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Abstract

This work focuses on control of surface roughness in sputtering processes including two surface micro-processes, diffusion and erosion.
The fluctuation of surface height of such sputtering processes can be described by the stochastic Kuramoto—Sivashinsky equation (KSE),
a fourth-order stochastic partial differential equation (PDE). Specifically, we consider sputtering processes, including surface diffusion and
erosion, on a one-dimensional lattice and design feedback controllers based on stochastic PDEs to regulate the surface roughness at de
sired levels. We initially reformulate the stochastic KSE into a system of infinite stochastic ordinary differential equations (ODESs) by using
modal decomposition. A finite-dimensional approximation of the stochastic KSE is then derived that captures the dominant mode con-
tribution to the surface roughness. A state feedback controller is designed based on the finite-dimensional approximation to control the
surface roughness. Feedback control of surface roughness in three different sputtering processes with different sputtering yield functions
and different ratios of erosion and diffusion rates is subsequently studied. Kinetic Monte-Carlo simulations are first performed to sim-
ulate the evolution of the surface height fluctuation in the three sputtering processes. Then, a systematic identification approach is used
to identify the parameters of the stochastic KSE models describing the sputtering processes by using the data from kinetic Monte-Carlo
simulations. Specifically, the evolution of state covariance of the stochastic KSE models is directly obtained from multiple kinetic Monte-
Carlo simulation runs. The correlations between model parameters and the state covariance of the stochastic KSE models are establishec
and the parameters of the stochastic KSE models are subsequently computed by using least-mean-square fitting so that the evolution of
the surface roughness computed from the stochastic KSE models is consistent with that computed from kinetic Monte-Carlo simulations.
Feedback controllers are designed and applied to kinetic Monte-Carlo models of the sputtering processes to control the surface roughness tc
desired levels.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction variable to control because it strongly affects the quality of
such films. Due to the increasingly stringent requirements on
Sputtering processes are widely used in the thin film and the quality of such films, feedback control of surface rough-
semiconductor fabrication to remove material from the sur- ness of sputtering processes becomes important.
face of solids through the impact of energetic particles. In  In a sputtering process, the surface is directly shaped by
many cases sputtering is used to smooth out surface feathe microscopic surface processes (e.g., erosion, diffusion
tures. The surface morphology of thin films after the sputter and surface reaction), which are stochastic processes.
erosion strongly depends on conditions such as incident ionTherefore, the stochastic nature of sputtering processes
energy, sputtered substrate temperature and material commust be fully considered in the modeling and control of
position (Makeev, Cuerno, & Barabasi, 2002 he surface  the surface roughness of such processes. The desire to
roughness of thin films of advanced materials is an important understand and control the thin film micro-structure has
motivated extensive research on fundamental mathematical
"~ Corresponding author. Tel.: +1 310 794 1015; fax: +1 310 206 4107. MOdels describing the microscopic features of surfaces
E-mail addresspdc@seas.ucla.edu (P.D. Christofides). formed by surface micro-processes, which include (1)
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kinetic Monte-Carlo methods (e.gChen, Bogaerts, Depla, of the process variables over macroscopic time and space
& Ignatova, 2003 Fichthorn, & Weinberg, 1991Gillespie, scales through “coarse” projective integration. The method
1976 Gilmer, Huang, de la Rubia, Torre, & Baumann, 2000 was used to control both spatially lumped systems described
Kersch, Morokoff, & Werner, 1994Reese, Raimondeau, & by kinetic Monte-Carlo simulationsS{ettos, Armaou, Ma-
Vlachos, 2001Shitara etal., 1992and (2) stochastic partial  keev, & Kevrekidis, 200Band spatially distributed processes
differential equations (PDEs) (e.@Cuerno, Makse, Tomas-  (Armaou, Siettos, & Kevrekidis, 2004

sone, Harrington, & Stanley, 199&dwards & Wilkinson, However, the fact that kKMC models are not available in
1982 Lauritsen, Cuerno, & Makse, 199&/illain, 1991; closed-form makes very difficult to use them for system-
Vvedensky, Zangwill, Luse, & Wilby, 1993 Furthermore, level analysis and the design and implementation of real-

the study of feedback control of surface roughness is alsotime model-based control systems. Although the “coarse”
motivated by the possibility to obtain roughness measure- time-stepper based approach allows controller design using
ments in real-time using scanning tunneling microscopy linear control theory to control “coarse-variables” which are
(Voigtlander, 200}, spectroscopic ellipsometry techniques low statistical moments of the microscopic distributions (e.g.,
(Zapien, Messier, & Collin, 20Q1grazing-incidence small-  surface coverage, the zeroth moment of adspecies distribu-
angle X-ray scattering (GISAXSRenaud et al., 20Q3or tion on a lattice), to control higher statistical moments of the
by combination of on-line measurement techniques for mea- microscopic distributions, such as the surface roughness (the
suring gas phase compositions with off-line measurement second moment of height distribution on a lattice), linear de-
techniques for measuring surface roughness. An implemen-terministic models may not be sufficient, because the effect of
tation of the latter approach was recently reportedNiret the stochastic nature of the microscopic processes becomes
al. (2004) where it was used to measure carbon composition very significant and must be addressed both in the model
of thin films in plasma-enhanced chemical vapor deposition construction and controller design. For many deposition and
using combination of optical emission spectroscopy (OES) sputtering processes, closed-form process models, inthe form
and X-ray photoelectron spectroscopy (XPS). of stochastic PDEs, can be derived based on the microscopic
The kinetic Monte-Carlo simulation methods can be used rules and the corresponding master equation (€gerno
to predict average properties of thin films (which are of inter- et al., 1995 Edwards & Wilkinson, 1982Lauritsen et al.,
est from a control point of view, for example, surface rough- 19986 Villain, 1991; Vvedensky et al., 1993To achieve bet-
ness), by explicitly accounting for the micro-processes that ter closed-loop performance, itis desirable to design feedback
directly shape thin film microstructure. At this point, itisim-  controllers on the basis of process models. This has motivated
portant to note that in the present paper we work exclusively recent research on the development of a method for feed-
with lattice kinetic Monte-Carlo methods as opposed to equi- back control of surface roughness based on stochastic PDE
librium continuous-space Monte-Carlo methods. Recently, a process modeld_pu & Christofides, 2004 This method
methodology for feedback control of surface roughness usinginvolves reformulation of the stochastic PDE into a system
kinetic Monte-Carlo models has been developetdn and of infinite stochastic ordinary differential equations by using
Christofides (2003a, 2003b)he methodology leads to the modal decomposition, derivation of a finite-dimensional ap-
design of (a) real-time roughness estimators by using mul- proximation that captures the dominant mode contribution to
tiple small lattice kinetic Monte-Carlo simulators, adaptive the surface roughness, and state feedback controller design
filters and measurement error compensators; and (b) feed-based on the finite-dimensional approximation.
back controllers based on the real-time roughness estima- Both the deterministic and the stochastic Kuramoto—
tors. The method was successfully applied to control surface Sivashinsky equation (KSE) are important PDEs which de-
roughness in &aAs deposition process using an experimen- scribe a variety of chemical and physical processes. Some
tally determined kinetic Monte-Carlo process modealy & examples of processes that are described by the determin-
Christofides, 2004aMoreover, kinetic Monte-Carlo meth-  istic KSE are falling liquid films Chen & Chang, 1986
ods have also been used to study the dynamics of complex deunstable flame frontsSfvashinsky, 197)7and interfacial in-
position processes including multiple components with both stabilities between two viscous fluidddoper & Grimshaw,
short-range and long-range interactions and to perform pre-1985. Analytical and numerical studies of the dynamics of
dictive control design to control final surface roughndss ( the deterministic KSE have revealed that the dominant dy-
& Christofides, 2001 namics of the KSE can be adequately characterized by a small
Recently, an equation-free time-stepper-based controlnumber of degrees of freedom (e.Bgmam, 1988 This has
methodology was developed for processes described bymotivated extensive research focusing on the design of lin-
atomistic rules (e.g., kinetic Monte-Carlo, Molecular Dy- ear/nonlinear finite-dimensional output feedback controllers
namics, Brownian Dynamics), and for which explicit, evo- (Armaou & Christofides, 2000a, 2000for stabilization of
lution equations at the macroscopic level are not available the zero solution of the KSE on the basis of ordinary differen-
in closed form Makeev, Maroudas, & Kevrekidis, 2002 tial equation (ODE) approximations, obtained through linear
The method circumvents the problem of closed-form pro- (Armaou & Christofides, 200Qaand nonlinear Armaou &
cess model unavailability by using “coarse” time-steppers, Christofides, 2000bGalerkin’s method, that accurately de-
which are microscopic-scale simulators, to predict evolution scribe the dominant dynamics of the KSE for a given value of
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the instability parameter. The global stabilization of the KSE the state covariance of the stochastic KSE models are estab-
has also been addressed via distributed static output feedbackshed and the parameters of the stochastic KSE models are
control Christofides & Armaou, 20Q0A nonlinear bound-  subsequently computed by using least-mean-square fitting
ary feedback controller was also proposedlitnand Krstic so that the evolution of the surface roughness computed from
(2001)that enhances the rate of convergence to the spatiallythe stochastic KSE models is consistent with that computed
uniform steady-state of the KSE, for values of the instability from kinetic Monte-Carlo simulations. Feedback controllers
parameter for which this steady state is open-loop stable. Theare designed and applied to kinetic Monte-Carlo models of
issue of optimal actuator/sensor placement for the KSE wasthe sputtering processes to control the surface roughness to
also addressed ibou and Christofides (2003®p that the desired levels.
desired control objectives are achieved with minimal energy
use.

