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Abstract

In this work, we follow the methodology presented in Lou and Christofides [Estimation and control of surface roughness in thin-film growth
using kinetic Monte-Carlo models, Chem. Eng. Sci. 58 (2003a) 3115–3129] to study estimation and control of surface roughness of gallium
arsenide (GaAs) (0 0 1) thin films during deposition in a horizontal-flow quartz reactor using triisobutylgallium (TIBGa) and tertiarybutylarsine
(TBAs) as precursors with H2 as the carrier gas. The adsorption of TIBGa onto the surface and the migration of Ga atoms on the surface are
c mework.
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onsidered as the two rate-limiting steps in the film growth and are explicitly modeled within a kinetic Monte Carlo simulation fra
he energy barrier and the pre-exponential factor of the migration rate of Ga atoms on the surface used in the simulations a
etermined by fitting the simulation results to experimental data reported in Law et al. [Analysis of the growth modes for gallium
etalorganic vapor-phase epitaxy, J. Appl. Phys. 88 (2000) 508–512]. Then, a roughness estimator is constructed that allows
stimates of the surface roughness of the GaAs thin films at a time-scale comparable to the real-time evolution of the process us
n-line roughness measurements. The estimator involves a kinetic MC simulator based on multiple small-lattice models, an ad
sed to reduce roughness stochastic fluctuations and an error compensator used to reduce the error between the roughness est
oughness measurements. The roughness estimates are fed to a proportional–integral (PI) feedback controller which is used t
urface roughness to a desired level by manipulating the substrate temperature. Application of the proposed estimator/controll
o the process model based on a large-lattice kinetic Monte Carlo simulator demonstrates successful regulation of the surface r
he desired level. The proposed approach is shown to be superior to PI control with direct use of the discrete roughness measur
eason being that the available measurement techniques do not provide measurements at a frequency that is comparable to the
he dominant film growth dynamics.

2004 Elsevier Ltd. All rights reserved.
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. Introduction

Deposition of thin films from gas-phase precursors is of
mportance in electronic chip manufacture. Modern inte-
rated circuit technology depends strongly on the uniformity
nd microstructure of thin films of advanced materials
Granneman, 1993). Due to the increasingly stringent
equirements on the quality of such films, including unifor-
ity, composition, microstructure, and the desire to improve
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productivity by increasing wafer dimensions and redu
product variability, real-time feedback control of thin-film d
position becomes increasingly important. These trends
motivated significant research efforts on feedback contr
film deposition processes to control film composition (e.gNi
et al., 2004) and to control film spatial uniformity in rap
thermal (e.g.,Baker & Christofides, 1999; Theodoropoul
Adomaitis, & Zafiriou, 1999) and plasma-enhanced che
ical vapor deposition (e.g.,Armaou & Christofides, 1999).
From a control point of view, film spatial uniformity contr
is a distributed control problem that can be addressed o
basis of continuum-type transport-reaction models by u
controller design methods for nonlinear parabolic partial
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Nomenclature

Es energy barrier associated with migration due
to surface effect (eV)

En energy barrier associated with migration due
to nearest-neighbor interactions (eV)

h Planck’s constant (J s)
kB Boltzmann’s constant (J/K)
K filter gain
Kc controller gain (K/̊A)
Ke compensator gain (s−1)
r surface roughness (Å)
�t life time of one MC event (s)
T temperature (K)

Greek letters

ε tolerance (̊A)
ν0 pre-exponential factor (s−1)
τI filter time constant (s)
τc controller time constant (s)

ferential equations (PDEs) (Christofides & Daoutidis,1997;
Baker & Christofides, 2000; Christofides, 2001).

However, to control microscopic film properties such
as surface roughness of the ultra-thin films, it is important
to understand and to model the dependence of film mi-
crostructure evolution on macroscopic (controllable) process
variables. This need has motivated extensive research on
the development of fundamental mathematical models
describing thin-film growth and its interactions with the
surrounding gas. From a microscopic point of view, the
rates of surface microprocesses (e.g., adsorption, desorption
migration and reaction) are key factors that determine
thin-film microstructure and composition. These rates
depend strongly on macroscopic process parameters like
precursor concentration and substrate temperature, to name
a few. Kinetic Monte Carlo (MC) simulation provides a
framework for modeling the effect of macroscopic process
variables on thin-film microstructure.

Mathematically, kinetic MC simulation methods provide
an unbiased realization of the master equation(Gillespie,
1976; Van Kampen, 1992), which is a stochastic partial dif-
ferential equation describing the evolution of the probability
that the thin film is at a certain microconfiguration. Kinetic
MC simulation results are consistent to the master equation in
the sense that the simulation algorithms are derived based on
t mas-
t e
u are
o ce
r sses
t etic

MC simulation run constitutes a realization of a stochastic
process, simulation results from different simulation runs are
not identical. However, by averaging the simulation results
from different runs, the averaged properties of the thin film
converge to the values obtained from the solution of the mas-
ter equation.

The accuracy of solutions from one kinetic MC simulation
run depends on the size of the lattice used in the simulation
which, in turn, determines the computational requirements of
the simulation. Specifically, the larger the lattice, the smaller
the fluctuations contained in the simulation results. However,
the computational requirements of kinetic MC simulators,
based on high-order lattice models, make their direct use in
an on-line feedback control scheme impossible. Motivated
by this, recent research efforts have focused on the construc-
tion of estimators and controllers, which can be implemented
in real-time with reasonable computing power, for thin-film
surface roughness and growth rate regulation based on kinetic
MC simulators using multiple small-lattice models(Lou &
Christofides, 2003a,b). Other approaches have also been de-
veloped to: (a) identify linear models from outputs of ki-
netic Monte Carlo simulators and perform controller design
by using linear control theory(Siettos, Armaou, Makeev,
& Kevrekidis, 2003)and (b) construct reduced-order approx-
imations of the master equation(Gallivan & Murray, 2003).
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he same assumptions employed in the derivation of the
er equation(Gillespie, 1977). Kinetic MC simulation can b
sed to predict average properties of the thin film (which
f interest from a control point of view, like, e.g., surfa
oughness), by explicitly accounting for the microproce
hat directly shape thin-film microstructure. Since a kin
,

Gallium arsenide (GaAs) is an important compound s
onductor that has many applications including light-emit
iodes, microwave devices, broadband communications
pace solar cells(Fu, Li, & Hicks, 2000). The GaAs thin
lms can be deposited by either molecular-beam ep
MBE) (e.g., Vanhove, Lent, Pukite, & Cohen, 1983) or
etal-organic chemical vapor deposition (MOCVD) (e
irtowidjojo & Pollard, 1988; Law, Li, Begarney, & Hick
000). Extensive experiment has been done to study the

ace roughness of GaAs thin films under different depos
onditions using reflection high-energy electron diffrac
RHEED) (e.g.,Shitara et al., 1992a,b), scanning tunnellin
icroscopy (STM) (e.g.,Kasu & Kobayashi, 1997; La
t al., 2000) and atomic force microscopy (AFM) (e.
ejedor,Šmilauer, Roberts, & Joyce, 1999).

