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A method for multi®ariable feedback control of surface roughness and growth rate in
( )thin film growth using kinetic Monte-Carlo MC models is proposed. The method is

applied to the process of thin film growth in a stagnation flow geometry including atom
adsorption, desorption, and surface migration as the three processes that shape film
microstructure and determine film growth rate. A multiscale model in®ol®ing coupled
partial differential equations to model the gas phase and a kinetic MC simulator, based
on a large lattice, for the modeling of film growth, is used to simulate the process. A
roughness and growth rate estimator constructed allowed computing estimates of the
surface roughness and growth rate at a time-scale comparable to the real-time e®olution
of the process. The estimator in®ol®es kinetic MC simulators based on small lattice
models, adapti®e filters used to reduce stochastic fluctuations of the outputs of the small
lattice MC simulator outputs, and measurement error compensators used to reduce the
errors between the estimates and measurements. The interactions between the inputs
( ) (substrate temperature and inlet precursor mole fraction and outputs growth rate and

)surface roughness in the closed-loop system are studied and found to be significant. A
multi®ariable feedback controller, which uses the state estimator and explicitly compen-
sates for the effect of inputroutput interactions, is designed to simultaneously regulate
the growth rate and surface roughness by manipulating substrate temperature and inlet
precursor mole fraction. Application of the estimatorrcontroller structure to the multi-
scale process model demonstrates successful regulation of the surface roughness and
growth rate to the desired set point ®alues. This approach is shown to be superior to
control of the growth rate and surface roughness using two independent feedback con-
trol loops.

Introduction

Deposition of thin films from gas-phase precursors has
great industrial importance. The modern integrated circuit
technology depends strongly on the uniformity and mi-

Ž .crostructure of deposited thin films Granneman, 1993 . Due
to the increasingly stringent requirements on the quality of
such films including uniformity, composition, and microstruc-
ture, and the desire to improve productivity by increasing
wafer dimensions and reducing product variability, real-time
feedback control of thin film deposition becomes important.
These trends have motivated significant research efforts on
feedback control of film deposition processes with emphasis
on control of film spatial uniformity in rapid thermal chemi-

Correspondence concerning this article should be addressed to P. D. Christofides.

Žcal vapor deposition for example, Baker and Christofides,
.1999; Theodoropoulou et al., 1999 and plasma-enhanced

Žchemical vapor deposition for example, Armaou and
.Christofides, 1999 . From a control point of view, film spatial

uniformity control is a distributed control problem that can
be addressed on the basis of continuum type transport-reac-
tion models by using controller design methods for nonlinear

Ž . Žparabolic partial differential equations PDEs see
Ž .Christofides 2001 for results and references on this prob-

.lem .
In addition to achieving spatially uniform deposition of thin

films, one would like to control film properties such as mi-
crostructure and composition that characterize film quality.
This is motivated by the strong dependence of the electrical
and mechanical properties of thin films on their microstruc-
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Žture and composition see, for example, Akiyama et al., 2002;
.Chang et al., 2001; Lee et al., 1999 . A typical example of

thin film growth where feedback control of film surface
roughness could be useful is the deposition of thin films of

Ž .materials with high dielectric constant such as ZrO ; such2
materials are expected to replace SiO thin films to achieve2
higher performance and lower static-power operation in com-

Ž . Žplementary metal oxide semiconductor CMOS devices Lee
.et al., 1999 . In this application, a rough ZrO film surface2

would lead to silicidation of the interface between the ZrO2
film and the polysilicon gate during rapid thermal annealing
Ž .Busch et al., 2002 , which, in turn, would lead to an interfa-
cial layer with low dielectric constant which would reduce the

Žeffective capacities of the gate dielectrics Wallace and Wilk,
.2002 . Therefore, good control of surface roughness in the

deposition of the ZrO thin film is needed to achieve a2
smoother film surface with fewer reaction sites which would
result in a suppression of the interfacial reactions. The study
of feedback control of surface roughness is also motivated by
the possibility to obtain roughness measurements in real-time

Ž .using scanning tunneling microscopy Voigtlander, 2001 ,¨
Ž .spectroscopic ellipsometry techniques Zapien et al., 2001 ,

or by a combination of on-line measurements techniques for
measuring gas-phase compositions with off-line measurement
techniques for measuring surface roughness. An implementa-
tion of the latter approach was recently reported in Ni et al.
Ž .2003 , where it was used to measure carbon composition of
thin films in plasma-enhanced chemical vapor deposition us-

Ž .ing a combination of optical emission spectroscopy OES and
Ž .X-ray photoelectron spectroscopy XPS .

While deposition uniformity control can be accomplished
on the basis of continuum type distributed models, precise
control of film properties requires models that predict how

Ž .the film state microscopic scale is affected by changes in the
Ž .controllable process parameters macroscopic scale . The de-

sire to understand and control the microstructure of thin films
has motivated extensive research on fundamental mathemati-
cal models describing thin film growth and its interactions
with the surrounding gas. Thin film deposition is a typical
process including multiple time and length scales, and this
has motivated the use of multiscale models to obtain model-
ing descriptions which can be simulated with reasonable com-
puting power. Specifically, one approach to model thin film
growth is to model the gas-phase phenomena using a set of
partial differential equations derived from mass, momentum,
and energy balances, and to model the film growth using the

Ž .kinetic Monte-Carlo MC simulation method with appropri-
Žate lattice configurations see, for example, Lam and Vla-
.chos, 2001; Vlachos, 1997 . The two models are coupled

through the film surface boundary conditions. Other ap-
proaches have been also developed to study the growth of

Ž .thin films including the level set method Chen et al., 2001 .
While multiscale modeling provides a computationally attrac-
tive alternative with respect to direct modeling of the entire
thin film growth process using a molecular model, it still leads
to dynamic models that cannot be solved fast enough for
real-time estimation and control purposes.

