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Abstract

This work focuses on control of surface roughness in sputtering processes including two surface micro-processes, diffusion and erosion.
The fluctuation of surface height of such sputtering processes can be described by the stochastic Kuramoto–Sivashinsky equation (KSE),
a fourth-order stochastic partial differential equation (PDE). Specifically, we consider sputtering processes, including surface diffusion and
erosion, on a one-dimensional lattice and design feedback controllers based on stochastic PDEs to regulate the surface roughness at de-
sired levels. We initially reformulate the stochastic KSE into a system of infinite stochastic ordinary differential equations (ODEs) by using
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odal decomposition. A finite-dimensional approximation of the stochastic KSE is then derived that captures the dominant m
ribution to the surface roughness. A state feedback controller is designed based on the finite-dimensional approximation to
urface roughness. Feedback control of surface roughness in three different sputtering processes with different sputtering yie
nd different ratios of erosion and diffusion rates is subsequently studied. Kinetic Monte-Carlo simulations are first performe
late the evolution of the surface height fluctuation in the three sputtering processes. Then, a systematic identification appro

o identify the parameters of the stochastic KSE models describing the sputtering processes by using the data from kinetic M
imulations. Specifically, the evolution of state covariance of the stochastic KSE models is directly obtained from multiple kineti
arlo simulation runs. The correlations between model parameters and the state covariance of the stochastic KSE models are
nd the parameters of the stochastic KSE models are subsequently computed by using least-mean-square fitting so that the

he surface roughness computed from the stochastic KSE models is consistent with that computed from kinetic Monte-Carlo s
eedback controllers are designed and applied to kinetic Monte-Carlo models of the sputtering processes to control the surface r
esired levels.
2004 Elsevier Ltd. All rights reserved.
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. Introduction

Sputtering processes are widely used in the thin film and
emiconductor fabrication to remove material from the sur-
ace of solids through the impact of energetic particles. In

any cases sputtering is used to smooth out surface fea-
ures. The surface morphology of thin films after the sputter
rosion strongly depends on conditions such as incident ion
nergy, sputtered substrate temperature and material com-
osition (Makeev, Cuerno, & Barabasi, 2002b). The surface
oughness of thin films of advanced materials is an important

∗ Corresponding author. Tel.: +1 310 794 1015; fax: +1 310 206 4107.
E-mail address:pdc@seas.ucla.edu (P.D. Christofides).

variable to control because it strongly affects the qualit
such films. Due to the increasingly stringent requiremen
the quality of such films, feedback control of surface rou
ness of sputtering processes becomes important.

In a sputtering process, the surface is directly shape
the microscopic surface processes (e.g., erosion, diffu
and surface reaction), which are stochastic proce
Therefore, the stochastic nature of sputtering proce
must be fully considered in the modeling and contro
the surface roughness of such processes. The des
understand and control the thin film micro-structure
motivated extensive research on fundamental mathem
models describing the microscopic features of surf
formed by surface micro-processes, which include
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kinetic Monte-Carlo methods (e.g.,Chen, Bogaerts, Depla,
& Ignatova, 2003; Fichthorn, & Weinberg, 1991; Gillespie,
1976; Gilmer, Huang, de la Rubia, Torre, & Baumann, 2000;
Kersch, Morokoff, & Werner, 1994; Reese, Raimondeau, &
Vlachos, 2001; Shitara et al., 1992); and (2) stochastic partial
differential equations (PDEs) (e.g.,Cuerno, Makse, Tomas-
sone, Harrington, & Stanley, 1995; Edwards & Wilkinson,
1982; Lauritsen, Cuerno, & Makse, 1996; Villain, 1991;
Vvedensky, Zangwill, Luse, & Wilby, 1993). Furthermore,
the study of feedback control of surface roughness is also
motivated by the possibility to obtain roughness measure-
ments in real-time using scanning tunneling microscopy
(Voigtländer, 2001), spectroscopic ellipsometry techniques
(Zapien, Messier, & Collin, 2001), grazing-incidence small-
angle X-ray scattering (GISAXS) (Renaud et al., 2003) or
by combination of on-line measurement techniques for mea-
suring gas phase compositions with off-line measurement
techniques for measuring surface roughness. An implemen-
tation of the latter approach was recently reported inNi et
al. (2004), where it was used to measure carbon composition
of thin films in plasma-enhanced chemical vapor deposition
using combination of optical emission spectroscopy (OES)
and X-ray photoelectron spectroscopy (XPS).

The kinetic Monte-Carlo simulation methods can be used
to predict average properties of thin films (which are of inter-
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of the process variables over macroscopic time and space
scales through “coarse” projective integration. The method
was used to control both spatially lumped systems described
by kinetic Monte-Carlo simulations (Siettos, Armaou, Ma-
keev, & Kevrekidis, 2003) and spatially distributed processes
(Armaou, Siettos, & Kevrekidis, 2004).

However, the fact that kMC models are not available in
closed-form makes very difficult to use them for system-
level analysis and the design and implementation of real-
time model-based control systems. Although the “coarse”
time-stepper based approach allows controller design using
linear control theory to control “coarse-variables” which are
low statistical moments of the microscopic distributions (e.g.,
surface coverage, the zeroth moment of adspecies distribu-
tion on a lattice), to control higher statistical moments of the
microscopic distributions, such as the surface roughness (the
second moment of height distribution on a lattice), linear de-
terministic models may not be sufficient, because the effect of
the stochastic nature of the microscopic processes becomes
very significant and must be addressed both in the model
construction and controller design. For many deposition and
sputtering processes, closed-form process models, in the form
of stochastic PDEs, can be derived based on the microscopic
rules and the corresponding master equation (e.g.,Cuerno
et al., 1995; Edwards & Wilkinson, 1982; Lauritsen et al.,
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st from a control point of view, for example, surface rou
ess), by explicitly accounting for the micro-processes
irectly shape thin film microstructure. At this point, it is i
ortant to note that in the present paper we work exclus
ith lattice kinetic Monte-Carlo methods as opposed to e

ibrium continuous-space Monte-Carlo methods. Recen
ethodology for feedback control of surface roughness u

inetic Monte-Carlo models has been developed inLou and
hristofides (2003a, 2003b). The methodology leads to t
esign of (a) real-time roughness estimators by using

iple small lattice kinetic Monte-Carlo simulators, adap
lters and measurement error compensators; and (b)
ack controllers based on the real-time roughness es

ors. The method was successfully applied to control su
oughness in aGaAs deposition process using an experim
ally determined kinetic Monte-Carlo process model (Lou &
hristofides, 2004a). Moreover, kinetic Monte-Carlo met
ds have also been used to study the dynamics of compl
osition processes including multiple components with
hort-range and long-range interactions and to perform
ictive control design to control final surface roughnessNi
Christofides, 2004).
Recently, an equation-free time-stepper-based co

ethodology was developed for processes describe
tomistic rules (e.g., kinetic Monte-Carlo, Molecular D
amics, Brownian Dynamics), and for which explicit, e

ution equations at the macroscopic level are not avai
n closed form (Makeev, Maroudas, & Kevrekidis, 2002).
he method circumvents the problem of closed-form
ess model unavailability by using “coarse” time-stepp
hich are microscopic-scale simulators, to predict evolu
996; Villain, 1991; Vvedensky et al., 1993). To achieve be
er closed-loop performance, it is desirable to design feed
ontrollers on the basis of process models. This has moti
ecent research on the development of a method for
ack control of surface roughness based on stochastic
rocess models (Lou & Christofides, 2004b). This method

nvolves reformulation of the stochastic PDE into a sys
f infinite stochastic ordinary differential equations by us
odal decomposition, derivation of a finite-dimensional
roximation that captures the dominant mode contributio

he surface roughness, and state feedback controller d
ased on the finite-dimensional approximation.

Both the deterministic and the stochastic Kuramo
ivashinsky equation (KSE) are important PDEs which
cribe a variety of chemical and physical processes. S
xamples of processes that are described by the dete

stic KSE are falling liquid films (Chen & Chang, 1986),
nstable flame fronts (Sivashinsky, 1977) and interfacial in
tabilities between two viscous fluids (Hooper & Grimshaw
985). Analytical and numerical studies of the dynamic

he deterministic KSE have revealed that the dominan
amics of the KSE can be adequately characterized by a
umber of degrees of freedom (e.g.,Temam, 1988). This has
otivated extensive research focusing on the design o
ar/nonlinear finite-dimensional output feedback contro
Armaou & Christofides, 2000a, 2000b) for stabilization o
he zero solution of the KSE on the basis of ordinary diffe
ial equation (ODE) approximations, obtained through lin
Armaou & Christofides, 2000a) and nonlinear (Armaou &
hristofides, 2000b) Galerkin’s method, that accurately d
cribe the dominant dynamics of the KSE for a given valu
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the instability parameter. The global stabilization of the KSE
has also been addressed via distributed static output feedback
control (Christofides & Armaou, 2000). A nonlinear bound-
ary feedback controller was also proposed inLiu and Krstíc
(2001)that enhances the rate of convergence to the spatially
uniform steady-state of the KSE, for values of the instability
parameter for which this steady state is open-loop stable. The
issue of optimal actuator/sensor placement for the KSE was
also addressed inLou and Christofides (2003c)so that the
desired control objectives are achieved with minimal energy
use.