Extensive research has also been carried out to stud
aAs thin-film growth by using kinetic Monte Carlo simu

ions. Monte Carlo simulation for GaAs thin-film growth
BE was first performed byShitara et al. (1992a,b). In this

tudy, the authors explicitly modeled the adsorption onto
urface and migration of Ga atoms because these rate-lim
teps determine film growth and microstructure. The ef
f all other surface processes (As-related surface proc
nd surface reconstruction) were incorporated into the m
y computing an “effective” energy barrier to Ga surface
ration rate based on experimental results. A more det
inetic Monte Carlo model (which considers the kinetic
oth Ga and As atoms) was recently developed byIshii and
awamura (1999). Furthermore, a theoretical investigat
f the adsorption and migration on GaAs surface using
ity functional theory was performed inShiraishi (1996).
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By using Monte Carlo models to simulate the formation
of GaAs thin films, phenomena such as atomic nucleation,
growth, island formation and structural transformation can
be studied (e.g.,Ito & Shiraisho, 1996; Meng & Weinberg,
1996; Itoh, Bell, Joyce, & Vvedensky, 2000; Shiraishi,
2001).

In this work, we follow the methodology presented inLou
and Christofides (2003a)to study estimation and control of
surface roughness of GaAs (0 0 1) thin films during deposition
in a horizontal-flow quartz reactor using triisobutylgallium
(TIBGa) and tertiarybutylarsine (TBAs) as precursors and H2
as the carrier gas. The adsorption of TIBGa onto the surface
and the migration of Ga atoms on the surface are consid-
ered as the two rate-limiting steps in the film growth and are
explicitly modeled within a kinetic Monte Carlo simulation
framework. The energy barrier and the pre-exponential factor
of the migration rate of Ga atoms on the surface used in the
simulations are initially determined by fitting the simulation
results to the experimental data reported byLaw et al. (2000).
Then, a roughness estimator is constructed that allows com-
puting estimates of the surface roughness of the GaAs thin
films at a time-scale comparable to the real-time evolution of
the process using discrete on-line roughness measurements.
The estimator involves a kinetic MC simulator based on mul-
tiple small-lattice models, an adaptive filter used to reduce
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mental results presented inLaw et al. (2000), the rate-limiting
processes in GaAs thin-film growth by MOCVD are the same
to those in GaAs thin-film growth by MBE. Therefore, we can
use the same model but with a different “effective” energy
barrier for the migration rate of Ga atoms, to model GaAs
thin-film growth by MOCVD.

In Section 2.1, we describe the process of GaAs thin-film
growth by MOCVD considered in this study and show the
similarity of the rate-limiting processes involved in this pro-
cess to that in GaAs thin-film growth by MBE.

2.1. Process description

For purposes of this study, the MOCVD growth of
GaAs occurs in a horizontal-flow quartz reactor, with
precursors of triisobutylgallium (TIBGa)/tertiarybutylarsine
(TBAs) and the carrier gas is H2. The pressures of the pre-
cursors and of the carrier gas are 0.25 mTorr for TIBGa,
25 mTorr for TBAs and 20 Torr for H2. Therefore, the
growth occurs in an As-rich environment. Under these pre-
cursor pressures, the growth rate is 0.5µm/h, which is
independent of the substrate temperature when the sub-
strate temperature varies from 825 to 900 K(Law et al.,
2000).
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sed to reduce the error between the roughness esti
nd the roughness measurements. The roughness es
re fed to a proportional–integral (PI) feedback contro
hich is used to control the surface roughness to a de

evel by manipulating the substrate temperature. Applica
f the proposed estimator/controller structure to the pro
odel based on a large-lattice kinetic Monte Carlo simu
emonstrates successful regulation of the surface roug

o the desired level. The proposed approach is shown
uperior to PI control with direct use of the discrete rough
easurements. The reason is that the available measur

echniques do not provide measurements at a frequenc
s comparable to the time-scale of the dominant film gro
rocess dynamics.

. Surface microstructure model for GaAs thin-film
rowth

We use the Monte Carlo model presented inShitara e
l. (1992b)to model the surface microprocesses during
rowth of GaAs thin films. Although the GaAs thin film
two-component film, the simulation only considers the

orption and migration of Ga atoms because in an As
nvironment (which is the case for the process consider

his work), As-related kinetics are not rate-limiting and
e incorporated into the model by using an “effective” ene
arrier to model the surface migration rate of Ga atoms
ote that the MC model inShitara et al. (1992b)is for growth
f GaAs thin film by MBE. However, based on the exp
s

t

During the deposition, the precursor molecules TIBGa
BAs first adsorb onto the surface. The TIBGa molec
dsorb onto the surface sites occupied by As atoms
BAs molecules adsorb onto the surface sites occupie
a atoms. Upon adsorption of precursor molecules ont

urface, surface reactions occur; specifically, Ga atom
s atoms are generated by the decompositions of TIBG
BAs on the surface. The butyl groups from the decomp

ion of TIBGa or TBAs desorb rapidly back to the gas ph
t the high temperatures considered in this study (750–9
Cui, Ozeki, & Ohashi, 1998). Due to the fact that the pre
ure of TBAs is much higher than that of TIBGa (the As
atio is 100), the diffusing species controlling the epita
rowth is the Ga atoms(Law et al., 2000).

The rate-limiting steps are the adsorption of TIBGa
he migration of Ga atoms. Because the decompositio
IBGa is very fast, the adsorption of TIBGa onto the sur
an be simply modeled by the adsorption of Ga atoms
he surface. Therefore, to model the surface microstruc
e only consider adsorption of Ga atoms and migratio
urface Ga atoms.

During deposition, Ga atoms must adsorb onto sur
ites occupied by As atoms and As atoms must adsorb
urface sites occupied by Ga atoms. Because the As/Ga
s very high (about 100), we assume that right after a Ga
dsorbs onto the surface, it is immediately covered by a
tom. Therefore, the same site is immediately availabl

he adsorption of next Ga atom. Consequently, all the su
ites are available for adsorption of Ga atoms at all times
he adsorption rate of Ga atoms is treated as site-indepe
urthermore, when the growth rate is fixed, the adsorp
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rate on each surface site is a constant:

wa = F (1)

The migration rate of each surface Ga atom depends on its lo-
cal environment. Assuming only first nearest-neighbor inter-
actions, the migration rate of a surface Ga atom from a surface
site withn first nearest-neighbors is(Shitara et al., 1992a,b):

wm(n) = ν0 exp

(
−Es + nEn

kBT

)
(2)

whereEs is the energy barrier associated with migration due
to surface effects,En is the energy barrier associated with
migration due to nearest-neighbor interactions,kB is the
Boltzmann’s constant, andν0 is the pre-exponential factor.