Mathmatically, kinetic MC simulation methods provide a
Žnumerical solution to the master equation Kang and Wein-

.berg, 1992 , which is a stochastic partial differential equation
describing the evolution of the probability that the thin film
is at a certain microconfiguration. As an alternative with re-

Žspect to closed-form process models such as partial differen-
.tial equation models , which are not available for describing

the evolution of microstructure of thin films, the kinetic MC
simulation method can be used to predict average properties

Žof the thin film which are of interest from a control point of
.view, for example, surface roughness , by explicitly account-

ing for the microprocesses that directly shape thin film mi-
crostructure. As the lattice size used to perform the kinetic
MC simulation increases, the average thin film properties,
which are computed from the kinetic MC simulation, con-
verge to the values obtained from the solution of the master
equation. The accuracy of solutions of the kinetic MC simu-
lation method depends on the size of the lattice used in the
simulation which, in turn, determines the computational re-
quirements of the simulation. The computational require-
ments for a solution with reasonable computing power make
impossible the direct use of kinetic MC simulators in an on-
line feedback control scheme. Motivated by this, recent re-
search efforts have focused on the development of order re-

Žduction techniques for the master equation Gallivan and
.Murray, 2003 . Other approaches have also been developed

to identify linear models from outputs of kinetic MC simula-
tors and perform controller design by using linear optimal

Ž .control theory Armaou et al., 2002 .
Despite these methodological advances and the develop-

ment of techniques for real-time roughness measurements
Žusing real-space imaging methods such as scanning tunnel-

Ž . Ž ..ing microscope STM Curtis et al., 1997; Voigtlander, 2001 ,¨
there is no systematic framework for the design of feedback
control systems that integrates real-time measurements, mul-
tiscale models, and feedback control algorithms to shape film
microstructure in real time. One of the main obstacles for
real-time feedback control is the difficulty to obtain real-time

Ž .measurements of film properties such as surface roughness
at a frequency that is large enough to fully capture the dy-
namics of the growth process. This limits the direct use of
real-time roughness measurement techniques for feedback
control and motivates the design of model-based roughness

Ž .estimators. In a previous work Lou and Christofides, 2003 ,
we proposed a systematic method for the design of roughness
estimators which consist of kinetic Monte Carlo simulators
based on small lattice models, an adaptive filter for noise re-
duction, and a measurement error compensator. Based on
the estimator, a single-loop feedback control system was de-
veloped and applied to the multiscale model of a thin film
growth process to regulate surface roughness.

This work focuses on multivariable feedback control of sur-
face roughness and growth rate in thin film growth. The ob-
jective is to understand the nature of this multivariable con-
trol problem and to develop a systematic method for the de-
sign of a multivariable feedback control system, which can be
implemented in real time. While the proposed method for
estimationrcontrol using kinetic Monte-Carlo simulators is
applied to the process of thin film growth in a stagnation flow
geometry, the methodological approach of this work is appli-
cable to other thin film growth processes.

Initially, the thin film growth process is introduced and a
multiscale model is presented. An estimator is then con-
structed that allows computing estimates of the surface
roughness and growth rate at a time-scale comparable to the
real-time evolution of the process. The multivariable control
problem is then studied and a multivariable feedback control
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system, which directly uses the estimator and compensates
for the effect of multivariable inputroutput interactions, is
designed to simultaneously regulate the growth rate and sur-
face roughness by manipulating substrate temperature and
inlet precursor concentration. Finally, the proposed control
system is applied to the multiscale process model and suc-
cessful regulation of the surface roughness and growth rate
to the desired set point values is demonstrated through com-
puter simulations.

Thin Film Growth Process
We consider the growth of a thin film from a fluid in a

Ž .vertical, stagnation flow geometry Gadgil, 1993 . The pro-
cess is shown in Figure 1. In this geometry, inlet fluid flow
forms a uniform boundary layer adjacent to the surface of
the substrate and precursor atoms diffuse through the
boundary layer, reach at the surface, and adsorb onto the
surface. Subsequently, adsorbed atoms may desorb to the gas
phase or migrate on the surface.

From a modeling point of view, the major challenge is the
integration of the wide range of length and time scales that

Žare encountered in this thin film growth process Vlachos,
.1997 . Specifically, in the gas phase, the processes of

heatrmass transport can be adequately modeled under the
hypothesis of continuum, thereby leading to PDE models for
chamber temperature and species concentration. However,
when the microstructure of the surface is studied, micro-
scopic events such as atom adsorption, desorption, and mi-
gration have to be considered, and the length scale of inter-
est reduces dramatically to the order of several atoms. In such
a small length scale, the continuum hypothesis is no longer
valid and deterministic PDEs cannot be used to describe the
microscopic phenomena. Microscopic modeling techniques,
such as Monte-Carlo simulation or molecular dynamics,
should be employed to model the evolution of surface micro-
structure.

Although different modeling approaches are used to model
the macroscopic and microscopic phenomena of the process,
there are strong interactions between the macro- and mi-
croscale phenomena. For example, the concentration of the
precursor in the inlet gas governs the rate of adsorption of
atoms on the surface, which, in turn, influences the surface
roughness and growth rate. On the other hand, the density of
the adatoms on the surface affects the rate of desorption of
atoms from the surface to the gas phase, which, in turn, influ-
ences the gas-phase concentration of the precursor. A multi-

Figure 1. Thin film growth process.

Ž .scale model Vlachos, 1997 is employed in this work to cap-
ture the evolution of both macroscopic and microscopic phe-
nomena of the thin film growth process, as well as their inter-
actions. A set of PDEs derived from the mass, momentum,
and energy balances is used to describe the gas-phase dynam-

Ž .ics. Kinetic MC simulation Fichthorn and Weinberg, 1991 is
employed to capture the evolution of surface microstructure
and growth rate. Furthermore, the parameters of kinetic MC
simulation, such as the temperature and precursor concentra-
tion, are provided by the solution of PDEs and the results
from the kinetic MC simulation are used to determine the
boundary conditions of the PDEs of the macroscopic model.
Therefore, the macroscopic and microscopic models are cou-
pled. In this article all the simulations are performed by cou-
pling the kinetic MC simulation and the PDE model. In the
remainder of this section, we provide the mathematical de-
scription of the multiscale process model.