The stochastic KSE can be used to model the evolution 5  prajiminaries
of the height profile for surfaces in a variety of sputtering
processes including surface erosion by ion sputtefug(no
et al., 1995 Lauritsen et al., 1996 surface smoothing by
energetic clustersrfsepov, Yamada, & Sosnowski, 19@hd
ZrO;y thin film growth by reactive ion beam sputterin@i(

2.1. Process description

We consider a 1D-lattice representation of a crystalline
g ) h surface in a sputtering process, which includes two surface
etal.,, 2003. The long-time behavior of the stochastic KSE g processes, erosion and diffusion. The solid-on-solid
was studied through renormalization-group analy8issino  ssumption is made which means that no defects or overhangs
& Lauritsen, 199 and its numerical solution was obtained .o sllowed in the procesSiegert & Plischke, 1994 The
in Drotar, Zhao, Lu, and Wang (1999)he problem of the  icroscopic rules are as follows: a sitejs first randomly

existence and uniqueness of the solutionto the stochastic KSEjjcxed among the sites of the whole lattice and the particle at
was also investigated Duan and Ervin (2001Eventhough 6 1op of this site is subject to: (a) erosion with probability
the above works have led to fundamental understanding ofs. . (b) diffusion with probability 1— f.

the phy§ical meaning of thg various terms and mathematical = | ine particle at the top of siteis subject to erosion, the
properties of .the stochastic KSE, 'the problem of feedback particle is removed from the sitewith probability PeY (¢;).
controller design for systems described by the stochastic KSEPe is determined aé times the number of occupied sites in a

has not been addressed. _ box of size 3x 3 centered at the sitewhich is shown irFig.
This work focuses on control of surface roughness in Sput- 1 There js a total of nine sites in the box. The central one is

tering processes including two surface micro-processes, dif-ihe particle to be considered for erosion (the one marked by
fusion and erosion. The fluctuation of surface height of such jeq circle). Among the remaining eight sites, the site above
sputtering processes can be described by the stochastic KSBye central site of interest must be vacant since the central
afourth-order stochastic PDE. Specifically, we consider sput- gje js 4 surface site. Therefore, only seven of the eight sites

tering processes, including surface diffusion and erosion, on .o, pe occupied and the maximum valuePeis 1. Y(¢;) is
. . . . . 1
a one-dimensional lattice and use the method proposed iny,o sputtering yield function defined as follows:

Lou and Christofides (2004k) design a feedback controller

to regulate the surface roughness at a desired level. We ini- 2 4

tially reformulate the stochastic KSE into a system of infinite ! (%) = Yo+ 19 + y24; @
stochastic ordinary differential equations (ODESs) by using

modal decomposition. A finite-dimensional approximation Whereyo, y1 andy, are process dependent constants (see
of the stochastic KSE is then derived that captures the domi- Section4 for different values ofyo, y1 andyz in different
nant mode contribution to the surface roughness. A state feed-sputtering processes) agglis the local slope defined as fol-
back controller is designed based on the finite-dimensional

approximation to control the surface roughness. Feedback

control of surface roughness in three different sputtering pro-
cesses with different sputtering yield functions and different O
ratios of erosion and diffusion rates is subsequently studied.
Kinetic Monte-Carlo simulations are first performed to sim-
ulate the evolution of the surface height fluctuation in the
three sputtering processes. Then, a systematic identificatiorO Q ( ) ( )
approach is used to identify the parameters of the stochastiq X

KSE models describing the sputtering processes by using the

data from kinetic Monte-Carlo simulations. Specifically, the _ _ _ o _

. . i Fig. 1. Schematic of the rule to determifte. Pe is defined a% times the
_evo_lutlon of St'_ate Cova”ance_ of the S_tOChaStIC KSE models number of occupied sites in a box of siz& 3 centered at the particle on the
is directly obtained from multiple kinetic Monte-Carlo simu-  (op of sitei; P. = 1 in the left figure andPe — % in the right figure, where
lation runs. The correlations between model parameters andhe particle marked by filled circle is on the top of site
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OWS: inetic Monte-Carlo simulation can predict average proper-
I Kinetic Monte-Carl lat predict ge prop
his1 — hio1 ties of the surface of a sputtering process (which are of interest
i =tan” ’ ' (2) from a control point of view, for example, surface roughness).
¢ =tan ! >

Since a kinetic Monte-Carlo simulation run constitutes a re-
wherea is the lattice parameter arid,1 andh;_; are the alization of a stochastic process, simulation results from a

values of surface height at sites- 1 and:i — 1, respectively. large number of different simulation runs are not identical.

If the particle at the top of siteis subject to diffusion, However, by averaging the results from different simulation
one of its two nearest neighboijs(j =i+ 1 ori — 1) is runs, the averaged properties of the surface converge to the

randomly chosen and the particle is moved to the nearestvalues obtained from the solution of the master equation.

neighbor column with probabilitw;_, ; as follows: Kinetic Monte-Carlo models are not available in closed-

form, which makes very difficult to perform model-based

Wi = ! (3) control design on the basis of kinetic Monte-Carlo models.
1+ exp(B AHi ) As an alternative, closed-form stochastic PDE models can

be derived based on the erosion rules to describe the evolu-

initial states of the moveg — 1/kg T andH is defined through tion of the surface configuration in a way that is consistent to

the Hamiltonian of an unrestricted solid-on-solid model as that predicted by kinetic Monte-Carlo models. In this work,
follows (Siegert & Plischke, 1994 we focus on model-based feedback control design for sur-

face roughness control using a stochastic PDE model of the
I\ L sputtering process under consideration. The equation for the
H= (;) Z(hk — hi41)" (4) height fluctuations of the surface in this sputtering process
k=1 was derived in l(auritsen et al., 1996and is a stochastic
whereJ is the bond energy., is the total number of sites Kuramoto-Sivashinsky equation of the following form:
in the lattice anch is a positive number. In the simulations 9 2 Ph 0 L Ih\2
carried out in this work, we use= 2. With this definition of — =V —k— + = <_) + &(x, 1) (5)
H, there is a positive Schwoebel barri&chwoebel, 1969 ot 0x? oxt 2 \ox
for particles to diffuse in downhill direction. When a particle \yhere x e [—7, 7] is the spatial coordinatd, is the time,
approaches a step from the upper terrace, it has to creatg, (. 1) is the height of the surface at positigrand timet, v

a double step at the step edge. Since the energy of a doublg,,q, are two constants, arix, 7) is a Gaussian noise with
step is larger than the energy of two single steps, the diffusion ;o9 mean and covariance:

particle is repelled from the down step and is preferable to
diffuse in uphill direction Giegert & Plischke, 1994 (E(x, DEW, 1)) = 028(x — x)8(t — 1) (6)

whereA H;_, ; is the energy difference between the final and

Remark 1. Note that the term “erosion”, in general, is used wherec is a constants(-) is the dirac function, ang-) de-

to capture a variety of surface phenomena including desorp-notes the expected value. Note that the noise covariance de-
tion, etching, or physical sputtering from the surface. In this pends on both spaceand timet. We note that this stochastic
study, we focus on surface erosion due to physical sputteringKSE representation for the surface morphological evolution
processes. Also, we note that a full-scale model of a sputter-in sputtering processes is limited to surface morphologies that
ing process would consist of a 2D-lattice representation of do not involve re-entrant features (which is a property that
the surface. We reduce the dimensionality by considering aholds for the sputtering process described in Sec?diy
1D-lattice representation of the surface in this work to sim- the re-entrant features could arise under certain sputtering
plify our development, but the developed feedback control conditions and are catastrophic for the surface.

method can be applied to control surface roughness in sput- The surface roughness,is represented by the standard
tering processes taking place on two-dimensional surfacesdeviation of the surface from its average height and is com-
(see the discussion Remark 5. puted as follows:

2.2. Stochastic PDE model of the sputtering process r(e) = \/ 1

2
The sputtering process is a stochastic process. Kinetic B

Monte-Carlo simulation can be used to predict the evolu- where hi(f) = 1/2nffﬂh(x, t)dx is the average surface

tion of the surface configuration in this process. The kinetic height.

