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Abstract

In this work, we present an approach to estimation and control of surface roughness in thin "lm growth using kinetic Monte-Carlo
(MC) models. We use the process of thin "lm growth in a stagnation 2ow geometry and consider atom adsorption, desorption and
surface migration as the three processes that shape "lm micro-structure. A multiscale model that involves coupled partial di5erential
equations (PDEs) for the modeling of the gas phase and a kinetic MC simulator, based on a high-order lattice, for the modeling of the
"lm micro-structure, is used to simulate the process. A roughness estimator is constructed that allows computing estimates of the surface
roughness at a time-scale comparable to the real-time evolution of the process using discrete on-line roughness measurements. The estimator
involves a kinetic MC simulator based on a reduced-order lattice, an adaptive "lter used to reduce roughness stochastic 2uctuations and
an error compensator used to reduce the error between the roughness estimates and the discrete roughness measurements. The roughness
estimates are fed to a proportional-integral (PI) controller. Application of the proposed estimator/controller structure to the multiscale
process model demonstrates successful regulation of the surface roughness at the desired value. The proposed approach is shown to be
superior to PI control with direct use of the discrete roughness measurements. The reason is that the available measurement techniques
do not provide measurements at a frequency that is comparable to the time-scale of evolution of the dominant "lm growth dynamics.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Deposition of thin "lms from gas phase precursors has
great industrial importance. The modern integrated cir-
cuit technology depends strongly on the uniformity and
micro-structure of deposited thin "lms (Granneman, 1993).
Due to the increasingly stringent requirements on the qual-
ity of such "lms including uniformity, composition and
micro-structure and the desire to improve productivity by
increasing wafer dimensions and reducing product vari-
ability, real-time feedback control of thin "lm deposition
becomes important. These trends have motivated signi"-
cant research e5orts on feedback control of "lm deposition
processes with emphasis on control of "lm spatial uni-
formity in rapid thermal chemical vapor deposition (e.g.,
Baker & Christo"des, 1999; Theodoropoulou, Adomaitis,
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& Za"riou, 1999) and plasma-enhanced chemical vapor
deposition (e.g., Armaou & Christo"des, 1999). From a con-
trol point of view, "lm spatial uniformity control is a dis-
tributed control problem that can be addressed on the basis
of continuum-type transport-reaction models by using con-
troller design methods for nonlinear parabolic partial di5er-
ential equations (PDEs); see the book (Christo"des, 2001)
for results and references on this problem.

In addition to achieving spatially uniform deposition of
thin "lms, one would like to control "lm properties such
as micro-structure and composition that characterize "lm
quality. This is motivated by the strong dependence of the
electrical and mechanical properties of thin "lms on their
micro-structure and composition (see, for example, Lee,
Kim, Ju, & Oh, 1999; Chang et al., 2001; Akiyama, Imaishi,
Shin, & Jung, 2002). A typical example of thin "lm growth
where feedback control of "lm surface roughness could
be useful is the deposition of thin "lms of materials with
high dielectric constant (such as ZrO2); such materials
are expected to replace SiO2 thin "lms to achieve higher
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performance and lower static-power operation in com-
plementary metal oxide semiconductor (CMOS) devices
(Chang et al., 2001). In this application, a rough ZrO2 "lm
surface would lead to silicidation of the interface between
the ZrO2 "lm and the polysilicon gate during rapid ther-
mal annealing (Chabal et al., 2002), which, in turn, would
lead to an interfacial layer with low dielectric constant that
would reduce the e5ective capacity of the gate dielectric
(Wallace & Wilk, 2002). Therefore, good control of surface
roughness in the deposition of the ZrO2 thin "lm is needed
to achieve a smoother "lm surface with fewer reaction sites,
which would result in a suppression of the interfacial reac-
tions. The study of feedback control of surface roughness is
also motivated by the possibility to obtain roughness mea-
surements in real time using scanning tunneling microscopy
(VoigtlIander, 2001), spectroscopic ellipsometry (Zapien,
Messier, & Collin, 2001) or by combination of on-line mea-
surement techniques for measuring gas phase compositions
with o5-line measurement techniques for measuring surface
roughness. An implementation of the latter approach was re-
cently carried out by Ni, Lou, Christo"des, Lao, and Chang
(2003), where it was used to measure carbon composition
of thin "lms in plasma-enhanced chemical vapor deposition
using combination of optical emission spectroscopy (OES)
and X-ray photoelectron spectroscopy (XPS).

While deposition uniformity control can be accomplished
on the basis of continuum-type distributed models, precise
control of "lm properties requires models that predict how
the "lm state (microscopic scale) is a5ected by changes
in controllable process parameters (macroscopic scale).
The desire to understand and control the micro-structure of
thin "lms has motivated extensive research on fundamental
mathematical models describing thin "lm growth and its
interactions with the surrounding gas. Thin "lm deposi-
tion is a typical process including multiple time and length
scales and this has motivated the use of multiscale models
to obtain manageable modeling descriptions. Speci"cally,
one approach to model thin "lm growth is to model the
chamber-scale phenomena using a set of PDEs derived from
mass, momentum and energy balances, and to model the
micro-con"guration of the surface using the kinetic Monte
Carlo (MC) method (Vlachos, 1997; Lam & Vlachos,
2001). The two models are coupled through the surface
boundary conditions. Other approaches have been also de-
veloped to study the growth of thin "lms using the level set
method (Chen et al., 2001). While multiscale modeling pro-
vides a computationally attractive alternative with respect
to direct modeling of the entire reactor using a molecular
model, it still leads to dynamic models that cannot be solved
fast enough for real-time estimation and control purposes.

