slow eigenvalues and a stable infinite-
dimensional complement containing the remaining fast eigen-
values, the separation between the slow and fast eigenvalues
of A is large, and that the infinite sum of > °, ﬁ converges
to a finite positive number.

Assumption 13*: The eigenvalues of A satisfy the follow-
ing:

LAy =2 > e

2 o(A) can be partitioned as o(A) = a1(A) + o2(A),
where a\(A) consists of the first m (with m finite) eigenval-
ues, ie., ai(A)={, la, -, Am}. < 0 and

Al — O(¢) where ¢ < 1 is a small positive number.

Am+1
| 3‘ There exists a positive number, y > 0, such that
pIyal ﬁ <7

Note that the eigenvalue problem of the stochastic PDE of
Eq. 1 is formulated in the same way as that of deterministic
PDEs. The assumption of finite number of unstable eigenval-
ues and discrete eigenspectrum are always satisfied for para-
bolic PDE systems defined in finite spatial domains,® while
the assumption of existence of only a few dominant modes
that capture the dominant dynamics of the stochastic para-
bolic PDE system, and the convergence of the infinite sum
> ﬁ to a finite positive number are usually satisfied by
the majority of materials processes (see the example of the
sputtering process described by the stochastic Kuramoto-
Sivashinsky equation in the Simulation section).

Am+1
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The inner product and norm in the Hilbert space H are
defined as

(wl,wz):/Q(wl(z),wz(z))wdz, ||w1\|2:(w1,w2)1/2 “)

where w;, w, are two elements of H, Q is the domain of
definition of the process, and the notation (-,-)g. denotes the
standard inner product in R".

Model reduction

We apply Galerkin’s method (see™ for a detailed discussion
on the standard Galerkin’s method) to the system of Eq. 1 to
derive an approximate finite-dimensional system. First, the so-
lution of Eq. 1 is expanded into an infinite series in terms of
the eigenfunctions of the operator of Eq. 3 as follows

hx, 1) = fj o (1) ba) )

where o,,(f) are time-varying coefficients. Substituting the above
expansion for the solution A(x, f), into Eq. 1, and taking the
inner product with the adjoint eigenfunctions ¢; (x), the follow-
ing system of infinite nonlinear stochastic ODE:s is obtained

dOCn - zn
= Jnlty + fox + Z bia,,ui(t) + ‘;1([)7

7 n=1,...,00 (6)

i=1

where

iy, = / T by, &) = / "t )diWdx ()

¥

and
fro= | Gi0F (s ®)
The covariances of /() can be computed by using the follow-
ing result:
Result 1: 1If (1) f(x) is a deterministic function, (2) 5(x) is

a random variable with (n(x)) = 0 and covariance (n(x)n(x"))
= ¢%0(x—x'), and (3) 8:fff(x)n(x)dx, then ¢ is a real
random number with (¢) = 0 and covariance
(&%) = o* f:fz(x)dx.36

Using Result 1, the covariance of £/(#) can be obtained as
(E0EW)) = o%8(1 — 1),

Owing to its infinite-dimensional nature, the system of
Eq. 6 cannot be directly used for the design of controllers
that can be implemented in practice (i.e., the practical imple-
mentation of controllers which are designed on the basis of
this system will require the computation of infinite sums
which cannot be done by a computer). Instead, we will base
the controller design on a finite-dimensional approximation
of this system. Subsequently, we will show that the resulting
controller will enforce the desired control objective in the
closed-loop infinite-dimensional system. Specifically, we
rewrite the system of Eq. 6 as follows

dxg .
7;2 sx.v+-7:s(x.wxf)+Bsu+Cs
dxr ®
o = A+ Frlex) + Bu+ &
Published on behalf of the AIChE DOI 10.1002/aic 2067



where x, = [o; o 0 R P A AP
As = dlag[/ll /12 e ;“m]’ Af = diag[/lm-%—l Am+2 o ']s fs(xs’ xf)
= [F1aXp) foulss ) -+ frnass X1 Filgs ) = [frn10(5ss Xp)
Fn2ass X 15w = [uy up -+ ), & = [EL -+ &M, and & =
[yt ey,

by

%m-1 Py i1

) Bf = bl"nHZ o bp"m” (10)

*1

Bx =
Ly, *7° P

The standard Galerkin’s method is to approximate the so-
lution A(x, ) of the system of Eq. 1 by %(¢), which is given
by the following m—dimensional system

dx - -
%:ASxXJr]-'S(xX,O)JerquéS (11

where the tilde symbol in X; denotes that this state variable
is associated with a finite-dimensional system. We note that
there are a variety of other methods/concepts available for
model reduction of nonlinear distributed parameter systems.
For example, the concept of approximate inertial mani-
folds***>37 can be employed to obtain improved approxima-
tions of the finite-dimensional system of Eq. 11, and proper
orthogonal decomposition (POD)**7 can be used to derive
empirical eigenfunctions based on process model solutions,
which can be employed as basis functions in Galerkin’s
method.

Model predictive controller design

In this section, we design a nonlinear model predictive
controller based on the finite-dimensional stochastic ODE
system of Eq. 11. In our development, we will need the fol-
lowing notation for the full state X = [x] xfT-]T = oy o -
1 T The variances of X, Xrand X are defined as

var(x(r)) = {<O€1(f)2> <°‘m(’)2>r
var(x; (1)) = [<O€m+1(l)2> <°‘m+2(’)2>
var(X(1)) = [var(xs(t))T var(xf(t))T}T

O Obppp+1 °°
T
.} (12)

where (-) denotes the expected value. The 2-norms of a
finite-dimensional vector y,(f) = [y(t) y2(¢) - y,,,(t)]T and an
infinite-dimensional vector y(r) = [yi(¢) y»(?) " are defined
as follows

lys (DIl =

13)

@)l =

Accordingly, we have the following for the norms of the vec-
tors var(x,), var(xy) and var(X)
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m

rar(a )P = (s (0?)”

J=1

||var(x;-(t))“2 = i <0€j(t)2>2 (14)

[var(X()|* = i <°‘f'(‘)2>2

MPC formulation based on the infinite-dimensional
system

In this section, we consider the problem of control of the
norm of the state variance of the nonlinear stochastic infi-
nite-dimensional system of Eq. 1 to a desired level. This
problem will be addressed within a model predictive control
framework, where the control, at a time ¢ and state x(f), is
obtained by solving a finite-horizon optimal control problem.
Since the system of infinite stochastic ODEs of Eq. 9 is
mathematically equivalent to the stochastic PDE of Eq. 1,
the MPC problem is formulated based on the system of infi-
nite stochastic ODEs of Eq. 9 in the following form

min {J(X(0).t.u())lu() € 5}

s.t
dx,
Z = Axxs + }-x(xwxf) + Bsu + és

dy _

o = A Frxp) + Bru+ & (15)

where S = S(¢, T,) is the family of piecewise functions, with
period A, mapping [t,t + T,] into u = {u(t) € R'} and T, is
a specified prediction horizon. The control u(-) in § is charac-
terized by the sequence u[k], where u[k] = u(t+kA) and sat-
isfies that u(t) = wu[k] for all ¢t € [t+kA, t+(k+1)A]. Note
that by selecting an appropriate S, input constraints can be
readily included in the control problem formulation. The
objective function J(X(¢), ¢, u(-)) is, in general, given by