Monte-Carlo model is a first-principle model in the sense that ~ The height—height correlation function is also commonly

the erosion rules are explicitly considered in the model. Math- used to measure surface roughness (Pgasantzas, 1993

ematically, kinetic Monte-Carlo simulation methods provide Tejedor, Smilauer, Roberts, & Joyce, 1999When the

an unbiased realization of the master equatiGill€spie, height—height correlation function is used, the surface rough-

1976 Van Kampen, 199 which describes the evolution of  ness follows a power-law dependence on the lateral separa-

the probability that the surface is at a certain configuration. tion up to a certain value denoted as the critical length and

BUCHE h(f)]2 dx (7)
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saturates when the lateral separation is larger than the criticalwhere 1, denotes an eigenvalue agg denotes an eigen-
length Palasantzas, 1998inha, Sirota, Garoff, & Stanley,  function. A direct computation of the solution of the
1988. When the surface roughness is defined as the standarcibove eigenvalue problem yields = 0 with yo = 1/+/27,
deviation of the surface from its average height as inEgit and A, = vn?2 — kn* (A, is an eigenvalue of multiplicity
is independent of the simulation lattice sika(ke & Baxter, two) with eigenfunctionsp, = (1//7) sin(x) and v, =
2001), provided that the lattice size is sufficiently large. Since (1/./7) cos@x) forn =1, ..., co. From the solution of the
in this study, we will compare our simulation results fromthe eigenvalue problem shown in E@L1), it follows that for
solution of stochastic KSE and that from kinetic Monte-Carlo fixed values ofv > 0 andx > 0, the number of unstable
simulations, we use E{7) to measure the surface roughness. eigenvalues oA is finite and the distance between two con-
Our objective is to control the surface roughness of the secutive eigenvalues (i.e.,, and,.1) increases as in-
sputtering process to a desired level. In the process model ofcreases. Furthermore, the eigenspectrum of the opekator
Eq. (5), the second-order-derivative term is the linearization Eq.(11), o(A) can be partitioned as(A) = o1(A) U o2(A),
of the surface curvature within the small-slope approxima- whereo1(A) contains the firsm (with mfinite) eigenvalues

tion and the fourth-order-derivative term originates fromthe (i.e.,o1(A) = {1, ..., An}) andoz(A) contains the remain-
surface diffusion rule of EqY3) and (4)(Lauritsen et al., ing eigenvalues (i.eg2(A) = {Ams1, ..., }).
1996. The inclusion of the nonlinear tera/2(VA)? in a To present the method that we use to design a feedback

general model for interface evolution with both growth and controller on the basis of the stochastic KSE of ), we
corrosion processes was first justifiedkardar, Parisi, and  first derive stochastic ODE approximations of E§) us-
Zhang (1986)py considering the growth of an Eden cluster. ing modal decomposition. To this end, we first expand the
In the specific sputtering processes considered in this study,solution of Eq(8) in an infinite series in terms of the eigen-
the nonlinear term /2(dh/0x)? corresponds to the effect of  functions of the operator of E¢l1) as follows:
Y(¢) on the surface fluctuations, which is a nonlinear func-
tion of the local slope; we note that the nonlinearities become
more significant in the model of E¢p) at the late stage of the
evolution of the surface when large slopes devel@ygrno et
al., 1999. In this work, we focus on the problem of feedback wherea,(t), 8,.(¢) are time-varying coefficients. Substitut-
control of the sputtering process using linearizations of the ing the above expansion for the solutigr(x, ), into Eq.
stochastic KSE with appropriately identified parameters. (8) and taking the inner product with the adjoint eigenfunc-
To proceed, we formulate the linearized KSE with dis- tions,¢}(z) = (1/4/7) sin(iz) andy(z) = (1/4/7) cos@z),

W) =Y e + 3 Buln(@) (12)
n=1

n=0

tributed control in the spatial domain-fr, 7] as follows: the following system of infinite stochastic ODEs is
X . » obtained:

oh 9°h 9%h
= v —— ‘ ) d
e AP DTG SD ® (2t

p
subject to periodic boundary conditions: +Zbia wi(f) + £'(f)

n“ o
'h d/h i=1 (13)
—‘—,f:—. ,f, ':0,...,3 9 dn
=), @ Gy,
and the initial condition: p
+ b,‘,g”u,‘(t) +&@1);, n=1...,0

h(x, 0) = ho(x) (10) ; ’

whereuy; is theith manipulated inpufy is the number of ma-  where
nipulated inputs and is theith actuator distribution function

T
(i.e., b; determines how the control action computed by the b;,, = Pn()bi(x)dx,  big, = [T Pn(x)bi(x) dx
ith control actuatoy;, is distributed (e.g., point or distributed .
actuation) in the spatial intervaHr, 7). (7)) — v Db ()dx,  EN0) = [T E(x. )W (x) dx
To study the dynamics of E¢B), we initially consider the %ll) 45( Dfn()ds, - E5(0) = [ 80x Yn()

eigenvalue problem of the linear operator of &), which

takes the form: (14)
_ Ry ) d4¢_>,1(x) The covariances cﬁ{;(rz and sg(r) can be computed by
Agn(x) = —v W2 T s using the following result4strom, 1970:
- )\'I‘l¢n(x)a n = 15 LI ] OO, (11)

i i Result 1. If (1) f(x) is a deterministic function; (2)
d ¢{1 (—7) = d "5{ (), j=0,...,3 n(x) is a random variable withn(x)) = 0 and covariance
e’ o’ () = 028(x — x'); and (3)e = [* f(x)n(x) dx, then
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¢ is a random number wite) = 0 and covariancge?) = sites in the deposition process cannot alleviate this problem
2 b ;2 (Haselwandter & Vvedensky, 20D2Therefore, increase of
o® [ f4(x)dx. . ; :
the lattice sites can reduce the error between the solution
Using Result 1 we obtain (£2()&2(+")) = o®8(t — ') and of the stochastic PDE and that of the kinetic Monte-Carlo
(ER(ER) = a®8( — 1), simulation due to the first assumption, however, it cannot
In this work, the controlled variable is the expected value completely eliminate the model error between the expected
of surface roughnesg/(r2). According to Eq(12), we have roughness value obtained from the discrete microscopic ki-
E(t) = Bo()vo. Therefore,/(r2) can be rewritten in terms  netic Monte-Carlo simulation and from the stochastic PDE

of o, andp, as follows: (whichis a continuous approximation of the discrete process)
due to the fact that the second assumption cannot be fully
1 d - satisfied. As a result, to design feedback controllers based
2y — | = _ 2 '
e = \/271< _ﬂ(h(x’ )= h(@) dx> on stochastic PDE models, it is necessary to identify PDE
model parameters based on the surface height data obtained
1 r X from kinetic Monte-Carlo simulations to compensate for this
= |5 Z [0i(1)?i(x)? + Bi(1)%i(x)?] dx model error.
=1
1 /¢ 3. Feedback control
= |5 <Z(a§ + /3,-2)> -
\ = In this section, we design a linear state feedback controller
1> for the system of Eg(13) so that the surface roughness de-
= 2-2[(05?) + (8] (15) fined in Eq.(15) can be controlled to a desired level.
\ d i=1

Therefore, the surface roughness control problem for the 3.1. Model reduction

stochastic KSE system of E¢B) is formulated as the one
of controlling the covariance of the states and g, of the
system of infinite stochastic ODEs of H§.3).