Mathematically, kinetic MC methods provide a numer-
ical solution to the master equation (Kang & Weinberg,
1992), which is a stochastic di5erential equation describ-
ing the evolution of probabilities that the thin "lm is at a
certain micro-con"guration. As the lattice size in the MC
simulation increases, thin "lm properties computed from the

kinetic MC simulation converge to the expected properties
obtained from the master equation, which are quantities to
be controlled. As an alternative with respect to closed-form
process models (e.g., linear or nonlinear systems of di5er-
ential equations), which are not available for describing the
micro-structure of thin "lms, the kinetic MC method can
predict expected properties of thin "lm micro-structure by
explicitly accounting for the micro-processes that directly
shape thin "lm growth. The accuracy of solutions from ki-
netic MC simulations depends on the size of the lattice used
in the simulation which, in turn, determines the computa-
tional requirements of the simulation. The computational
requirements for a solution with reasonable accuracy make
the direct use of kinetic MC algorithms in an on-line feed-
back control scheme impossible. Motivated by this, recent
research e5orts have focused on the development of order
reduction techniques for the master equation (Raimondeau
& Vlachos, 2000; Gallivan, Goodwin, & Murray, 2001;
Gallivan & Murray, 2003). Other approaches have also been
developed to identify linear models from outputs of kinetic
Monte Carlo simulators and perform controller design by
using linear optimal control theory (Armaou, Siettos, &
Kevrekidis, 2002).

In this work, we present an approach to estimation and
control of surface roughness in thin "lm growth using ki-
netic MC models. We use the process of thin "lm growth in
a stagnation 2ow geometry and consider atom adsorption,
desorption and surface migration as the three processes
that shape "lm micro-structure. A multiscale model that
involves coupled PDEs for the modeling of the gas phase
and a kinetic MC simulator, based on a high-order lattice,
for the modeling of the "lm micro-structure, is used to
simulate the process. A roughness estimator is constructed
that allows computing estimates of the surface roughness
at a time-scale comparable to the real-time evolution of
the process using discrete on-line roughness measurements.
The estimator involves a kinetic MC simulator based on
a reduced-order lattice, an adaptive "lter used to reduce
roughness stochastic 2uctuations and an error compensator
used to reduce the error between the roughness estimates
and the discrete roughness measurements. The rough-
ness estimates are fed to a PI controller. Application of
the proposed estimator/controller structure to the multi-
scale process model demonstrates successful regulation of
the surface roughness at the desired value. The proposed ap-
proach is shown to be superior to PI control with direct use
of the discrete roughness measurements. The reason is that
the available measurement techniques do not provide mea-
surements at a frequency that is comparable to the time-scale
of evolution of the dominant "lm growth dynamics.

2. Process description

We consider the growth of a thin "lm from a 2uid in a
vertical, stagnation 2ow geometry. The process is shown in
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Fig. 1. Illustration of the thin "lm growth process.

Fig. 1. In this geometry, inlet 2uid 2ow forms a uniform
boundary layer adjacent to the surface of the substrate and
precursor atoms di5use through the boundary layer and de-
posit a uniform thin "lm on the substrate (Gadgil, 1993).
Upon arrival on the surface, the precursor atoms are ad-
sorbed onto the surface. Subsequently, adsorbed atoms may
desorb to the gas phase or migrate on the surface.

From a modeling point of view, the major challenge is
the integration of the wide range of length and time-scales
that the process encompasses (Vlachos, 1997). Speci"cally,
in the gas phase, the processes of heat/mass transport can
be adequately modeled under the hypothesis of continuum,
thereby leading to PDE models for chamber temperature and
species concentration. However, when the micro-structure
of the surface is studied, microscopic events such as atom
adsorption, desorption and migration have to be consid-
ered, and the length-scale of interest reduces dramatically
to the order of that of several atoms. Under such a small
length scale, the continuum hypothesis is no longer valid
and deterministic PDEs cannot be used to describe the mi-
croscopic phenomena. Di5erent approaches, such as MC
simulation or molecular dynamics, should be employed to
model the evolution of surface micro-structure.

Although di5erent modeling approaches are used to model
the macroscopic and microscopic phenomena of the pro-
cess, there are strong interactions between the macro- and
micro-scale phenomena. For example, the concentration of
the precursor in the inlet gas governs the rate of adsorp-
tion of atoms on the surface, which, in turn, in2uences the
surface roughness. On the other hand, the density of the
adatoms on the surface a5ects the rate of desorption of
atoms from surface to the gas phase, which, in turn, in2u-
ences the gas phase concentration of the precursor. A mul-
tiscale model (Vlachos, 1997) is employed in this work
to capture the evolution of both macroscopic and micro-
scopic phenomena of the thin "lm growth process as well
as their interactions. A set of PDEs derived from the mass,
momentum and energy balances are used to describe the
gas phase dynamics. Kinetic MC simulation (Fichthorn &
Weinberg, 1991) is employed to capture the evolution of
surface micro-structure. Furthermore, the parameters of MC
simulation such as the temperature and precursor concentra-
tion are provided by the solution of PDEs, and the results

from the kinetic MC simulation are used to determine the
boundary conditions of the PDEs of the macroscopic model.