Gas-phase model
Under the assumption of axisymmetric flow, the gas phase

can be modeled through continuum type momentum, energy,
Ž .and mass balances as follows Lam and Vlachos, 2001

23 2� � f � f � f 1 � � fbs q f q y 1Ž .3 2ž / ž /�� �� 2 � ���� ��

� T 1 � 2T � T
s q f 2Ž .2�� P ����r

� y 1 � 2 y � yi i is q f 3Ž .2�� Sc ����j

The following boundary conditions are used for � ™�

TsTbulk

� f
s1

��

y s y , js1, . . . , N 4Ž .j jb g

Ž .and for �™0 surface

TsTsurface

fs0

� f
s0

��

� yj s0, for j�growing species
��

� y Sc R yRŽ .growing growing a ds 5Ž .
�� 2 a� �' b b

where f is the dimensionless stream function, R and R area d
the rates of adsorption and desorption on the surface of the
growing film, respectively, � is the dimensionless distance to
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the surface, � is the density of the mixture, P is the Prandtlr
number, y and Sc are the mole fraction and Schmidt num-j j
ber of the species j, respectively, � and � are the viscosityb b
and the density at the bulk, respectively, a is the hydrody-
namic strain rate, and � s2 at is the dimensionless time.

Although the macroscopic model describes the spatio-tem-
poral evolution of the precursor concentration and tempera-

Žture which influence the configuration of the growing sur-
.face , no direct information of the surface microstructure is

available from the macroscopic model. Furthermore, the
growth rate and the boundary conditions for the mass-trans-
fer equation of the growing species depend on the rates of
adsorption and desorption, which strongly depend on the sur-
face microconfiguration. Therefore, a microscopic model is
necessary to model the microstructure of the surface and to
determine the boundary conditions of the mass-transfer
equation.

Film growth model
The thin film growth problem considered in this work in-

volves three distinct processes: the adsorption of atoms from
the gas phase to the surface, the desorption of atoms from
the surface to the gas phase, and the migration of atoms on
the surface. The statistical properties of these processes can
be studied by dividing a duration t into n identical time in-
tervals of length � . When n™�, � is small enough so that
each time interval of length � contains one event at the most.

ŽThe average rate can be then defined as Fichthorn and
.Weinberg, 1991

n�
rs lim 6Ž .

t�™ 0

when n is the number of time intervals containing events.�

Therefore, the probability that n events will occur in thee
w xtime interval 0,t is

n n ny ne eP s r� 1y r� 7Ž . Ž . Ž .ne nž /e

where n is the number of intervals in time duration t and
n w Ž . xsn!r n ! nyn ! . When n™�e enž /e

rt ne
yr tP s e 8Ž .ne n !e

Ž .which is a Poisson distribution Van Kampen, 1992 . Equa-
tion 8 can be readily applied to the adsorption, desorption,
and migration processes involved in the thin film growth pro-
cess. Due to the fact that the ensemble of independent Pois-
son processes is also a Poisson process, the thin film growth
process is a Poisson process.

Due to the stochastic nature of the process, the probability
that the surface is in a possible configuration � is described

Ž .by the so-called master equation Van Kampen, 1992

dP� s W P yW P 9Ž .Ž .Ý �	 	 	� �dt 	

where P is the probability of the surface being in configura-�

tion � and W is the transition probability rate of the sur-�	

face going from configuration 	 to configuration � , which
can be computed from the probability distribution of adsorp-
tion, desorption, and migration. It is hard to write down the
explicit form of Eq. 9 because the number of the possible
states is extremely large for most systems of realistic size. For
example, for a system with 10�10 sites and a maximum height
of 1, the number of configurations is 2100f1030. This makes
impossible the direct solution of Eq. 9 for any system of
meaningful size, using numerical methods for integration of

Ž .ordinary differential equations such as Runge-Kutta .
Monte Carlo methods provide an alternative approach to

solve the master equation numerically. To capture the dy-
namic properties of the system, the MC algorithms must be
able to satisfy the detailed balance criterion, appropriately
calculate the lifetime of each MC event, and guarantee the
independence of events by using an appropriate random

Ž .number generator Fichthorn and Weinberg, 1991 . The way
to satisfy detailed balance criterion differs when different al-
gorithms are used. In general, there are two groups of MC
algorithms which have been developed to simulate processes

Ž .governed by the master equation: a the null-event algorithm
Ž . Ž . ŽZiff et al., 1986 , and b the kinetic MC method for exam-

.ple, Vlachos et al., 1993 . When the null-event algorithm is
used, which tries to execute MC events on randomly selected
sites with certain probabilities of success, the probabilities of
successful trials should be appropriately constructed to sat-
isfy the detailed balance criterion. On the other hand, if the
kinetic MC method is used, which selects the MC event be-
fore the selection of the site on which the MC event is going
to be executed, the detailed balance criterion is satisfied by
appropriately constructing the probabilities of the different
kinds of MC events to be selected. Upon a successful MC
event, the time passed during the event is computed based on

Ž .the total rates of all the microprocesses Vlachos, 1997 . In
this way, the dynamic properties of the system can be cap-
tured. Since the kinetic MC method is computationally more
efficient than the null-event algorithm, it is used to simulate
the surface processes in the thin film growth process in this

Ž Ž .study see Reese et al. 2001 for a detailed discussion on
comparison of computational efficiency of the kinetic MC

.method to the null-event algorithm .
To run the kinetic Monte-Carlo simulation for the evolu-

tion of the surface microstructure and growth rate, an N �
ŽN lattice is initially constructed. The size of the lattice or

.the value of N is determined based on the desired accuracy
and the requirement to capture the main phenomena occur-
ring on the surface. Generally, a larger lattice can achieve

Žhigher accuracy in terms of average properties and size of
.stochastic fluctuations , but requires a larger solution time.

When the lattice is ready, microscopic events are executed on
the lattice based on the probabilities of the individual pro-
cesses. To simplify the development, only first-nearest-
neighbor interactions are considered, the solid-on-solid ap-

Ž .proximation of a simple cubic lattice is made, the 001 sur-
face is studied, and periodic boundary conditions are used.
Furthermore, although it has been shown that the barrier for
a surface atom diffusion down a step and that for diffusion

Žon a flat surface are not, in general, the same Amar and
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.Family, 1996; Stumpf and Scheffler, 1994 , the magnitude and
even the sign of the difference are not generally known. In
this work, we assume that the barrier for diffusion down a
step and that for diffusion on a flat surface are the same.