Owing to its infinite-dimensional nature, the system of
Eq. (13) cannot be directly used for the design of controllers
that can be implemented in practice (i.e., the practical im-
Remark 2. While the parameters of stochastic PDE mod- plementation of controllers which are designed on the basis
els for many deposition processes and sputtering processesf this system will require the computation of infinite sums
can be derived based on the corresponding master equawhich cannot be done by a computer). Instead, we will base
tions, which describe the evolution of the probability that the controller design on finite-dimensional approximations
the surface is at a certain configuration (see, for example, of this system. Subsequently, we will show that the resulting
Lauritsen et al., 1996Vvedensky, 2008 for all practical controller will enforce the desired control objectives in the
purposes, the stochastic PDE model parameters should be&losed-loop infinite-dimensional system.
identified by matching the prediction of the stochastic PDE  Specifically, we rewrite the system of Hgd.3) as follows:
model to that of kinetic Monte-Carlo simulations (ské
& Christofides, 2005 for a method to construct stochas- d—; = Agxs + Bsu + &
tic PDE models using kinetic Monte-Carlo simulation). The (16)
reason_for.thls is the two assumptions which are made in =2/ _ Asxy+ Bpu+&f
the derivation of the stochastic PDE models from the mas- df
ter equation. Specifically, il = {h1, ho, ...} represents the
surface configuratiory; = {r1, r2, ...} is the array of jump C T
lengths at each site aridf(H r) is the transition rate from ;‘X - dlag[kl; AL dl /_‘f 1 dlag,,[l)h”ﬁlkmm*lk’"*é
H to H +r, it is assumed that there exists a positive real “"+2 "’ 1w _1[”1 oupl & =8y 88 gl an
numbers such that ()W (H;r) ~ 0, for |r| > &; and (2) &7 =60 €51,
W(H + AH;r)~ W(H;r), for |]AH| < § (Van Kampen,

1992. Because the difference in successive configurations [ D1, bpy ]
is one height unit on a single site, the first assumption can be
satisfied by increasing the number of lattice sites in the de-
position process (equivalently, reducing the size of a single by, -+ bp,,
lattice on a fixed spatial domain as considered in this work). Bs = by A ;
However, due to the dependence of the final deposition site & i
on the local surface configuration, a change in a surface site
by one height unit can produce a step chang®&/jrwhich

violates the second assumption; increasing the number of

wherexy = [o1 - amBr- - Bl 'y X = [tmt1Bmts- 17,

Pbm |
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b, Bpay iy | as follows:
b1 b Py(o0) O
b Bm+1 bp/szn+l P(Oo) = { 0 P (OO) (22)
Bf = 1°‘m+2 Pam+2 (17) /3
by, , bppir where  Py(00) = diagia1(00)?) - - - (@ (00)2),  Pg(o0) =
; ; ; diag(1(00)?) - -+ (Bu(00)?).  (an(00)?) and  (Ba(c0)?)
L ' B (n=1,...,m) can be computed by using the following

: : expressions:
We note that in the system of E{L6), by selectingm P

sufficiently large,A ¢ is an unbounded differential operator o o?

2y 2y _ _
which is exponentially stable. fan(00)) = =51 {Bu(00)) = —5 - (23)
. . coy P

Neglecting the xy subsystem, the following rz- o

dimensional system is obtained: From Eq.(23), we can see that by assigning the closed-
loop poles.., andir.g, (n =1, ..., m) at desired locations,

dx - the covariances of the states andg, (n =1, ..., m) can
dr Asks + B+ &5 (18) be controlled to desired levels. Therefore, according to Eg.

(15), the contribution to the surface roughness from the finite-

where the tilde symbol in;"denotes that this state variable dimensional system of Eq18) can be controlled to the de-

is associated with a finite-dimensional system.

sired level.
3.2. Feedback control design 3.3. Analysis of the closed-loop infinite-dimensional
system
We design the state feedback controller on the basis of
the finite-dimensional system of E{L8). To simplify our In this subsection, we show that when the state feedback

development, we assume that= 2m and pick the actuator  controller of Eq.(19) is used to manipulate the poles of the
distribution functions such th& 1 exists. The state feedback finite-dimensional system of E(L8), the contribution to the
control law then takes the form: surface roughness from thg andg s subsystem of the sys-
tem of EQ.(16)is bounded and can be made arbitrarily small
by increasing the dimension of the subsystem.

By applying the feedback controller of E(L9) into the
infinite-dimensional system of E¢16), we obtain the fol-
lowing closed-loop system:

u = By (Aes — AJ] (19)

where the matrixi ; contains the desired poles of the closed-
loop system;A.s = diagPca1 - - - Acam Acpl - )Lc,Bm], Acai

andl.g (1 <i < m) are the desired poles of the closed-loop
finite-dimensional system, which can be determined from the dx;

desired closed-loop surface roughness level. ar AesXs + &
We first analyze the dependence of the covariances of the dx (24)
statesw, and g, (n = 1,...,m) on the poles of the finite- 5 — Aexs+ Apxy+ &5

dimensional system of E¢18). Then, we will show in Sec-

tion 3.3that the surface roughness of the infinite-dimensional whereA. = BBy Y(A¢ — Ay).

system of Eq(13) can be controlled to the desired level by The boundedness of the state of the above system follows
using the state feedback controller of E#j9), which only ~ directly from the stability of the matrices.; andA y and the

uses a finite number of actuators. structure of the system, where thesubsystem is indepen-
By applying the controller of Eq19)to the system of Eq.  dent of thex ; state (se€hristofides, 2001Christofides &
(18), the closed-loop system takes the form: Daoutidis, 1997or results and techniques for analyzing the
. stability properties of such systems).
% = Auis + &(f) (20) Due to the structure of the eigenspectrum of operator
dt (Section2.2), the effect of the control action computed from

Eq.(19) to the poles of the ; subsystem can be reduced by
increasingm. Therefore, by pickingn sufficiently large, the
Acxg can be made very small comparediex ¢ and thus, the

If all eigenvalues ofA.; have negative real part, the covari-
ance matrix of;(z), P(r) = (%,(1)%(r)") converges taP(c0),
which is the unique positive definite solution to the Lyapunov

equation Hotz & Skelton, 198: closed-loop system of E¢§24) can be adéquately described
’ by the following system:
AP+ PAss+ R1=0 (21) gy,
— = Agxg + &
whereR1 = (£,(1)&(1)T). Eq.(21) cannot be solved, in gen- 49 (25)

faral . analytically. How<_aver, forthe specific system con_sidered d_f = Apxp+Ef
in this work, the analytical solution fa?(oco) can be obtained !
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On the basis of the above system, it can be shown that1999, which utilize bounds of the noise terms, can be em-

the covariance of the state of the subsystem converges to

[{otm+1(00)2) (Bm41(00)?) -+ -+ ], where
0.2
(@ (00)?) =55,
2t =) (26)
2 o .
/3,1(00) m, n>m

Therefore, form sufficiently large, the overall contribution
to the surface roughness from the subsystem in E((16),

(r?) can be computed as follows:

2, _ |1 . o?
{ry) = J Z”n:;ﬂ [nz(,mz — ,))]

Clearly, asn — oo, the contribution to the surface roughness
from thex ; subsystem goes to zero.

In summary, under the controller of E{.9), the closed-
loop surface roughness, forsufficiently large, can be ade-
quately described by the following expression:

(27)

(28)

) =0 —n 24 Z [Z(an ]

n=m+1

where2* = 31" 1(=1/2hco; — 1/2h¢,) @nd dey; and Aeg,

are closed-loop poles of the finite-dimensional system of Eq.

(20).
Remark 3. Note that in order to regulate the surface rough-

nessto a desired Ieveé{/g), the number of actuators should

be large enough so that the value (Q,{rg) is achievable.
Specifically, the number of actuatorsn2hould be selected
such that the following inequality holds:

9]

2 1 _t
al > ol op n;ﬂ |:nz(/<n2 — v)j|

This is because the closed-loop stability requires that <
0 andieg <O (fori=1,...,m), and thuspA* > 0 in Eq.
(28).

Remark 4. Note that to control the closed-loop surface

(29)

roughness tq/@, we need to design a controller to as-

sign the poles of the finite-dimensional system of @€) to
appropriate values so that the following equation holds:
21((rg) = (%)
A= = (30)

The controller which assigns the poles of the system of Eq.

(20) to satisfy Eq.(30) is not unique. Consequently, for a
fixed number of actuatorq, the controller that can reg-

ployed to design controllers that can achieve arbitrary de-
gree of attenuation of the effect of noise on the PDE system
state.

Remark 5. We note that a full-scale model of a sputter-
ing process would consist of a 2D-lattice representation of
the surface. Although we developed the method for feedback
control design based on the 1D-lattice representation of the
surface, itis possible to apply the proposed method to control
the surface roughness of sputtering processes taking place in
two-dimensional surfaces. In a two-dimensional process, the
feedback control design and the analysis of the closed-loop
system will be based on the model of E§6). Moreover, Eq.

(16) will be obtained by solving the eigenvalue/eigenfunctin
problem of the operatadk in the two-dimensional spatial do-
main with appropriate boundary conditions. After Ef6)

is obtained, the method for control design and closed-loop
analysis presented above can be applied to control the sur-
face roughness for two-dimensional surfaces described by
stochastic PDEs.

4. Simulation results

In this section, we present applications of the method
followed for the design of the state feedback controller
to control three different sputtering processes. In all pro-
cesses, the sputtering occurs on a lattice containing 200
sites. Thereforeg = 0.0314. The rate of bombardment for
each surface site isp = 1s~! in the open-loop system.
Specifically, the following three processes are studied in this
work.