3. Gas phase model

Under the assumption of axisymmetric 2ow, the gas phase
can be modeled through continuum-type momentum, energy
and mass balances as follows (Lam & Vlachos, 2001):
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where f is the dimensionless stream function, Ra and Rd are
the rates of adsorption and desorption, respectively, � is the
dimensionless distance from the surface, � is the density of
the mixture, Pr is the Prandtl number, yj and Scj are the mole
fraction and Schmidt number of the species j, respectively,
Tbulk is the temperature of the bulk gas, Ng is the number of
total species in the gas phase, �b and �b are the viscosity and
the density of the bulk, respectively, a is the hydrodynamic
strain rate and �= 2at is the dimensionless time.

Although the macroscopic model describes the spatio-
temporal evolution of the precursor concentration and
temperature (which in2uence the con"guration of the
growing surface), no direct information of the surface
micro-structure is available from the macroscopic model.
Furthermore, the boundary conditions for the mass transfer
equation of the growing species depend on the rates of ad-
sorption and desorption. Therefore, a microscopic model is
necessary to model the micro-structure of the surface and
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to determine the boundary conditions of the mass transfer
equation.

4. Surface micro-structure model

The thin "lm growth considered in this work encompasses
three kinds of processes, the adsorption of atoms from the
gas phase to the surface; the desorption of atoms from the
surface to the gas phase and the migration of atoms on
the surface. The statistical properties of these processes can
be studied by sampling a duration t into n identical time in-
tervals �. When n→ ∞; � will be small enough so that each
interval will contain one event at the most. The average of
the rate can be de"ned as (Fichthorn & Weinberg, 1991)

r = lim
�→0

n�
t
; (6)

where n� is the number of time intervals containing events.
Therefore, the probability that ne events will occur in time
t is

Pne =

(
n

ne

)
(r�)ne(1 − r�)n−ne ; (7)

where n is the number of intervals in time duration t and(
n

ne

)
=
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ne!(n− ne)! :

When n→ ∞,

Pne =
rtne

ne!
e−rt ; (8)

which is a Poisson distribution (Van Kampen, 1992).
Eq. (8) can be readily applied to the adsorption, desorption
and migration processes involved in the thin "lm growth
process. Due to the fact that the ensemble of independent
Poisson processes is also a Poisson process ( Fichthorn &
Weinberg, 1991), the thin "lm growth process is a Poisson
process.

Due to that stochastic nature of the process, the probability
that the surface is in the possible con"guration � is described
by the so-called master equation (Van Kampen, 1992):

dP�
dt

=
∑
�

(W��P� −W��P�); (9)

where P� is the probability of the surface being in con"gu-
ration � and W�� is the transition probability rate of the sur-
face going from con"guration � to con"guration �, which
can be computed from the probability distribution of adsorp-
tion, desorption and migration. It is hard to write down the
explicit form of Eq. (9) because the number of the possible
states is extremely large for most systems of realistic size
(Gallivan & Murray, 2003). For example, consider a sys-
tem of 10× 10 sites with a maximum height of 1, the num-
ber of con"gurations is 2100 ≈ 1030. This makes the direct

solution of Eq. (9), using numerical methods for integration
of ODEs (e.g., Runge–Kutta), impossible.

MC methods provide an approach to solve the master
equation numerically. To capture the dynamic properties of
the system, the MC algorithms must be able to satisfy the
detailed balance criterion, appropriately calculate the life
time of each MC event and guarantee the independence of
events by using an appropriate random number generator
(Fichthorn & Weinberg, 1991). The way to satisfy detailed
balance criterion di5ers when di5erent algorithms are used.
In general, there are two groups of MC algorithms which
have been developed to simulate processes governed by the
master equation: (a) the null-event algorithm (Zi5, Gulari,
& Barshad, 1986), and (b) the kinetic MC method (Jansen,
1995). When null-event algorithm is used, which tries to
execute MC events on randomly selected sites with certain
probabilities of success, the probabilities of successful trials
should be appropriately constructed to satisfy the detailed
balance criterion. On the other hand, if kinetic MC method
is used, which selects the MC event before the selection of
the site on which the MC event is going to be executed,
the detailed balance criterion is satis"ed by appropriately
constructing the probabilities of the di5erent kinds of MC
events to be selected. Upon a successful MC event, the time
passed during the event is computed based on the total rates
of all the micro-processes (Vlachos, 1997). In this way, the
dynamic properties of the system can be captured. Since the
kinetic MC method is computationally more eQcient than
the null-event algorithm, it is used to simulate the surface
processes in the thin "lm growth process in this study (see
Reese, Raimondeau, and Vlachos (2001) for a detailed dis-
cussion on comparison of computational eQciency of the
kinetic MC method to the null-event algorithm).

To run the MC simulation for the evolution of the surface
micro-structure, an N×N lattice is initially constructed. The
size of the lattice (or the value of N ) is determined based on
the desired accuracy and the need to obtain a numerically
stable solution. Generally, a larger lattice can achieve higher
accuracy (in terms of average properties and size of stochas-
tic 2uctuations), but requires larger solution time. When the
lattice is ready, microscopic events are executed on the lat-
tice based on the probabilities of the individual processes.
To simplify the development, only "rst nearest-neighbor in-
teractions are considered, the solid-on-solid approximation
of a simple cubic lattice is made and periodic boundary con-
ditions are used.