2.2. Derivation of surface microstructure model based
on probability theory

The formation of GaAs thin films by adsorption and mi-
gration of Ga atoms is a stochastic process because: (a) the
exact time and location of the occurrence of one specific sur-
face micro-process (adsorption or migration) are unknown,
and (b) the probability (rate) with which each surface micro-
process may occur is only available. Therefore, the surface
evolution model should be established based on probabil-
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whereP0α is the probability that no event occurs in the time
interval (t, t + dt) given that the surface is in configurationα
at t, P(β, t) is the probability that the surface is in configura-
tion β at t andP1β is the probability that one event occurs in
the time interval (t, t + dt) given that the surface is in con-
figurationβ at t, and the occurrence of this event results to a
transition from configurationβ to configurationα.
P0α andP1β have the following expressions (a detailed

proof can be found inGillespie (1992)). Specifically,

P0α = 1 −
∑
β

Wβα dt (4)

whereWβα dt is the probability that an event occurs in the
time interval [t, t + dt) which results in a transition from
configurationα to a configurationβ, therefore,

∑
β

Wβα dt

is the probability that any one event occurs in the time inter-
val (t, t + dt) provided that the surface configuration isα at
t. Moreover,

P1β = Wαβ dt (5)

whereWαβ dt is the probability that an event happens in the
time interval [t, t + dt) and the occurrence of this event results
to a transition from configurationβ to configurationα.

l ing
t in
c

E as-
t er, it
i
s figura-
t ize.
F m
h
m n-
i rdi-
n le.

sed
r with
t the
M , the
t wing
a the
s e
d

e of
t ppli-
c use
e

o s
ty theory. A rigorous derivation of kinetic MC algorithm f
hemical reactions was first carried out inGillespie (1976). In
he present study, we follow the same methodology to d
he Monte Carlo model for surface microstructure of G
hin-film growth by MOCVD.

Specifically, we treat the surface micro-processes (ad
ion and migration of Ga atoms) as Poisson processes, w
eans that the following assumptions are made (e.g.,Melsa &
age 1973; Feller 1975; Gillespie, 1976; Fichthorn
einberg, 1991).

ssumption 1. The probability thatk events occur in th
ime interval (t, t + T ) is independent oft.

ssumption 2. The probability thatk events occur in th
ime interval (t, t + T ) is independent of the number of eve
ccurring in any non-overlapping time interval.

ssumption 3. The probability that an event occurs in
nfinitesimal time interval (t, t + dt) is equal toW dt (where

is the mean count rate of the event), and the proba
f more than one event occurring in an infinitesimal t

nterval is negligible.

Based on these three assumptions, the time evoluti
robabilities that the surface is in one specific configura
an be derived. The configuration of a surface is chara
zed as the height of each surface atom at each surface
(α, t) represents the probability that the system is in con
rationα at timet, based onAssumptions 2 and 3, we have

he following equation forP(α, t + dt):

(α, t + dt) = P(α, t)P0α +
∑
β

P(β, t)P1β (3)
By substitutingEqs. (4) and (5) into Eq. (3) and taking the
imit dt → 0, we obtain a differential equation describ
he time evolution of the probability that the surface is
onfigurationα:

dP(α, t)

dt
=
∑
β

P(β, t)Wαβ −
∑
β

P(α, t)Wβα (6)

q. (6) is the so-called “master equation” (ME) for a stoch
ic process. The ME has a simple, linear structure, howev
s difficult to write the explicit form ofEq. (6) for any realistic
ystem because the number of the possible states (con
ion) is extremely large for most systems of a realistic s
or example, for a system with 10× 10 sites and a maximu
eight of 1, the number of configurations is 2100 ≈ 1030. This
akes the direct solution ofEq. (6), for any system of mea

ngful size, using numerical methods for integration of o
ary differential equations (e.g., Runge–Kutta) impossib

Monte Carlo techniques provide a way to obtain unbia
ealizations of a stochastic process, which is consistent
he ME. The consistency of the Monte Carlo simulation to
E is based on the fact that in a Monte Carlo simulation

ime sequence of Monte Carlo events is constructed follo
probability density function which is derived based on

ame assumptions (Assumptions 1–3) as those used in th
erivation of the master equation(Gillespie, 1976).

A Monte Carlo event is characterized by both the typ
he event (adsorption or migration of Ga atoms in our a
ation) and the site in which the event is executed. We
(x; i, j) to represent a Monte Carlo event of typex executed
n the site (i, j), wherex ∈ {a,m}, wherex = a correspond
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to an adsorption event andx = m corresponds to a migration
event, 1≤ i, j ≤ N, andN ×N is the size of the lattice.

The sequence of Monte Carlo events can be constructed
based on the probability density function,F (τ, e), defined as
follows.

Definition 1. F (τ, e) dτ is the probability at timet that event
e will occur in the infinitesimal time interval (t + τ, t + τ +
dτ).

We now compute the expression ofF (τ, e) based on As-
sumptions (1) and (2):

F (τ, e) dτ = P0τPe (7)

whereP0τ is the probability that no event occurs in [t, t +
τ) andPe is the probability that evente occurs in the time
interval (t + τ, t + τ + dτ). Pe can be determined by using
Assumption 3as follows:

Pe = We dτ (8)

P0τ can be calculated by sampling the duration (t, t + τ) into
M identical time intervalsδτ = τ/M. WhenM → ∞, δτ is
small enough so that each time interval of sizeδτ contains one
event at most. Based onAssumption 3, the probability that
one eventeoccurs inδτ isWeδτ and based onAssumption 2,
the probability that any one event occurs inδτ is

∑
W δτ.

T

P

w
i
i

d nts
w

P

W

f

F

ents
f
N s the
m la-
t astic

process which is consistent with that described by the mas-
ter equation. There are many Monte Carlo algorithms avail-
able to simulate a stochastic dynamic process. In this study,
the kinetic Monte Carlo simulation algorithm developed by
Vlachos (1997)(see alsoLam & Vlachos, 2001) was used
to simulate the surface roughness of the GaAs surface. This
algorithm is a modification of the so-called “direct” method
developed byGillespie (1976). In the remainder of this sec-
tion, we discuss in detail the theoretical foundation and steps
of the “direct” method and of the algorithm used in the calcu-
lations. The “direct” method is based on the fact that the two-
variable probability density function,Eq. (11), can be written
as the product of two one-variable probability functions:

F (τ, e) dτ = F1(τ) dτ · P(e|τ) (12)

whereF (τ, e) dτ is the probability that evente will occur
in the time interval (t + τ, t + τ + dτ), F1(τ) dτ is the
probability that an event will occur in the time interval
(t + τ, t + τ + dτ) andP(e|τ) is the probability that the next
event will be evente, given that the next event will occur in
(t + τ, t + τ + dτ).

Based on the addition theorem(Melsa & Sage, 1973),
F1(τ) dτ is the sum ofF (τ, e) dτ over all events:

F1(τ) dτ =
∑
e

F (τ, e) dτ (13)

P

P

:

F

P

r-
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u d. To
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l life
t

τ

l
c
(

P

e

e

herefore, the probability that no events will occur inδτ is

0δτ = 1 −
∑
e

Weδτ (9)

hereP0δτ is the probability that no event occurs in oneδτ
nterval andWeδτ is the probability that one eventewill occur
n theδτ interval.