The stochastic KSE can be used to model the evolution
of the height profile for surfaces in a variety of sputtering
processes including surface erosion by ion sputtering (Cuerno
et al., 1995; Lauritsen et al., 1996), surface smoothing by
energetic clusters (Insepov, Yamada, & Sosnowski, 1997) and
ZrO2 thin film growth by reactive ion beam sputtering (Qi
et al., 2003). The long-time behavior of the stochastic KSE
was studied through renormalization-group analysis (Cuerno
& Lauritsen, 1995) and its numerical solution was obtained
in Drotar, Zhao, Lu, and Wang (1999). The problem of the
existence and uniqueness of the solution to the stochastic KSE
was also investigated inDuan and Ervin (2001). Even though
the above works have led to fundamental understanding of
the physical meaning of the various terms and mathematical
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the state covariance of the stochastic KSE models are estab-
lished and the parameters of the stochastic KSE models are
subsequently computed by using least-mean-square fitting
so that the evolution of the surface roughness computed from
the stochastic KSE models is consistent with that computed
from kinetic Monte-Carlo simulations. Feedback controllers
are designed and applied to kinetic Monte-Carlo models of
the sputtering processes to control the surface roughness to
desired levels.

2. Preliminaries

2.1. Process description

We consider a 1D-lattice representation of a crystalline
surface in a sputtering process, which includes two surface
micro-processes, erosion and diffusion. The solid-on-solid
assumption is made which means that no defects or overhangs
are allowed in the process (Siegert & Plischke, 1994). The
microscopic rules are as follows: a site,i, is first randomly
picked among the sites of the whole lattice and the particle at
the top of this site is subject to: (a) erosion with probability
f; or (b) diffusion with probability 1− f .

If the particle at the top of sitei is subject to erosion, the
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article is removed from the sitei with probabilityPeY (φi).
e is determined as17 times the number of occupied sites i
ox of size 3× 3 centered at the sitei, which is shown inFig.
. There is a total of nine sites in the box. The central on
he particle to be considered for erosion (the one marke
lled circle). Among the remaining eight sites, the site ab
he central site of interest must be vacant since the ce
ite is a surface site. Therefore, only seven of the eight
an be occupied and the maximum value ofPe is 1.Y (φi) is
he sputtering yield function defined as follows:

(φi) = y0 + y1φ
2
i + y2φ

4
i (1)

herey0, y1 and y2 are process dependent constants
ection4 for different values ofy0, y1 andy2 in different
puttering processes) andφi is the local slope defined as fo

ig. 1. Schematic of the rule to determinePe. Pe is defined as17 times the
umber of occupied sites in a box of size 3× 3 centered at the particle on t

op of sitei; Pe = 1 in the left figure andPe = 4
7 in the right figure, wher

he particle marked by filled circle is on the top of sitei.
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lows:

φi = tan−1
(
hi+1 − hi−1

2a

)
(2)

wherea is the lattice parameter andhi+1 andhi−1 are the
values of surface height at sitesi + 1 andi − 1, respectively.

If the particle at the top of sitei is subject to diffusion,
one of its two nearest neighbors,j (j = i + 1 or i − 1) is
randomly chosen and the particle is moved to the nearest
neighbor column with probabilitywi→j as follows:

wi→j = 1

1 + exp
(
β�Hi→j

) (3)

where�Hi→j is the energy difference between the final and
initial states of the move,β = 1/kBT andH is defined through
the Hamiltonian of an unrestricted solid-on-solid model as
follows (Siegert & Plischke, 1994):

H =
(
J

a2

) L∑
k=1

(hk − hk+1)n (4)

whereJ is the bond energy,L is the total number of sites
in the lattice andn is a positive number. In the simulations
carried out in this work, we usen = 2. With this definition of
H, there is a positive Schwoebel barrier (Schwoebel, 1969)
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Kinetic Monte-Carlo simulation can predict average proper-
ties of the surface of a sputtering process (which are of interest
from a control point of view, for example, surface roughness).
Since a kinetic Monte-Carlo simulation run constitutes a re-
alization of a stochastic process, simulation results from a
large number of different simulation runs are not identical.
However, by averaging the results from different simulation
runs, the averaged properties of the surface converge to the
values obtained from the solution of the master equation.

Kinetic Monte-Carlo models are not available in closed-
form, which makes very difficult to perform model-based
control design on the basis of kinetic Monte-Carlo models.
As an alternative, closed-form stochastic PDE models can
be derived based on the erosion rules to describe the evolu-
tion of the surface configuration in a way that is consistent to
that predicted by kinetic Monte-Carlo models. In this work,
we focus on model-based feedback control design for sur-
face roughness control using a stochastic PDE model of the
sputtering process under consideration. The equation for the
height fluctuations of the surface in this sputtering process
was derived in (Lauritsen et al., 1996) and is a stochastic
Kuramoto–Sivashinsky equation of the following form:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+ λ

2

(
∂h
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)2

+ ξ(x, t) (5)
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or particles to diffuse in downhill direction. When a parti
pproaches a step from the upper terrace, it has to c
double step at the step edge. Since the energy of a d

tep is larger than the energy of two single steps, the diffu
article is repelled from the down step and is preferab
iffuse in uphill direction (Siegert & Plischke, 1994).

emark 1. Note that the term “erosion”, in general, is us
o capture a variety of surface phenomena including de
ion, etching, or physical sputtering from the surface. In
tudy, we focus on surface erosion due to physical sputt
rocesses. Also, we note that a full-scale model of a sp

ng process would consist of a 2D-lattice representatio
he surface. We reduce the dimensionality by consider
D-lattice representation of the surface in this work to s
lify our development, but the developed feedback co
ethod can be applied to control surface roughness in

ering processes taking place on two-dimensional sur
see the discussion inRemark 5).

.2. Stochastic PDE model of the sputtering process

The sputtering process is a stochastic process. Ki
onte-Carlo simulation can be used to predict the ev

ion of the surface configuration in this process. The kin
onte-Carlo model is a first-principle model in the sense

he erosion rules are explicitly considered in the model. M
matically, kinetic Monte-Carlo simulation methods prov
n unbiased realization of the master equation (Gillespie,
976; Van Kampen, 1992), which describes the evolution

he probability that the surface is at a certain configura
herex ∈ [−π, π] is the spatial coordinate,t is the time
(x, t) is the height of the surface at positionx and timet, ν
ndκ are two constants, andξ(x, t) is a Gaussian noise wi
ero mean and covariance:

ξ(x, t)ξ(x′, t′)〉 = σ2δ(x − x′)δ(t − t′) (6)

hereσ is a constant,δ(·) is the dirac function, and〈··〉 de-
otes the expected value. Note that the noise covarianc
ends on both spacexand timet. We note that this stochas
SE representation for the surface morphological evolu

n sputtering processes is limited to surface morphologie
o not involve re-entrant features (which is a property
olds for the sputtering process described in Section2.1);

he re-entrant features could arise under certain sputt
onditions and are catastrophic for the surface.

The surface roughness,r, is represented by the stand
eviation of the surface from its average height and is c
uted as follows:

(t) =
√

1

2π

∫ π

−π

[h(x, t) − h̄(t)]2 dx (7)

here h̄(t) = 1/2π
∫ π
−π

h(x, t) dx is the average surfa
eight.

The height–height correlation function is also commo
sed to measure surface roughness (e.g.,Palasantzas, 199;
ejedor, Šmilauer, Roberts, & Joyce, 1999). When the
eight–height correlation function is used, the surface ro
ess follows a power-law dependence on the lateral se

ion up to a certain value denoted as the critical length
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saturates when the lateral separation is larger than the critical
length (Palasantzas, 1993; Sinha, Sirota, Garoff, & Stanley,
1988). When the surface roughness is defined as the standard
deviation of the surface from its average height as in Eq.(7), it
is independent of the simulation lattice size (Kalke & Baxter,
2001), provided that the lattice size is sufficiently large. Since
in this study, we will compare our simulation results from the
solution of stochastic KSE and that from kinetic Monte-Carlo
simulations, we use Eq.(7) to measure the surface roughness.