In this study, we consider the multilayer growth and all
the sites are available for adsorption at all the time, therefore,
the adsorption rate is treated as site independent. For an ideal
gas, the adsorption rate is given by the kinetic theory (Lam
& Vlachos, 2001):

ra =
s0P√

2�mkTCtot
; (10)

where s0 is the sticking coeQcient, k is the Boltzmann con-
stant, P is the partial pressure of the precursor, Ctot is the
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concentration of sites on the surface, m is the molecular
weight of the precursor and T is the gas phase temperature
above the surface.

The rate of desorption depends on the local activation en-
ergy. Under the consideration of only "rst nearest-neighbor
interactions, the desorption rate of an atom from a surface
site with n "rst nearest neighbors is

rd(n) = #0 exp
(
−nE
kT

)
; (11)

where E is the energy associated with a single bond on the
surface and #0 is the frequency of events, which is deter-
mined by the following expression:

#0 = kd0 exp
(
−Ed
kT

)
; (12)

where kd0 is the event frequency constant and Ed is the
energy associated with desorption.

Surface migration is modeled as desorption followed by
re-adsorption (Gilmer & Bennema, 1972), and the migration
rate is given by

rm(n) = #0A exp
(
−nE
kT

)
; (13)

where A is associated with the energy di5erence that an atom
on a 2at surface has to overcome in jumping from one lattice

site to an adjacent one and A is given as

A= exp
(
Ed − Em
kT

)
; (14)

where Em is the energy associated with migration.
When the lattice is set and the rates of the three events are

determined based on the corresponding rate expressions, a
kinetic MC simulation is executed following the algorithm
reported by Vlachos (1997). First, a random number is gen-
erated to select an event to be run based on the above rates,
then, a second random number is generated to select the site
where the event will be executed from the list of the sites that
the event is possible to happen. Upon an executed event, a
time increment dt is computed by Lam and Vlachos (2001)

dt =
−ln &

ra × NT + #0(1 + A)
∑5

m=1 Nm exp(−mEkT )
; (15)

where & is a random number in the (0; 1) interval, NT is the
total number of sites on the lattice and Nm is the number of
atoms that have m neighbors on the surface.

5. A roughness estimator

The objective of this section is to present a systematic
method for the design of a dynamic estimator to estimate
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Fig. 2. Comparison of roughness pro"les obtained from kinetic MC
simulators which use 20×20; 50×50; 100×100, and 150×150 lattices.

surface roughness in real time using on-line roughness mea-
surements obtained at discrete time instants. Surface rough-
ness is a property of interest from a control point of view
since it directly in2uences device properties. The roughness,
r, is represented by the number of broken bonds on the sur-
face (Raimondeau & Vlachos, 2000):

r = 1 +

∑
i; j(|hi+1; j − hi; j| + |hi−1; j − hi; j| + |hi; j+1 − hi; j| + |hi; j−1 − hi; j|)

2 × N × N ; (16)

where N is the size of the lattice and hi; j is the number of
atoms at site (i; j).

In the kinetic MC simulation, the size of the lattice in2u-
ences the accuracy of the result and the computational de-
mand. Roughly speaking, the computational complexity of
the algorithm we adopt in this work is O(N 4), and the mag-
nitude of the 2uctuation in the solution is O(1=N 2), where
N is the size of the lattice. The 4th order dependence on
computational complexity and the 2nd order dependence of
2uctuations on the size of the lattice leave room for reducing
the solution time with relatively small loss of accuracy.

Fig. 2 shows the evolution of the surface roughness at
T = 600 from kinetic MC simulators using di5erent lattice
sizes: 20 × 20; 50 × 50; 100 × 100 and 150 × 150. All
the simulation results in this paper are plotted with respect
to the dimensionless time � (� = 2at, where t is the real
time and a is the hydrodynamic strain rate; the value of a
used in this work is shown in Table 1.). The result from
a kinetic MC simulator which uses a 20 × 20 lattice con-
tains signi"cant 2uctuations compared to the roughness pro-
"les obtained from a kinetic MC simulator which uses a
higher-order lattice. However, it gives the same trend of
the evolution of surface roughness. Furthermore, the results
from kinetic MC simulators which use 50 × 50, 100 × 100
and 150× 150 lattices are very close, thereby implying that



3120 Y. Lou, P. D. Christo,des / Chemical Engineering Science 58 (2003) 3115–3129

Table 1
Process and controller parameters

P 10−4 atm a 5 s−1

s0 0.1 m 0:028 kg=mol
Ctot 1019 sites=m2 kd0 1013 s−1

Ed 7:14 × 104 J=mol Em 4:28 × 104 J=mol
E 7:14 × 104 J=mol K0 0.5
Ks 1.0 Ke 0.08
Kc 30 �c 0.4
yset 1.5
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Fig. 3. Comparison of roughness pro"les from three independent kinetic
MC simulations which utilize a 20 × 20 lattice.

further increase of the lattice size does not improve the ac-
curacy of the results. Due to the stochastic nature of the al-
gorithm, it is not possible to obtain the same results from
repeated runs starting from the same initial conditions (see
remark 5 for how to handle this problem). However, for suf-
"ciently large lattice size, the results from di5erent runs are
consistent in the sense that they provide surface roughness
pro"les that are very close. Figs. 3 and 4 show the results
from three independent kinetic MC simulations which uti-
lize a 20×20 lattice and a 50×50 lattice. Clearly, as the lat-
tice size increases, the error among di5erent runs decreases.