Eq. (9) can be applied to all theδτ time intervals in the
uration (t, t + τ). Therefore, the probability that no eve
ill occur in the durationτ is

0τ = lim
N→∞

PN0δτ = lim
N→∞


1 −

∑
e

Weτ

N



N

= exp

(
−
∑
e

Weτ

)
(10)

By substitutingEqs. (8) and (10) into Eq. (7) and using

tot =
∑
e

We, the probability density function,F (τ, e), is as

ollows:

(τ, e) = We exp(−Wtotτ) (11)

Monte Carlo simulation constructs the sequence of ev
ollowing the probability density function shown inEq. (11).
ote thatEq. (11) is based on the same assumptions a
aster equation (Eq. (6)), therefore, the Monte Carlo simu

ion is able to provide an unbiased realization of a stoch
(e|τ) can be obtained by substitutingEq. (13) into Eq. (12):

(e|τ) = F (τ, e)∑
e

F (τ, e)
(14)

By substitutingEq. (11) intoEqs. (13) and (14), we obtain

1(τ) = Wtot exp (−Wtotτ) (15)

(e|τ) = We

Wtot
(16)

In the Monte Carlo simulation,Eq. (15) is used to dete
ine the life time of a Monte Carlo event andEq. (16) is
sed to determine the Monte Carlo event to be execute
xecute a Monte Carlo simulation, a pseudo-random nu
enerator is used which generates random numbers fo

ng the uniform distribution in the interval (0, 1). It has be
roven byGillespie (1976)that if a random number,ξ, fol-

ows the uniform distribution in the unit interval, then the
ime of a Monte Carlo event,τ, can be computed by

= − ln ξ

Wtot
(17)

To demonstrate that theτ obtained by usingEq. (17) fol-
ows the probability density function inEq. (15), we first
ompute the probability thatτ < T (P(τ < T )), usingEq.
17). Specifically, we have

(τ < T ) = P
(

− ln ξ

Wtot
< T

)
= P(exp(−WtotT ) < ξ < 1)

(18)
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Becauseξ follows the uniform distribution in the interval
(0, 1), fromEq. (18) we have that

P(τ < T ) = P(exp(−WtotT ) < ξ < 1) = 1 − exp(−WtotT )

(19)

whose corresponding probability density function,F ′
1(τ), is

F ′
1(τ) = dP(τ < T )

dT
= Wtot exp(−WtotT ) (20)

which is the probability density function inEq. (15). There-
fore, the life time of each Monte Carlo event,τ, calculated
using Eq. (17) follows the probability density function in
Eq. (15), which is consistent to the master equation.

The Monte Carlo algorithm picks an event to be executed
based on the probability ofEq. (16). In this study, we assume
that the probability of adsorption in an infinitesimal time in-
tervalδτ is site-independent and the probability of migration
is only dependent on the number of immediate side neigh-
bors. Therefore, the following algorithm presented inLam
and Vlachos (2001)is used to pick a Monte Carlo event,
which is consistent withEq. (16). First, the surface atoms are
grouped into five classes based on the number of side neigh-
bors (e.g., surface atoms have 0, 1, 2, 3 and 4 side neighbors),
in each class, the atoms have the same migration probabilities
(adsorption probability is site-independent). The total rate of
a

W
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W

W

w
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i d on
t t
i -
t i-
g ger,

k

ζ n-

d event
w ran-
d t is

migration, the site is randomly picked from the list of the
sites in the selected class.

After the site is selected, the MC event is executed. If the
event is adsorption, it is executed by adding one atom on the
selected site; if the event is migration, a third random number
is generated to randomly pick a neighboring site that has a
lower height (target site), and move the atom from the original
site to the target site. After an MC event is executed, the five
classes are updated and the next step of the simulation can
be performed. Upon an executed event, a real-time increment
�t is computed by applyingEq. (17) to our process:

�t = − ln ξ

Wa +Wm
(24)

whereξ is a random number in the (0, 1) interval. This algo-
rithm guarantees that every trial is successful and is efficient
compared to traditional null event algorithms(Reese, Rai-
mondeau, & Vlachos, 2001).

3. Computation of kinetic Monte Carlo model
parameters using experimental data

The predictions of the Monte Carlo simulation depend on
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dsorption,Wa is computed as follows:

a = N2wa (21)

hereN is the size of the lattice andwa is the adsorption ra
f Ga atoms on each surface site.

The total rate of migration,Wm is given by:

m =
4∑
i=0

Wmi (22)

mi = Miν0 exp

(
−Es + iEn

kBT

)
(23)

hereMi is the number of surface Ga atoms that havei side
eighbors and the value ofMi is equal to the number of atom

n each of the five classes.
Then a random number following the uniform distribut

n the unit interval,ζ, is generated to select an event base
he rates. Specifically, if 0< ζ < Wa/(Wa +Wm), the even
s adsorption; ifWa/(Wa +Wm) < ζ < 1, the event is migra
ion. If the event is migration, thekth class in which the m
ration event will occur is selected by finding out an inte

∈ {0,1,2,3,4} such that (Wa +
k−1∑
i=0

Wmi )/(Wa +Wm) <

< (Wa +
k∑
i=0

Wmi )/(Wa +Wm). After that, a second ra

om number is generated to select the site where the
ill be executed; if the event is adsorption, the site is
omly picked from sites in the entire lattice; if the even
he rates of adsorption and migration used in the cal
ions. When the film growth rate is fixed (which is the cas
ur process), the rate of adsorption can be directly calcu
ased on the growth rate. However, there are three pa

ers in the expression for the migration rate,ν0, Es andEn,
n Eq. (2) that need to be determined. In this study, the va
or these parameters are calculated using experimenta
n the case of GaAs thin-film growth by MBE, values
heEs andEn have been obtained from the measuremen
eflection high-energy electron diffraction (RHEED) sp
lar intensities so that the transition temperature pred
y the MC simulation matches that of the measured
Shitara et al., 1992b). Furthermore, we adjust the values
he three parameters inEq. (2) so that the dependence of s
ace roughness on the substrate temperature measured
xperimental work ofLaw et al. (2000)can be predicted b
he MC simulations.

To compare the roughness from MC simulations to ex
mental values reported inLaw et al. (2000), we first give

description of the definition of surface roughness use
hat paper. Surface roughness is a measure of fluctuat
urface height and can be defined as(Sinha, Sirota, Garoff, &
tanley, 1988; Tanenbaum, Laracuente, & Gallagher, 1:

′(L) =
√
G(L), G(L) = 〈[h(xi, yi) − h(xj, yj)]

2〉 (25)

here G(L) is the height–height correlation functio
(xi, yi) andh(xj, yj) are the surface heights at locationi
ndj separated by a lateral distance,L, andr′(L) is the rough
ess. The notation〈·〉 denotes an ensemble average ove
ossible pairs of surface points.



Y. Lou, P.D. Christofides / Computers and Chemical Engineering 29 (2004) 225–241 231

Table 1
Parameters for migration rate in GaAs thin-film growth by MBE(Shitara et
al., 1992b)

Es (eV) 1.58
En (eV) 0.28
kB (J/K) 1.38× 10−23

h (J s) 6.63× 10−34

The surface roughness defined in this way follows a power-
law dependence on the lateral separation up to a certain
value denoted as the critical length,Lc, and saturates when
the lateral separation is larger than the critical length (Sinha
et al., 1988;Palasantzas, 1993). This leads to the following
expressions for surface roughness:

r′(L) =
{
kLα forL < Lc,

r′(∞) forL > Lc
(26)

whereα is the roughness exponent,k is a constant andr′(∞)
is the saturated roughness value.

The values forr′(∞),αandLc were measured inLaw et al.
(2000). In our simulation, a power-law dependence of surface
roughness on the lateral separation up to a certain critical
length is also observed. The value for the saturated roughness
from our MC simulations is tuned to fit the experimental data
reported inLaw et al. (2000)by adjusting the parameters of the
migration rate. Note that the MC simulation cannot predict
the values for critical length and roughness exponent reported
in the experimental data.