Process 1.0nly surface erosion is considered, which is
corresponding tof = 1 in the sputtering process model in
Section2.1 Plus, we se¥(¢) = 1 and the probability with
which a particle is removed from a surface site is P,
where Pe is determined by the box rule shownkig. 1

Process 2Both erosion and surface diffusion are consid-
ered withf = 0.5. The sputtering yield functior,(¢;) = 1.

If a randomly selected surface site is subject to erosion, the
probability with which a particle is removed from a surface
site is Pe, Where P is determined by the box rule shown in
Fig. 1 If a randomly selected surface site is subject to diffu-
sion, the diffusion probabilityw;_, ; is computed according

to Eq.(3) with gJ = 2.0.

Process 3Both erosion and surface diffusion are consid-
ered with f = 0.5. The sputtering yield functior,(¢;) is a
nonlinear function of;, which takes the form of Eq1). yo,
y1 andy, are chosen such th&{0) = 0.5, Y(xr/2) = 0 and
Y(1) = 1 (Cuernoetal., 1995If arandomly selected surface
site is subject to erosion, the probability with which a particle
is removed from a surface site¥$¢;) Pe, wherePe is deter-

ulate the closed-loop surface roughness to a desired leveimined by the box rule shown ffig. 1 If arandomly selected

is also not unique. Furthermore, we note that robust con-

trol methods Christofides, 1998 Christofides & Baker,

surface site is subject to diffusion, the diffusion probability,
w;— ; Is computed according to E(B) with 8J = 2.0.
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Fig. 2. The open-loop profile of the expected surface roughness in Process 1 computed from the kinetic Monte-Carlo simulations.

4.1. Feedback control of surface roughness in Process1  wherev < 0. By expandindn in an infinite series in terms of
¢(x) andyr(x) as in Eq(12), the following system of infinite
According toCuerno et al. (1995)n the stochastic KSE  stochastic ODEs is obtained:
model of Eq(5), the nonlinear term corresponds to the effect o
of the nonlinear functiory (¢) and« accounts for the surface —t" = e, + 0]

diffusion. By setting/'(¢) = 1 andf = 1, the surface rough- dp (32)
ness has the scaling properties of the Edwards-Wilkinson —= = vn?8, + gg(t); n=1...,00

equation Edwards & Wilkinson, 198p The open-loop sur-

face roughness converges to a finite value Ege2). This Based on Eq(32), we can obtain the following expressions

is because by setting the erosion probability equaltoHe, for a, (1) and B, (7):
one favors the erosion of peaks as compared to valleys, which
is a smoothing mechanism preventing the instability of sur- () = an(o)émzt + /tevnz(tr)gn(t) dr
face roughness in the sputtering process. 0 “

The problem of controlling surface roughness of a deposi-
tion process whose surface height fluctuations are describedﬂ"(’) = Pn
by the Edwards—Wilkinson equation has been solvddin (33)
and Christofides (20040 this case study, we design a feed-
back controller based on the stochastic PDE model, which ¢ v initial surface is flat, e.g,(0) = 0 and 8,(0) = 0,
takes the form of the Edwards-Wilkinson equation, of the ¢, 1« the covariance o, (7) and 8, (1) can be
sputtering process. The model parameters are identified bycomputed as follows by usirigesult 1
using data of the evolution of surface height obtained from

t
(O)e"”zf +/ eunz(t—r)gg(r) dr; n=1....00
0

kinetic Monte-Carlo simulations so that the prediction of the o2’ _ 1

surface roughness from the solution of the stochastic PDE (@ (1)) = (Bu(t)?) = o° (T) ;, n=1..,00
model of the process is consistent to that from the kinetic v

Monte-Carlo simulations. Then, we apply the designed con- (34)

troller to the kinetic Monte-Carlo model of the sputtering . B
process to control the surface roughness of this process to 83ased on E¢(34), the values ob ando can be identified by

desired level. using the data ofw, (1)?) or (8,()%), which can be obtained
from kinetic Monte-Carlo simulations of the same sputtering
4.1.1. Model identification process. The kinetic Monte-Carlo simulation algorithm used

Since the surface roughness in this sputtering processto simulate the sputtering process is described as follows. In
has the same scaling properties to that of the Edwards—this algorithm, a trial to execute an event may or may not be

Wilkinson equation Edwards & Wilkinson, 198p the fol- successfulZiff, Gulari, & Barshad, 1985 Upon successful
lowing stochastic PDE model is used to describe height fluc- realization of an event, the time is advanced by an increment,
tuation of the surface in Process 1: 8t (Fichthorn & Weinberg, 1991

p 52 Monte-Carlo algorithm folProcess 1:

= Vo () - A

ot ox (31) e A random numberg; is first generated to pick a sitg,

(E(x, NEW, 1)) = 0%8(x — x')5(t — 1) among all the sites on the 1D-lattice.
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Fig. 3. Evolution of(a3), (3), («2) and(a2) in Process 1.

Pe is computed by using the box rule showrFig. 1and
the center of the box is the surface particle onisite

The second random numbes in the (Q 1) interval is
generated.

If z2 > 1 — Pe, no Monte-Carlo event is executed and the
trial is not successful.

If £ < 1 — Pethe surface particle on sités removed and

a time increment§r is computed by using the following
expression:

In¢3
Y1 Pe)

wheregz is a random number in the (@) interval andPe,

is computed by using the box rule showrig. 1in which

the center of the box is the surface particle atisite

Upon the successful realization of one Monte-Carlo event
(a surface particle is removed from sijex,, or 8, can be
updated by using the following expression:

gold . Al 2= a/2) = y(n, zi + a/2)]

St = — (35)

new __
o, =

alp(n. 2 +af2) — dn. zi —af2)] OO

n

ﬂgewz ﬂ2|d+

whereais the lattice parameter angis the coordinate of the
center of sitd.

Fig. 2 shows the open-loop profile of the expected sur-
face roughness in Process 1 from kinetic Monte-Carlo sim-
ulations. The expected surface roughness is obtained by av
eraging surface roughness profiles from 1000 independent
simulation runs by using the same simulation parameters.
The expected surface roughness converges to about 0.15 af
ter about 2500 monolayers are eroded.

Fig. 3shows the open-loop profiles (miﬁ) forn =2, 3, 4,
and 5. Each profile is obtained by averaging the profileéof
from 1000 independent kinetic Monte-Carlo simulation runs
using the same simulation parameters.

Using the profiles shown iRig. 3, we identify the values
of v ando of Eg. (31) based on Eq(34). While v < 0, as

t — 00, 1/ (an(00)2) = —2vn?/02. 1/ (o, (00)2) versusn for

n = 2, 3, 4,and 5is marked iRig. 4by open circle. Using the
method of least-mean-square, we fit the data markédgn

4 using a parabolic equation,= 23.0722, which is plotted

in Fig. 4 by using the dotted line. Therefore, we obtain the
following relationship between ando:

2v

-~ =2307 (37)
o

Furthermore, based on E@4), we can get the following
equation for:

_In[@w?/eRen®® +1] _

38
= (38)
Therefore, if we plot-In[2vn2 /02w, (1)) + 1]/n? versus,
the slope is—-2v. This plot is shown irFig. 5. In Fig. 5, four
lines are plotted forn = 2, 3,4, and 5. It is clear that these
four lines have almost identical slopes, which means that the

900
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| g
=~ 400 |
~
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n

Fig. 4. 1/{a,(c0)?) vs.nforn = 2, 3, 4, and 5 (marked by open circle) and
the curve ofy = 23.07:2 (dotted line) in Process 1.
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Fig. 5. —In[2vn2/0%(a,()%) + 1]/n? vs. t for n =2,3,4, and 5 in Fig. 6. Comparison of the open-loop profile of the expected surface rough-
Process 1. ness from the kinetic Monte-Carlo simulator (solid line) and that from the

solution of the Edwards—Wilkinson equation with= —1.2 x 10~ and
_ S o o = 3.4 x 1073 (dotted line) in Process 1.
value ofv identified in this way is independent of the data set
used in the identification.