To implement on-line control of surface roughness, the
size of the lattice has to be selected to make the model
computations be at a time-scale comparable to the process
real-time evolution (see also remark 1 for a discussion on
the issue of selecting the size of the reduced-order lattice).
In our simulations, when the size of the lattice is reduced to
20×20, the time of simulation is comparable to the real-time
process evolution. To overcome the 2uctuations introduced
by the smaller lattice size, a second-order linear "lter is used
to reject the noise in the roughness values obtained from
the kinetic MC simulator, which uses a reduced-order lattice
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Fig. 4. Comparison of roughness pro"les from three independent kinetic
MC simulations which utilize a 50 × 50 lattice.

model here with the following state space representation:

dŷ r
d�

= y1;

dy1

d�
=
K
�I

(yr − ŷ r) − 1
�I
y1; (17)

where yr is the output of the kinetic MC simulator which
uses a reduced-order lattice and ŷ r is the "lter output, K is
the "lter gain and �I is the time constant. To accelerate the
response of the "lter and avoid overshoot, �I = 0:5=K .

Due to the Arrhenius-like dependence of the rate of des-
orption and surface migration on temperature, the dynamics
of the roughness with respect to temperature variations is
very fast. To this end, we need a "lter that can both track the
fast dynamics and reject the noise so that the noise will not
deteriorate the controller performance. However, fast track-
ing and eQcient noise rejection are two con2icting objec-
tives that are very hard to be achieved simultaneously. For-
tunately, during the fast dynamic stage, the roughness is very
large compared to the 2uctuations and the e5ect of the 2uc-
tuations on the controller performance is insigni"cant. The
2uctuations begin to deteriorate the controller performance
signi"cantly only when the controlled roughness is close to
the set-point value. Motivated by this, an adaptive scheme
is used to determine the gain of the "lter on-line such that
the "lter focuses on tracking the growth dynamics ie. ŷr is
close to yr at the fast dynamic stage and on noise rejection
when the surface dynamics slow down. To achieve this, the
gain of the "lter is adjusted according to the following law:

K(�) = K0
| ∫ ��−S� yr(t) dt − ∫ �−S�

�−2S� yr(t) dt|
S�2

+ Ks; (18)

where K0 is a constant, Ks is the steady-state gain for the
adaptive "lter and S� is the dimensionless time interval
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Fig. 5. Evolution of the roughness obtained directly from a kinetic MC
simulator which uses a 20 × 20 lattice.
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Fig. 6. Filtered roughness from a kinetic MC simulator which uses a
20 × 20 lattice.

between two updates of K . To make the "lter focus on track-
ing the growth dynamics at the fast dynamic stage and on
noise rejection when the surface dynamics slow down, the
K0 and Ks in Eq. (18) are tuned such that the "rst term in
the right-hand side of Eq. (18) is dominant during the fast
dynamics stage and the second term in the right-hand side of
Eq. (18) is dominant when the dynamics slow down. The "l-
ter parameters (K0 and Ks) are determined from process step
tests and are shown in Table 1. Regarding the choice of S�,
although a better tracking performance is expected when a
smaller S� is used, a very small S� will introduce the e5ect
of 2uctuations on the "lter gain and should be avoided. Fig.
5 shows the roughness obtained directly from a kinetic MC
simulator using a 20×20 lattice and Fig. 6 shows the rough-
ness from the same kinetic MC simulator and the adaptive
"lter. The results clearly show that the adaptive "lter can

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

τ

S
ur

fa
ce

 r
ou

gh
ne

ss

Fig. 7. Filtered roughness from a kinetic MC simulator which uses a
20× 20 lattice (dashed line) and roughness from a kinetic MC simulator
which uses a 100 × 100 lattice (solid line).

reject most of the 2uctuation in the roughness values while
capturing the characteristics of the output of the kinetic MC
simulator which uses the reduced-order lattice.

The signi"cant 2uctuation is not the only problem need to
be "xed when a reduced-order lattice is used in the kinetic
MC simulator. There is also model inaccuracy when the out-
puts of kinetic MC simulators, which use a reduced-order
lattice and a high-order lattice, are compared. Fig. 7 shows
the output from a kinetic MC simulator which uses a 20×20
lattice after passing the "lter and that from a kinetic MC
simulator which uses a 100 × 100 lattice. Although the "l-
tered roughness from the kinetic MC simulator which uses
a reduced-order lattice contains little 2uctuation, the over-
all pro"le does not match that of the kinetic MC simulator
which uses a high-order lattice. This can be corrected by
using a measurement error compensator that uses the avail-
able roughness measurements obtained from a kinetic MC
simulator which uses the high-order lattice model to pro-
duce an improved roughness estimate. The state-space rep-
resentation of the measurement error compensator is of the
following form

de
d�

= Ke(yh(�mi) − ŷ(�mi));

�mi ¡ �6 �mi+1 ; i = 1; 2; : : : (19)

and the "nal roughness estimates are computed by

ŷ = ŷ r + e: (20)

In the above equations, Ke is the compensator gain, e is
the estimated model error, which is used to compensate
the model output, ŷ is the roughness estimate, ŷ r is the
"ltered output from a kinetic MC simulator which uses a
reduced-order lattice and yh is the output of a kinetic MC



3122 Y. Lou, P. D. Christo,des / Chemical Engineering Science 58 (2003) 3115–3129

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

τ

S
ur

fa
ce

 r
ou

gh
ne

ss

Fig. 8. Roughness pro"les from the roughness estimator based on a
20×20 lattice (dashed line) and from a kinetic MC simulator which uses
a 100 × 100 lattice (solid line).

simulator which uses the high-order lattice (in an experimen-
tal set-up yh could be obtained from the measurement sen-
sor). Since the roughness measurements are only available
at discrete points in time �m = [�m1 ; �m2 ; : : : ], the right-hand
side of Eq. (19) is computed at the time in which a rough-
ness measurement is available and is kept in this value in
the time interval between two available roughness measure-
ments.