In this study, we consider multilayer growth and assume
that all the sites are available for adsorption at all times, and,
thus, the adsorption rate is taken to be site independent. For
an ideal gas, the adsorption rate at a site on the surface is

Ž .given by the kinetic theory Lam and Vlachos, 2001

s Py0 growing
r s 10Ž .a 2
 mkTC' tot

where s is the sticking coefficient, k is the Boltzmann con-0
stant, P is the chamber pressure, y is the mole fractiongrowing
of precursor on the surface of the growing film, C is thetot
concentration of sites on the surface, m is the molecular
weight of the precursor, and T is the gas-phase temperature
above the surface.

The rate of desorption at a site on the surface depends on
the local activation energy. Under the consideration of only
first nearest neighbor interactions, the desorption rate of an
atom from the surface with n first nearest neighbors is

nE
r n s� exp y 11Ž . Ž .d 0 ž /kT

where E is the energy associated with a single bond on the
surface and � is the frequency of events, which is deter-0
mined by the following expression

Ed
� sk exp y 12Ž .0 d0 ž /kT

where k is the event frequency constant and E is the en-d0 d
ergy associated with desorption.

Surface migration is modeled as desorption followed by
Ž .re-adsorption Gilmer and Bennema, 1972 , and the migra-

tion rate per surface site is given by

nE
r n s� A exp y 13Ž . Ž .m 0 ž /kT

The parameter A is associated with the energy difference
that an atom on a flat surface has to overcome in jumping
from one lattice site to an adjacent one and is given by

E yEd m
Asexp 14Ž .ž /kT

where E is the energy associated with migration.m
The parameters in Eqs. 10�14 can be determined either by

experiments or by theoretical computations. Parameters of
the process studied in this work are shown in Table 1. When
the lattice is set and the rates of the three events are deter-
mined based on the corresponding rate expressions, a kinetic
Monte-Carlo simulation is executed following the algorithm

Ž .reported in Vlachos 1997 . First, the surface atoms are

Table 1. Process Parameters

Sticking coefficient s 0.10 y26Precursor molecular weight m 4.65�10 kg
19 2Surf. site concentration C 10 sitesrmtot
13 y1Event freq. const k 10 sd0

4Bond energy E 7.14�10 Jrmol
4Desorption energy E 7.14�10 Jrmold
4Migration energy E 4.28�10 Jrmolm

5Chamber pressure P 10 Pa
y1Strain rate a 5 s

grouped into five classes based on the number of side neigh-
Žbors such as surface atoms have 0, 1, 2, 3 and 4 side neigh-
.bors ; in each class, the atoms have the same desorption and

Ž .migration rates the adsorption rate is site independent .
Then, a random number is generated to select an event to be
run based on the rates; if the event is desorption or migra-
tion, the class in which the event will happen is also selected.
After that, a second random number is generated to select
the site where the event will be executed; if the event is ad-
sorption, the site is randomly picked from sites in the entire
lattice; if the event is desorption or migration, the site is ran-
domly picked from the list of the sites in the selected class.
After the site is selected, the MC event is executed. If the
event is adsorption or desorption, it is executed by adding or
removing one atom on the selected site; if the event is migra-
tion, a third random number is generated to randomly pick a

Ž .neighboring site that has a lower height target site , and to
move the atom from the original site to the target site. Upon

Žan executed event, a time increment dt is computed by Lam
.and Vlachos, 2001

yln 

dts 15Ž .5 ymE

r � N q� 1q A N expŽ . Ýa T 0 m ž /kTms1

Ž .where 
 is a random number in the 0, 1 interval, N is theT
total number of sites on the lattice, and N is the number ofm
atoms that have m side-neighbors on the surface. After an
MC event is executed, the five classes are updated and the
next step of simulation can be performed. This algorithm
guarantees that every trial is successful, satisfies the detailed
balance criterion, guarantees the independence of events, and

Žis efficient compared to traditional null event algorithms Re-
.ese et al., 2001 .

Real-Time Estimator for Surface Roughness and
Growth Rate

Surface roughness and growth rate are properties of inter-
est from a control point of view since they directly influence
device properties and productivity. To be able to achieve good
control of surface roughness and growth rate, it is important
to develop an estimator that can provide estimates of these
variables in real time. In this section, we develop such an
estimator by following a methodology that was proposed in

Ž .Lou and Christofides 2003 .
The roughness r is represented by the number of broken

bonds on the surface and is computed according to the fol-
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Ž .lowing expression Raimondeau and Vlachos, 2000

rs
� � � � � � � �Ý h yh q h yh q h yh q h yhŽ .iq1, j i , j iy1, j i , j i , jq1 i , j i , jy1 i , j

2� N � N

q1 16Ž .

where N is the size of the lattice and h is the number ofi, j
Ž .atoms at site i, j .

Ž .The growth rate gr units monolayerrsecond, MLrs deter-
mines how fast the thin film grows. In this study, the growth
rate is defined as the difference between the rate of adsorp-
tion and the rate of desorption on the surface, and is given by
the following expression

r y rÝ ai , j di , j
i , j

grs 17Ž .
N � N

Ž y1.where r and r units s are the rates of adsorptionai, j di, j
Ž .and desorption at the site i, j of the surface, respectively,

and N is the size of the lattice. The rate r depends on thedi, j
Ž .number of nearest neighbors at site i, j and is obtained

from the kinetic MC simulations.
In the kinetic MC simulation, the size of the lattice influ-

ences the accuracy of the result and the computational de-
Ž .mand. In previous work Lou and Christofides, 2003 , we dis-

cussed the dependence of simulation results on the lattice
size used in the MC simulations. The simulation results show
that when the lattice size is sufficiently large, the roughness
profiles obtained from kinetic MC simulations are indepen-
dent of the lattice size. To implement real-time feedback
control based on a model that captures the evolutions of sur-
face roughness and growth rate, the size of the lattice has to
be selected to make the model solution time comparable to
the process real-time evolution, while capturing the dominant
phenomena occurring on the surface. In our simulations,
when the size of the lattice is reduced to 30�30, the solution
time of the kinetic MC simulation is comparable to the real-
time process evolution and the average values of the surface
roughness and growth rate approximate well the average val-

Figure 2. Growth rate from a kinetic MC simulation,
which uses a 20�20 lattice.