FromFig. 5, the value ofv is identified asv = —1.2 x distribution function is taken to be:

10~*. Then, by using Eq(37), o = 3.2 x 10~3. Using the 1 sin(z): o1 10

identified parameters of E§31), we compute the expected JT ' T

surface roughness in Process 1 based on(Eg. An 80th b =1 71 . o (39)
order stochastic ordinary differential equation approxima- N cos[¢ —10x]; i=11...,20

tion of the system of Eq(31) is used to simulate the pro-
cess (the use of higher-order approximations led to identi- The desired closed-loop surface roughness is 0.053 in this
cal numerical results, thereby implying that the following simulation. Using Eq(28), we design the state feedback
simulation runs are independent of the discretization).sThe controller suchthat.,, = A5, = —0.027,fori =1, ..., 10.
function involved in the covariances &f andgg is approxi- Then, we apply the designed controller to the kinetic Monte-
mated by YA, whereAt is the integration time step. There  Carlo model of Process 1 to control the surface roughness to
is a small difference between the expected surface rough-the desired level. In this simulation, the controller is imple-
ness profile obtained from kinetic Monte-Carlo simulations mented by manipulating the bombardment rate of particles
and that from the solution of the Edwards—Wilkinson equa- across the surface. Specifically, the bombardmentrate dn site
tionwithv = —1.2 x 1074 ando = 3.2 x 102 and this dif- attimet is determined according to the following expression:
ference can be compensated by increasing the value of 20
from 3.2 x 1073 to 3.4 x 1073, In Fig. 6, we compare the = Q5= b(z)u ()
rp(i, 1) = rp+
expected value of the open-loop surface roughness of Pro- a
cess 1 from the solution of the Edwards—Wilkinson equa-
tion of Eq.(31)with v = —1.2 x 10*ando = 3.4 x 103
to that from kinetic Monte-Carlo simulations. The two pro-
files are almost identical. Therefore, by using the stochas-

tic PDE model of Eq(31) with the identified model pa-  picked is proportional to the bombardment rate on this site,
rameters, we can predict the evolution of the expected sur-,, hioh is computed by using E¢40). Then, Pe is computed

face roughness in this_ sputtering process. The stochastioOy using the box rule shown iRig. 1and the center of the
PDE model of Eq(31) is used as the basis for controller ,,, is the surface particle on site The second random

(40)

The following simulation algorithm is used to run the kinetic
Monte-Carlo simulations for the closed-loop system. First,
a random number is generated to pick a site among all the
sites on the 1D-lattice; the probability that a surface site is

design. number¢, in the (Q 1) interval is generated. th > 1 — Pe
no Monte-Carlo event is executedZf < 1 — P the surface
4.1.2. Feedback control design particle on sitei is removed. Once a particle is removed,
Our control objective is to control the expected surface the first 20 statess, ..., «1p andps, . .., B10) are updated

roughness in Process 1 to a desired value. We design a statand new control actions are computed to update the spatially
feedback controller based on a 20th order stochastic ODEdistributed bombardment rate across the surface.
approximation constructed by using the first 20 eigenmodes The closed-loop system simulation results are shown in
of the system of Eq(13) with identified model parameters Fig. 7. The dashed line shows the expected surface rough-
v=-12x10"% 0 = 3.4 x 103 andx = 0. Twenty con- ness, which is the average of surface roughness profiles ob-
trol actuators are used to control the system. iflhhactuator tained from 200 independent runs, under feedback control.
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0.16 Table 1
n o s i Number of control actuators vs. the lowest achievable closed-loop surface
ﬁ 0.14 _ roughness
% 0.12t : ) ‘ 1 Number of control Lowest achievable closed-loop
3 . 3 - actuators surface roughness
a i 2 0.099
g 0.08+ 1 4 0.078
D S 6 0.066
Ooogg B DA A M A AA M’\A A A Aj\\ f\/\“ 8 0.058
: : IV LSAV AL AR A e s ‘\,\/ :
0.04 fr E 10 0.053
0.02 - i ; A 20 0.038
o 200 400 600 800 1000 30 0.031
Monolayers eroded 40 0.027

Fig. 7. Closed-loop surface roughness profiles in Process 1. (a) The closedyiq o6 stydy, our control objective is to stabilize the closed-
loop surface roughness profile from one simulation run (solid line); (b) the

expected closed-loop surface roughness profile obtained from 200 indepen-IOOp surface roughness to a finite value. We first study the

dent simulation runs (dashed line); and (c) the open-loop surface roughnessdynamics of the surface roughness in this sputtering process

profile from one simulation run (dotted line). and identify the number of unstable modes in this process. It
turns out that the number of unstable modes is finite. Then,

We can see that the controller successfully drives the ex-We design a model-based state feedback controller, which

pected surface roughness to the desired level. The solid line€Mploys more control actuators than the number of unstable

shows the surface roughness profile under feedback controfmodes, to stabilize the surface roughness to a finite value.

from one simulation run; due to the stochastic nature of the

deposition process, stochastic fluctuations can be observed2.1. Open-loop dynamics

in the closed-loop surface roughness profile, but the surface  We run kinetic Monte-Carlo simulations to study the dy-

roughness is very close to the set-point value under feedbacknamics of the open-loop surface roughness and the evolution

control. For the sake of comparison, the dotted line shows Of covariance ofx, and g, in this sputtering process. The

a surface roughness profile from one open-loop simulation kinetic Monte-Carlo simulation algorithm and the method to

run. We can see that under feedback control, a much lowercomputew, () or ,(r) are as follows:

surface roughness can be achieved.

e The first random numbeg; is generated to pick a sitg,
Remark 6. Note that the number of control actuators needed among all the sites on the 1D-lattice.

to regulate the expected closed-loop surface roughness 0 § The second random numbep, in the (Q 1) interval, is
desired Ievel\/%, depends on the value 94%. In this sim- generated to decide whether the chosen site is subject to
ulation study, twenty control actuators are used to regulate erosion ¢z < f) or diffusion ¢2 > f).
the expected closed-loop surface roughness to 0.053. How-* If the chosen site is subject to erosidh,is computed by
ever, this is not the minimum number of control actuators re-  using the box rule shown iRig. 1 and the center of the
quired to achieve a closed-loop surface roughness of 0.053. box is the surface particle on siteThen, another random
For a fixed number of control actuators available, the lowest ~numbergeszin the (Q 1) interval is generated. lez < Pe
achievable closed-loop surface roughness can be computed the surface particle on siieis removed. Otherwise, no
by using Eq.(29) and some results are listed Table 1 A Monte-Carlo event is executed.
minimum of two control actuators are required if the desired ® If the chosen site is subject to diffusion, a side neighpor,
surface roughness is 0.099 and a minimum of ten control ac- (j =i+ 1 ori — 1in the case of 1D-lattice) is randomly
tuators are required if the desired surface roughness is 0.053. picked and the hopping rate;_. ;, is computed by using
Eqg. (3). Then, another random numbegy; in the (Q 1)
4.2. Feedback control of surface roughness in Process 2 interval is generated. i3 < w;, j, the surface atom is
moved to the new site. Otherwise no Monte-Carlo event
Compare to Process 1, surface diffusion is added in Pro-  is executed.
cess 2. In this case study,= 0.5 andJ/kgT = 2.0. The  *® Upon the execution of one Monte-Carlo evest,or g,
presence of two mechanisms results to more complicated pro-  are updated. If the executed event is erosianor B,
cess dynamics and the open-loop surface roughness is unsta- €an be updated by using E@6). If the executed event is

ble, e.g., the surface roughness goes to infinity-asco. In diffusion from sitei to sitej, «,, or 8, are updated by using
the following expression:

new _ a2|d + a{[l//(l’l, i — a/2) - W(’L Zi + 0/2)] - [W(’L Zj— 0/2) - lﬁ(”a <j + G/Z)]}

n

B = p

o

(41)

n
old allg(n, zi +a/2) — ¢(n, zi — a/2)] — [p(n, z; + a/2) — $(n, z; — a/2)]}
" n
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Fig. 8. The open-loop profile of the expected surface roughness in Process 2 from the kinetic Monte-Carlo simulator.

wherea is the lattice parametet; is the coordinate of the  order of that o2 or o, which is still significant. The same
center of sité andz; is the coordinatg of the center of sjte dynamics are also observed in the open-loop profilég#t

Fig. 8 shows the open-loop profile of the expected sur- T this end, we design a state feedback controller based on the
face roughness of Process 2 from kinetic Monte-Carlo sim- fi.st 50 modes of the process (25 modes fordjsubsystem
uIatiqns. The expected surface r_oughness is ob'Fained by avand 25 modes for thg, subsystem), which is sufficiently
eraging surface roughness profiles from 1000 independentarger than the number of unstable modes (which is about 30)
simulation runs by using the same simulation parameters.n the process, to stabilize the closed-loop surface roughness
Itis clear that the open-loop expected surface roughness iny, g finite value. Fifty control actuators are used to control

this sputtering process does not converge to a finite value.the system. Theth actuator distribution function is taken to
Our control objective is to stabilize the closed-loop surface pe-

roughness to a finite value. To do this, we identify the num-

ber of unstable modes in this process and use more control 1 sin(iz); i=1...,25
actuators than the number of unstable modes to stabilize theb.(z) _
surface roughness in the closed-loop system. ' 1 cos[( — 25)]; i =26 50

Fig. 9 shows the open-loop profiles d&?2) for n = JT LTy

1,5,15, and 20. Each profile is obtained by averaging the

profile o2 from 1000 independent simulation runs by using We design the following state feedback controller to control
the same simulation parameters. the process:

u = By 1A%, (43)