The combination of the adaptive "lter and the measure-
ment error compensator functions as a roughness estimator,
which is capable to accurately predict the evolution of rough-
ness during the thin "lm growth by using measurements of
the precursor concentration above the substrate and surface
roughness. In this work, we assume that the estimate of pre-
cursor concentration above the substrate is available; the es-
timation of surface precursor concentration can be done by
using estimation methods for continuum-type PDE models
(Christo"des, 2001). Fig. 8 illustrates the prediction of sur-
face roughness by the roughness estimator based on a 20×20
lattice and its comparison to the output from the kinetic MC
model which uses a high-order lattice. The results clearly
show that when measurements are used, the estimator based
on a kinetic MC simulator which uses a reduced-order lat-
tice can predict the evolution of surface roughness, while
the computational requirements are kept within the limit that
makes on-line control possible.

Remark 1. It is important to point out that while a 20× 20
reduced-order lattice captures adequately the evolution of
the surface roughness in this speci"c thin "lm growth pro-
cess, the dimension of the reduced-order lattice in general
should be chosen so that the interactions between the sur-
face atoms are adequately captured, and also that it is large
enough to describe the spatio-temporal phenomena occur-
ring (e.g., island formation) on the surface. The choice of

the dimension of the reduced-order lattice can be guided by
the study of the surface behavior obtained by simulating a
very high order lattice; in this way, the proposed approach,
based on reduction of lattice size, appears to be quite in-
tuitive (see Gallivan and Murray (2003) for reduction ap-
proaches based on the master equation).

6. Feedback control of surface roughness

The production of high-quality thin "lms requires that
the surface roughness is maintained at a desired level. In
this work, we consider as manipulated variable the substrate
temperature which is assumed to change only with respect
to time. This is a reasonable formulation for the manipu-
lated input and is practically feasible for many experimen-
tal and industrial deposition processes. With such a ma-
nipulated input formulation, the only variable that can be
controlled is a spatially averaged roughness, as de"ned in
Eq. (16). We could have formulated a control problem under
the assumption that a large number of manipulated inputs
(control actuators) are available to control surface roughness
with higher precision but such a control problem formula-
tion would not be practically feasible at the present time. As
we will see below, it is possible by manipulating substrate
temperature (single input formulation) to achieve an overall
very smooth surface con"guration.

The fact that the model that describes the evolution of
the thin "lm growth process is not available in closed form
(MC model) motivates the use of a proportional-integral
(PI) feedback controller to regulate the surface roughness.
Speci"cally, the controller has the following form:

u(�) = Kc

[
(ŷ − yset) +

1
�c

∫ �

0
(ŷ − yset) dt

]
; (21)

where yset is the set-point for the controlled output, ŷ is
the output of the roughness estimator, Kc is the proportional
gain and �c is the integral time constant. The reader may
refer to Lou and Christo"des (2003) for results on multi-
variable controller design for surface roughness and growth
rate control in the same thin "lm process.

The PI controller is coupled with the roughness esti-
mator presented in the previous section. A diagram of the
closed-loop system under the proposed estimator/controller
structure is shown in Fig. 9. The roughness estimator in-
cludes the MC model which uses a reduced-order lattice,
the adaptive "lter and the measurement error compensator.
The output of the MC model is sent to the adaptive "lter
(Eq. (17)) to suppress the noise, and the measurement er-
ror compensator (Eqs. (19) and (20)) updates the "ltered
roughness based on the measurements. Finally, the rough-
ness estimates are used in the PI controller to determine the
substrate temperature.

A closed-loop simulation was run to evaluate the e5ec-
tiveness of the estimator/controller structure. The size of
the reduced-order lattice is 20 × 20, and a 50 × 50 lattice
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Fig. 9. Diagram of the closed-loop system.
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Fig. 10. Evolution of the surface roughness under feedback control based
on the roughness estimator.

MC model is used to describe the evolution of the process.
The desired roughness is 1.5. The time interval between two
available measurements is 0:3 s; this is consistent with spec-
troscopic ellipsometry techniques that can be used to mea-
sure surface roughness on-line (Zapien et al., 2001). Other
parameters used in the PI simulation are shown in Table 1.

Initially, the thin "lm grows on a perfect surface at T =
600 K and the roughness increases. Then, the controller is
activated when the roughness reaches 15.5. Fig. 10 shows
the evolution of surface roughness under feedback control.
Fig. 11 shows the pro"le of the substrate temperature. The
results clearly show that the proposed estimator/controller
structure can successfully drive the surface roughness to the
desired set-point value.

The micro-con"gurations of the surface before the con-
troller is activated and at the end of the closed-loop simu-
lation run are shown in Figs. 12 and 13, respectively. The
controller successfully reduces the surface roughness of the
thin "lm.