Our objective is to control the surface roughness of the
sputtering process to a desired level. In the process model of
Eq. (5), the second-order-derivative term is the linearization
of the surface curvature within the small-slope approxima-
tion and the fourth-order-derivative term originates from the
surface diffusion rule of Eqs.(3) and (4)(Lauritsen et al.,
1996). The inclusion of the nonlinear termλ/2(∇h)2 in a
general model for interface evolution with both growth and
corrosion processes was first justified inKardar, Parisi, and
Zhang (1986)by considering the growth of an Eden cluster.
In the specific sputtering processes considered in this study,
the nonlinear termλ/2(∂h/∂x)2 corresponds to the effect of
Y (φ) on the surface fluctuations, which is a nonlinear func-
tion of the local slope; we note that the nonlinearities become
more significant in the model of Eq.(5)at the late stage of the
evolution of the surface when large slopes develop (Cuerno et
a ck
c f the
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whereλn denotes an eigenvalue and̄φn denotes an eigen-
function. A direct computation of the solution of the
above eigenvalue problem yieldsλ0 = 0 withψ0 = 1/

√
2π,

and λn = νn2 − κn4 (λn is an eigenvalue of multiplicity
two) with eigenfunctionsφn = (1/

√
π) sin(nx) and ψn =

(1/
√
π) cos(nx) for n = 1, . . . ,∞. From the solution of the

eigenvalue problem shown in Eq.(11), it follows that for
fixed values ofν > 0 and κ > 0, the number of unstable
eigenvalues ofA is finite and the distance between two con-
secutive eigenvalues (i.e.,λn andλn+1) increases asn in-
creases. Furthermore, the eigenspectrum of the operatorA in
Eq. (11), σ(A) can be partitioned asσ(A) = σ1(A) ∪ σ2(A),
whereσ1(A) contains the firstm (with m finite) eigenvalues
(i.e.,σ1(A) = {λ1, . . . , λm}) andσ2(A) contains the remain-
ing eigenvalues (i.e.,σ2(A) = {λm+1, . . . , }).

To present the method that we use to design a feedback
controller on the basis of the stochastic KSE of Eq.(8), we
first derive stochastic ODE approximations of Eq.(8) us-
ing modal decomposition. To this end, we first expand the
solution of Eq.(8) in an infinite series in terms of the eigen-
functions of the operator of Eq.(11)as follows:

h(x, t) =
∞∑
n=1

αn(t)φn(x) +
∞∑
n=0

βn(t)ψn(x) (12)
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l., 1995). In this work, we focus on the problem of feedba
ontrol of the sputtering process using linearizations o
tochastic KSE with appropriately identified parameters

To proceed, we formulate the linearized KSE with
ributed control in the spatial domain [−π, π] as follows:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+

p∑
i=1

bi(x)ui(t) + ξ(x, t) (8)

ubject to periodic boundary conditions:

∂jh

∂xj
(−π, t) = ∂jh

∂xj
(π, t), j = 0, . . . ,3 (9)

nd the initial condition:

(x,0) = h0(x) (10)

hereui is theith manipulated input,p is the number of ma
ipulated inputs andbi is theith actuator distribution functio
i.e., bi determines how the control action computed by
th control actuator,ui, is distributed (e.g., point or distribut
ctuation) in the spatial interval [−π, π]).

To study the dynamics of Eq.(8), we initially consider th
igenvalue problem of the linear operator of Eq.(8), which

akes the form:

Aφ̄n(x) = −ν
d2φ̄n(x)

dx2
− κ

d4φ̄n(x)

dx4

= λnφ̄n(x), n = 1, . . . ,∞,

djφ̄n
dxj

(−π) = djφ̄n
dxj

(π), j = 0, . . . ,3

(11)
hereαn(t), βn(t) are time-varying coefficients. Substit
ng the above expansion for the solution,h(x, t), into Eq.
8) and taking the inner product with the adjoint eigenfu
ions,φ∗

n(z) = (1/
√
π) sin(nz) andψ∗

n(z) = (1/
√
π) cos(nz),

he following system of infinite stochastic ODEs
btained:

dαn
dt

= (νn2 − κn4)αn

+
p∑
i=1

biαnui(t) + ξnα(t)

dβn
dt

= (νn2 − κn4)βn

+
p∑
i=1

biβnui(t) + ξnβ(t); n = 1, . . . ,∞

(13)

here

biαn =
∫ π

−π

φn(x)bi(x)dx, biβn = ∫ π−π
ψn(x)bi(x) dx

ξnα(t) =
∫ π

−π

ξ(x, t)φn(x)dx, ξnβ(t) = ∫ π−π
ξ(x, t)ψn(x) dx

(14)

The covariances ofξnα(t) and ξnβ(t) can be computed b

sing the following result (̊Aström, 1970):

esult 1. If (1) f (x) is a deterministic function; (2
(x) is a random variable with〈η(x)〉 = 0 and covarianc
η(x)η(x′)〉 = σ2δ(x − x′); and (3)ε = ∫ b

a
f (x)η(x) dx, then
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ε is a random number with〈ε〉 = 0 and covariance〈ε2〉 =
σ2
∫ b
a
f 2(x) dx.

Using Result 1, we obtain〈ξnα(t)ξnα(t′)〉 = σ2δ(t − t′) and
〈ξnβ(t)ξnβ(t′)〉 = σ2δ(t − t′).

In this work, the controlled variable is the expected value
of surface roughness,

√
〈r2〉. According to Eq.(12), we have

h̄(t) = β0(t)ψ0. Therefore,
√

〈r2〉 can be rewritten in terms
of αn andβn as follows:

√
〈r2〉 =

√
1

2π

〈∫ π

−π

(h(x, t) − h̄(t))2 dx

〉

=
√√√√ 1

2π

〈∫ π

−π

∞∑
i=1

[
αi(t)2φi(x)2 + βi(t)2ψi(x)2

]
dx

〉

=
√√√√ 1

2π

〈 ∞∑
i=1

(α2
i + β2

i )

〉

=
√√√√ 1

2π

∞∑
i=1

[〈α2
i 〉 + 〈β2

i 〉] (15)

Therefore, the surface roughness control problem for the
stochastic KSE system of Eq.(8) is formulated as the one
o
s

R od-
e esses
c equa-
t hat
t ple,
L l
p ld be
i DE
m
& s-
t he
r e in
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t e
s
l
H real
n
W ,
1 tions
i n be
s de-
p ingle
l ork).
H site
o e site
b
v er of

sites in the deposition process cannot alleviate this problem
(Haselwandter & Vvedensky, 2002). Therefore, increase of
the lattice sites can reduce the error between the solution
of the stochastic PDE and that of the kinetic Monte-Carlo
simulation due to the first assumption, however, it cannot
completely eliminate the model error between the expected
roughness value obtained from the discrete microscopic ki-
netic Monte-Carlo simulation and from the stochastic PDE
(which is a continuous approximation of the discrete process)
due to the fact that the second assumption cannot be fully
satisfied. As a result, to design feedback controllers based
on stochastic PDE models, it is necessary to identify PDE
model parameters based on the surface height data obtained
from kinetic Monte-Carlo simulations to compensate for this
model error.

3. Feedback control

In this section, we design a linear state feedback controller
for the system of Eq.(13) so that the surface roughness de-
fined in Eq.(15)can be controlled to a desired level.

3.1. Model reduction

of
E lers
t l im-
p asis
o ms
w base
t ions
o lting
c the
c

w
Λ

λ

ξ

B

f controlling the covariance of the statesαn andβn of the
ystem of infinite stochastic ODEs of Eq.(13).

emark 2. While the parameters of stochastic PDE m
ls for many deposition processes and sputtering proc
an be derived based on the corresponding master
ions, which describe the evolution of the probability t
he surface is at a certain configuration (see, for exam
auritsen et al., 1996; Vvedensky, 2003); for all practica
urposes, the stochastic PDE model parameters shou

dentified by matching the prediction of the stochastic P
odel to that of kinetic Monte-Carlo simulations (seeNi
Christofides, 2005 for a method to construct stocha

ic PDE models using kinetic Monte-Carlo simulation). T
eason for this is the two assumptions which are mad
he derivation of the stochastic PDE models from the m
er equation. Specifically, ifH = {h1, h2, . . .} represents th
urface configuration,r = {r1, r2, . . .} is the array of jump

engths at each site andW(H ; r) is the transition rate from
to H + r, it is assumed that there exists a positive

umberδ such that (1)W(H ; r) ≈ 0, for |r| > δ; and (2)
(H + �H ; r) ≈ W(H ; r), for |�H | < δ (Van Kampen

992). Because the difference in successive configura
s one height unit on a single site, the first assumption ca
atisfied by increasing the number of lattice sites in the
osition process (equivalently, reducing the size of a s

attice on a fixed spatial domain as considered in this w
owever, due to the dependence of the final deposition
n the local surface configuration, a change in a surfac
y one height unit can produce a step change inW, which
iolates the second assumption; increasing the numb
Owing to its infinite-dimensional nature, the system
q.(13)cannot be directly used for the design of control

hat can be implemented in practice (i.e., the practica
lementation of controllers which are designed on the b
f this system will require the computation of infinite su
hich cannot be done by a computer). Instead, we will

he controller design on finite-dimensional approximat
f this system. Subsequently, we will show that the resu
ontroller will enforce the desired control objectives in
losed-loop infinite-dimensional system.