(42)

4.2.2. Feedback control design
In Fig. 9, it is clear that at least the first 15 modes are where x; = [a1, ..., a5, B1,..., B25]', A= —0.01x
unstable. AIthougbz%0 is stable, its magnitude is in the same Isg.50 andl is an identity matrix.
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Fig. 9. Evolution of(a3), (&), (¢2) and(a3y) in Process 2.
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Then, we apply the designed controller to the kinetic We can see thatthe controller successfully drives the expected
Monte-Carlo model of Process 2 to control the surface rough- surface roughness to a finite value. The solid line shows the
ness to the desired level. In this simulation, the controller is surface roughness profile under feedback control from one
implemented by manipulating the probability thatarandomly simulation run; due to the stochastic nature of the deposition
selected site is subject to erosion rdle&Specificallyf at site process, stochastic fluctuations can be observed in the closed-

i is determined according to the following expression: loop surface roughness profile, but the surface roughness is
_ 50 very close to the expected surface roughness under feedback
o+ (Z,':lbj(zi)uj(f)> /a control. For the sake of comparison, the dashed-line shows a
f) = 50 (44) surface roughness profile from one open-loop simulation run.
1+ (Zj:lbi(zi)”i(t)) /a We can see that under feedback control, the surface roughness

The following simulation algorithm is used to run the kinetic €an be stabilized to a finite value.

Monte-Carlo simulations for the closed-loop system. First, a ]
random numbet; is generated to pick a siteamong all the 4.3. Feedback control of surface roughness in Process 3
sites on the 1D-lattice; the probability that a surface site is

subject to erosion ruleg(i) is determined by using E¢4). In this case study, our control objective is to control the
Then, the second random number,in the (Q 1) interval surface roughness in Process 3 to a desired level. In Process
is generated. I, < f(i), the sitei is subject to erosion 3, both erosion and diffusion are included and the sputtering
otherwise, the site is subject to diffusion. yield function,Y(¢;), is a nonlinear function of; as shown

If the sitei is subject to erosionPe is computed by using 1N Ed- (1) with yo = 0.5, y; = 1.0065 andy, = —0.5065.
the box rule shown irFig. 1 and the center of the box is The e_volutmn of surface he|ght in this sp_utten_ng process is
the surface particle on siteAnother random numbeges in described by the stochastic Kuramqto—Slvashmsky equation
the (Q 1) interval is generated. ffe3 > 1 — Pe, N0 Monte- of Eq. (5) (Cuerno et al., 1995 auritsen et al., 1996 In
Carlo event is executed and go back to the first step of this this case study, we design a feedback controller based on

algorithm. If ce3 < 1 — Pe, the surface particle on siieis the linearization of the stochastic KSE with appropriately
removed. Otherwise, no Monte-Carlo event is executed. identified parameters. Then, we apply the designed controller
If the sitei is subject to diffusion, a side-neighbgr= to the kinetic Monte-Carlo model of this sputtering process

i+1orj—1is randomly picked and the probability of a 0 control the surface roughness of this process to a desired
hopping from sité to sitej, w;_, ; is computed based on Eq. level.
(3). Then, another random numbgs in the (Q 1) interval ] o
is generated. Ite3 < w;_ ;, the surface particle on sitss ~ 4-3.1. Model identification .
moved to sitg. Otherwise, no Monte-Carlo eventis executed.  1he following linearized  stochastic = Kuramoto—
Once a Monte-Carlo event is executed, the first 50 statesSivashinsky equation is used as the basis for controller
(a1, ..., a5 and By, . .., Bos) are updated and new control  design:
actions are computed to update the spatially distributed bom- 5, 321 54h
bardment rate across the surface. — = ko +&(x, 1) (45)
The closed-loop system simulation results are shown in
Fig. 10 The dotted line shows the expected surface rough- Where
ness, which is the average of surface roughness profiles ob-, Iy 2 / ,
tained from 200 independent runs, under feedback control. (80x D5, 1) = 0%3(x = 2)3(r — 1) (46)
By expandingh in an infinite series in terms af(x) and

o a2

1 — ¥(x) as shown in Eq(12), the following system of infinite
, 09} -l stochastic ODEs is obtained:
?g’ 0.8} PN o
£ o7t “‘r_,-—"" ] d—" = (mn? — kn*a, + (1)
X - g (a7)
Q 05f e 1 * = (wn? — xkn® "), n=1,...,00
‘é 0.4l “"." ] dt (Vn Kn )ﬁn + Sﬂ( )1 n ) )
& 08 Therefore,
02} .
0.1} Oln(l‘) =q, (O)e(vn —kn)t
0 t
0 100 200 300 400 500 600 700 2B (f—
Monolayers eroded +/ gl —wn ) t)‘fz(f) dr
° (48)

Fig. 10. Closed-loop surface roughness profiles in Process 2. (a) The closed- 8, (t) = Bn (O)e(‘mz_’(”“)t

loop surface roughness profile from one simulation run (solid line); (b) the t _—

expected closed-loop surface roughness profile (dotted line); and (c) the +f glvn®—kn )(t_T)Eg(‘L’) dr; n=1...,00
open-loop surface roughness profile from one simulation run (dashed line). 0
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If the initial surface is a perfect one, (0) = 0 andg,,(0) =

0. UsingResult 1 the covariance o, (r) and g, (¢) can be

computed as follows:

{ay (t)z) = (B (t)z)

B 02 eZ(vnszn‘l)t -1 o
N 2(n2 —kn?) |’

1...

, 00

(49)

new __

n

n

ﬂnew —

interval is generated. ;3 < w;_, j, the surface atom is
moved to the new site. Otherwise no Monte-Carlo event
is executed.

e Upon the execution of one Monte-Carlo evesf,or 8,
are updated. If the executed event is eros@nor 8,
can be updated by using E@6). If the executed event is
diffusion from sitei to sitej, «,, or 8, are updated by using
the following expression:

ol Alv(n zi = a/2) = yln, zi + a/2)) = [¥(n. 2j = @/2) = ¥ln, 2 + a/2)])

old
Bn

(50)

n
L Allgln zi +a/2) = §n, zi — a/2)] — [¢(n. 2j + a/2) = ¢, 2 — a/2)]}

Based on EQq(49), the value ofv, ¥k and o can be iden-
tified from the data of(e,(1)?) or (8.(r)%), which can be
obtained from kinetic Monte-Carlo simulation of the same
sputtering process. The kinetic Monte-Carlo simulation al-
gorithm and the method to compudg (z) or 8,(¢) are as

follows:

e The first random numbet; is generated to pick a sitg,
among all the sites on the 1D-lattice.

e The second random numbep in the (Q 1) interval, is
generated to decide whether the chosen Biis,subject

to erosion £, < f) or diffusion ¢2 > f).

e |f the chosen site is subject to erosidfy andY(¢;) are
computed.Pe is computed by using the box rule shown
in Fig. 1 and the center of the box is the surface par-

ticle on sitei and Y(¢;) is computed by using Ed1).

Then, another random numbegs in the (Q 1) inter-
val is generated. I§e3 < PoY(¢;) the surface particle on
site i is removed. Otherwise, no Monte-Carlo event is

executed.

¢ |fthe chosen site is subject to diffusion, a side neighpor,
(j =i+ 1ori—1inthe case of 1D-lattice) is randomly
picked and the hopping rate_, ;, is computed by using

Eq. (3). Then, another random numbegys in the (Q 1)

Expected surface roughness

0.7

06 |

n

whereais the lattice parameter angis the coordinate of the
center of sitd.

Fig. 11 shows the open-loop profile of the expected sur-
face roughness of Process 3 from kinetic Monte-Carlo sim-
ulations. The expected surface roughness is obtained by av-
eraging surface roughness profiles from 1000 independent
simulation runs by using the same simulation parameters.
Our control objective is to control the surface roughness in
this sputtering process to a desired level. To achieve this ob-
jective, we identify the parameters of the model of Ey)
so that the surface roughness predicted by(&6)is consis-
tent to that obtained from kinetic Monte-Carlo simulations
of the same sputtering process. Then, we design a feedback
controller based on the process model of EY) with the
identified parameters to control the surface roughness in this
process.

Fig. 12 shows the open-loop profiles @&2) for n =
20, 22, 25, and 30. Each profile is obtained by averaging the
profile &2 from 1000 independent simulation runs by using
the same simulation parameters.