To test the robustness of the proposed estimator/controller
structure, we considered controlling the thin "lm growth
process in the presence of 10% uncertainty in the energy as-
sociated with a single bond on the surface. Figs. 14 and 15
show the corresponding output and input pro"les, respec-
tively. The controller exhibits very good robustness proper-
ties (compare Figs. 10 and 14).
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Fig. 11. The evolution of the substrate temperature based on the roughness
estimator.

Fig. 12. The micro-con"guration of the surface for T = 600 K.

Fig. 13. The micro-con"guration of the surface at the end of the closed-
loop simulation run—feedback control based on the roughness estimator.
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Fig. 14. Evolution of the surface roughness under feedback control
based on the roughness estimator—closed-loop system simulation under
uncertainty.
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Fig. 15. Evolution of the substrate temperature under feedback control
based on the roughness estimator—closed-loop system simulation under
uncertainty.

To show the importance of using the roughness estima-
tor for feedback control and not relying exclusively on the
roughness measurements (which are obtained every 0:3 s),
we applied the PI controller (with the same parameters as
in Table 1) to the multiscale process model assuming that
new roughness measurements are fed into the controller ev-
ery 0:3 s (this is consistent with our previous simulations).
Also, to prevent the substrate temperature from increasing
to an unreasonably high value, the substrate temperature
is constrained to be below Tmax = 1100 K. We note that
when the roughness is controlled using the proposed con-
troller/estimator structure, the substrate temperature is al-
ways lower than Tmax (see Fig. 11). Figs. 16 and 17 show the
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Fig. 16. Evolution of the surface roughness under feedback control without
roughness estimator.
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Fig. 17. Evolution of the substrate temperature under feedback control
without roughness estimator.

evolution of surface roughness and substrate temperature,
respectively. Due to the discrete measurements, we observe
signi"cant oscillations in the surface roughness pro"le; this
simulation shows the usefulness of the proposed estima-
tor/controller structure.

Remark 2. We note that the fundamental reason for the
poor performance shown in Fig. 16 is that the discrete mea-
surements cannot capture the full dynamics of the system,
which prevents eQcient control actions to be computed by
the controller. Tuning the controller cannot achieve a con-
trol performance as good as that achieved under feedback
control using the roughness estimator. As shown in Fig. 16,
when the controller is tuned to achieve fast dynamics
in the output, signi"cant oscillation can be seen in the
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Fig. 18. Evolution of the surface roughness under feedback control without
roughness estimator: controller is tuned such that signi"cant oscillation
is avoided.
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Fig. 19. Evolution of the substrate temperature under feedback control
without roughness estimator: controller is tuned such that signi"cant
oscillation is avoided.

roughness pro"le. The oscillations could be reduced by tun-
ing the controller; however, the result of this is that the time
needed for the process to reach the steady state becomes
much longer. To show this, we applied the PI controller
with a set of new parameters (Kc=10; �c=1:0) to the same
multiscale process model assuming that the new roughness
measurements are fed into the controller every 0:3 s. The
parameters of the PI controller are tuned to avoid signi"cant
oscillation in the roughness pro"le under feedback control.
Figs. 18 and 19 show the pro"les of surface roughness and
substrate temperature, respectively. With the new controller
parameters, fewer oscillations are observed, but the process
takes signi"cantly longer time to reach the new steady state
(compare Figs. 11 and 19; in Fig. 11, the substrate temper-
ature reaches the steady-state value at around �= 20, but in
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Fig. 20. Comparison of roughness pro"les: (1) roughness pro"le under
feedback control based on the roughness estimator, (2) roughness pro-
"le under feedback control without roughness estimator with controller
parameters shown in Table 1 and (3) roughness pro"le under feedback
control without roughness estimator with controller parameters tuned to
avoid signi"cant oscillation.

Fig. 19, the substrate temperature reaches the steady-state
value at around � = 100). To better compare the perfor-
mance of the various control approaches, the closed-loop
roughness pro"les shown in Figs. 10, 16 and 18 are
shown together in Fig. 20. We also tried many other sets
of turning parameters of the PI controller, but it turns
out it is hard to achieve short transient time and less
oscillation simultaneously when controlling the surface
roughness exclusively relying on the discrete measurements.

Remark 3. Furthermore, when there is time-delay in the
measurements of surface roughness, the PI controller (with
parameters shown in Table 1) is not able to drive the
surface roughness to the set-point value. To show this, we
applied the PI controller to the multiscale process model
assuming that the new roughness measurements are fed into
the controller every 0:3 s with a time-delay of td = 0:3 s.
Also, to prevent the substrate temperature from reaching
an unreasonably high or low values, the substrate tem-
perature is constrained to be between Tmax = 1100 K and
Tmin = 300 K. We note that the lower limit of the substrate
temperature Tmin = 300 K was not reached in any of the
previous simulations. Figs. 21 and 22 show the pro"les
of surface roughness and substrate temperature under PI
control using the discrete roughness measurements with
time-delay. Due to the existence of time-delay in the mea-
surements, we observe that the PI controller cannot drive
the output to the desired set-point value. On the other
hand, when the estimator/controller structure is used, the
measurement-delay has very little e5ect to the control per-
formance. To show this, we applied the estimator/controller
structure (the parameters of the PI controller are the same
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Fig. 21. Evolution of the surface roughness under feedback control without
roughness estimator—delayed roughness measurements.
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Fig. 22. Evolution of the substrate temperature under feedback control
without roughness estimator—delayed roughness measurements.

to those shown in Table 1) to the multiscale process model
assuming that new roughness measurements are fed into
the estimator every 0:3 s with a time-delay of td = 0:3 s.
The resulting pro"les of surface roughness and substrate
temperature are shown in Figs. 23 and 24. The proposed
estimator/controller structure successfully drives the sur-
face roughness to the set-point value in the presence of
time-delay in the roughness measurements.