Specifically, we rewrite the system of Eq.(13)as follows:

dxs
dt

= Λsxs + Bsu + ξs

dxf
dt

= Λfxf + Bfu + ξf

(16)

herexs = [α1 · · ·αmβ1 · · ·βm]T, xf = [αm+1βm+1 · · ·]T,
s = diag[λ1 · · · λmλ1 · · · λm], Λf = diag[λm+1λm+1λm+2

m+2 · · ·], u = [u1 · · · up], ξs = [ξ1
α · · · ξmα ξ1

β · · · ξmβ ], and

f = [ξm+1
α ξm+1

β · · ·],

s =




b1α1
· · · bpα1

...
...

...

b1αm · · · bpαm

b1β1
· · · bpβ1

...
...

...

b1βm · · · bpβm




;
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Bf =




b1αm+1
· · · bpαm+1

b1βm+1
· · · bpβm+1

b1αm+2
· · · bpαm+2

b1βm+2
· · · bpβm+2

...
...

...




(17)

We note that in the system of Eq.(16), by selectingm
sufficiently large,Λf is an unbounded differential operator
which is exponentially stable.

Neglecting the xf subsystem, the following 2m-
dimensional system is obtained:

dx̃s
dt

= Λsx̃s + Bsu + ξs (18)

where the tilde symbol in ˜xs denotes that this state variable
is associated with a finite-dimensional system.

3.2. Feedback control design

We design the state feedback controller on the basis of
the finite-dimensional system of Eq.(18). To simplify our
development, we assume thatp = 2m and pick the actuator
distribution functions such thatB−1 exists. The state feedback
c

u

w ed-
l
a op
fi the
d

f the
s -
d -
t onal
s by
u
u

.
(

I ri-
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e

Λ

w n-
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as follows:

P(∞) =
[
Pα(∞) 0

0 Pβ(∞)

]
(22)

where Pα(∞) = diag〈α1(∞)2〉 · · · 〈αm(∞)2〉, Pβ(∞) =
diag〈β1(∞)2〉 · · · 〈βm(∞)2〉. 〈αn(∞)2〉 and 〈βn(∞)2〉
(n = 1, . . . , m) can be computed by using the following
expressions:

〈αn(∞)2〉 = − σ2

2λcαn
; 〈βn(∞)2〉 = − σ2

2λcβn
(23)

From Eq. (23), we can see that by assigning the closed-
loop polesλcαn andλcβn (n = 1, . . . , m) at desired locations,
the covariances of the statesαn andβn (n = 1, . . . , m) can
be controlled to desired levels. Therefore, according to Eq.
(15), the contribution to the surface roughness from the finite-
dimensional system of Eq.(18) can be controlled to the de-
sired level.

3.3. Analysis of the closed-loop infinite-dimensional
system

In this subsection, we show that when the state feedback
controller of Eq.(19) is used to manipulate the poles of the
finite-dimensional system of Eq.(18), the contribution to the
s s-
t all
b

i -
l

w
llows

d
s n-
d
D the
s

or
( om
E by
i e
Λ e
c ed
b

s

ontrol law then takes the form:

= B−1
s [(Λcs − Λs)x̃s] (19)

here the matrixΛcs contains the desired poles of the clos
oop system;Λcs = diag[λcα1 · · · λcαm λcβ1 · · · λcβm], λcαi
ndλcβi (1 ≤ i ≤ m) are the desired poles of the closed-lo
nite-dimensional system, which can be determined from
esired closed-loop surface roughness level.

We first analyze the dependence of the covariances o
tatesαn andβn (n = 1, . . . , m) on the poles of the finite
imensional system of Eq.(18). Then, we will show in Sec

ion3.3that the surface roughness of the infinite-dimensi
ystem of Eq.(13) can be controlled to the desired level
sing the state feedback controller of Eq.(19), which only
ses a finite number of actuators.

By applying the controller of Eq.(19)to the system of Eq
18), the closed-loop system takes the form:

dx̃s
dt

= Λcsx̃s + ξs(t) (20)

f all eigenvalues ofΛcs have negative real part, the cova
nce matrix of ˜xs(t),P(t) = 〈x̃s(t)x̃s(t)T〉 converges toP(∞),
hich is the unique positive definite solution to the Lyapu
quation (Hotz & Skelton, 1987):

csP + PΛcs + R1 = 0 (21)

hereR1 = 〈ξs(t)ξs(t)T〉. Eq.(21) cannot be solved, in ge
ral, analytically. However, for the specific system consid

n this work, the analytical solution forP(∞) can be obtaine
urface roughness from theαf andβf subsystem of the sy
em of Eq.(16) is bounded and can be made arbitrarily sm
y increasing the dimension of thexs subsystem.

By applying the feedback controller of Eq.(19) into the
nfinite-dimensional system of Eq.(16), we obtain the fol
owing closed-loop system:

dxs
dt

= Λcsxs + ξs

dxf
dt

= Λεxs + Λfxf + ξf

(24)

hereΛε = BfB
−1
s (Λcs − Λs).

The boundedness of the state of the above system fo
irectly from the stability of the matricesΛcs andΛf and the
tructure of the system, where thexs subsystem is indepe
ent of thexf state (seeChristofides, 2001; Christofides &
aoutidis, 1997for results and techniques for analyzing
tability properties of such systems).

Due to the structure of the eigenspectrum of operatA
Section2.2), the effect of the control action computed fr
q. (19) to the poles of thexf subsystem can be reduced

ncreasingm. Therefore, by pickingmsufficiently large, th
εxs can be made very small compared toΛfxf and thus, th

losed-loop system of Eq.(24) can be adequately describ
y the following system:

dxs
dt

= Λcsxs + ξs

dxf
dt

= Λfxf + ξf

(25)
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On the basis of the above system, it can be shown that
the covariance of the state of thexf subsystem converges to
[〈αm+1(∞)2〉 〈βm+1(∞)2〉 · · · · · ·], where

〈αn(∞)2〉 = σ2

2n2(κn2 − ν)
;

〈βn(∞)2〉 = σ2

2n2(κn2 − ν)
; n > m

(26)

Therefore, form sufficiently large, the overall contribution
to the surface roughness from thexf subsystem in Eq.(16),√

〈r2
f 〉 can be computed as follows:

√
〈r2
f 〉 =

√√√√ 1

2π

∞∑
n=m+1

[
σ2

n2(κn2 − ν)

]
(27)

Clearly, asm → ∞, the contribution to the surface roughness
from thexf subsystem goes to zero.

In summary, under the controller of Eq.(19), the closed-
loop surface roughness, form sufficiently large, can be ade-
quately described by the following expression:

√
〈r2〉 = σ

√√√√√ 1

2π


λ∗ +

∞∑
n=m+1

[
1

n2(κn2 − ν)

]
 (28)

w
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1999), which utilize bounds of the noise terms, can be em-
ployed to design controllers that can achieve arbitrary de-
gree of attenuation of the effect of noise on the PDE system
state.

Remark 5. We note that a full-scale model of a sputter-
ing process would consist of a 2D-lattice representation of
the surface. Although we developed the method for feedback
control design based on the 1D-lattice representation of the
surface, it is possible to apply the proposed method to control
the surface roughness of sputtering processes taking place in
two-dimensional surfaces. In a two-dimensional process, the
feedback control design and the analysis of the closed-loop
system will be based on the model of Eq.(16). Moreover, Eq.
(16)will be obtained by solving the eigenvalue/eigenfunctin
problem of the operatorA in the two-dimensional spatial do-
main with appropriate boundary conditions. After Eq.(16)
is obtained, the method for control design and closed-loop
analysis presented above can be applied to control the sur-
face roughness for two-dimensional surfaces described by
stochastic PDEs.