JX, tu() = [ ' Ollvar(x*(x)) ~ var(x* (2))|Pdt

t

+ 0 |[var(X(t +T,)) —var(X*(t +T,) > (16)

where var(X*(t)) is the reference trajectory describing the
variance of the desired state for the infinite-dimensional sys-
tem, var(X"(t)) denotes the variance of the state X that is due
to the control u(¢), with initial state X(¢) at a time ¢ in the
closed-loop system of Eq. 1, Q and Qy are positive real num-
bers, and T, is the prediction horizon. We note that the cost
function of Eq. 16 does not include a penalty on the control
action. Yet, we do impose an implicit penalty on the control
action by imposing appropriate bounds on the eigenvalues of
the closed-loop system (see optimization formulation of
Eq. 21 below). The minimizing control W) = {u@), u@ +
A), u(t + 2A), ...} € S is then applied to the system over
the interval [z, t + A], and the procedure is repeated at ¢ +
A until a terminal time is reached. This defines an implicit
model predictive control law as follows

u(t) = M(X(1)) = u®(A; X(2), 1) a7
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in which M(x(#)) denotes the nonlinear map between the state
and control.

MPC formulation and solution based on the
reduced-order model

Note that the predictive control formulation shown in Eq. 15
is developed on the basis of an infinite-dimensional stochastic
system. Therefore, it leads to a predictive controller that is of
infinite order and cannot be realized in practice. To address
this issue, we provide a predictive control formulation that is
on the basis of the finite-dimensional system of Eq. 11, and
computes the control action by minimizing an objective func-
tion including the distance between the predicted state variance
and a reference trajectory and a terminal penalty.

Consider a vector of reference trajectories describing the
desired trajectories for each element of the variance of x,
var(x}() = [(xi(®?) - (x:(H)*)]". The control action u(r),
can be obtained by solving, in a receding horizon fashion,
the following optimization problem

min [ Qlbar(e(e) - vartss )

+ Of||var (R (¢ + T,)) — var(x:(t + T,))||°
s.t

o
T = AT FR,0) + But & (18)

where ¥(7) is the solution of Eq. 11 that is due to the con-
trol u(t), with an initial condition %(¢) at a time 7.

A challenge for the design of a predictive controller for a
stochastic process is to predict the state variance var(x,(f)), in
a computationally efficient way. Although, a realization of the
future evolution of state variance can be solved through nu-
merical integrations of the stochastic process model of Eq. 18,
due to the stochastic nature of the process, numerical solutions
from different simulation runs of the same stochastic process
are not identical. The state variance should be computed by
averaging the numerical solutions of the stochastic process
from a large number of individual simulation runs. The predic-
tion of state variance using brute force numerical integration
of a nonlinear stochastic system is, therefore, extremely com-
putationally expensive, and is not appropriate for the design of
predictive controllers to be implemented in real-time.

As an alternative, an analytical solution of the state var-
iance based on the process model, if available, provides a
feasible way for MPC design and implementation. For linear
stochastic PDEs, the analytical solution of the state variance
is readily available, which results in efficient design of a
model predictive controller for surface variance regulation.?!
However, analytical solutions of the state variance for non-
linear stochastic PDEs are, in general, not available. To this
end, we focus on the construction of a nonlinear feedback
controller that can induce a linear structure in the closed-
loop finite-dimensional stochastic system of Eq. 11. There-
fore, the analytical solution of the state variance under the
proposed controller structure can be obtained. Consequently,
the control action is computed by solving an optimization
problem in a receding horizon fashion and computationally
efficient way.

AIChE Journal August 2008 Vol. 54, No. 8
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Specifically, under the assumption that the number of con-
trol actuators is equal to the dimension of the X,-subsystem
and the matrix B, is invertible, the control law takes the fol-
lowing form

u(t) = By Y{(Aes() —

where A, (t) = diag[ia(t) -+ dem(®)]s Q@) i = 1,2, ..., m
are time-varying, desired poles of the closed-loop finite-
dimensional system). Note that in the proposed controller
structure of Eq. 19, the desired poles are not fixed values,
but will be computed in real-time by solving an online opti-
mization problem in a receding horizon fashion. This is a
fundamental difference from the nonlinear feedback control-
ler proposed in our previous work.??

Replacing the u# of Eq. 11 by Eq. 19, we have the follow-
ing closed-loop system

ANG(0) - F&0,0} (19

dz;(r)
dt

= A (% (1) + & (20)

In this control problem formulation, the computation of
the control action u(f), is equivalent to the computation of
As(t), or the values of A.(t) fori = 1,2, ..., m, by solving
the following optimization problem

min / (Qllvar (i) - var(x; (2))]* ) e

+ Of|var (3(1 + T,)) — var(x (¢ + T,)) ||
s.t
dx; -
dt - 'AL'.V(t)x.V + 55
ai < Ai(t) <b;<0; i=12,....m (21)
Note that in the optimization problem of Eq. 21, A(f)
does not change during the optimization time interval ¢+ < 7
< t + T,. Therefore, the optimization problem of Eq. 21,
which does not include penalty on the control action, is a
quadratic problem with linear constraints for which the exis-
tence of the optimal solution is guaranteed and unique. The
control action u, is computed using Eq. 19, in which A(¢)
is obtained from the solution of the constrained optimization
problem of Eq. 21. Since the poles of the closed-loop finite
dimensional system A.(f), are constrained, u is not explicitly
included in the objective function. The analytical solution of
the state variance of Eq. 20 can be obtained as follows

%a(1) = eif”“")in(t) +/ e&»n(t+Tp—u)f§'(#)du;
t

n=12,....m (22)

The expected value (the first stochastic moment), and the
variance (the second stochastic moment) of the state of
Eq. 20 can be computed as follows'®?!

(Fa(0)) = 05, (1)
2:7

() = o)

2. ;Lm

(23)
n=12,....m
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Equation 23 gives the analytical solution of var(%(¢)) in
the closed-loop finite-dimensional system of Eq. 11. Using
Eq. 23, the optimization problem of Eq. 21 can be subse-
quently formulated as a minimization of a nonlinear alge-
braic equation, which can be readily solved by using stand-
ard unconstrained or constrained multidimensional nonlinear
minimization algorithms (for example, Nelder-Mead method
or golden section search®**®). The computational cost of
these optimization algorithms grows with the number of vari-
ables and the computation involves only standard numerical
operations, such as function evaluation and comparison. The
optimization problems can be solved fast relative to the time
scale of process evolution using currently available comput-
ing power.