F
M

To determine the parameters for migration rate to match
the experimental results, we use the parameters reported in
Shitara et al. (1992b)for GaAs thin-film growth by MBE
as our initial estimate for the parameters ofEq. (2) and run
kinetic MC simulations for the evolution of surface rough-
ness of GaAs (0 0 1) surface. The parameters used as initial
estimates are listed inTable 1, wherekB is the Boltzmann’s
constant,h is the Planck’s constant andν0 = 2kBT/h, where
T is the substrate temperature. We employ a cubic lattice in
all kinetic MC simulations. Note that the crystal structure of
GaAs is a Zinc–Blend-type structure, but the (0 0 1) surface
of Zinc–Blend structure is identical to a cubic lattice except
from the fact that there is a shift of a half unit of the lattice at
each atomic layer in the Zinc–Blend structure(Blakemore,
1982). This shift is not considered in this study. The thickness
of one layer of GaAs is 2.8Å and the lattice constant of the
cubic lattice used in our simulations is 3.99Å. The growth
rate is 0.5µm/h, which corresponds towa = 0.49 s−1. MC
simulations are performed on an 80× 80 lattice at four dif-
ferent substrate temperatures (T = 713, 750, 775 and 800 K).
Note, in the experimental work ofLaw et al. (2000), the GaAs
thin-film surface roughness is measured by STM after cool-
ing down the film to room temperature therefore, the cooling
down process is also simulated. During the cooling down pro-
cess, there is no supply of precursors, but the surface migra-
t ess,
w on
r at
ig. 1. Surface roughness under different substrate temperatures when the
BE reported inShitara et al. (1992b): (a)T = 713 K, (b)T = 750 K, (c)T = 77
ion still takes place. Therefore, during the cooling proc
e set the adsorption rate,wa = 0 and use the same migrati

ate (Eq. (2)) in all the simulations. The film is cooled down
parameters of migration rate are the same to those for GaAs thin-film growthby
5 K and (d)T = 800 K.
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a rate of 2 K/s, which is reported inLaw et al. (2000).Fig. 1(a)
shows the evolution of surface roughness whenT = 713 K.
During growth, the surface roughness is∼3.3Å. The growth
stops att = 400 s and the surface roughness declines to 3.0Å
after the cooling down process.Fig. 1(b) show the evolution
of surface roughness whenT = 750 K. During growth, the
surface roughness is∼2.3Å. The growth stops att = 200 s
and the surface roughness declines to∼1.7Å after the cool-
ing down process.Fig. 1(c) and (d) show the evolution of
surface roughness whenT = 775 and 800 K. During growth,
the surface roughness fluctuates between 1.5 and 2.0Å. The
growth stops att = 100 s and the surface roughness stays
at∼2.0Å after the cooling down process. The experimental
results of saturated surface roughness after the growth of a
0.5µm thick GaAs film areLaw et al. (2000): r′(∞) = 2.8Å
whenT = 825 K andr′(∞) ≈ 1.3Å whenT = 850, 875 and
900 K.

Comparing the simulation results for saturated surface
roughness to the experimental data, we find that the saturated
roughness obtained from MC simulation whenT = 713 K
is very close to the experimental data for saturated surface
roughness whenT = 825 K, and the saturated roughness ob-
tained from MC simulation whenT = 775 andT = 800 K
is very close to the experimental data for saturated surface
roughness whenT = 900 K. Therefore, we compute the pa-
r by
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Table 2
Parameters for migration rate obtained by fitting kinetic Monte Carlo simu-
lation results to the experimental results reported inLaw et al. (2000)

ν0 (s−1) 5.8 × 1013

Es (eV) 1.82
En (eV) 0.27

neighbor in MOCVD, when the substrate temperature isT =
825 K, equal to the migration rate of surface atoms with 1
side-neighbor in MBE when the substrate temperature isT =
713 K, resulting in the following equation forE′

n:

ν′0 exp

(
−E

′
s + E′

n

kBT
′
1

)
= 2kBT1

h
exp

(
−Es + En

kBT1

)
(29)

where the values ofEs, kB andh are listed inTable 1, ν′0 =
2.9 × 1013s−1, E′

s = 1.83 eV,T1 = 713 K, andT ′
1 = 825 K.

By solving Eq. (29), E′
n = 0.27 eV= 0.15E′

s, and this
relationship is similar to the one reported inShitara et
al. (1992b)(specifically,En = 0.15Es) in GaAs thin-film
growth by MBE. The value ofE′

s obtained following this
method is also reasonably close to the value ofEs in MBE
(Shitara et al., 1992b)and to those reported for MOCVD of
GaAs thin films(Law et al., 2000). Furthermore, by com-
paring the simulation results for the saturated roughness for
T = 850 K andT = 875 K to experimental data, and increas-
ing the pre-exponential factor,ν′0 from 2.9 × 1013 s−1 to
5.8 × 1013 s−1 a better match of all the simulation results,
for T = 825, 850, 875 and 900 K, to the experimental data in
Law et al. (2000)can be achieved.

The values of the migration rate parameters, obtained by
following the above method and used in all the simulations
are given inTable 2. Fig. 2(a) and (b) show the evolution of
s sub-
s ly.
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ameters for the migration rate in GaAs thin-film growth
OCVD using the following method.
Let ν′0, E′

s andE′
n be the parameters of the migrat

ate in GaAs thin-film growth by MOCVD. We compu
′
0 andE′

s by constructing two equations forν′0 andE′
s. To

onstruct these two equations, we set the migration ra
datoms (surface atoms without side-neighbor) in MOC
hen substrate temperature isT = 825 K, equal to the m
ration rate of adatoms in MBE when substrate temper

s T = 713 K. Also, we set the migration rate of adatom
OCVD, when substrate temperature isT = 900 K, equal to

he migration rate of adatoms in MBE when substrate tem
ture isT = 788 K (T = 788 K is the average ofT = 775 and
= 800 K). This averaged temperature is used becaus

xperimental data for saturated roughness whenT = 900 K
n MOCVD is very close to the saturated roughness obta
rom MC simulations under bothT = 775 andT = 800 K
when the parameters inTable 1are used). Therefore, w
ave the following equations forν′0 andE′

s:

′
0 exp

(
− E′

s

kBT
′
1

)
= 2kBT1

h
exp

(
− Es

kBT1

)
(27)

′
0 exp

(
− E′

s

kBT
′
2

)
= 2kBT1

h
exp

(
− Es

kBT2

)
(28)

here the values ofEs, kB andh are listed inTable 1, and
1 = 713 K,T2 = 788 K,T ′

1 = 825 K andT ′
2 = 900 K.