4. Simulation results

thod
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hereλ∗ =∑m
i=1(−1/2λcαi − 1/2λcβi ) and λcαi and λcβi

re closed-loop poles of the finite-dimensional system o
20).

emark 3. Note that in order to regulate the surface rou

ess to a desired level,〈
√
r2
d〉, the number of actuators shou

e large enough so that the value of〈
√
r2
d〉 is achievable

pecifically, the number of actuators, 2mshould be selecte
uch that the following inequality holds:

〈r2
d〉 > σ

√√√√√ 1

2π




∞∑
n=m+1

[
1

n2(κn2 − ν)

]
 (29)

his is because the closed-loop stability requires thatλcαi <

andλcβi < 0 (for i = 1, . . . , m), and thus,λ∗ > 0 in Eq.
28).

emark 4. Note that to control the closed-loop surfa

oughness to
√

〈r2
d〉, we need to design a controller to

ign the poles of the finite-dimensional system of Eq.(20) to
ppropriate values so that the following equation holds:

∗ =
2π(〈r2

d〉 − 〈r2
f 〉)

σ2
(30)

he controller which assigns the poles of the system o
20) to satisfy Eq.(30) is not unique. Consequently, for
xed number of actuators,p, the controller that can re
late the closed-loop surface roughness to a desired

s also not unique. Furthermore, we note that robust
rol methods (Christofides, 1998; Christofides & Bake
In this section, we present applications of the me
ollowed for the design of the state feedback contro
o control three different sputtering processes. In all
esses, the sputtering occurs on a lattice containing
ites. Therefore,a = 0.0314. The rate of bombardment
ach surface site is ¯rb = 1s−1 in the open-loop system
pecifically, the following three processes are studied in
ork.
Process 1.Only surface erosion is considered, which

orresponding tof = 1 in the sputtering process model
ection2.1. Plus, we setY (φ) ≡ 1 and the probability wit
hich a particle is removed from a surface site is 1− Pe,
herePe is determined by the box rule shown inFig. 1.
Process 2.Both erosion and surface diffusion are con

red withf̄ = 0.5. The sputtering yield function,Y (φi) ≡ 1.
f a randomly selected surface site is subject to erosion
robability with which a particle is removed from a surf
ite isPe, wherePe is determined by the box rule shown
ig. 1. If a randomly selected surface site is subject to d
ion, the diffusion probability,wi→j is computed accordin
o Eq.(3) with βJ = 2.0.
Process 3.Both erosion and surface diffusion are con

red withf̄ = 0.5. The sputtering yield function,Y (φi) is a
onlinear function ofφi, which takes the form of Eq.(1). y0,
1 andy2 are chosen such thatY (0) = 0.5, Y (π/2) = 0 and
(1) = 1 (Cuerno et al., 1995). If a randomly selected surfa
ite is subject to erosion, the probability with which a part
s removed from a surface site isY (φi)Pe, wherePe is deter-

ined by the box rule shown inFig. 1. If a randomly selecte
urface site is subject to diffusion, the diffusion probabi
i→j is computed according to Eq.(3) with βJ = 2.0.
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Fig. 2. The open-loop profile of the expected surface roughness in Process 1 computed from the kinetic Monte-Carlo simulations.

4.1. Feedback control of surface roughness in Process 1

According toCuerno et al. (1995), in the stochastic KSE
model of Eq.(5), the nonlinear term corresponds to the effect
of the nonlinear functionY (φ) andκ accounts for the surface
diffusion. By settingY (φ) ≡ 1 andf = 1, the surface rough-
ness has the scaling properties of the Edwards–Wilkinson
equation (Edwards & Wilkinson, 1982). The open-loop sur-
face roughness converges to a finite value (seeFig. 2). This
is because by setting the erosion probability equal to 1− Pe,
one favors the erosion of peaks as compared to valleys, which
is a smoothing mechanism preventing the instability of sur-
face roughness in the sputtering process.

The problem of controlling surface roughness of a deposi-
tion process whose surface height fluctuations are described
by the Edwards–Wilkinson equation has been solved inLou
and Christofides (2004b). In this case study, we design a feed-
back controller based on the stochastic PDE model, which
takes the form of the Edwards–Wilkinson equation, of the
sputtering process. The model parameters are identified by
using data of the evolution of surface height obtained from
kinetic Monte-Carlo simulations so that the prediction of the
surface roughness from the solution of the stochastic PDE
model of the process is consistent to that from the kinetic
Monte-Carlo simulations. Then, we apply the designed con-
t ing
p s to a
d

4
cess

h rds–
W
l fluc-
t

whereν < 0. By expandingh in an infinite series in terms of
φ(x) andψ(x) as in Eq.(12), the following system of infinite
stochastic ODEs is obtained:

dαn
dt

= νn2αn + ξnα(t)

dβn
dt

= νn2βn + ξnβ(t); n = 1, . . . ,∞
(32)

Based on Eq.(32), we can obtain the following expressions
for αn(t) andβn(t):

αn(t) = αn(0)eνn
2t +

∫ t

0
eνn

2(t−τ)ξnα(τ) dτ

βn(t) = βn(0)eνn
2t +

∫ t

0
eνn

2(t−τ)ξnβ(τ) dτ; n = 1, . . . ,∞

(33)

If the initial surface is flat, e.g.,αn(0) = 0 andβn(0) = 0,
for n = 1, . . . ,∞, the covariance ofαn(t) andβn(t) can be
computed as follows by usingResult 1:

〈αn(t)2〉 = 〈βn(t)2〉 = σ2

(
e2νn2t − 1

2νn2

)
; n = 1, . . . ,∞

(34)
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•

roller to the kinetic Monte-Carlo model of the sputter
rocess to control the surface roughness of this proces
esired level.

.1.1. Model identification
Since the surface roughness in this sputtering pro

as the same scaling properties to that of the Edwa
ilkinson equation (Edwards & Wilkinson, 1982), the fol-

owing stochastic PDE model is used to describe height
uation of the surface in Process 1:

∂h

∂t
= −ν

∂2h

∂x2
+ ξ(x, t)

〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x − x′)δ(t − t′)
(31)
ased on Eq.(34), the values ofν andσ can be identified b
sing the data of〈αn(t)2〉 or 〈βn(t)2〉, which can be obtaine

rom kinetic Monte-Carlo simulations of the same sputte
rocess. The kinetic Monte-Carlo simulation algorithm u

o simulate the sputtering process is described as follow
his algorithm, a trial to execute an event may or may no
uccessful (Ziff, Gulari, & Barshad, 1986). Upon successfu
ealization of an event, the time is advanced by an increm
t (Fichthorn & Weinberg, 1991).
Monte-Carlo algorithm forProcess 1:

A random number,ζ1 is first generated to pick a site,i,
among all the sites on the 1D-lattice.
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Fig. 3. Evolution of〈α2
2〉, 〈α2

3〉, 〈α2
4〉 and〈α2

5〉 in Process 1.

• Pe is computed by using the box rule shown inFig. 1and
the center of the box is the surface particle on sitei.

• The second random number,ζ2 in the (0,1) interval is
generated.

• If ζ2 > 1 − Pe, no Monte-Carlo event is executed and the
trial is not successful.

• If ζ2 < 1 − Pe the surface particle on sitei is removed and
a time increment,δt is computed by using the following
expression:

δt = − ln ζ3∑N
i=1(1 − Pei )

(35)

whereζ3 is a random number in the (0,1) interval andPei
is computed by using the box rule shown inFig. 1in which
the center of the box is the surface particle at sitei.

• Upon the successful realization of one Monte-Carlo event
(a surface particle is removed from sitei), αn orβn can be
updated by using the following expression:

αnew
n = αold

n + a[ψ(n, zi − a/2) − ψ(n, zi + a/2)]

n

βnew
n = βold

n + a[φ(n, zi + a/2) − φ(n, zi − a/2)]

n

(36)

wherea is the lattice parameter andzi is the coordinate of the
center of sitei.

sur-
f sim-
u y av-
e dent
s ters.
T 15 af
t

a f
f uns
u

s
o

t → ∞, 1/〈αn(∞)2〉 = −2νn2/σ2. 1/〈αn(∞)2〉 versusn for
n = 2,3,4, and 5 is marked inFig. 4by open circle. Using the
method of least-mean-square, we fit the data marked inFig.
4 using a parabolic equation,y = 23.07n2, which is plotted
in Fig. 4 by using the dotted line. Therefore, we obtain the
following relationship betweenν andσ:

−2ν

σ2
= 23.07 (37)

Furthermore, based on Eq.(34), we can get the following
equation forν:

− ln
[
(2νn2/σ2)〈αn(t)2〉 + 1

]
n2

= −2νt (38)

Therefore, if we plot−ln[2νn2/σ2〈αn(t)2〉 + 1]/n2 versust,
the slope is−2ν. This plot is shown inFig. 5. In Fig. 5, four
lines are plotted forn = 2,3,4, and 5. It is clear that these
four lines have almost identical slopes, which means that the

F nd
t

Fig. 2 shows the open-loop profile of the expected
ace roughness in Process 1 from kinetic Monte-Carlo
lations. The expected surface roughness is obtained b
raging surface roughness profiles from 1000 indepen
imulation runs by using the same simulation parame
he expected surface roughness converges to about 0.

er about 2500 monolayers are eroded.
Fig. 3shows the open-loop profiles of〈α2

n〉 for n = 2,3,4,
nd 5. Each profile is obtained by averaging the profiles oα2

n

rom 1000 independent kinetic Monte-Carlo simulation r
sing the same simulation parameters.

Using the profiles shown inFig. 3, we identify the value
f ν andσ of Eq. (31) based on Eq.(34). While ν < 0, as
-

ig. 4. 1/〈αn(∞)2〉 vs.n for n = 2,3,4, and 5 (marked by open circle) a
he curve ofy = 23.07n2 (dotted line) in Process 1.
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Fig. 5. −ln[2νn2/σ2〈αn(t)2〉 + 1]/n2 vs. t for n = 2,3,4, and 5 in
Process 1.

value ofν identified in this way is independent of the data set
used in the identification.