Figure 3. Growth rate from the computation of the aver-
age of six independent kinetic MC simula-
tions, which utilize a 20�20 lattice.

ues of these variables, which are obtained by running the ki-
Žnetic MC simulation on a 120�120 lattice this is a suffi-

ciently large lattice to ensure simulation results which are in-
dependent of the lattice size; see the discussion at the end of

.remark 1 . However, the outputs from a kinetic MC simula-
tion using a 30�30 lattice contain significant stochastic fluc-
tuations, and, thus, they cannot be directly used for feedback

Žcontrol such an approach would result in significant fluctua-
tions of the control action, which could perturb unmodeled
Ž . .fast process dynamics and should be avoided .

ŽThe fluctuations on the values of the outputs that is, sur-
.face roughness and growth rate obtained from the kinetic

MC simulation using the 30�30 lattice can be reduced by
independently running several small lattice kinetic MC simu-
lations with the same parameters and averaging the outputs
of the different runs. Figure 2 shows the growth rate ob-
tained from a kinetic MC simulation, which uses 20�20 lat-
tice. Figure 3 shows the growth rate obtained from the com-
putation of the average of six independent kinetic MC simu-
lations which utilize a 20�20 lattice. These results show that
when the outputs from multiple kinetic MC simulations that
use small lattices are averaged, growth rate fluctuations can
be significantly reduced. Figure 4 shows the surface rough-

Figure 4. Surface roughness from a kinetic MC simula-
tion, which uses a 20�20 lattice.
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Figure 5. Surface roughness from the computation of
the average of six independent kinetic MC
simulations, which utilize a 20�20 lattice.

ness obtained from a MC simulation which uses a 20�20
lattice. Figure 5 shows the surface roughness obtained from
the computation of the average of six independent kinetic
MC simulations which utilize a 20�20 lattice. Again, fewer
fluctuations are observed in the roughness profile obtained
by averaging the outputs from multiple small lattice kinetic
MC simulations.

However, by increasing the number of kinetic MC simula-
tions which run simultaneously, the computational time is also

Žincreasing unless each simulation can run in a different pro-
cessor which is possible because there is no interaction be-

.tween the six simulations . For the results shown in Figures 3
and 5, the computational time is six times as much as that

Ž .needed to perform one MC simulation run Figures 2 and 4
and it is approximately equal to the computational time
needed to run a MC simulation on a 30�30 lattice. Figures 6
and 7 show growth rate and roughness profiles obtained from
a MC simulation which uses a 30�30 lattice. Comparing the
simulation results shown in Figures 3 and 6 and Figures 5
and 7, we find that the roughness and growth rate obtained
by averaging six independent kinetic MC simulations, which
use a 20�20 lattice model, contain less fluctuations than
those obtained from a kinetic MC simulation which uses a

Figure 6. Growth rate from a kinetic MC simulation,
which uses a 30�30 lattice.

Figure 7. Surface roughness from a kinetic MC simula-
tion, which uses a 30�30 lattice.

30�30 lattice model. This demonstrates that, for a fixed
computational time, the use of a kinetic MC simulator based
on multiple small lattice models would yield growth rate and
surface roughness profiles with fewer fluctuations compared
to a kinetic MC simulator, which uses a single lattice with
larger size.

The predicted profiles of surface roughness and growth
rate, which are obtained from kinetic MC simulation based
on multiple small lattice models, still contain stochastic fluc-

Žtuations and are not robust due to the open-loop nature of
.the calculation with respect to disturbances and variations in

process parameters. To alleviate these problems, we follow
Ž .the approach proposed in Lou and Christofides 2003 and

combine the small lattice kinetic MC simulator with an adap-
tive filter to reduce the stochastic fluctuations on the surface
roughness and growth rate profiles, and a measurement error
compensator to improve the estimates of these variables us-
ing on-line measurements. We use the same adaptive filter
and measurement error compensator structure for both the
surface roughness and the growth rate. To simplify the nota-
tion of the mathematical formulas, we only present the gen-
eral structure of the adaptive filter and of the measurement
error compensator. Specifically, the adaptive filter is a sec-
ond-order dynamical system with the following state-space
representation

dŷr s y1d�

dy K 11 s y y y y y 18Ž .Ž .ˆr r 1d� � �I I

where y is the output of the kinetic MC simulation based onr
multiple small lattice models, y is the filter output, K is ther̂
filter gain, and � is the time constant. To accelerate the re-I
sponse of the filter and avoid large overshoot, � s0.5rK. ToI
achieve both fast tracking of the dynamics of the outputs and
efficient noise rejection, the gain of the filter is adaptively
adjusted according to the following law

� � y��
y t dty y t dtŽ . Ž .H Hr r

� y�� � y2��K � sK qK 19Ž . Ž .0 s2��
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where K is a constant, K is the steady-state gain for the0 s
adaptive filter, and �� is the dimensionless time interval be-
tween two updates of K. Although a better tracking perfor-
mance is expected when a small �� is used, a very small ��
will introduce the effect of fluctuations on the filter gain and
should be avoided.

The measurement error compensator uses the available
Žon-line measurements in the numerical simulations the val-

ues of the surface roughness and growth rate obtained from
.the large lattice model are used to produce improved esti-

mates of the surface roughness and growth rate. The state-
space representation of the measurement error compensator
is

de
sK y � y y � ; � �� F� ; is1, 2, . . .Ž . Ž .ˆe h m m m mi i i iq1d�

20Ž .

and the final roughness estimates are computed by

ys y q e 21Ž .ˆ r̂

In the above equations, K is the compensator gain, e is thee
estimated model error, which is used to compensate the model
output, y is the roughness estimates, y is the filtered outputˆ r̂
from a kinetic MC simulator which uses a small lattice and
y is the output of a kinetic MC simulator which uses theh

Žlarge lattice in an experimental setup y could be obtainedh
.from the measurement sensor . Since the roughness measure-

ments are only available at discrete points in time � sm
w x� ,� , ��� , the righthand side of Eq. 20 is computed at them m1 2

time that a roughness measurement is available and is kept in
this value in the time interval between two available rough-
ness measurements.