By solving Eqs. (27) and (28), E′
s = 1.83 eV andν′0 =

.9 × 1013 s−1. Finally, the value ofE′
n can be compute

y setting the migration rate of surface atoms with 1 s
urface roughness after 400 s of deposition time when the
trate temperatures areT = 825 K and 850 K, respective
ig. 2(c) and (d) show the evolution of surface roughness
00 s of deposition time when the substrate temperature
75 and 900 K, respectively. The saturated roughness
ll the simulations are very close to the experimental
eported inLaw et al. (2000).

emark 1. Note that the critical length and the roughn
xponent measured inLaw et al. (2000)cannot be obtaine
rom our kinetic MC simulation by adjusting the simulat
arameters. We believe that the critical length and rough
xponent are related to the actual island size on the surfa
he simulation, the sizes of surface islands have to be sm
han the size of the simulation lattice. Limited by the av
ble computing power, the size of simulation lattice is
omparable to the size of the wafer, so the actual island
annot be adequately captured within the small simula
attice (320Å × 320Å) used in the present study. Howev
he saturated surface roughness,r′(∞), can be considered
measure of the fluctuation of height of the surface bec

t is independent of the influence of the size of surface isl
the lateral separation is much larger than the sizes of su
slands and each surface pair picked in the height–heigh
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Fig. 2. Surface roughness under different substrate temperatures when the parameters of migration rate are adjusted to match the experimental results reported
in Law et al. (2000): (a)T = 825 K, (b)T = 850 K, (c)T = 875 K and (d)T = 900 K.

relation are on different islands on the surface). We use the
roughness defined inEq. (26) because this is the roughness
used inLaw et al. (2000)to compare and fit the simulation
results to experimental data.

Remark 2. Note that in experimental studies, the surface
roughness of GaAs thin films was measured after a deposi-
tion of 0.5µm thick film, which corresponds to a deposition
time of about 1 h. Owing to computational limitations, the
simulated deposition time is much shorter that 1 h. However,
from the simulation results presented inFigs. 1 and 2, it can
be seen that after an initial transient of∼100 s, the roughness
either converges to some fixed value (see plots (a) and (b) of
Figs. 1 and 2) or oscillates around some fixed value (see plots
(c) and (d) ofFigs. 1 and 2). Therefore, it can be concluded
that further increase in the simulation time will lead to the
same surface roughness for the GaAs thin film.

Remark 3. Note that inShitara et al. (1992b), the pre-
exponential factor,ν0, has a linear dependence on substrate
temperature (ν0 = 2kBT/h). However, this is a weak temper-
ature dependence compare to the Arrhenius-like dependence
of the migration rate of the substrate temperature. There-
fore, we assume that the pre-exponential factor inEq. (2) is
a constant. The same assumption can also be found in other
Monte Carlo simulation studies of GaAs thin-film growth re-
p ,

1999; Meng & Weinberg, 1996). Furthermore, the simula-
tion results show that by assuming that the pre-exponential
factor in Eq. (2) is a constant, the saturated roughness pre-
dicted by kinetic MC simulations under different substrate
temperatures is very close to the experimental data.

4. Real-time estimation of thin-film surface
roughness

Surface roughness is the property of interest from a con-
trol point of view since it directly influences device proper-
ties. To be able to achieve real-time control of surface rough-
ness of GaAs thin films, it is important to develop an es-
timator that can provide estimates of surface roughness in
real-time. In this section, we develop such an estimator by
following a methodology that was recently proposed inLou
and Christofides (2003a).

For consistency with the previous work, the roughness,r,
is represented by the standard deviation of the surface from
its average height and is computed as follows:

r =

√√√√√√
N∑
i=1

N∑
j=1

[hi,j − h]2

N ×N (30)

orted in the literature (see, e.g.,Heyn, Franke, & Anton
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whereN is the size of the lattice,h is the average height
of the surface andhi,j is the height of the surface at site
(i, j); note that estimation and control of surface roughness
using alternative surface roughness definitions can be readily
studied within this framework.

In the kinetic MC simulation, the size of the lattice in-
fluences the quality of the predictions and the computa-
tional demand. In a previous work,Lou and Christofides
(2003a)discussed the dependence of simulation results on
the lattice size used in the MC simulations. The simula-
tion results show that when the lattice size is sufficiently
large, the roughness profiles obtained from kinetic MC sim-
ulations are independent of the lattice size. To implement
real-time feedback control based on a model that captures
the evolution of surface roughness, a small lattice must be
used in the simulation to make the model solution time
comparable to the process real-time. However, the rough-
ness profiles from a kinetic MC simulation using a small
lattice contain significant stochastic fluctuations, and thus,
they cannot be directly used for feedback control(Lou &
Christofides, 2003a,b); such an approach would result in
significant fluctuations in the control action which could
perturb unmodeled (fast) process dynamics and should be
avoided.

Because each kinetic MC simulation run provides one re-
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to improve the estimates of surface roughness using on-line
measurements was followed. Specifically, the adaptive filter
is a second-order dynamical system with the following state-
space representation:

dŷr
dτ

= y1,
dy1

dτ
= K

τI
(yr − ŷr) − 1

τI
y1 (31)

whereyr is the output of the kinetic MC simulation based on
multiple small-lattice models, ˆyr is the filter output,K is the
filter gain andτI is the filter time constant. To accelerate the
response of the filter and avoid a large overshoot,τI = 0.5/K.
To achieve both fast tracking of the dynamics of the outputs
and efficient noise rejection, the gain of the filter is adaptively
adjusted as follows:

K(τ) = K0
| ∫ τ
τ−�τ yr(t) dt − ∫ τ−�τ

τ−2�τ yr(t) dt|
�τ2

+Ks (32)

whereK0 is a constant,Ks is the steady-state gain for the
adaptive filter and�τ is the time interval between two updates
of K. Although a better tracking performance is expected
when a small�τ is used, a very small�τwill not significantly
reduce the effect of fluctuations on the filter output and should
be avoided.

The measurement error compensator uses the available on-
line measurements (in the numerical simulations the values
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lization of a stochastic process, by averaging the sim
ion results from different runs, the roughness obtaine
veraging multiple kinetic MC simulations is closer to
xpected roughness value obtained from the solution o
aster equation, when compared to the roughness profi

ained from a single simulation run with a same size lat
his result points to reducing the fluctuations on the

ace roughness obtained from the kinetic MC simulatio
ndependently running several small-lattice kinetic MC s
lations with the same parameters and averaging the ou
f the different runs. In the simulations, when the sur
oughness profiles are computed by averaging six inde
ent runs of kinetic MC simulations which use a 30× 30

attice, the solution time of the kinetic MC model is com
able to the real-time process evolution and the average
es of the surface roughness approximate well their exp
alues computed from the solution of the master equa
hich are obtained by running the kinetic MC simulation
150× 150 lattice. This is a sufficiently large lattice to e

ure simulation results which are independent of the la
ize.

The predicted profile of surface roughness, which is
ained from a kinetic MC simulation based on multiple sm
attice models, still contains stochastic fluctuations an
ot robust (due to the open-loop nature of the calcula
ith respect to disturbances and variations in process pa
ters. To mitigate these problems, the approach propos
ou and Christofides (2003a)that combined the kinetic M
imulator, based on multiple small-lattice models, with
daptive filter, to reject the stochastic fluctuations on the

ace roughness profile, and a measurement error compe
 r

f the surface roughness are obtained from the large latti
etic Monte Carlo simulator) to produce improved estim
f the surface roughness. The state-space representa

he measurement error compensator is

de

dτ
= Ke(yh(τmi ) − ŷ(τmi )),

τmi < τ ≤ τmi+1, i = 1,2, . . . (33)

nd the final roughness estimates are computed usinEq.
34):

ˆ = ŷr + e (34)

n the above equations,Ke is the compensator gain,eis the es
imated model error, which is used to compensate the m
utput, ŷ is the roughness estimates, ˆyr is the filtered out
ut from a kinetic MC simulator which uses multiple sm

attice models andyh is the output of a kinetic MC simulat
hich uses a large lattice. In an experimental set-up,yh could
e obtained from the measurement sensor. Since the r
ess measurements are only available at discrete poi

ime τm = [τm1, τm2, . . .], the right-hand side ofEq. (33) is
omputed at the time a roughness measurement is ava
nd is kept at this value for the time interval between
vailable roughness measurements.