Remark 1 Note that input and state constraints could be
incorporated into the predictive control formulation of
Eq. 18. In a stochastic process, the value of either the input
or the state at a specific time is not predictable, and its evo-
lution can only be described by its statistical moments.
Therefore, the state constraints should be incorporated into
the predictive control formulation in the form of their statisti-
cal moments. Of particular interest are their second-order
moments (covariance), because the state covariance repre-
sents the expected surface roughness of a thin film,’’ ? and
the input covariance can be related to control energy.?
However, systematic handling of input andlor state con-
straints in predictive control of stochastic PDEs also
requires an efficient way to compute the state and/or input
covariance, which is, in general, very challenging for nonlin-
ear stochastic PDEs and is outside of the scope of this work.

Analysis of the closed-loop infinite-dimensional system

In this section, we analyze the state variance of the infinite
dimensional system under the predictive controller of Eq. 21.
To ensure exponential stability of the closed-loop finite-
dimensional system, the upper-bounds of the closed-loop
poles in Eq. 21, b;, i = 1, 2, ..., m, are all negative. Under
this condition, a Lyapunov function can be constructed to
prove the exponential stability of the closed-loop finite-
dimensional system with time-varying matrix A.(f) in
Eq. 21 (note that A.(¢) is a diagonal matrix). To this end,
we can design the predictive controller of Eq. 21 to success-
fully drive the variance of X; of the system of Eq. 20 to the
desired value, e.g., |[var(x,(1))||*= Hvar(xj(t))”z. By apply-
ing the controller of Egs. 19 and 21 to the infinite-dimen-
sional system of Eq. 9, and using that ¢ = I/l‘:ﬂul’ the closed-
loop system takes the form

dx;

G = At (Fale) = Falen 0) + 4,

d

8% = Ay + eBB (As — AT (24)

+ eFp (x5, xp) — eB By (%, 0) + e&;

where 4; and 4,4 are the first, and the (m + 1)th eigen-
values of the linear operator in Eq. 9, and
Ay, = diaglAs A ---] is an infinite-dimensional matrix
defined as As, = & - Ay.

We now proceed to characterize the accuracy with which
the variance of x = [xf ij-]T is controlled in the closed-loop
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infinite-dimensional system. Theorem 1 provides estimates of
the variances of x; and x; of the closed-loop system of
Eq. 24, and a characterization of the variance of x enforced
by the controller of Egs. 19 and 21 in the closed-loop infinite
dimensional system. The proof of Theorem 1 is given in the
following.

Theorem 1 Consider the closed-loop stochastic infinite-
dimensional system of Eq. 24, and the definition of
l|var (x|, |var(x) * and ||var(X)*H2 shown in Egq. 14.

Then, there exist ,u* > 0 and ¢ > 0 such that i

xfo‘ + HstHZS u* and ¢ € 0,671, Hvar(xs(tf)) R
var(x;(tr))||", and ||var(x(1y))||” satisfy
[[var(x:(1)||* = O(e) (25)

Ivar(n (@I = [var( )| + 0(Ve)  (26)

var(X(e)|]* = |Jvar(x:(e)||* + O0(Vz) @7)

where xp and Xy are the initial conditions for x; and X in
Eq. 24, respectively.

Proof of Theorem 1. The proof of Theorem 1 includes
several steps. First, we prove that the closed-loop infinite-
dimensional system is asymptotically stable for a sufficiently
small ¢. Second, we compute the ||var(xf)||2 using the x; sub-
system of Eq. 24, and prove Eq. 25 in Theorem 1. Then, we
compute |[var(x,)||* using the x, subsystem of Eq. 24, and
prove Eq. 26 in Theorem 1. Finally, the proof of Theorem 1
is completed by proving Eq. 27, based on the results in
Egs. 25 and 26.

Closed-loop infinite-dimensional system stability. Let u(f)
= M(x,) be the general expression of the control law corre-
sponding to the predictive control formulation of Eq. 18. The
infinite-dimensional closed-loop system of Eq. 24 can be
rewritten as follows

dx; .

% = -Asx.v + fs(xsaxf) + BSM(XS) + ¢

p xf (28)
F?zf = Apexyp + eFp (x5, Xp) + eBeM(x;) + e&f

where x; subsystem is a fast subsystem due to the eigenspec-
trum of Ay,. Rewriting the system of Eq. 28 in the fast-time-
scale T = t/e, and setting ¢ = 0, the x; subsystem of Eq. 28 takes
the form
dxy 7
d—; = Ap.%; (29)
where X; denotes the state of the x; subsystem after neglecting
the three terms. According to Assumption 1 for the eigenspec-
trum of the linear operator A4, all eigenvalues of Ay, have nega-
tive real parts. Thus, the system of Eq. 29 is exponentially
stable. Setting ¢ = 0 in the system of Eq. 28, the following
closed-loop finite-dimensional system is obtained
D g + Fy(%,0) + BM(%) + &
- = Ak s\Ass sV Xs Cs
dt (30)
= Acsis + é.v

which is locally exponentially stable by the design of the pre-
dictive controller of Eq. 21. Therefore, there exists a positive
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real number ¢ such that Ve € (0,8] the zero solution of the
closed-loop infinite-dimensional system of Eq. 24 is locally
asymptotically stable.

Proof of Eq. 25 in Theorem 1. Consider the closed-loop
system of Eq. 24, and note that the terms in the right-hand-
side of the x; subsystem constitute an O(¢) approximation to
the term Ag.x;. Consider also the following linear stochastic
system

dxy
dar

Following a similar approach to the one employed in the
proof of Theorem A.1 in** (Kokotovic, Khalil, and O’Reilly,
Academic Press; 1986) p. 361, we have that there exists an
& > 0, such that for all ¢ € (0, &"], we have that

13 Angf + 8@- 3D

(1) = % (1) + O(Ve) (32)

Based on the definition of ”var(xf)H2 in Eq. 14, we have
the following estimate for ||var(x(r)) H2

([var(x (1)|)*
— |[var(x (1) + 0()||* < 2||var (& ()| '+ 0(z) (33)

Furthermore, var(xf(t))H2 and Hvar()?f(t))H2 are equal to
the traces of the covariance matrices of xAr) and X¢(r), PAr)
= (x(OxAn)") and Pr(r) = (% (£)%(r)"), respectively. Finally,
for t > 1, (where 1, is the time needed for P«r) and P¢(t) to
converge to their steady-state values, and t, — 0 as ¢ — 0),
P(r) and P(t) converge to P{occ) and Pr(00), respectively
(both Py(c0) and Py(oco) are bounded quantities, which fol-
lows from closed-loop stability). Because Ay, is a diagonal
matrix, the trace of matrix Py can be computed as follows'®

_ e w1
TriPry == E — 34
i{ f} ) - )~ci ( )
where A; (i = 1, 2, ..., 00) are the eigenvalues of the matrix

Ay, in Eq. 31. According to Assumption 1, > || con-
verges to a finite positive number, and, thus, there exists a
positive real number kg such that

Tr{Pr} < ks (35)
Therefore, it follows that
2
I"=0() (36)

I

(P} = [[var(s)
According to Eq. 33, it follows that the |jvar(x)||” is
O(e). This completes the proof of Eq. 25 in Theorem 1.