From Fig. 5, the value ofν is identified asν = −1.2 ×
10−4. Then, by using Eq.(37), σ = 3.2 × 10−3. Using the
identified parameters of Eq.(31), we compute the expected
surface roughness in Process 1 based on Eq.(31). An 80th
order stochastic ordinary differential equation approxima-
tion of the system of Eq.(31) is used to simulate the pro-
cess (the use of higher-order approximations led to identi-
cal numerical results, thereby implying that the following
simulation runs are independent of the discretization). Theδ

function involved in the covariances ofξnα andξnβ is approxi-
mated by 1/�t, where�t is the integration time step. There
is a small difference between the expected surface rough-
ness profile obtained from kinetic Monte-Carlo simulations
and that from the solution of the Edwards–Wilkinson equa-
tion withν = −1.2 × 10−4 andσ = 3.2 × 10−3 and this dif-
ference can be compensated by increasing the value ofσ

from 3.2 × 10−3 to 3.4 × 10−3. In Fig. 6, we compare the
expected value of the open-loop surface roughness of Pro-
cess 1 from the solution of the Edwards–Wilkinson equa-
tion of Eq.(31) with ν = −1.2 × 10−4 andσ = 3.4 × 10−3

to that from kinetic Monte-Carlo simulations. The two pro-
files are almost identical. Therefore, by using the stochas-
tic PDE model of Eq.(31) with the identified model pa-
r sur-
f astic
P ler
d

4
ace

r state
f ODE
a odes
o rs
ν -
t r

Fig. 6. Comparison of the open-loop profile of the expected surface rough-
ness from the kinetic Monte-Carlo simulator (solid line) and that from the
solution of the Edwards–Wilkinson equation withν = −1.2 × 10−4 and
σ = 3.4 × 10−3 (dotted line) in Process 1.

distribution function is taken to be:

bi(z) =




1√
π

sin(iz); i = 1, . . . ,10

1√
π

cos[(i − 10)z]; i = 11, . . . ,20
(39)

The desired closed-loop surface roughness is 0.053 in this
simulation. Using Eq.(28), we design the state feedback
controller such thatλcαi = λcβi = −0.027, fori = 1, . . . ,10.
Then, we apply the designed controller to the kinetic Monte-
Carlo model of Process 1 to control the surface roughness to
the desired level. In this simulation, the controller is imple-
mented by manipulating the bombardment rate of particles
across the surface. Specifically, the bombardment rate on sitei
at timet is determined according to the following expression:

rb(i, t) = r̄b + (
∑20

j=1 bj(zi)uj(t))

a
(40)

The following simulation algorithm is used to run the kinetic
Monte-Carlo simulations for the closed-loop system. First,
a random number is generated to pick a site among all the
sites on the 1D-lattice; the probability that a surface site is
picked is proportional to the bombardment rate on this site,
which is computed by using Eq.(40). Then,Pe is computed
by using the box rule shown inFig. 1 and the center of the
b m
n
n
p ed,
t d
a tially
d

n in
F ugh-
n s ob-
t ntrol.
ameters, we can predict the evolution of the expected
ace roughness in this sputtering process. The stoch
DE model of Eq.(31) is used as the basis for control
esign.

.1.2. Feedback control design
Our control objective is to control the expected surf

oughness in Process 1 to a desired value. We design a
eedback controller based on a 20th order stochastic
pproximation constructed by using the first 20 eigenm
f the system of Eq.(13) with identified model paramete
= −1.2 × 10−4, σ = 3.4 × 10−3 andκ = 0. Twenty con

rol actuators are used to control the system. Theith actuato
ox is the surface particle on sitei. The second rando
umber,ζ2 in the (0,1) interval is generated. Ifζ2 > 1 − Pe
o Monte-Carlo event is executed. Ifζ2 < 1 − Pe the surface
article on sitei is removed. Once a particle is remov

he first 20 states (α1, . . . , α10 andβ1, . . . , β10) are update
nd new control actions are computed to update the spa
istributed bombardment rate across the surface.

The closed-loop system simulation results are show
ig. 7. The dashed line shows the expected surface ro
ess, which is the average of surface roughness profile

ained from 200 independent runs, under feedback co
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Fig. 7. Closed-loop surface roughness profiles in Process 1. (a) The closed-
loop surface roughness profile from one simulation run (solid line); (b) the
expected closed-loop surface roughness profile obtained from 200 indepen-
dent simulation runs (dashed line); and (c) the open-loop surface roughness
profile from one simulation run (dotted line).

We can see that the controller successfully drives the ex-
pected surface roughness to the desired level. The solid line
shows the surface roughness profile under feedback control
from one simulation run; due to the stochastic nature of the
deposition process, stochastic fluctuations can be observed
in the closed-loop surface roughness profile, but the surface
roughness is very close to the set-point value under feedback
control. For the sake of comparison, the dotted line shows
a surface roughness profile from one open-loop simulation
run. We can see that under feedback control, a much lower
surface roughness can be achieved.
Remark 6. Note that the number of control actuators needed
to regulate the expected closed-loop surface roughness to a

desired level,
√
r2
d , depends on the value of

√
r2
d . In this sim-

ulation study, twenty control actuators are used to regulate
the expected closed-loop surface roughness to 0.053. How-
ever, this is not the minimum number of control actuators re-
quired to achieve a closed-loop surface roughness of 0.053.
For a fixed number of control actuators available, the lowest
achievable closed-loop surface roughness can be computed
by using Eq.(29) and some results are listed inTable 1. A
minimum of two control actuators are required if the desired
surface roughness is 0.099 and a minimum of ten control ac-
tuators are required if the desired surface roughness is 0.053.

4 2

Pro-
c
p d pro-
c unsta
b

Table 1
Number of control actuators vs. the lowest achievable closed-loop surface
roughness

Number of control
actuators

Lowest achievable closed-loop
surface roughness

2 0.099
4 0.078
6 0.066
8 0.058

10 0.053
20 0.038
30 0.031
40 0.027

this case study, our control objective is to stabilize the closed-
loop surface roughness to a finite value. We first study the
dynamics of the surface roughness in this sputtering process
and identify the number of unstable modes in this process. It
turns out that the number of unstable modes is finite. Then,
we design a model-based state feedback controller, which
employs more control actuators than the number of unstable
modes, to stabilize the surface roughness to a finite value.

4.2.1. Open-loop dynamics
We run kinetic Monte-Carlo simulations to study the dy-

namics of the open-loop surface roughness and the evolution
of covariance ofαn andβn in this sputtering process. The
kinetic Monte-Carlo simulation algorithm and the method to
computeαn(t) or βn(t) are as follows:

• The first random number,ζ1 is generated to pick a site,i,
among all the sites on the 1D-lattice.

• The second random number,ζ2 in the (0,1) interval, is
generated to decide whether the chosen site is subject to
erosion (ζ2 < f̄ ) or diffusion (ζ2 > f̄ ).

• If the chosen site is subject to erosion,Pe is computed by
using the box rule shown inFig. 1 and the center of the
box is the surface particle on sitei. Then, another random
numberζe3 in the (0,1) interval is generated. Ifζe3 < Pe
the surface particle on sitei is removed. Otherwise, no

• or,
ly
g

is
vent

•

is
g

− ψ(n

− φ(n
.2. Feedback control of surface roughness in Process

Compare to Process 1, surface diffusion is added in
ess 2. In this case study,̄f = 0.5 andJ/kBT = 2.0. The
resence of two mechanisms results to more complicate
ess dynamics and the open-loop surface roughness is
le, e.g., the surface roughness goes to infinity ast → ∞. In

αnew
n = αold

n + a{[ψ(n, zi − a/2)

βnew
n = βold

n + a{[φ(n, zi + a/2)
-

Monte-Carlo event is executed.
If the chosen site is subject to diffusion, a side neighbj
(j = i + 1 or i − 1 in the case of 1D-lattice) is random
picked and the hopping rate,wi→j, is computed by usin
Eq. (3). Then, another random numberζd3 in the (0,1)
interval is generated. Ifζd3 < wi→j, the surface atom
moved to the new site. Otherwise no Monte-Carlo e
is executed.
Upon the execution of one Monte-Carlo event,αn or βn
are updated. If the executed event is erosion,αn or βn
can be updated by using Eq.(36). If the executed event
diffusion from sitei to sitej,αn orβn are updated by usin
the following expression:

, zi + a/2)] − [ψ(n, zj − a/2) − ψ(n, zj + a/2)]}
n

, zi − a/2)] − [φ(n, zj + a/2) − φ(n, zj − a/2)]}
n

(41)
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Fig. 8. The open-loop profile of the expected surface roughness in Process 2 from the kinetic Monte-Carlo simulator.

wherea is the lattice parameter,zi is the coordinate of the
center of sitei andzj is the coordinate of the center of sitej.