The combination of the adaptive filter and the meas
ent error compensator functions as an estimator, w

s capable of accurately predicting the evolution of sur
oughness during the thin-film growth.Fig. 3shows the su
ace roughness profile computed by the estimator, which

kinetic MC simulator based on six 30× 30 lattice model
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Fig. 3. Surface roughness profiles from the estimator (dotted line) and
from a kinetic MC simulation which uses a 150× 150 lattice model (solid
line).

(solid lines). This profile is compared to the surface rough-
ness profile obtained from a kinetic MC simulator which uses
a150× 150 lattice model. This comparison clearly shows that
the developed estimator can accurately predict the evolution
of surface roughness. Note that the developed estimator can
be used for real-time feedback control, since the computa-
tional time needed to run kinetic MC simulation based on six
30× 30 lattice models is comparable to the real-time process
dynamics.

Remark 4. Referring to the selection of the lattice size, it
is important to point out that while kinetic MC simulations
based on multiple 30× 30 lattice models can adequately cap-
ture the evolution of surface roughness in the specific thin-
film growth problem under consideration, the dimension of
the small lattice in general should be chosen so that the inter-
actions between the surface atoms are adequately captured
and also that it is large enough to describe all the spatio-
temporal phenomena occurring on the surface (e.g., cluster
formation). Furthermore, the small lattice should be cho-
sen to provide accurate estimates of the desired controlled
properties. For example, in the case of surface roughness,
this quantity is defined as the standard deviation of the sur-
face from its average height. When a 30× 30 small lattice
is used, the computation of surface roughness involves hun-
dreds of surface atoms, which is adequate to obtain the ex-
p e.g.,
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that further increase of the lattice size leads to no observ-
able improvement in the accuracy of the simulation results.
Therefore, in the remainder of this study, a kinetic MC sim-
ulator which uses a 150× 150 lattice to describe the evo-
lution of the thin-film growth in the closed-loop system is
used.

5. Feedback control of surface roughness

The production of high-quality thin films requires that the
surface roughness is maintained at a desired level. In this
study, we consider feedback control of surface roughness of
GaAs thin films by manipulating the substrate temperature,
which is assumed to change only with respect to time. This
is a reasonable formulation for the manipulated input and
is practically feasible for many experimental and industrial
deposition processes. With such a manipulated input formu-
lation, however, it is only possible to achieve control of a
spatially averaged surface roughness, e.g., the one defined in
Eq. (30). We could have formulated a control problem under
the assumption that a large number of manipulated inputs
(control actuators) are available to control surface roughness
with higher precision but such a control problem formulation
would not be practically feasible at the present time. As will
b tem-
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ected value. However, when the property of interest is,
tep density, a larger lattice is needed to obtain a co
ent average value from the kinetic MC simulation. At
oint, it is important to note that the proposed reduc
f lattice size can be viewed as an alternative way to

orm order reduction of the master equation (seeGallivan
Murray, 2003for reduction approaches based directly

he master equation). Finally, note that through exten
imulations for our process, a 150× 150 lattice is of suf
cient size to capture the evolution of the film growth a
,

e shown, it is possible by manipulating the substrate
erature (single input formulation) to achieve an overall
mooth film surface configuration.

The fact that the model that describes the evolutio
he thin-film growth process is not available in closed-fo
available only as a kinetic MC model) motivates the us

proportional–integral (PI) feedback controller to regu
he surface roughness. Furthermore, from simulation re
hown inFig. 2, even when the substrate temperature is fi
he surface roughness oscillates around a fixed value.
scillatory behavior is an intrinsic characteristic of the fi
rowth process and is not the control objective to elimi

his oscillation, rather to control the surface roughness at
ired level (range). To eliminate unnecessary control act
hich may lead to poor closed-loop performance, the co
bjective is to stabilize the surface roughness value clo
desired level within certain toleranceε. For this purpose,
roportional–integral (PI) feedback control algorithm is u
f the following form:

(τ) = Kc

[
ê+ 1

τc

∫ τ

0
ê(t) dt

]
(35)

ˆ(t) =
{
ŷ − yset for |ŷ − yset| > ε,
0 for |ŷ − yset| ≤ ε (36)

hereyset is the desired level of surface roughness, ˆy is the
utput of the roughness estimator,Kc is the proportional gai
ndτc is the integral time constant.

The PI controller is coupled with the roughness estim
s shown inFig. 4. The roughness estimator includes a kin
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Fig. 4. Diagram of the closed-loop system under the developed estimator/controller structure.

MC simulator which uses multiple small-lattice models, the
adaptive filter and the measurement error compensator. The
output of the kinetic MC simulator is sent to the adaptive filter
(Eq. (31)) to suppress the noise, and then, the measurement
error compensator (Eqs. (33) and (34)) further corrects the
filtered roughness based on the measurements and the rough-
ness estimates are used in the PI controller to determine the
substrate temperature. Several closed-loop simulation runs
were performed to evaluate the effectiveness of the devel-
oped estimator/controller structure shown inFig. 4. In these
simulations, the outputs from six kinetic MC simulators us-
ing 30× 30 lattice models are averaged within the estimator.
A 150× 150 lattice MC model is used to describe the evo-
lution of the process, which corresponds to a 600Å × 600Å
GaAs (0 0 1) surface. The desired roughness is 1.5Å and the
tolerance is 0.1Å. The time interval between two available
measurements is taken to be 3.0 s. This specification is made
based on the fact that high-speed scanning tunnelling mi-
croscopy (STM)(Curtis, Mitsui, & Ganz, 1997)is able to
measure the morphology of a 600Å × 600Å surface with
an acquisition time of 3 s and the fact that it is feasible to
perform STM measurement during epitaxial growth of GaAs
layers (Voigtländer, 2001). The parameters for the rough-
ness estimator and the PI controller used in the simulations
are given inTable 3. Initially, the GaAs thin film grows on
a perfect surface atT = 800 K with the roughness increas-
ing. The controller is activated when the roughness reaches
2.3Å. Fig. 5shows the evolution of surface roughness under
feedback control.Fig. 6 shows the profile of the substrate
temperature. The results clearly show that the developed es-
timator/controller structure can successfully drive the surface
roughness to the desired level. To test the robustness of the
proposed estimator/controller structure, the GaAs thin-film

Table 3
Roughness estimator and controller parameters

K0 (s/Å) 0.05

Ks 0.1

Ke (s−1) 0.08

Kc (K/Å) 15

τc (s) 0.2

ε (Å) 0.1

Fig. 5. Evolution of the surface roughness under feedback control based on
the roughness estimator.

growth process is assumed to have a 10% uncertainty in the
energy associated with a single bond on the surface, i.e., the
Es used in the roughness estimator is 1.82 eV but theEs used
in the kinetic MC model based on the large lattice is 2.0 eV.

Fig. 6. Evolution of the substrate temperature under feedback control based
on the roughness estimator.
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Fig. 7. Evolution of the surface roughness under feedback control based on
the roughness estimator; closed loop system simulation under uncertainty.