The combination of the adaptive filter and the measure-
ment error compensator functions as an estimator, which is
capable of accurately predicting the evolution of surface
roughness and growth rate during the thin film growth by
using measurements of the precursor concentration above the
substrate. In this work, we assume that measurements of pre-

(Figure 8. Growth rate profiles from the estimator solid
)line and from a kinetic MC simulation, which

( )uses a 120�120 lattice model dashed line .

cursor concentration above the substrate are available; when
such measurements are not available, a state estimator can
be constructed on the basis of the PDE model that describes
the gas-phase species concentrations and the temperature to

Ž Ž .obtain estimates of this quantity see Christofides 2001 for
.estimator design methods for PDE systems . Figures 8 and 9

show the growth rate and surface roughness profiles com-
puted by the estimator, which uses a kinetic MC simulator

Ž .based on six 20�20 lattice models solid lines ; they are com-
pared with the growth rate and surface roughness profiles
obtained from a kinetic MC simulator, which uses a 120�120
lattice model. The results clearly show that the developed
estimator can accurately predict the evolution of growth rate
and surface roughness. Note also that the developed estima-
tor can be used for real-time feedback control, since the com-
putational time needed to run kinetic MC simulation based
on six 20�20 lattice models is comparable to the real-time
process evolution.

Remark 1. Referring to the selection of the lattice size, it
is important to point out that while kinetic MC simulation,
based on multiple 20�20 lattice models, can adequately cap-
ture the evolution of surface roughness and growth rate in
the specific thin film growth problem under consideration,
the dimension of the small lattice in general should be cho-
sen so that the interactions between the surface atoms are
adequately captured, and also that it is large enough to de-
scribe all the spatio-temporal phenomena occurring on the

Ž .surface such as cluster formation . Furthermore, the small
lattice should be chosen to provide accurate estimates of the
desired properties to be controlled. For example, in the case
of surface roughness, this quantity is defined as the average
number of broken bonds for all surface atoms and the micro-
scopic unit involved is an individual atom. When a 20�20
small lattice is used, the computation of surface roughness
involves hundreds of surface atoms, which is adequate to ob-
tain the expected value. However, when the property of in-
terest is, for example, step density, a larger lattice is needed
to obtain a convergent average value from the kinetic MC
simulation. At this point, it is important to note that the pro-

Figure 9. Surface roughness profiles from the estimator
( )solid line and from a kinetic MC simulation,

(which uses a 120�120 lattice model dashed
)line .
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Figure 10. Comparison of surface roughness profiles
from a kinetic MC simulator, which uses an

( )80�80 lattice dotted line , and that from a
kinetic MC simulator, which uses a 120�120

( )lattice solid line .

posed reduction of lattice size can be viewed as an alterna-
Ž .tive and quite intuitive way to perform order reduction of

Ž .the master equation see Gallivan and Murray, 2003 for re-
.duction approaches based directly on the master equation .

In this work, when the surface roughness and growth rate are
considered in the process with parameters shown in Table 1,
we found out that an 80�80 lattice is sufficient to capture
the evolution of the process and that a further increase of the
lattice size leads to no observable improvement in the accu-
racy of the simulation results; this is shown in Figures 10 and
11, which show comparisons of surface roughness profiles and
growth rate profiles from a kinetic MC simulator, which uses
an 80�80 lattice, and those from a kinetic MC simulator,
which uses a 120�120 lattice. Therefore, in the remainder of
this work, we use a kinetic MC simulator, which uses an 80�
80 lattice to describe the evolution of the thin film growth
under open-loop and closed-loop conditions.

Figure 11. Comparison of surface roughness profiles
from a kinetic MC simulator, which uses an

( )80�80 lattice dotted line , and that from a
kinetic MC simulator, which uses a 120�120

( )lattice solid line .

Figure 12. Evolution of surface roughness during the
formation of the first 10 layers.

Remark 2. We note that the surface roughness during the
formation of a single monolayer slightly fluctuates around the
surface roughness value of the completely formed monolayer.
This can be observed in Figure 12, which shows the evolution
of surface roughness during the formation of the first 10 lay-
ers in the deposition from a kinetic MC simulator using an
80�80 lattice. However, this fluctuation is very small and does
not influence the performance of the feedback control sys-
tem. The same comment also applies to the evolution of the
growth rate; Figure 13 shows the evolution of the growth rate
during the formation of the first 200 layers from the same
kinetic MC simulation.

Remark 3. It is important to note that, because available
Žtechniques for real-time measurement of film properties such

.as surface roughness do not provide measurements at a large
enough frequency to fully capture the film growth dynamics,
the use of a roughness estimator within a feedback control
scheme is needed to predict film growth behavior at time in-
stants in which on-line measurements are not available. In a

Ž .recent study Lou and Christofides, 2003 , we demonstrated
that feedback control, which exclusively relies on infrequent
on-line measurements, leads to poor closed-loop perfor-

Figure 13. Evolution of growth rate during the forma-
tion of the first 200 layers.
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Ž .mance no matter what is the tuning of the controller com-
pared to feedback control, which employs our estimator to
compute roughness estimates.

Feedback Control of Surface Roughness and
Growth Rate

The efficient production of high-quality thin films requires
that the surface roughness and growth rate are maintained at
desired levels. Therefore, the objective of this section is to
study the nature of the multivariable control problem and to
develop a systematic method for the design of a multivariable
feedback control system, which can be implemented in real
time. The feedback control system makes use of the devel-
oped estimator, which provides a computationally feasible
approach to predict the growth rate and surface roughness of
the thin film in real time. Given the set of available manipu-
lated inputs and the desired control objectives, the control
problem is formulated as the one of regulating the surface
roughness and growth rate by manipulating the substrate
temperature and precursor mole fraction in inlet gases.

We will begin with a study of the feasibility of the control
problem formulation, continue with an analysis and evalua-
tion of the effect of inputroutput interactions on closed-loop
performance, and close with the design and evaluation of the
multivariable feedback control structure.

Feasibility of the control problem formulation
In this subsection, we establish that it is feasible to control

surface roughness and growth rate by manipulating the sub-
strate temperature and precursor mole fraction in inlet gases.
To this end, we perform the following set of closed-loop sim-

Ž .ulations: 1 the growth rate is controlled by manipulating the
precursor mole fraction in the inlet gas while the substrate

Ž .temperature is kept constant; 2 the surface roughness is
controlled by manipulating the substrate temperature, while
the inlet precursor mole fraction is kept constant. The pro-
cess parameters used in the simulations are shown in Table
1. In our calculations, since the precursor mole fraction is
very small, we assume that the chamber pressure is indepen-
dent of the precursor mole fraction. In each simulation, a
single-loop controllerrestimator structure of the type shown
in Figure 14 is used to control the process. In this structure,
the estimator, which includes multiple kinetic MC simulators

Figure 14. Estimatorrrrrrcontroller structure using a ki-
netic MC simulator based on multiple small
lattice models.