Fig. 8 shows the open-loop profile of the expected sur-
face roughness of Process 2 from kinetic Monte-Carlo sim-
ulations. The expected surface roughness is obtained by av-
eraging surface roughness profiles from 1000 independent
simulation runs by using the same simulation parameters.
It is clear that the open-loop expected surface roughness in
this sputtering process does not converge to a finite value.
Our control objective is to stabilize the closed-loop surface
roughness to a finite value. To do this, we identify the num-
ber of unstable modes in this process and use more control
actuators than the number of unstable modes to stabilize the
surface roughness in the closed-loop system.

Fig. 9 shows the open-loop profiles of〈α2
n〉 for n =

1,5,15, and 20. Each profile is obtained by averaging the
profile α2

n from 1000 independent simulation runs by using
the same simulation parameters.

4.2.2. Feedback control design
In Fig. 9, it is clear that at least the first 15 modes are

unstable. Althoughα2
20 is stable, its magnitude is in the same

order of that ofα2
1 or α2

5, which is still significant. The same
dynamics are also observed in the open-loop profiles of〈β2

n〉.
To this end, we design a state feedback controller based on the
first 50 modes of the process (25 modes for theαn subsystem
and 25 modes for theβn subsystem), which is sufficiently
larger than the number of unstable modes (which is about 30)
in the process, to stabilize the closed-loop surface roughness
to a finite value. Fifty control actuators are used to control
the system. Theith actuator distribution function is taken to
be:

bi(z) =




1√
π

sin(iz); i = 1, . . . ,25

1√
π

cos[(i − 25)z]; i = 26, . . . ,50
(42)

We design the following state feedback controller to control
the process:

u = B−1
s Λx̃s (43)

where x̃s = [α1, . . . , α25, β1, . . . , β25]T, Λ = −0.01×
I50×50 andI is an identity matrix.

α2
5〉, 〈α
Fig. 9. Evolution of〈α2

1〉, 〈
 2
15〉 and〈α2

20〉 in Process 2.
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Then, we apply the designed controller to the kinetic
Monte-Carlo model of Process 2 to control the surface rough-
ness to the desired level. In this simulation, the controller is
implemented by manipulating the probability that a randomly
selected site is subject to erosion rule,f. Specifically,f at site
i is determined according to the following expression:

f (i) =
f̄ +

(∑50
j=1bj(zi)uj(t)

)
/a

1 +
(∑50

j=1bj(zi)uj(t)
)
/a

(44)

The following simulation algorithm is used to run the kinetic
Monte-Carlo simulations for the closed-loop system. First, a
random number,ζ1 is generated to pick a site,i among all the
sites on the 1D-lattice; the probability that a surface site is
subject to erosion rules,f (i) is determined by using Eq.(44).
Then, the second random number,ζ2 in the (0,1) interval
is generated. Ifζ2 < f (i), the sitei is subject to erosion,
otherwise, the site is subject to diffusion.

If the sitei is subject to erosion,Pe is computed by using
the box rule shown inFig. 1 and the center of the box is
the surface particle on sitei. Another random number,ζe3 in
the (0,1) interval is generated. Ifζe3 > 1 − Pe, no Monte-
Carlo event is executed and go back to the first step of this
algorithm. If ζe3 < 1 − Pe, the surface particle on sitei is
removed. Otherwise, no Monte-Carlo event is executed.

If the site i is subject to diffusion, a side-neighbor,j =
i + 1 or j − 1 is randomly picked and the probability of a
hopping from sitei to sitej, wi→j is computed based on Eq.
(3). Then, another random numberζd3 in the (0,1) interval
is generated. Ifζe3 < wi→j, the surface particle on sitei is
moved to sitej. Otherwise, no Monte-Carlo event is executed.

Once a Monte-Carlo event is executed, the first 50 states
(α1, . . . , α25 andβ1, . . . , β25) are updated and new control
actions are computed to update the spatially distributed bom-
bardment rate across the surface.

The closed-loop system simulation results are shown in
Fig. 10. The dotted line shows the expected surface rough-
ness, which is the average of surface roughness profiles ob-
tained from 200 independent runs, under feedback control.

Fig. 10. Closed-loop surface roughness profiles in Process 2. (a) The closed-
loop surface roughness profile from one simulation run (solid line); (b) the
expected closed-loop surface roughness profile (dotted line); and (c) the
open-loop surface roughness profile from one simulation run (dashed line).

We can see that the controller successfully drives the expected
surface roughness to a finite value. The solid line shows the
surface roughness profile under feedback control from one
simulation run; due to the stochastic nature of the deposition
process, stochastic fluctuations can be observed in the closed-
loop surface roughness profile, but the surface roughness is
very close to the expected surface roughness under feedback
control. For the sake of comparison, the dashed-line shows a
surface roughness profile from one open-loop simulation run.
We can see that under feedback control, the surface roughness
can be stabilized to a finite value.

4.3. Feedback control of surface roughness in Process 3

In this case study, our control objective is to control the
surface roughness in Process 3 to a desired level. In Process
3, both erosion and diffusion are included and the sputtering
yield function,Y (φi), is a nonlinear function ofφi as shown
in Eq. (1) with y0 = 0.5, y1 = 1.0065 andy2 = −0.5065.
The evolution of surface height in this sputtering process is
described by the stochastic Kuramoto–Sivashinsky equation
of Eq. (5) (Cuerno et al., 1995; Lauritsen et al., 1996). In
this case study, we design a feedback controller based on
the linearization of the stochastic KSE with appropriately
identified parameters. Then, we apply the designed controller
t ess
t sired
l

4
o–
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〈
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o the kinetic Monte-Carlo model of this sputtering proc
o control the surface roughness of this process to a de
evel.

.3.1. Model identification
The following linearized stochastic Kuramot

ivashinsky equation is used as the basis for contr
esign:

∂h

∂t
= −ν

∂2h

∂x2
− κ

∂4h

∂x4
+ ξ(x, t) (45)

here

ξ(x, t)ξ(x′, t′)〉 = σ2δ(x − x′)δ(t − t′) (46)

By expandingh in an infinite series in terms ofφ(x) and
(x) as shown in Eq.(12), the following system of infinit
tochastic ODEs is obtained:

dαn
dt

= (νn2 − κn4)αn + ξnα(t)

dβn
dt

= (νn2 − κn4)βn + ξnβ(t); n = 1, . . . ,∞
(47)

herefore,

αn(t) = αn(0)e(νn2−κn4)t

+
∫ t

0
e(νn2−κn4)(t−τ)ξnα(τ) dτ

βn(t) = βn(0)e(νn2−κn4)t

+
∫ t

0
e(νn2−κn4)(t−τ)ξnβ(τ) dτ; n = 1, . . . ,∞

(48)
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If the initial surface is a perfect one,αn(0) = 0 andβn(0) =
0. UsingResult 1, the covariance ofαn(t) andβn(t) can be
computed as follows:

〈αn(t)2〉 = 〈βn(t)2〉

= σ2

[
e2(νn2−κn4)t − 1

2(νn2 − κn4)

]
; n = 1, . . . ,∞ (49)

Based on Eq.(49), the value ofν, κ and σ can be iden-
tified from the data of〈αn(t)2〉 or 〈βn(t)2〉, which can be
obtained from kinetic Monte-Carlo simulation of the same
sputtering process. The kinetic Monte-Carlo simulation al-
gorithm and the method to computeαn(t) or βn(t) are as
follows:

• The first random number,ζ1 is generated to pick a site,i,
among all the sites on the 1D-lattice.

• The second random number,ζ2 in the (0,1) interval, is
generated to decide whether the chosen site,i, is subject

•
wn
par-

n
t is

• or,
ly
g

interval is generated. Ifζd3 < wi→j, the surface atom is
moved to the new site. Otherwise no Monte-Carlo event
is executed.

• Upon the execution of one Monte-Carlo event,αn or βn
are updated. If the executed event is erosion,αn or βn
can be updated by using Eq.(36). If the executed event is
diffusion from sitei to sitej,αn orβn are updated by using
the following expression:

αnew
n = αold

n + a{[ψ(n, zi − a/2) − ψ(n, zi + a/2)] − [ψ(n, zj − a/2) − ψ(n, zj + a/2)]}
n

βnew
n = βold

n + a{[φ(n, zi + a/2) − φ(n, zi − a/2)] − [φ(n, zj + a/2) − φ(n, zj − a/2)]}
n

(50)

wherea is the lattice parameter andzi is the coordinate of the
center of sitei.

