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In this work, we develop a method for nonlinear feedback control of the roughness of a one-dimensional
surface whose evolution is described by the stochastic Kuramoto-Sivashinsky equation (KSE), a fourth-
order nonlinear stochastic partial differential equation. We initially formulate the stochastic KSE into a system
of infinite nonlinear stochastic ordinary differential equations by using Galerkin’s method. A finite-dimensional
approximation of the stochastic KSE is then derived that captures the dominant mode contribution to the
surface roughness. A nonlinear feedback controller is then designed based on the finite-dimensional
approximation to control the surface roughness. An analysis of the closed-loop nonlinear infinite-dimensional
system is performed to characterize the closed-loop performance enforced by the nonlinear feedback controller
in the closed-loop infinite-dimensional system. The effectiveness of the proposed nonlinear controller and
the advantages of the nonlinear controller over a linear controller resulting from the linearization of the nonlinear
controller around the zero solution are demonstrated through numerical simulations. Finally, a successful
application of a stochastic KSE-based nonlinear feedback controller to the kinetic Monte Carlo model of a
sputtering process is also demonstrated.

1. Introduction

The surface roughness of thin films strongly affects the quality
of such films and consequently is an important variable to
control. Therefore, modeling and control of thin film micro-
structure have attracted significant research efforts in the recent
years. Fundamental mathematical modeling techniques have
been developed to describe the microscopic features of surfaces
formed by surface microprocesses, which include (1) dynamical
Monte Carlo methods1-4 and (2) stochastic partial differential
equations.5-8 The development of modern roughness measure-
ment techniques provides the opportunity to obtain roughness
measurements in real-time using spectroscopic ellipsometry
techniques,9 by grazing-incidence small-angle X-ray scattering
(GISAXS),10 or by combination of on-line measurement tech-
niques for measuring gas-phase compositions with off-line
measurement techniques for measuring surface roughness. An
implementation of the latter approach was recently reported in
ref 11 where it was used to measure carbon composition of thin
films in plasma-enhanced chemical vapor deposition using
combination of optical emission spectroscopy (OES) and X-ray
photoelectron spectroscopy (XPS). Also, experimental methods
have been developed to perform scanning tunneling microscopy
(STM) measurement on the surface during epitaxial growth of
semiconductor layers.12

The kinetic Monte Carlo simulation methods can be used to
predict average properties of thin films (which are of interest
from a control point of view, for example, surface roughness),
by explicitly accounting for the microprocesses that directly
shape thin film microstructure. A methodology for feedback
control of surface roughness using kinetic Monte Carlo models
was developed in refs 13 and 14. The methodology led to the
design of (a) real-time roughness estimators by using multiple

small lattice kinetic Monte Carlo simulators, adaptive filters,
and measurement error compensators and (b) feedback control-
lers based on the real-time roughness estimators. The method
was successfully applied to control surface roughness in a GaAs
deposition process model.15 Moreover, kinetic Monte Carlo
methods were also used to study dynamics of complex deposi-
tion processes including multiple components with both short-
range and long-range interactions and to perform predictive
control design to control final surface roughness in ref 16.

However, the fact that kinetic Monte Carlo models are not
available in closed-form makes it very difficult to use them for
system-level analysis and the design and implementation of
model-based feedback control systems. To achieve better closed-
loop performance, it is desirable to design feedback controllers
on the basis of deposition process models. An approach was
reported in refs 17 and 18 to identify linear deterministic models
from outputs of kinetic Monte Carlo simulators and design
controllers using linear control theory. This approach is effective
in controlling macroscopic variables, which are low statistical
moments of the microscopic distributions (e.g., surface coverage,
which is the zeroth moment of species distribution on a lattice).
However, to control higher statistical moments of the micro-
scopic distributions, such as the surface roughness (the second
moment of height distribution on a lattice) or even the
microscopic configuration (such as the surface morphology),
deterministic models may not be sufficient. This is because the
effect of the stochastic nature of the microscopic processes
becomes very significant in these cases and must be addressed
in both the model construction and controller design. On the
other hand, stochastic PDEs contain the surface morphology
information of thin films; thus, they may be used for the purpose
of feedback controller design. For example, it has been
experimentally verified that the Kardar-Parisi-Zhang (KPZ)
equation19 can describe the evolution of the surface morphology
of gallium arsenide (GaAs) thin films, which is consistent with
the surface measured by atomic force microscopy (AFM).20,21