Remark 4. Furthermore, to show that the estimator/
controller structure is able to control the surface roughness
independently of the frequency at which the roughness
measurements are available, we implemented the proposed
structure without using roughness measurements, i.e. the
controller determines the substrate temperature based only
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Fig. 23. Evolution of the surface roughness under feedback control based
on the roughness estimator—delayed roughness measurements.
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Fig. 24. Evolution of the substrate temperature under feedback control
based on the roughness estimator—delayed roughness measurements.

on the output of the kinetic MC simulator which uses
the reduced-order lattice and the adaptive "lter. Figs. 25
and 26 show the resulting pro"les of surface roughness
and substrate temperature. Our simulation results show
that this open-loop implementation of the proposed con-
troller/estimator structure (with same parameters as those
shown in Table 1) successfully drives the surface roughness
to the desired value.

Remark 5. The 2uctuations of the roughness value ob-
tained by using a reduced-order lattice MC model can be
reduced by independently running several MC simulations
using a reduced-order lattice with the same parameters and
averaging the roughness values obtained from the di5erent
runs. Fig. 27 shows a comparison of the evolution of surface
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Fig. 25. Evolution of the surface roughness under open-loop implemen-
tation of the estimator/controller structure.
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Fig. 26. Evolution of the substrate temperature under open-loop imple-
mentation of the estimator/controller structure.

roughness obtained from (a) a kinetic MC simulator which
uses a 20 × 20 lattice, (b) the computation of the average
of six independent MC simulations which utilize a 20 × 20
lattice, and (c) a MC simulator which uses a 100× 100 lat-
tice. These results show that when the outputs from multiple
reduced-order lattice models are averaged, a more accurate
calculation of surface roughness is obtained. However, by
increasing the number of MC simulations, the computa-
tional requirement is also increasing. For the simulations of
Fig. 27, the computational time for the averaged roughness
is six times as much as that needed to perform one MC simu-
lation run and it is approximately equal to the computational
time needed to run an MC simulation on a 30 × 30 lattice.
Fig. 28 shows a comparison of the evolution of roughness
obtained from (a) an MC simulator which uses a 30×30 lat-
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Fig. 27. Comparison of the evolution of roughness from: (1) an MC
simulator which uses a 20×20 lattice, (2) the computation of the average
of six independent MC simulations which utilize a 20 × 20 lattice, and
(3) an MC simulator which uses a 100 × 100 lattice.
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Fig. 28. Comparison of the evolution of roughness from: (1) an MC
simulator which uses a 30×30 lattice, (2) the computation of the average
of six independent MC simulations which utilize a 20 × 20 lattice, and
(3) an MC simulator which uses a 100 × 100 lattice.

tice, (b) the computation of the average of six independent
MC simulations which utilize a 20 × 20 lattice, and (c) an
MC simulator which uses a 100×100 lattice. The results of
Fig. 28 show that the roughness obtained by averaging six
MC simulations, which use a 20× 20 lattice model, is close
to the one obtained from the 100× 100 lattice model and is
superior to the one obtained from the 30× 30 lattice model.

Fig. 29 shows the evolution of surface roughness under
feedback control using a roughness estimator based on a ki-
netic MC simulator which employs six reduced-order lattice
models. Fig. 30 shows the corresponding pro"le of the sub-
strate temperature. The results are comparable to the case of
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Fig. 29. Evolution of the surface roughness under feedback control using
a roughness estimator based on a kinetic MC simulator that employs six
reduced-order lattice models.
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Fig. 30. Evolution of the substrate temperature under feedback control
using a roughness estimator based on a kinetic MC simulator that employs
six reduced-order lattice models.

using a kinetic MC simulator which uses one 20×20 lattice
in the controller (compare closed-loop roughness pro"les in
Figs. 10 and 29); which means that the feedback control
system based on a kinetic MC simulator which uses a single
reduced-order lattice performs very well.

7. Conclusions

This work proposed an approach to estimation and control
of surface roughness in thin "lm growth. A feedback control
system, which can be implemented in real time, was devel-
oped and applied to a thin "lm growth process in a stagnation
2ow geometry. The control system consists of a roughness

estimator and a proportional integral controller. The rough-
ness estimator combines kinetic Monte Carlo simulator that
uses reduced-order lattice model, a "lter and a measurement
error compensator that uses discrete roughness measure-
ments. Application of the proposed estimator/controller
structure to the multiscale process model demonstrates suc-
cessful regulation of the surface roughness at the desired
set-point value. The proposed approach is shown to be su-
perior to PI control with direct use of the discrete roughness
measurements. The reason is that the available measurement
techniques do not provide measurements at a time-scale
comparable to the evolution of the dominant "lm growth
dynamics. We "nally note that although the e5ectiveness
of proposed control method is demonstrated through appli-
cation to a thin-"lm growth process in a stagnation 2ow
geometry, the method can be applied to other processes
described by multiscale distributed models to control
microscopic phenomena.
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