Fig. 11shows the open-loop profile of the expected sur-
face roughness of Process 3 from kinetic Monte-Carlo sim-
ulations. The expected surface roughness is obtained by av-
eraging surface roughness profiles from 1000 independent
simulation runs by using the same simulation parameters.
Our control objective is to control the surface roughness in
this sputtering process to a desired level. To achieve this ob-
jective, we identify the parameters of the model of Eq.(47)
so that the surface roughness predicted by Eq.(47) is consis-
tent to that obtained from kinetic Monte-Carlo simulations
o dback
c
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2 the
p ing
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κ s
t

s

ce rou
to erosion (ζ2 < f̄ ) or diffusion (ζ2 > f̄ ).
If the chosen site is subject to erosion,Pe andY (φi) are
computed.Pe is computed by using the box rule sho
in Fig. 1 and the center of the box is the surface
ticle on sitei andY (φi) is computed by using Eq.(1).
Then, another random numberζe3 in the (0,1) inter-
val is generated. Ifζe3 < PeY (φi) the surface particle o
site i is removed. Otherwise, no Monte-Carlo even
executed.
If the chosen site is subject to diffusion, a side neighbj
(j = i + 1 or i − 1 in the case of 1D-lattice) is random
picked and the hopping rate,wi→j, is computed by usin
Eq. (3). Then, another random numberζd3 in the (0,1)

Fig. 11. The open-loop profile of the expected surfa
f the same sputtering process. Then, we design a fee
ontroller based on the process model of Eq.(47) with the
dentified parameters to control the surface roughness i
rocess.

Fig. 12 shows the open-loop profiles of〈α2
n〉 for n =

0,22,25, and 30. Each profile is obtained by averaging
rofile α2

n from 1000 independent simulation runs by us
he same simulation parameters.

Using the profiles shown inFig. 12, we identify the value
f ν, κ andσ of Eq. (47) based on Eq.(49). Whenν > 0,
> 0 andn is sufficient large,νn2 − κn4 < 0. Therefore, a
→ ∞, 1/〈αn(∞)2〉 = 2(κn4 − νn2)/σ2. 1/〈αn(∞)2〉 ver-
usn for n = 20,21, . . . ,30 is marked inFig. 13 by open

ghness in Process 3 from the kinetic Monte-Carlo simulator.
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Fig. 12. Evolution of〈α2
20〉, 〈α2

22〉, 〈α2
25〉 and〈α2

30〉 in Process 3.

circle. Using the method of least-mean-square, we fit the
data marked inFig. 13 using a fourth order polynomial,
y = 1.45× 10−3n4 − 0.26n2, which is plotted inFig. 13us-
ing the dotted line. Therefore, we obtain the following rela-
tionships betweenν, σ andκ, σ:

2ν

σ2
= 0.26;

2κ

σ2
= 1.45× 10−3 (51)

Furthermore, based on Eq.(49), we can get the following
equations forν andκ:

ln[2(νn2 − κn4)/σ2〈αn(t)2〉 + 1]

2n2
= (ν − κn2)t (52)

Therefore, if we plot ln[2(νn2 − κn4)/σ2〈αn(t)2〉 + 1]/2n2

versust, the slope isν − κn2. This plot is shown inFig. 14.
In Fig. 14, seven lines are plotted forn = 20,22,24,26,28,
and 30. It is clear that there is an almost linear relationship
between ln[2(νn2 − κn4)/σ2〈αn(t)2〉 + 1]/2n2 andt.

To identify the values ofν andκ, the slopes of the lines in
Fig. 14versusn are marked inFig. 15by open circle. Using
the method of least-mean-square, we fit the data marked in

Fig. 13. 1/〈αn(∞)2〉 vs.n for n = 20,21, . . . ,30 (marked by open circle)
and the curve ofy = 1.45× 10−3n4 − 0.26n2 (dotted line) in Process 3.

Fig. 15using a second order polynomial,y = 3.27× 10−6 −
1.34× 10−8n2, which is plotted inFig. 15using the dotted
line. Therefore, the values ofν andκ are identified as follows:

ν = 3.27× 10−6; κ = 1.34× 10−8 (53)

The value ofσ is determined by using Eq.(51) and Eq.
(53). If we compute the value ofσ usingν = 3.27× 10−6

and 2ν/σ2 = 0.26, we can obtainσν = 5.0 × 10−3. How-
ever, if we compute the value ofσ usingκ = 1.34× 10−8 and
2κ/σ2 = 1.45× 10−3, we can obtainσκ = 4.29× 10−3. We
decide that the value ofσ is the average of the value ofσν
andσκ as follows:

σ = σν + σκ

2
= 4.65× 10−3 (54)

Using the identified parameters of Eqs.(53) and (54), we
compute the expected surface roughness in Process 3 based
on Eq.(45). An 80th order stochastic ordinary differential
equation approximation of the system of Eq.(45) is used
to simulate the process (the use of higher-order approxima-
tions led to identical numerical results, thereby implying that

Fig. 14. ln[2(νn2 − κn4)/σ2〈αn(t)2〉 + 1]/2n2 vs. t for n = 20,22,24,
26,28, and 30 in Process 3.
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Fig. 15. The slopes of lines inFig. 14 vs. n for n = 20, . . . ,30 (marked
by open circle) and the curve ofy = 3.27× 10−6 − 1.34× 10−8n2 (dotted
line) in Process 3.

the following simulation runs are independent of the dis-
cretization). Theδ function involved in the covariances of
ξnα andξnβ is approximated by1

�t
, where�t is the integration

time step. InFig. 16, we compare the expected value of the
open-loop surface roughness of Process 3 from the solution
of the linearized stochastic KSE model of Eq.(45) to that
from a kinetic Monte-Carlo simulation. The two profiles are
very close. Therefore, by using the linearized stochastic KSE
model of Eq.(45) with the identified model parameters, we
can predict the evolution of the expected surface roughness in
this sputtering process. This linearized stochastic KSE model
is used as the basis for feedback controller design.

4.3.2. Feedback control design
Our control objective is to control the expected surface

roughness in Process 3 to a desired value. We design a state
feedback controller based on a 40th order stochastic ODE
approximation constructed by using the first 40 eigenmodes

F ough-
n the
s with
ν

P

of the system of Eq.(47) with identified model parameters
ν = 3.27× 10−6, σ = 4.65× 10−3 and κ = 1.34× 10−8.
Forty control actuators are used to control the system. The
ith actuator distribution function is taken to be:

bi(z) =




1√
π

sin(iz); i = 1, . . . ,20

1√
π

cos[(i − 20)z]; i = 21, . . . ,40
(55)

The desired closed-loop surface roughness is 0.29 in this sim-
ulation. Using Eq.(28), we design the state feedback con-
troller such thatλcαi = λcβi = −0.001, fori = 1, . . . ,20.

Then, we apply the designed controller to the kinetic
Monte-Carlo model of Process 3 to control the surface rough-
ness to the desired level. In this simulation, the controller is
implemented by manipulating the probability that a randomly
selected site is subject to erosion rule,f. Specifically, thef of
site i is determined according to the following expression:

f (i) = f̄ + (
∑40

j=1bj(zi)uj(t))/a

1 + (
∑40

j=1bj(zi)uj(t))/a
(56)

The following simulation algorithm is used to run the kinetic
Monte-Carlo simulations for the closed-loop system. First, a
random number,ζ1 is generated to pick a sitei, among all the
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article on sitei andY (φi) is computed by using Eq.(1).
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rocess, stochastic fluctuations can be observed in the c

oop surface roughness profile, but the surface roughn
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Fig. 17. Closed-loop surface roughness profiles in Process 3. (a) The closed-
loop surface roughness profile from one simulation run (solid line); (b) The
expected closed-loop surface roughness profile obtained from 200 indepen-
dent simulation runs (dotted line); and (c) the open-loop surface roughness
profile from one simulation run (dashed line).

very close to the expected surface roughness under feedback
control. For the sake of comparison, the dashed-line shows a
surface roughness profile from one open-loop simulation run.
We can see that under feedback control, the surface roughness
can be controlled to the desired level.

Remark 7. We note that the proposed methodology can be
extended to accommodate unmeasurable process state vari
ables, e.g., it can be extended to perform output feedback
control design. In our control problem formulation, the sur-
face roughness control problem is converted to a covariance
control problem. Covariance control methods have been de-
veloped by Skelton and co-workers in a series of publica-
tions, in which, output feedback covariance controllers can
be designed by using Kalman filter-based techniques for state
reconstructionHotz and Skelton (1987). Therefore, it is possi-
ble to design an output feedback controller based on stochas-
tic PDEs using the developed covariance control theory to
control surface roughness.

5. Conclusions

This work focused on control of surface roughness in sput-
tering processes using the stochastic KSE. We initially refor-
mulated the stochastic KSE into a system of infinite stochas-
t om-
p as-
t ode
c con-
t prox-
i ntrol
o sses
w ios
o eters
o pro-
c ation
d that

the evolution of the surface roughness computed from the
stochastic PDE models is consistent to that computed from
kinetic Monte-Carlo simulations. Feedback controllers were
designed and applied to kinetic Monte-Carlo models of the
sputtering processes. Simulation results demonstrated that
the designed feedback controllers can successfully regulate
the surface roughness to desired levels.
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