Figs. 7 and 8show the corresponding output and input pro-
files, respectively. Note that the controller does exhibit very
good robustness behavior (compare alsoFigs. 5 and 7). To
show the importance of using the roughness estimator for
feedback control and not relying exclusively on the rough-
ness measurements (which are obtained only every 3.0 s), the
PI controller (parameters asTable 3) is applied to the kinetic
MC model assuming that new roughness measurements are
fed to the controller every 3.0 s, which is consistent with the
previous simulations. Also, to prevent the substrate tempera-
ture from obtaining unreasonably high or low values, the sub-
strate temperature is constrained to be 750 K≤ T ≤ 950 K.
Note that when the roughness is controlled using the proposed
controller/estimator structure, the substrate temperature is al-
ways within 750 K≤ T ≤ 950 K (seeFig. 6). Figs. 9 and 10
show the evolution of surface roughness and substrate tem-
perature, respectively. We can see that the PI controller, based

F based
o rtainty.

Fig. 9. Evolution of the surface roughness under feedback control without
roughness estimator.

on discrete roughness measurements, is not able to control
the surface roughness to the desired level which demonstrates
the usefulness of the proposed estimator/controller structure.

Remark 5. Note that by tuning the PI controller, the sur-
face roughness could be controlled to the desired level by
using only the on-line roughness measurements. However,
further controller tuning cannot achieve a closed-loop per-
formance as good as that achieved under feedback control
using the roughness estimator. To show this, we applied the
PI controller with a new set of parameters (Kc = 5 K/Å,
τc = 1.0 s) to the same kinetic MC model for the GaAs thin-
film growth process, assuming that new roughness measure-
ments are fed into the controller every 3.0 s. The parameters
of the PI controller are tuned to make the controller drive the
surface roughness to the desired level.Figs. 11 and 12show
the profiles of surface roughness and substrate temperature,
respectively. With the new controller parameters, the surface

F l with-
o

ig. 8. Evolution of the substrate temperature under feedback control
n the roughness estimator; closed loop system simulation under unce
ig. 10. Evolution of the substrate temperature under feedback contro
ut roughness estimator.
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Fig. 11. Evolution of the surface roughness under feedback control without
roughness estimator.

roughness is eventually controlled to the desired level, but
significant oscillations can be observed in the closed-loop
roughness profile and the process takes significantly longer
time to reach the desired level (compareFigs. 5 and 11; in Fig.
5, the surface roughness in the closed-loop simulation reaches
the desired level at aboutt = 10 s, but inFig. 11, the surface
roughness in the closed-loop simulation reaches the desired
level at aboutt = 30 s). To better compare the closed-loop
performance using different tuning parameters, the closed-
loop roughness profiles shown inFigs. 5 and 11are shown
together inFig. 13. Also, many other sets of tuning parame-
ters for the PI controller were tested; the conclusion is that it
is difficult to simultaneously achieve short transient time and
reduced oscillation when control of the surface roughness is
performed using discrete roughness measurements.

Remark 6. The effect of time delays in the measurements
of surface roughness on the closed-loop system performance

F l with-
o

Fig. 13. Comparison of roughness profiles: (1) roughness profile under feed-
back control based on the roughness estimator (solid line) and (2) roughness
profile under feedback control without roughness estimator with controller
parametersKc = 5 K/Å, τc = 1.0 s.

under the developed estimator/controller structure was also
evaluated. To this end, we applied the estimator/controller
structure (the parameters of the roughness estimator and the
PI controller are shown inTable 3) to the process model based
on a 150× 150-lattice kinetic Monte Carlo simulator assum-
ing that the new roughness measurements are available every
3.0 s but with a time-delay oftd = 3.0 s. The resulting profiles
of surface roughness and substrate temperature are shown in
Figs. 14 and 15. The developed estimator/controller struc-
ture successfully drives the surface roughness to the desired
level in the presence of a large time-delay in the roughness
measurements.

Remark 7. To show that the estimator/controller structure
is able to control the surface roughness independent of the

F based
o

ig. 12. Evolution of the substrate temperature under feedback contro
ut roughness estimator.
ig. 14. Evolution of the surface roughness under feedback control
n the roughness estimator – delayed roughness measurements.
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Fig. 15. Evolution of the substrate temperature under feedback control based
on the roughness estimator – delayed roughness measurements.

frequency at which the roughness measurements are avail-
able, the developed estimator/controller structure was imple-
mented without using roughness measurements, i.e. the con-
troller determines the substrate temperature based only on
the output of the kinetic MC simulator which uses six small-
lattice models and the adaptive filter.Figs. 16 and 17show
the resulting profiles of surface roughness and substrate tem-
perature, respectively. The simulation results show that this
open-loop implementation of the controller/estimator struc-
ture (with parameters shown inTable 3) successfully drives
the surface roughness to the desired level.

Remark 8. Note, although we demonstrate the effective-
ness of the estimator/controller structure by applying it
to a kMC process model using a large lattice, the re-
sults obtained from our numerical simulations are indica-
tive of the application of the proposed estimator/controller

F tation
o

Fig. 17. Evolution of the substrate temperature under open-loop implemen-
tation of the estimator/controller structure.

structure to actual GaAs MOCVD processes. The rea-
sons are: (1) the kMC model is validated by using ex-
perimental data and (2) the estimator/controller structure
has very good robustness properties with respect to sig-
nificant model parameter uncertainty, therefore, the pres-
ence of unmodeled dynamics in an experimental set-
ting would not significantly deteriorate the closed-loop
performance.

6. Conclusions

In this study, the methodology presented inLou and
Christofides (2003a)was used to study estimation and con-
trol of surface roughness of GaAs (0 0 1) thin films during
deposition in a horizontal-flow quartz reactor using TIBGa
and TBAs as precursors and H2 as the carrier gas. The ad-
sorption of TIBGa onto the surface and the migration of Ga
atoms on the surface were considered as the two rate-limiting
steps in the film growth and were explicitly modeled within a
kinetic Monte Carlo simulation framework. The energy bar-
rier and the pre-exponential factor of the migration rate of Ga
atoms on the surface used in the simulations were initially de-
termined by fitting the simulation results to experimental data
reported inLaw et al. (2000). Then, a roughness estimator was
c hness
o real-
t ness
m sim-
u ptive
fi and
a n the
r ts. The
r dback
c sired
l tion
ig. 16. Evolution of the surface roughness under open-loop implemen
f the estimator/controller structure.
onstructed that provided estimates of the surface roug
f the GaAs thin films at a time-scale comparable to the

ime evolution of the process using discrete on-line rough
easurements. The estimator involves a kinetic MC
lator based on multiple small-lattice models, an ada
lter used to reduce roughness stochastic fluctuations
n error compensator used to reduce the error betwee
oughness estimates and the roughness measuremen
oughness estimates are then used as input to a PI fee
ontroller that controls the surface roughness to a de
evel by manipulating the substrate temperature. Applica



240 Y. Lou, P.D. Christofides / Computers and Chemical Engineering 29 (2004) 225–241

of the proposed estimator/controller structure to the process
model based on a large-lattice kinetic Monte Carlo simula-
tor demonstrated successful control of the surface roughness.
The proposed approach was shown to be superior to only PI
control with direct use of the measured discrete roughness.
The reason being that the available measurement techniques
do not provide measurements at a frequency that is compara-
ble to the time-scale of evolution of the dominant film growth
dynamics.
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