Furthermore, based on the fact that kinetic Monte Carlo
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simulations provide realizations of a stochastic process that are
consistent with the master equation that describes the evolution
of the probability distribution of the system being at a certain
microconfiguration, a method to construct reduced-order ap-
proximations of the master equation was reported in ref 22.
Recently, a method was also developed to identify an empirical
input-output model for a copper electrodeposition process using
simulation data from a coupled kinetic Monte Carlo and finite-
difference simulation code and perform controller design using
the identified model.23

For many deposition and sputtering processes, closed-form
process models, in the form of linear or nonlinear stochastic
partial differential equations (PDEs), can be derived based on
the microscopic rules and the corresponding master equation
(e.g., refs 5-8 and 24). To achieve better closed-loop perfor-
mance, it is desirable to design feedback controllers on the basis
of process models. This has motivated recent research on the
development of a method for feedback control of surface
roughness based on linear stochastic PDE process models.25,26

This method involves reformulation of the linear stochastic PDE
into a system of infinite linear stochastic ordinary differential
equations (ODEs) by using modal decomposition, derivation
of a finite-dimensional approximation that captures the dominant
mode contribution to the surface roughness, and state feedback
controller design based on the finite-dimensional approximation.
Furthermore, a method for construction of linear stochastic PDE
models for thin film growth using first principles-based micro-
scopic simulations was developed in ref 27, and a multi-variable
predictive control based on a linear stochastic PDE model was
developed in ref 28 to simultaneously control surface roughness
and growth rate in a thin film deposition process taking place
in a 2-D lattice.

However, nonlinearities exist in many material preparation
processes in which surface evolution can be modeled by
stochastic PDEs. A typical example of such processes is the
sputtering process whose surface evolution is described by the
nonlinear stochastic Kuramoto-Sivashinsky equation (KSE).
In a simplified setting, the sputtering process includes two types
of surface microprocesses, erosion and diffusion. The nonlin-
earity of the sputtering process originates from the dependence
of the rate of erosion on a nonlinear sputtering yield function.7

In our previous work,26 feedback control of surface roughness
in sputtering processes was designed based on a linearized
stochastic KSE process model, which was identified by using
data from multiple kinetic Monte Carlo simulations of the same
process. However, it is expected that such a linear controller is
only going to provide good closed-loop performance locally (i.e.,
for initial conditions close to the desired set point) for the
nonlinear closed-loop system, due to the fact that the inherent
process nonlinearities are not explicitly considered in the
linearized process model. To perform feedback control design
for nonlinear stochastic processes (i.e., provide good perfor-
mance for a wide range of process initial conditions and
operating conditions), it is desirable that a nonlinear process
model is directly used as the basis for controller synthesis. This
motivates research on nonlinear feedback control of nonlinear
stochastic PDEs.

In this work, we develop a method for nonlinear feedback
control of the roughness of a one-dimensional surface whose
evolution is described by the stochastic KSE. A finite-
dimensional approximation of the stochastic KSE is first derived
that captures the dominant mode contribution to the surface
roughness and a nonlinear feedback controller is designed based
on this finite-dimensional approximation to control the surface

roughness. An analysis of the closed-loop nonlinear infinite-
dimensional system is performed to characterize the closed-
loop performance enforced by the nonlinear feedback controller
in the closed-loop infinite-dimensional system. The proposed
nonlinear controller is successfully applied to a high-order
approximation of the stochastic KSE and the kinetic Monte
Carlo model of a sputtering process.

2. Preliminaries

The stochastic KSE is a fourth-order nonlinear stochastic
partial differential equation that describes the evolution of the
height fluctuation for surfaces in a variety of material preparation
processes including surface erosion by ion sputtering,7,8 surface
smoothing by energetic clusters,29 and ZrO2 thin film growth
by reactive ion beam sputtering.30 We consider the stochastic
KSE in a one-dimensional domain8 with distributed control in
the spatial domain [-π, π] (see also refs 31-34 for distributed
control problem formulation for the deterministic KSE):

subject to periodic boundary conditions:

and the initial condition:

where ν, κ, and λ are parameters related to surface mecha-
nisms,30 x ∈[-π, π] is the spatial coordinate,t is the time,h(x,
t) is the height of the surface at positionx and timet, ui is the
ith manipulated input,p is the number of manipulated inputs,
andbi is theith actuator distribution function (i.e.,bi determines
how the control action computed by theith control actuator,ui,
is distributed (e.g., point or distributed actuation) in the spatial
interval [-π, π]). ê(x, t) is a Gaussian noise with the following
expressions for its mean and covariance:

whereδ(‚) is the dirac function and〈‚〉 denotes the expected
value. Note that the noise covariance depends on both spacex
and timet.