Proof of Eq. 26 in Theorem 1. Consider the x, subsystem
of the closed-loop system of Eq. 24. First, we note that there
exists a positive real number ki, such that®*3°

”fs(x,wxf) - fs(x.wo)H < kl,vfoH (37)

where the definition of the vector norm can be found in Eq.
13. From Eq. 32, we have the following estimate for |fo
for t+ > 1, (where f, is the time needed for H)’c_f(t)‘ to
approach zero, and t, — 0 as ¢ — 0):
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()] = 0(Ve) (38)

This implies that we have the following estimate for
||.7:s(xs,xf) — fs(xs,O)H fort > t,

| F (x5 2) = F(x5,0) || = O(vVe) (39)

Therefore, the solution of the following system consists an
O(+/¢) approximation of the x, of Eq. 24*? (Kokotovic, Khalil,
and O’Reilly, Academic Press, 1986) Theorem A.1, p. 361.

dx;

dt = Ac.rfx + és (40)

In particular, there exists an &% > 0, such that for all
¢ € (0,&*], it holds that

x5(t) = X(1) = O(Ve) 41)
and
2 - 2 2 1= (112
Ivar (e () P~ Ivar (& (0) I = (O~ (011)
= (s = %O - (@1 + [15@1) = 0(Ve) - (42)
Note that it is assumed that the controller of Eqgs. 19 and
21 can successfully drive the norm of the variance of x, of
the system of Eq. 20 to track the reference trajectory, which

means the following equation holds

var(x,(0)|* = ||var(x: ()| (43)

Based on Egs. 42 and 43, we immediately have that in the

closed-loop infinite-dimensional system of Eq. 24, the fol-
lowing holds

Ivar(s (@I = [var )| +0ve) @4

This completes the proof of Eq. 26 in Theorem 1. O
Proof of Eq. 27 in Theorem 1. According to Eq. 14, we
have the following equation for ||var(x(¢))||* in Eq. 24

var(X(0)|> = [[var(xo ()| + [var (e (0)[|* @45)
Using Egs. 25 and 26, we have
Ivar(X ()| = [[var(; )| +0(V&) + 0(s)  46)
Since as ¢ — 0, it holds that

O(e)
oo "

The O(e) term in Eq. 46 is very small relative to the term
O(v/e) and can be neglected. Thus, there exists an

47

" = min(8*,8*) such that if ¢ € (0, ¢ ], then
« 2
Ivar(X ()| = [ar(s ()| +0(ve) @)
This completes the proof of Theorem 1. |
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Simulation Results

In this section, we present applications of the proposed
model predictive controller to both the stochastic PDE model
and the kinetic Monte Carlo model of a sputtering process.
Since the physical interpretation of the state variance of a
stochastic PDE is the expected roughness of the surface mod-
eled by the stochastic PDE, we will use the expected surface
roughness as the control objective in the simulation study.
By applying the MPC to the stochastic KSE, we demonstrate
that the nonlinear MPC is able to regulate the expected sur-
face roughness of the process modeled by the stochastic KSE
to a desired level, and the proposed predictive controller pos-
sesses good robustness properties against model uncertainties.
To demonstrate the applicability of the proposed predictive
control method to control surfaces directly formed by micro-
scopic events, we also apply the predictive controller to the
kinetic Monte Carlo model of a sputtering process to demon-
strate that the controller designed based on the stochastic
KSE model of the process can regulate the surface roughness
of the kinetic Monte Carlo model of the same process to a
desired level.

Nonlinear predictive control of the stochastic
Kuramoto-Sivashinsky equation

In this section, we present applications of the proposed
predictive controller to a stochastic KSE. The stochastic KSE
is a fourth-order nonlinear stochastic partial differential equa-
tion that describes the evolution of the height fluctuation for
surfaces in a variety of material preparation processes,
including surface erosion by ion sputtering,'®'” and surface
smoothing by energetic clusters.** We consider the following
stochastic KSE with spatially distributed control

2 (5] + o

Oh 82 h 64 h

o Vo ae T 0+ &)

(49)

where u; is the i mampulated input, p is the number of
manipulated inputs, b; is the i actuator distribution function
(i.e., b; determines how the control action computed by the
i™ control actuator, u;, is distributed (e.g., point or distributed
actuation) in the spatial interval [—m, n]), v = 1.975 X
1075k = 158 X 107%, 1 = 1.975 X 107%, x € [—m, 7] is
the spatial coordinate ¢ is the time, A(x,?) is the height of the
surface at position x and time ¢ and &(x,f) is a Gaussian
white noise with zero mean and unit covariance

<é/(X, t)é/(xlv lJ)) =

Equation 49 is subjected to periodic boundary conditions

S(x —x)o(t—1). (50)

5h 5h

g(—ﬂaf):g(nﬁ)a Jj=0,...,3 (51

and the initial condition i(x, 0) = 0. The parameters of the
KSE are selected such that k < v so that there is one posi-
tive eigenvalue of the linear operator, and the zero solution
of the open-loop system is unstable. Note that although a
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uniform initial condition is used in this simulation, nonuni-
form initial conditions can be handled by the MPC formula-
tion proposed in this work in the same way. A 200th order
stochastic ODE of Eq. 49 obtained via Galerkin’s method is
used to simulate the process (the use of higher-order approxi-
mations led to identical numerical results, thereby implying
that the following simulation runs are independent of the dis-
cretization). The Dirac delta function involved in the covari-
ance of ¢ and & is approximated by i, where At is the
integration time step.

Eigenvalue problem

To study the dynamics of Eq. 49, we initially consider the
eigenvalue problem of the linear operator of Eq. 49, which
takes the form

- L &)
A¢n(x) - A2 —K Ao _)‘ﬂ¢n(x) (52)
&, do, .

where /, denotes an eigenvalue and ¢, denotes an eigen-
function. A direct computation of the solution of the a fore-
mentioned eigenvalue problem yields 4, = 0 with
Yo=1/ V2x, and A, = wn® — kn* (4, is an eigenvalue of
multiplicity two) with eigenfunction ¢, = (1/+/m) sin(nx)
and Y, = (1/+/m) cos(nx) for n = 1, ..., co. Note that the ¢,
in Eq. 52 denotes either ¢, or y,. From the expression of
the eigenvalues, it follows that for fixed values of v > 0 and
Kk > 0, the number of unstable eigenvalues of the operator A
in Eq. 52 is finite, and the distance between two consecutive
eigenvalues (i.e., 4, and 4, ) increases as n increases.

We then derive nonlinear stochastic ODE formulations of
Eq. 49 using Galerkin’s method. By substituting the expan-
sion of A(x,f) in terms of the eigenfunctions into Eq. 49, and
taking the inner product with the adjoint eigenfunctions, the
following system of infinite nonlinear stochastic ODEs is
obtained

d n U
C;CI = (Vﬂ2 - Kn4)/xn +fny + Z bizx,,ui(t) + é’;(l‘)
i=1
n=1,---,00 (53)
dp,
dt (Vi’l — kn )ﬁn +fn/f + Zblﬂ uz + f/j( )

i=1

The control objective is the expected value of the surface
roughness r, which is modeled by the stochastic KSE and is
represented by the standard deviation of the surface from its
average height and is computed as follows

() = <2i [ o ~opay oo

where h(t) =+ [* h(x,7)dx is the average surface height.
The expected surface roughness (r(f)*) can be rewritten in
terms of a,(#) and f3,(¢) as follows
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—21< / n {i“z(’)@(xﬂiﬁi(t)l//,(ﬂ—ﬁo(t)l//o} dx>
| =1 =0

(55)

Therefore, the control problem of the expected surface
roughness is equivalent to the state covariance control of the
stochastic KSE. The proposed predictive control method can
be applied to regulate the expected surface roughness.