Table 2. Growth Rate Estimator and Controller Parameters

K K K K �0 s e c c
y90.5 1.0 0.08 2.0�10 0.4

using small lattice models, an adaptive filter, and a measure-
ment error compensator, is used to provide estimates of the

Ž .controlled variable surface roughness or growth rate in a
time-scale comparable to the real-time evolution of the pro-
cess. The estimates are used in the controller to determine
the control action. Since the models that describe the evolu-
tion of surface roughness and growth rate are not available in

Ž .a closed form, a proportional integral PI controller is used
to compute the control action

1 �
u � sK y y y q y y y dt 22Ž . Ž .Ž . Ž .ˆ ˆHc set set� 0c

where y is the set point of the output, y is the output ofˆset
the estimator, K is the proportional gain, and � is the inte-c c
gral time constant.

In the case of controlling the growth rate, the size of the
small lattice is 20�20 and the outputs of six small lattice
kinetic MC simulators are averaged within the estimator. A
kinetic MC simulator based on an 80�80 lattice model is
used to describe the evolution of the process. The time inter-
val between two available measurements is taken to be 0.3 s,
which is consistent with available techniques that can be used

Ž .to measure growth rate in real time Pickering, 2001 . The
substrate temperature is kept constant at 800 K and the ini-
tial inlet precursor mole fraction is 2.0�10y5; these values
correspond to a growth rate of about 180 MLrs. The desired
set point value for the growth rate is 220 MLrs. The parame-
ters for the growth rate estimator and the PI controller used
in this simulation are shown in Table 2. Figures 15 and 16
show the growth rate and the inlet precursor mole fraction
under feedback control. The results clearly show that the
growth rate can be successfully controlled to the desired set
point by manipulating the precursor mole fraction.

Figure 15. Closed-loop growth rate under single-loop
feedback control using the estimatorrrrrr
controller structure of Figure 14.
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Figure 16. Inlet precursor mole fraction under single-
loop feedback control using the estimatorrrrrr
controller structure of Figure 14.

In the second simulation run, the surface roughness is con-
trolled by manipulating the substrate temperature while the
inlet precursor mole fraction is kept constant. Figures 17 and
18 show the profiles of the surface roughness and substrate
temperature in the closed-loop system. A kinetic MC simula-
tor, which uses an 80�80 lattice model, is used to describe
the evolution of the process. The inlet precursor mole frac-
tion is kept constant 2.0�10y5 and the substrate tempera-
ture is initially 800 K. The desired set point value of surface
roughness is 1.5. The parameters for the roughness estimator
and controller are shown in Table 3. The controller success-
fully drives the surface roughness to the set point by manipu-
lating the substrate temperature.

Effect of multi©ariable inputrrrrroutput interactions
The objective of this subsection is to understand the influ-

ence of multivariable inputroutput interactions on closed-
loop performance and determine whether there is a need for
the design and implementation of a multivariable controller,
which compensates for the effect of such interactions. To this
end, we consider the problem of simultaneous regulation of

Figure 17. Closed-loop surface roughness under sin-
gle-loop feedback control using the estima-
torrrrrrcontroller structure of Figure 14.

Figure 18. Substrate temperature under single-loop
feedback control using the estimatorrrrrr
controller structure of Figure 14.

the growth rate and of the surface roughness and use a feed-
back control system that comprises of the estimator and two
single-loop proportional integral controllers. Specifically,
based on the results of the previous subsection, the

Ž .inputroutput pairs are substrate temperature T , surface
Ž . Ž .roughness r , and inlet precursor mole fraction y , growth

Ž .rate gr .
A closed-loop system simulation is carried out to evaluate

this approach to simultaneous control of growth rate and sur-
face roughness. In this simulation, the outputs from six ki-
netic MC simulators running 20�20 lattice models are aver-
aged within the estimator. A kinetic MC simulator which uses
an 80�80 lattice model is used to describe the evolution of
the process. The parameters for the estimator and the con-
trollers are those listed in Tables 2 and 3.

Figures 19 and 20 show the surface roughness and sub-
strate temperature. Comparing Figures 17 and 19, we find

Table 3. Roughness Estimator and Controller Parameters

K K K K �0 s e c c

0.5 1.0 0.08 y15 0.3

Figure 19. Closed-loop surface roughness under feed-
back control, which does not account for
multivariable inputrrrrroutput interactions.
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Figure 20. Substrate temperature using feedback con-
trol, which does not account for multivari-
able inputrrrrroutput interactions.

very similar roughness profiles, which means that multivari-
able inputroutput interactions do not influence the profile of
the surface roughness under single-loop control.

Figures 21 and 22 show the profiles of the growth rate and
inlet precursor mole fraction for the same simulation run. It
is clear that the control system successfully drives the growth
rate to the desired set point values. However, the transient
response of the growth rate in the case of simultaneous growth
rate and surface roughness control is slower compared to the
case where the growth rate is the only controlled output and

Ž .the structure of Figure 14 is used Figure 23 .
The reason for the slower transient response of the growth

rate is the effect of multivariable inputroutput interactions
Žthat is, the influence of the variation of substrate tempera-
ture on growth rate and the influence of the variation of inlet
precursor mole fraction on surface roughness in the closed-

.loop system ; these interactions need to be compensated for
in order to speed up the growth rate response and improve
closed-loop performance.

Multi©ariable feedback control structure
This subsection focuses on the design and evaluation of a

multivariable feedback control structure. To this end, we need

Figure 21. Closed-loop growth rate under feedback
control, which does not account for multi-
variable inputrrrrroutput interactions.

Figure 22. Precursor mole fraction using feedback con-
trol, which does not account for multivari-
able inputrrrrroutput interactions.

to understand and model the interactions between inputs and
outputs; two simulations are carried out to observe the

Ž .changes of the surface roughness and growth rate for: 1 a
step change on substrate temperature with constant inlet pre-

Ž .cursor mole fraction; 2 a step change on inlet precursor mole
fractions with constant substrate temperature.