Using the profiles shown iRig. 12, we identify the values
of v, k ando of Eq. (47) based on Eq(49). Whenv > 0,

« > 0 andn s sufficient largeyn? — kn* < 0. Therefore, as
t = 00, 1/{ay(00)?) = 2(kn* — vn?)/o?. 1/{a,(00)?) ver-
susn for n = 20, 21, ..., 30 is marked inFig. 13by open

200

400

600 800 1000

Monolayers eroded

Fig. 11. The open-loop profile of the expected surface roughness in Process 3 from the kinetic Monte-Carlo simulator.
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Fig. 12. Evolution ofiaZ), (a3,), (@35) and(e3y) in Process 3.

circle. Using the method of least-mean-square, we fit the Fig. 15using a second order polynomisl= 3.27 x 1076 —
data marked inFig. 13 using a fourth order polynomial,  1.34 x 10-812, which is plotted inFig. 15using the dotted
y = 1.45x 103z — 0.26n2, which is plotted irFig. 13us- line. Therefore, the values ofandk are identified as follows:
ing the dotted line. Therefore, we obtain the following rela-
tionships between, o andx, o

2v 2K
o2 o2

y=327x10% Kk =134x10"8 (53)

The value ofo is determined by using E¢51) and Eg.
(53). If we compute the value of usingv = 3.27 x 108
and 2 /02 = 0.26, we can obtaiw, = 5.0 x 10~3. How-
ever, if we compute the value efusingc = 1.34 x 10~8and
2c/o? = 1.45 x 10-3, we can obtaiw, = 4.29 x 103, We
decide that the value af is the average of the value of,

= 0.26; 1.45x 103 (51)

Furthermore, based on E@.9), we can get the following
equations fow andx:

In[2(vn? — kn®)/o? (e, (£)?) + 1] _

o (v — kn)t (52) ando, as follows:
Therefore, if we plot IN[2¢12 — xkn?) /o2 (e, (1)2) + 1]/2n2 _ % — 4.65x 1073 (54)

versust, the slope i) — «kn?. This plot is shown irFig. 14
In Fig. 14, seven lines are plotted far= 20, 22, 24, 26, 28, Using the identified parameters of E¢S3) and (54)we
and 30. It is clear that there is an almost linear relationship compute the expected surface roughness in Process 3 based
between In[2¢n? — kn*)/0?(a, (£)?) + 1]/2n? andt. on Eq.(45). An 80th order stochastic ordinary differential

To identify the values o andx, the slopes of the linesin  equation approximation of the system of Hg5) is used
Fig. 14versusn are marked irfFig. 15by open circle. Using  to simulate the process (the use of higher-order approxima-
the method of least-mean-square, we fit the data marked intions led to identical numerical results, thereby implying that

1000
o 0
900¢ & :
05}
800+ o S
= 1t
700+ % *
Ni 0 b i
8 600} foeT
= .0 =
3 500} 3 2+t
Y =0 &
T 400f -0 z 25f
o [— n=20
300r e‘.»-"o E 3} n=22
o & - n=24
200+ o E 45| - n=26
Q.7 ~[ -e- n=28
100 ‘ ; i i . . | % n=30 . ) . . .
0 22 24 26 28 50 5 10 15 20 25 30 35 40
n Time

Fig. 13. ¥/ (a,(c0)?) vs.nfor n = 20, 21,

.....

30 (marked by open circle)

and the curve of = 1.45 x 10~3z* — 0.26r2 (dotted line) in Process 3.

Fig. 14. In[2¢n? — kn*)/o?(a,(1)?) + 11/2n? vs. t for n = 20,22, 24,

26, 28, and 30 in Process 3.
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x10° of the system of Eq(47) with identified model parameters
¢ ' ' ' ' v=327x10"° 06 =465x 103 andx = 1.34x 1078,

3t ] Forty control actuators are used to control the system. The
ith actuator distribution function is taken to be:

o Go _ % sin(iz); i=1...,20
g bi(z) =1 1 oont i (55)
6 5, - 7 cos[f — 20)]; i=21...,40

. . The desired closed-loop surface roughness is 0.29 in this sim-
8 9.1 ulation. Using Eq{(28), we design the state feedback con-
. . . . troller such thak..o, = A5, = —0.001, fori = 1,.. ., 20.
20 22 24 26 28 30 Then, we apply the designed controller to the kinetic
0 Monte-Carlo model of Process 3 to control the surface rough-
Fig 15, The |  lnes iFiq. 14 ; 20,..... 30 (marked ness to the desired level. In this simulation, the controller is
19. . € slopes of lines IRrig. vs.niorn =20,..., marke . . . r

bygopen circle) agd the curve 9f3 327 % 106 — 1.34 x 10-%n2 (dotted implemented by manipulating the probability that arandomly

line) in Process 3. selected site is subject to erosion rilespecifically, the of
sitei is determined according to the following expression:

the following simulation runs are independent of the dis- —

izat ion i | | f+ (320 (1) /a

cretization). Thes function involved in the covariances of 1) = j=10j\Zi)U j (56)

& andgj is ap.proximated by&, whereAt is the integration 14+ (nglbj(zi)”j(t))/a

time step. InFig. 16 we compare the expected value of the o ] S o

of the linearized stochastic KSE model of Hd5) to that Monte-Carlo simulations for the closed-loop system. First, a

from a kinetic Monte-Carlo simulation. The two profiles are fandom numbeg, is generated to pick a siteamong all the

very close. Therefore, by using the linearized stochastic KSE Sites on the 1D-lattice; the probability that a surface site is

model of Eq.(45) with the identified model parameters, we Subject to the erosion ruleg(i) is determined by using Eq.

can predict the evolution of the expected surface roughness in(56)- Then, the second random numhgrin the (Q 1) inter-

this sputtering process. This linearized stochastic KSE model V@l is generated. If2 < f(i), the sitei is subject to erosion,

V-Kn2

is used as the basis for feedback controller design. otherwise, the site is subject to diffusion. .
If the sitei is subject to erosionPe is computed by using
4.3.2. Feedback control design the box rule shown ifig. 1with the box centering the surface

Our control objective is to control the expected surface Particle on sitei andY(¢:) is computed by using Ed2).
roughness in Process 3 to a desired value. We design a statdnen, another random numbggg in the (Q 1) interval is
feedback controller based on a 40th order stochastic ODEJenerated. I€e3 < Pe¥(¢:) the surface particle on siteis

approximation constructed by using the first 40 eigenmodesemoved. Otherwise, no Monte-Carlo event is executed.
If the sitei is subject to diffusion, a side-neighbgr=

0.5 . . : . i+1ori—1is randomly picked and the probability of a
giag — SlieMop ole | hopping from sité to sitej, w;_, ; is computed basgd on Eq.
(3). Then, another random numbgg in the (Q 1) interval
is generated. Ite3 < w;_, j, the surface particle on siteis
moved to sitg. Otherwise, no Monte-Carlo event is executed.
Once a Monte-Carlo event is executed, the first 40 states
(a1, ...,a90@ndpy, ..., B2o) are updated and new control
actions are computed to update the spatially distributed prob-
ability that a randomly selected site is subject to erosion rule.
The closed-loop system simulation results are shown in
Fig. 17. The dotted line shows the expected surface rough-
ness, which is the average of surface roughness profiles ob-
5 ~ S — — i tained from 200 independent runs, under fgedback control.
Time We can see thatthe controller successfully drives the expected
surface roughness to a finite value. The solid line shows the
Fig. 16. Comparison of the open-loop profile of the expected surface rough- surface roughness prof”e under feedback control from one
ness from the kinetic Monte-Carlo simulator (solid line) and that from the - g3y 1atjon run; due to the stochastic nature of the deposition
solution of the linearized stochastic Kuramoto—Sivashinsky equation with . . .
process, stochastic fluctuations can be observed in the closed-

v=327x105 k=134x 108 ando = 4.65 x 103 (dotted line) in : )
Process 3. loop surface roughness profile, but the surface roughness is

o j=]
S w2 2
Moo w g s

Expected surface roughness
o
o

(=]
o ©
a =

(=]
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0.7 the evolution of the surface roughness computed from the
2 ual ] stochastic PDE models is consistent to that computed from
E kinetic Monte-Carlo simulations. Feedback controllers were
g’ e.8T l designed and applied to kinetic Monte-Carlo models of the
C 04f sputtering processes. Simulation results demonstrated that
§ 029 the designed feedback controllers can successfully regulate
335 ' the surface roughness to desired levels.

02}

0.1}

0 0 100 200 300 400 500 600 Acknowledgement

Monolayers eroded

Fig. 17. Closed-loop surface roughness profiles in Process 3. (a) The closed- Financial support from the NSF (ITR)’ CTS-0325246, is

loop surface roughness profile from one simulation run (solid line); (b) The gratem”y aCknOW|Edged'
expected closed-loop surface roughness profile obtained from 200 indepen-

dent simulation runs (dotted line); and (c) the open-loop surface roughness

profile from one simulation run (dashed line).
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