Open-loop dynamics of the stochastic KSE

In the first simulation, we compute the expected value of
open-loop surface roughness profile from the solution of
the stochastic KSE of Eq. 49 by setting u;(f) = 0 for i =
1,...p. For v = 1975 X 107* and k = 1.58 X 10~ %, the
stochastic KSE possesses one positive eigenvalue. There-
fore, the zero solution of the open-loop system is unstable.
Surface roughness profiles obtained from 100 independent
simulation runs using the same parameters are averaged,
and the resulting surface roughness profile is shown in
Figure 1. The value of the open-loop surface roughness
increases due to the open-loop instability of the zero solu-
tion. On the other hand, due to the existence of the nonlin-
ear term, the open-loop surface roughness does not increase
exponentially, but it is bounded.

Model reduction

Following the same way of model reduction of Eq. 9, we
rewrite the system of Eq. 53 as follows

dx; .

di = Asxs +fs(xmxf) +Bs“ + is

o (56)
th = Apxyp + 5 (s, ) + Bpu + &

where Xg = [(11 v Oy ﬁl ﬁm]Ty Xf = [O(m+1 ﬁm+1 "']Ta Ax =
dlag[/ll j'm /ll )"m]7 Af = di(lg[;un7+1 j~m+1 )~m+2 )bm+2 ]s
[iG ) = [fialeX) = o) fipltep) o fuplrsipl’
ff(xs’-x_'f) = [fm+lo<(xs»xf) fm+1/}(xss-xf) "']Ta u = [ul Mp]s
&= [EL &M EL o &, and &= [E" g ]

blyl bpy,
: . : 17‘m+1 o bp7m+1
b. . b I"ml bpﬁmﬂ
B, = Lom Pam By = blxmn b Pay 67
s b ... b f b
b P l’m+2 o [1/¢m+2
_bl/fm e by, J
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Figure 1. Comparison of the open-loop expected sur-
face roughness profile computed by averag-
ing 100 independent simulation runs (solid
line) and that from a single simulation run
(dotted line) of the stochastic KSE of Eq. 49.

We note that the subsystem x; in Eq. 56 is infinite-dimen-
sional. Neglecting the x; subsystem, the following 2m-dimen-
sional system is obtained

dx;

Z = AX}ZS +fv(fﬂ 0) + BXM + éf (58)

where the tilde symbol in X; denotes that this state variable
is associated with a finite-dimensional system.

Nonlinear predictive control of the stochastic KSE

In this closed-loop simulation, we design a predictive con-
troller based on a 10th-order stochastic ODE approximation
constructed by using the first 10 eigenmodes of the system of
Eq. 49. Ten control actuators are used to control the system.
The ith actuator distribution function is taken to be:

_ .
o ﬁsm(zz); i=1,...,5
b‘(z){\}ﬁcos[(i—S)Z]; i=6,....10

Under this control problem formulation, m = 5 and the
value of & = IA41/12,;] = 4.21 X 10™*. Our desired expected
value of the surface roughness in 4.28. A reference trajectory
for the expected surface roughness is constructed and is
shown by the dotted line in Figure 2. Closed-loop simula-
tions are performed to study the evolution of the expected
value of the surface roughness under predictive control. To
further simplify the computation, the predictive controller is
solved by assuming that all the closed-loop poles of the
finite-dimensional system are equal to each other. Closed-
loop surface roughness profiles obtained from 100 indepen-
dent simulation runs using the same simulation parameters
are averaged, and the resulting surface roughness profile
is shown in Figure 2 (solid line), and it is compared with
the reference trajectory (dotted line). We can see that
the controller successfully drives the surface roughness to
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Figure 2. The closed-loop profile of the expected value
of the surface roughness of the nonlinear
KSE under predictive control (solid line) vs.
the reference trajectory.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

the desired level, which is lower than that corresponding
to open-loop operation (u;(f) = 0, i = 1,...,10) shown in
Figure 1.

Robustness properties of the predictive controller

In this subsection, we demonstrate the good robustness
properties of the model predictive controller against parame-
ter uncertainties of the stochastic KSE process model. To
this end, we consider significant uncertainty in the parame-
ters of the stochastic KSE process model. Specifically, the
controller is designed based on the stochastic KSE model
with the following parameters v,, = 1.975 X 1074, =
1.58 X 107 and 4,, = 1.975 X 10, where the subscript
m denotes that the parameter is used by the model predictive
controller design. However, the parameters of the stochastic
KSE to which the predictive controller is applied are, v =
1.5v,, k = 0.5k, and 2 = 1.24,,, which correspond to a
50% uncertainty associated with v and x and a 20% uncer-
tainty associated with A. Both the proposed predictive con-
troller and the pole placement covariance controller proposed
in our previous work?® are applied to the stochastic KSE
model with the model uncertainties, and the simulation
results are shown in Figure 3. It is clear that the pole place-
ment covariance controller developed in our previous work
fails to regulate the expected surface roughness to the desired
level, but the predictive controller successfully regulates the
expected surface roughness to the desired level in the pres-
ence of significant model uncertainties.

Remark 2 Note that in the pole placement covariance
controller® the closed-loop poles are determined based on
the stochastic KSE model and the desired expected surface
roughness through an off-line design procedure. When there
are model errors, the errors will propagate to the closed-
loop poles of the controller, which results in a deteriorated
closed-loop performance. In the proposed predictive control-
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ler, the closed-loop poles are computed by solving an online
optimization problem. The online solution of the optimization
problem provides a feedback mechanism, which compensates
for the effect of model errors on the performance of the
closed-loop system.