Figure 24 shows the growth rate and surface roughness
when the substrate temperature is kept at 800 K and the inlet
precursor mole fraction changes from 2.0�10y5 to 2.1�10y5

at � s10. The results show that the growth rate increases
from around 180 MLrS to 190 MLrS, but there is no observ-
able change in the surface roughness, which means the change
of the inlet precursor mole fraction has very little influence
on the surface roughness.

The interactions between the substrate temperature and
the surface roughness and growth rate are studied by keeping
the inlet precursor mole fraction at 2.0�10y5 and increasing
the substrate temperature from 800 K to 840 K at � s10.
Figure 25 shows the responses of growth rate and surface

Figure 23. Comparison of closed-loop growth rate pro-
files.
Ž .a Growth rate is the only controlled output and the

Ž . Ž .structure of Figure 14 is used solid line ; b simultaneous
regulation of growth rate and surface roughness is consid-
ered and feedback control, which does not account for

Žmultivariable inputroutput interactions, is used dotted
.line .
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( )Figure 24. Growth rate middle plot and surface rough-
( )ness bottom plot profiles for a step change

( )in inlet precursor mole fraction top plot
from 2.0�10�5 to 2.1�10�5 —substrate
temperature is kept at 800 K.

roughness to the substrate temperature change. The simula-
tion results show that the growth rate drops from approxi-
mately 180 MLrs to 175 MLrs and the roughness drops from
approximately 1.8 to 1.6, which indicates that variations on
the substrate temperature influence both surface roughness
and growth rate. It should be pointed out that this specific
coupling pattern is valid only under the specific growth con-
ditions used in this simulation.

To improve the closed-loop performance, a multivariable
feedback control structure is developed, which explicitly com-
pensates for the effect of the multivariable interactions oc-
curring in the process. The controller structure is obtained by
introducing a compensation block between the multiple sin-
gle-loop controllers and the process. Because the interactions
between inlet precursor mole fraction and surface roughness

Ž .are not significant as shown in Figure 24�bottom plot , only
one compensator is needed in this example. The multivari-
able control system using the estimatorrcontroller structure

Ž .with interaction compensation is shown in Figure 26. G s is1
the transfer function between the substrate temperature and

Ž .the growth rate, and G s is the transfer function between2
the inlet precursor mole fraction and the growth rate. Step
tests are used to identify the expression and parameters of

Ž . Ž .G s and G s . Specifically, based on the simulation results1 2
Ž . Ž .shown in Figures 24 middle plot and Figure 25 middle plot ,

G and G are taken to be constants with the following val-1 2
Ž . Ž . 7ues G s s0.125 and G s s1.0�10 . The rest of the pro-1 2

cess and controller parameters used in the simulation are the
same to those shown in Tables 2 and 3.

( )Figure 25. Growth rate middle plot and surface rough-
( )ness bottom plot with a step change in

( )substrate temperature top plot from 800 K
to 840 K.
Inlet precursor mole fraction is 2.0�10y5.

A closed-loop system simulation is performed to evaluate
the effectiveness of the multivariable estimatorrcontrol struc-
ture with interaction compensation shown in Figure 26. The
size of the small lattice is 20�20 and the outputs from six
kinetic MC simulators based on 20�20 lattice models are
averaged within the estimator. A kinetic MC simulator based
on an 80�80 lattice model is used to describe the evolution
of the film growth. The roughness set point value is 1.5 and
the growth rate set point value is 220 MLrs. Initially, the
substrate temperature is Ts800 K and the inlet precursor
mole fraction is 2.0�10y5; these conditions correspond to a
growth rate of about 180 MLrs and a surface roughness of

Žabout 1.8. The proposed multivariable control system Figure
.26 is applied to the multiscale process model to regulate the

Figure 26. Multivariable feedback control system with
interaction compensation.
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Figure 27. Comparison of the closed-loop growth rate
under multivariable feedback control with in-

( )teraction compensation solid line and un-
(der multiple single-loop control dashed

)line .

growth rate and surface roughness to the desired set point
values. Figure 27 shows the comparison of the growth rate
profiles under multivariable feedback control with interac-
tion compensation and under multiple single-loop control
without interaction compensation. By using the interaction
compensator, the growth rate converges to the desired set
point value faster. Figure 28 shows the comparison of the
inlet precursor mole fraction under multivariable control with
interaction compensation and that obtained under multiple
single-loop control. Figures 29 and 30 show the surface
roughness under multivariable control with interaction com-
pensation and the profile of the substrate temperature, re-
spectively. The microstructure of the thin film at the begin-
ning and at the end of the closed-loop system simulation run
is shown in Figure 31 and Figure 32, respectively. These re-
sults show that the proposed multivariable control system with
interaction compensation can simultaneously drive the growth
rate and surface roughness to the desired set point values
and improve closed-loop response.

Figure 28. Comparison of inlet precursor mole fraction
under multivariable feedback control with in-

( )teraction compensation solid line and un-
(der multiple single-loop control dashed

)line .

Figure 29. Closed-loop surface roughness under multi-
variable feedback control with interaction
compensation.

Figure 30. Substrate temperature under multivariable
feedback control with interaction compensa-
tion.

Figure 31. Surface microconfiguration at the beginning
(of the closed-loop simulation run rough-

)nesss1.8 .
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Figure 32. Surface microconfiguration at the end of the
( )closed-loop simulation run roughnesss1.5

under multivariable feedback control with in-
teraction compensation.

Conclusions
This work focused on multivariable feedback control of

surface roughness and growth rate in thin film growth in a
stagnation flow geometry. The multivariable control problem
was studied and a multivariable feedback control system,
which can be implemented in real time, was proposed. The
proposed control system uses an estimator that provides esti-
mates of the surface roughness and growth rate at a time-scale
comparable to the real-time evolution of the process, a multi-
variable interaction compensation block, and two propor-
tional-integral feedback controllers. The control system was
applied to the multiscale process model and was found to
successfully regulate the surface roughness and growth rate
to the desired set point values. While the proposed method
for estimationrcontrol using kinetic Monte-Carlo simulators
was applied to the process of thin film growth in a stagnation
flow geometry, the methodological approach of this work is
applicable to other thin film growth processes.
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