Model predictive control of an ion-sputtering process
described by the stochastic KSE

Sputtering processes are widely used in the thin film and
semiconductor fabrication to remove material from the sur-
face of solids through the impact of energetic particles.>! In
many cases sputtering is used to smooth out surface features.
The stochastic KSE can be used to model the evolution of
the height profile for surfaces in a variety of sputtering proc-
esses including surface erosion by ion sputtering,'®!'” and
surface smoothing by energetic clusters.*® Physical processes
whose evolution of surface height can be modeled by the sta-
chastic KSE can also be modeled by using kinetic Monte
Carlo techniques (see, for example,'®'®). Since kinetic Monte
Carlo models predict the evolution of surface roughness in

8 T r :
= Expected roughness
7t v Gingle run
© Reference trajectory
2]
1]
@
c
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[=)
>
e
®
Q
8
S
w
1
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20 T : :
— Expected roughness
+ Single run
© Reference trajectory
15} : ES

Surface roughness
=
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Figure 3. Comparison of the expected closed-loop sur-
face roughness of the nonlinear KSE under
the proposed predictive controller (top fig-
ure), and under the nonlinear pole placement
controller developed in?2 (bottom figure):
effect of model uncertainty.
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Figure 4. The rule to determine P..
P, is defined as 1 times the number of occupied sites in a
box of size 3 X _;) centered at the particle on the top of site
i; P, = 1 in the left figure, and P, :‘7—‘ in the right figure,
where the particle marked by @ is on the top of site i.

these processes by directly simulating the formation of the
surface under various surface microprocesses, such as adsorp-
tion, desorption, surface erosion and surface reaction, kinetic
Monte Carlo models have a higher accuracy for prediction of
the surface roughness than the stochastic KSE model. To bet-
ter verify the efficiency of the developed feedback controller,
we implement the proposed nonlinear prodictive controller to
the kinetic Monte Carlo process model of a sputtering pro-
cess'® to control the surface roughness to a desired level.

Process description

We consider a 1-D-lattice representation of a crystalline
surface in a sputtering process, which includes two surface
microprocesses, erosion and diffusion. The solid-on-solid
assumption is made, which means that no defects or over-
hangs are allowed in the process.44 The microscopic rules
are as follows: a site, 7, is first randomly picked among the
sites of the whole lattice, and the particle at the top of this
site is subject to: (a) erosion with probability 0 < f < 1, or
(b) diffusion with probability 1 — f.

If the particle at the top of site i is subject to erosion,
the particle is removed from the site i with probability
P, - Y(¢y). P, is determined as % times the number of occu-
pied sites in a box of size 3X3 centered at the site i, which is
shown in Figure 4. There is a total of nine sites in the box. The
central one is the particle to be considered for erosion (the
one marked by @). Among the remaining eight sites, the site
above the central site of interest must be vacant since
the central site is a surface site. Therefore, only seven of the
eight sites can be occupied, and the maximum value of P, is
1. Y(¢;) is the sputtering yield function defined as follows

Y(;) = yo + 3} + y20; (60)

where yo, y; and y, are process dependent constants, and ¢;
is the local slope defined as follows

¢, = tan”! <7h"“ ;j””) 61)

where a is the lattice parameter, and /., and h;—; are the
values of surface height at sites i + 1 and i—1, respectively.

If the particle at the top of site i is subject to diffusion,
one of its two nearest neighbors, j (j =i +1 or i — 1) is ran-
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domly chosen, and the particle is moved to the nearest neigh-
bor column with probability w;_,; as follows

1

1 + exp (ﬁAH,*}j) (62)

W,‘_.,' =

where AH;_,; is the energy difference between the final and

initial states of the move, § = M%T and H is defined through
the Hamiltonian of an unrestricted solid-on-solid model as

follows™*

7 L
H= (;) > (= )" (63)

k=1

where J is the bond energy, L is the total number of sites in
the lattice, and n is a positive number. In the simulations pre-
sented in this paper, we use n = 2 and f§ - J =2.0.

Kinetic Monte Carlo simulation of the sputtering process

To carry out kMC simulations of this sputtering process,
the rates of surface microprocesses should be computed.*>*®
The rates of both erosion and diffusion are site specific, and
can be obtained based on the process description as follows

) =) ¥(8)
i=1,2,... L (64

=7

i—j

rd(i7j) = 27

where r,(i) is the erosion rate at site i, and r,(i,j) is the rate
at which a surface particle hops from site i to site j. For the
sputtering process considered, only nearest heighbor hopping
is allowed, so j = i £ 1. P,(i) is determined by the box rule
shown in Figure 4, Y(¢,) is defined in Eqs. 60 and 61, w;_,;
is defined in Eqs. 62 and 63, and 7 is the time scale.!” After
the rates of surface microprocesses are determined, kMC
simulations can be carried out using an appropriate algo-
rithm.*” Periodic boundary conditions (PBCs) are used in the
kMC model of the sputtering process. Using PBCs, a particle
that diffuses out of the simulation lattice at one boundary
enters into the simulation lattice from the opposing side.
Limited by the currently available computing power, the lat-
tice size of a kMC simulation is much smaller than the size
of a real process. Therefore, PBCs are widely used in molec-
ular microscopic level simulations, so that the statistical
properties of a large scale stochastic process can be appropri-
ately captured by kMC simulations carried out on a small
simulation lattice.*

Remark 3 The stochastic PDE model and the kMC
model of the sputtering process are consistent. The stochastic
PDE model for the sputtering processes can be derived
based on the corresponding master equation (see, for exam-
ple,"”*). Mathematically, the kMC model is a first-principle
realization of the microscopic process that provides an
unbiased realization of the master equation. Therefore, the
evolution of the surface configuration predicted by the
closed-form stochastic PDE model is consistent to that pre-
dicted by the kMC model, and, thus, can be controlled by a
controller designed, based on the stochastic PDE model of
the same process.'®'??!*2 However, the parameters of the
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stochastic KSE derived, based on the corresponding master
equation need to be carefully estimated. A continuum limit is
used in the derivation of the stochastic KSE from the master
equation, which requires an infinite number of lattice sites in
the kMC model. From a practical point of view, a kMC
model with a finite number of lattice sites is, however, used
for the simulation of the sputtering process, thereby leading
to a mismatch between the stochastic KSE and the kMC
model. Therefore, it is necessary to estimate the parameters
of the stochastic KSE, based on the kMC data directly to
ensure that the KSE model predictions are close to the ones
of the kMC model. (See the following for parameter estima-
tion.)

Necessity of spatially distributed control

Both spatially distributed control conl‘igurationlg’lg’22 and

spatially invariant control configuration®>*! could be used to
control the surface roughness of various material preparation
processes. However, the selection of control configurations in
the previous works was largely arbitrary, and was not guided
by the characteristics of the specific process considered. In
this section, we investigate the necessity and effectiveness of
spatially distributed control configuration in the context of
control of processes described by nonlinear stochastic PDEs.

For the ion-sputtering process considered in this section,
we consider the manipulated input as either the surface bom-
bardment rate or the substrate temperature. We will demon-
strate through the kMC simulation of the sputtering process
that a desired expected surface roughness value, 0.3, cannot
be achieved by manipulating either the substrate temperature
or the surface bombardment rate as a spatially invariant pro-
cess input, but can be achieved by manipulating the surface
bombardment rate as a spatially distributed process input.

In the first set of simulation runs, we compute the
expected surface roughness profiles of the sputtering process
during the erosion of the first 1,000 monolayers under differ-
ent substrate temperature. In all simulation runs, f = 0.5 and
p - J = JlkgT changes from 0.05 to 5.0. Note that in each
simulation run, the substrate temperature is spatially invariant
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Figure 5. Comparison of the open-loop profile of the
expected surface roughness from the kMC
simulator when f = 0.5 and g - J varies from
0.05 to 5.0.
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Figure 6. Comparison of the open-loop profile of the
expected surface roughness from the kMC
simulator when g - J = 2.0 and f varies from
0.1 to 0.6.

and constant. The surface roughness is calculated as the
standard deviation of the surface height profile. In the kMC
simulation, the formula to compute the surface roughness is
as follows

(65)

where L denotes the number of the lattice sites on the lateral
direction, and / denotes the averaged value of the surface
height among all lattice sites. The expected surface rough-
ness is the average of surface roughness profiles obtained
from 100 independent runs.

Figure 5 shows a comparison of the expected surface
roughness profiles under different temperatures. It is clear
that although the expected surface roughness can be reduced
by decreasing the temperature (or increasing the value of
p - J), the reduction is quite limited. Furthermore, it can be
observed that the minimum expected surface roughness that
can be achieved by manipulating the substrate temperature as
a spatially invariant process input is around 0.5, which is
much higher than the desired surface roughness of 0.3 in this
case study.

In the second set of simulation runs, we compute the
expected surface roughness profiles of the sputtering process
during the erosion of the first 1,000 monolayers under differ-
ent values of the erosion probability f. In all simulation runs,
the substrate temperature is fixed such that - J = 2.0 and
the probability that a selected surface particle is subjected to
erosion f, changes from 0.1 to 0.6. Note that in each simula-
tion run, the value of f is fixed. The erosion probability can
be changed by varying the surface bombardment rate.’ In
this study, the change of f from 0.1 to 0.6 corresponds to the
change of surface bombardment rate from 0.1sec ' site™! to
1.5sec” 'site™ .

Figure 6 shows the comparison of the expected surface
roughness profiles under different values of f. Again,
although the expected surface roughness can be reduced by
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decreasing the value of f, the reduction is quite limited. It
can be observed that the minimum expected surface rough-
ness that can be achieved by manipulating the surface bom-
bardment rate as a spatially invariant process input is around
0.5, which is higher than the desired surface roughness of
0.3 in this case study.

Finally, we consider a case where f is spatially invariant,
but is time-varying. Specifically, for each monolayer eroded,
f = 0.1 for the first half monolayer, and f = 0.6 for another
half monolayer. We compute the expected surface roughness
profiles of the sputtering process during the erosion of the
first 800 monolayers under this time-varying erosion proba-
bility f. In all simulation runs, the substrate temperature is
fixed such that f - J = 2.0. Figure 7 shows the profile of the
expected surface roughness under this operation. The profile
is also compared to those under fixed values of f (f = 0.1
and f = 0.6). It can be observed that when f is time-varying
between 0.1 and 0.6, the resulted expected surface roughness
profile is between the profiles obtained under fixed values of
f=0.1 and f = 0.6. Although time-varying inputs are useful
for surface processing in certain applications, they are not
effective in reducing the surface roughness of the sputtering
process considered in this work. The surface roughness
obtained from this time-varying input is around 0.5, and is
also higher than the desired surface roughness of 0.3.

Based on the simulation results shown in this section, it
can be concluded that reduction of the expected surface
roughness of the sputtering process by manipulation either of
the substrate temperature or of the surface bombardment rate
as a spatially invariant process input is very limited, and, in
the case studies, the desired surface roughness which is 0.3,
cannot be achieved. In the following subsection, we will
demonstrate that this limitation can be overcome by the pro-
posed nonlinear controller designed based on the stochastic
KSE process model, which uses spatially distributed control
actuation. To this end, we consider a sputtering process with
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fixed substrate temperature (ff - J = 2.0), and control the
expected surface roughness to the desired value by manipu-
lating the spatially distributed surface bombardment rate
across the surface.

Remark 4 Note that in this work, we focus on the pre-
dictive control of surface roughness in processes that can be
modeled by nonlinear stochastic PDEs so that a prespecified
surface roughness can be achieved. For a specific material
preparation process, the desired surface roughness should be
determined based on the process characteristics and the
product specifications. Detailed discussion on the selection of
desired surface roughness for a variety of existing thin film
deposition and sputtering processes is beyond the scope of
this work.

Stochastic KSE model with spatially distributed control

In the remainder of this section, a stochastic KSE model
will be identified using surface snapshots generated by the
kMC simulation of the sputtering process, and the spatially
distributed control action will be computed using the pro-
posed model predictive controller designed on the basis of
the identified stochastic KSE model.

The equation for the height fluctuations of the surface in
this sputtering process was derived in'” and is a stochastic
Kuramoto-Sivashinsky equation of the form of Eq. 66

oh Ph *h A [(On\* .
E: —v@—ka?-‘rE(a) + &(x, 1) (66)

where x € [—n, «] is the spatial coordinate, ¢ is the time, A(x
t) is the height of the surface at position x and time ¢, and
&(x, t) is a Gaussian noise with zero mean and covariance

<é(x, NEW, 1)) = 6*5(x —xX)o(t = 1) 67)

where ¢ is a constant. We note that this stochastic KSE rep-
resentation for the surface morphological evolution in sput-
tering processes is limited to surface morphologies that do
not involve re-entrant features; the re-entrant features could
arise under certain sputtering conditions, and are catastrophic
for the surface.

Parameter estimation

While the parameters of stochastic PDE models for many
deposition and sputtering processes can be derived based on
the corresponding master equation, which describe the evolu-
tion of the probability that the surface is at a certain configu-
ration; for all practical purposes, the stochastic PDE model
parameters should be estimated by matching the prediction
of the stochastic PDE model to that of kMC simulations, due
to the approximations made in the derivation of the stochas-
tic PDE model from the master equation.'->°

A method was recently developed to estimate the parame-
ters of the nonlinear stochastic KSE model of the sputtering
process by using data from the kMC simulations of the pro-
cess.*’” The parameter estimation algorithm is developed on
the basis of the finite-dimensional model, which takes the
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form of Eq. 58. The derivation of the finite-dimensional
approximation of the stochastic KSE model (Eq. 66) of the
sputtering process follows the same method as described in
the model reduction of the MPC design previously. The sys-
tem of Eq. 58 is a finite-dimensional nonlinear stochastic
ODE system including all four model parameters, v, K, A,
and ¢ of the stochastic KSE of Eq. 66. A system of deter-
ministic ODEs is then derived to describe the dynamics of
the state covariance matrix. The diagonal elements of the
deterministic ODE system are used to estimate the four pa-
rameters. Profiles of the state covariance are obtained by
averaging the results from kMC simulations. Finally, the
model parameters of the stochastic KSE of Eq. 66 are esti-
mated by using the least-square fitting method.

The method was applied to the ion-sputtering process to
identify the parameters of the stochastic KSE model with the
first 2m = 20 modes for parameter estimation. To formulate
the least-squares fitting problem, the state covariances were
evaluated at the first 150 available discrete time instants in
the data obtained from kMC simulations. The values of the
four parameters obtained from least-squares fitting are v =
276 X 107°, k = 1.54 X 1077, 2 = 3.06 X 1077, and
o> =178 X 107°.

To validate the parameter estimation method, the expected
open-loop surface roughness was computed from the stochas-
tic KSE model of Eq. 66 with the computed parameters.
Then, the profile from the stochastic KSE with computed
parameters was compared to that from the kMC model. The
expected surface roughness was computed from the simula-
tions of the stochastic KSE, and the kMC model by averag-
ing surface roughness profiles obtained from 100 and 10,000
independent runs, respectively. The simulation result is
shown in Figure 8. It is clear that the computed model pa-
rameters result in consistent expected surface roughness pro-
files from the stochastic KSE model of Eq. 66, and from the
kMC simulator of the sputtering process. There is observable
difference between the two profiles, which indicates the exis-
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tence of a slight mismatch of the identified KSE model with
the kMC model of the sputtering process. However, the error
is compensated in the closed-loop MPC implementation
through feedback since the MPC regulates the surface rough-
ness of the kMC model at the desired level.

Model predictive control with distributed control action

In the closed-loop simulation, we design a predictive con-
troller based on a 20th-order stochastic ODE approximation
constructed by using the first 20 eigenmodes of the linearized
(around zero solution) stochastic PDE of Eq. 66. First we
design a linear state feedback controller as follows

u(t) = B {(A(t) — A)X (1)} (68)
where  Ae(r) = diag[ici(t) -+ Aem(t)]; Zei(t), i = 1,2, - m,
are time-varying, desired poles of the closed-loop finite-

dimensional system and the poles A.(f) are computed by
solving the following optimization problem:

min T, 2
1 (Qlvar(x (1)) = var(x; ()| )d
py W (@hare(m) = varts @) )ds
+ Opllvar(x,(t + Tp)) — var(xi ( + 7)) |1
s.t.
dxs
E - Acs(l)xs + és

a; < Ai<bi<0; i=12,--- m. (69)
20 control actuators are used to control the system. The ith
actuator distribution function is taken to be

L i (i7)- o
o ﬁsm(zz)7 i=1,---,10
b’(z){\}%cos[(i—lo)z]; i=11,-..20 9

Under this control problem formulation, m = 10, and the
value of ¢ = I4l/l7;] = 0.02. Our desired expected value of
the surface roughness is 0.3. To further simplify the compu-
tation, the predictive controller is solved by assuming that all
the closed-loop poles of the finite-dimensional system are
equal to each other. Note that the predictive controller of
Eqgs. 68-69 is the linearization around the zero solution of
the predictive controller of Eqs. 19-21.

Then, we apply the designed predictive controller to the
kMC model of the sputtering process to control the surface
roughness to the desired level. In this simulation, the initial
surface roughness is about 0.5, and the microstructure of the
initial surface is shown in Figure 9. The controller is imple-
mented by manipulating the probability that a randomly
selected site is subject to erosion rule f. Specifically, the f of
site i is determined according to the following expression

T (ZR ) /a

=1 + (2 b)) fa

(70

The following simulation algorithm is used to run the
kinetic Monte Carlo simulations for the closed-loop system.
First, a random number, {; is generated to pick a site i,
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Figure 9. Surface microconfiguration at the beginning
of the closed-loop simulation run: the initial
surface roughness is 0.5.

[Color figure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]

among all the sites on the 1-D lattice; the probability that a
surface site is subject to the erosion rules, f(i) is determined
by using Eq. 71. Then, the second random number, {, dis-
tributed uniformly in the (0, 1) interval is generated. If {, <
f(i), the site i is subject to erosion, otherwise, the site is sub-
ject to diffusion.

If the site i is subject to erosion, P, is computed by using
the box rule shown in Figure 4, with the box centering at the
surface particle on site i and Y(¢;) is computed by using Eq.
60. Then, another random number, (.3 distributed uniformly
in the (0, 1) interval is generated. If {3 < P, - Y(¢;) the sur-
face particle on site i is removed. Otherwise, no Monte Carlo
event is executed.

If the site i is subject to diffusion, a side-neighbor, j =
i+ 1ori— 1israndomly picked, and the probability of a
hopping from site i to site j, w;_,; is computed based on Eq.
62. Then, another random number {3 distributed uniformly
in the (0, 1) interval is generated. If {3 < w;_,;, the surface
particle on site i is moved to site j. Otherwise, no Monte
Carlo event is executed. Once a Monte Carlo event is exe-
cuted, the first 20 states (o, ..., oy and fi, ..., f1o) are
updated and new control actions are computed to update the
value of f (defined in Eq. 71) for each surface site.

Closed-loop surface roughness profiles obtained from 100
independent simulation runs using the same simulation pa-
rameters are averaged, and the resulting expected surface
roughness profile is shown in Figure 10. We can see that the
predictive controller drives the surface roughness very close
to the desired level, which is lower than the surface rough-
ness that can be achieved by manipulating the surface bom-
bardment rate in a spatially invariant manner.

The microstructure of the surface at the end of the closed-
loop system simulation run is shown in Figure 11. It is clear
that the proposed model predictive control results in a
smoother closed-loop surface.

Remark 5 Note that although the stochastic KSE model
of Eq. 66 is a nonlinear model for the sputtering process, the
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Figure 10. Closed-loop profile of the expected value of
the surface roughness under predictive con-
trol.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

linearization of the stochastic KSE around its zero solution is
used to design the predictive controller of Eqs. 68—69. This
is based on the following argument. Since the instability of
the spatially uniform steady state comes from the linear part
of the model, and the nonlinear part of the stochastic KSE
helps bound the surface roughness, for control purposes, we
only need to focus on the stabilization of the linear part of
the stochastic KSE. This argument is further supported by
our simulation results, which demonstrate the effectiveness of
the predictive controller designed in this work.

Figure 11. Surface microconfiguration at the end of the
closed-loop simulation run under predictive
control: the final surface roughness is
around 0.3.

[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Conclusions

We developed a method for model predictive control of
nonlinear stochastic PDEs to regulate the state variance to a
desired level. Initially, a system of infinite nonlinear stochas-
tic ODEs was derived from the nonlinear stochastic PDE by
using Galerkin’s method. To capture the dominant mode con-
tribution, a finite-dimensional approximation of the stochastic
ODE system was then derived. A model predictive control
problem was formulated based on the approximation. This
enabled computationally efficient prediction of state variance
of the finite-dimensional system. The control action was
computed by minimizing an objective penalty function. To
characterize the closed-loop performance enforced by the
model predictive controller, an analysis of the closed-loop
nonlinear infinite-dimensional system was provided. The pre-
dictive controller was initially applied to the stochastic KSE,
and resulted in successful control of the norm of the state
variance to a desired level in the presence of significant
model parameter uncertainties. In addition, the problem of
surface roughness regulation in a 1-D ion-sputtering process
including two surface microprocesses, diffusion and erosion,
was considered. We established, through kMC simulations,
that the spatially distributed control configuration was more
effective for surface roughness regulation compared to the
spatially invariant control configuration for this process.
Then, we designed a model predictive controller based on an
identified stochastic KSE surface model to control the surface
roughness of the sputtering process by manipulating the sur-
face bombardment rate in a spatially distributed manner. The
predictive controller successfully regulated the expected sur-
face roughness to a desired level in the kMC model of the
sputtering process.
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