Our objective is to control the expected roughness of the
surface described by the stochastic KSE. The surface roughness,
r, is represented by the standard deviation of the surface from
its average height and is computed as follows:

where

is the average surface height.
To study the dynamics of eq 1, we initially consider the

eigenvalue problem of the linear operator of eq 1, which takes
the form:

∂h

∂t
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∂
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∂x4
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bi(x)ui(t) + ê(x, t) (1)

∂
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(π, t) j ) 0, ..., 3 (2)

h(x, 0) ) h0(x) (3)

〈ê(x, t)〉 ) 0

〈ê(x, t)ê(x′, t′)〉 ) δ(x - x′)δ(t - t′) (4)

r(t) ) x 1
2π ∫-π

π
[h(x, t) - hh(t)]2 dx (5)

hh(t) ) 1
2π ∫-π

π
h(x, t) dx
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whereλn denotes an eigenvalue andφhn denotes an eigenfunction.
A direct computation of the solution of the above eigenvalue
problem yieldsλ0 ) 0 with ψ0 ) 1/x2π, andλn ) νn2 - κn4

(λn is an eigenvalue of multiplicity two) with eigenfunctions
φn ) (1/xπ) sin(nx) andψn ) (1/xπ) cos(nx) for n ) 1, ...,∞.
Note that theφhn in eq 6 denotes eitherφn or ψn. From the
expression of the eigenvalues, it follows that for fixed values
of ν > 0 andκ > 0, the number of unstable eigenvalues of the
operatorA in eq 6 is finite and the distance between two
consecutive eigenvalues (i.e.λn and λn+1) increases asn
increases.

To present the method that we use to control eq 1, we first
derive nonlinear stochastic ODE approximations of eq 1 using
Galerkin’s method. To this end, we first expand the solution of
eq 1 in an infinite series in terms of the eigenfunctions of the
operator of eq 6 as follows:

whereRn(t) andân(t) are time-varying coefficients. Substituting
the above expansion for the solution,h(x, t), into eq 1 and taking
the inner product with the adjoint eigenfunctions,φn

/(z) ) (1/
xπ) sin(nz) andψn

/(z) ) (1/xπ) cos(nz), the following system
of infinite nonlinear stochastic ODEs is obtained:

where

and

The covariances ofêR
n(t) andêâ

n(t) can be computed by using
the following result:

Result 1.If (1) f (x) is a deterministic function, (2)η(x) is a
random process with〈η(x)〉 ) 0 and covariance〈η(x)η(x′)〉 )
σ2δ(x - x′), and (3)ε ) ∫a

b f (x)η(x) dx, thenε is a random
number with〈ε〉 ) 0 and covariance〈ε2〉 ) σ2∫a

b f 2(x) dx.35

Using Result 1, we obtain〈êR
n(t)êR

n(t′)〉 ) δ(t - t′) and
〈êâ

n(t)êâ
n(t′)〉 ) δ(t - t′).

In this work, the controlled variable is the expected value of
the square of the surface roughness defined in eq 5,〈r(t)2〉.
According to eq 7, we havehh(t) ) â0(t)ψ0. Therefore,〈r(t)2〉
can be rewritten in terms ofRn(t) andân(t) as follows:

Therefore, the surface roughness control problem for the
stochastic KSE of eq 1 is formulated as the one of controlling
the covariance of the statesRn andân in the nonlinear stochastic
ODE system of eq 8.

Remark 1. Note that in practice, the control action,ui, can
be implemented by manipulating the gas composition across
the surface in either a deposition process or a sputtering process.
Spatially controllable CVD reactors have been developed to
enable across-wafer spatial control of surface gas composition
during deposition.36 In such a control problem formulation, the
rate that particles land on the surface or the rate that surface
particles are eroded is spatially distributed and is computed by
the controller. The parameters of the stochastic KSE model of
eq 1 depend on both the temperature and the rate that particles
land on the surface or that surface particles are eroded.8 In this
work, the temperature is assumed to be a constant. The rate
that particles land on the surface or the rate that surface particles
are eroded used to compute the stochastic KSE model param-
eters corresponds to that under open-loop operation, and thus,
it is also a constant. The contribution of the spatially distributed
rate that particles land on the surface or the rate that surface
particles are eroded to the fluctuations of the surface height
profile (e.g., the surface roughness) is captured by the term
Σi)1

p bi(x)ui(t). This control problem formulation is further
supported by our simulation results, which demonstrate that the
controller designed on the basis of the stochastic KSE model
of a sputtering process can be successfully applied to the kinetic
Monte Carlo model of the same sputtering process to control
the surface roughness to desired levels (see simulation results
section).

Remark 2. Note that in the stochastic KSE of eq 1, the
covariance ofê(x, t) is normalized to beδ(x - x′)δ(t - t′). In
general, the covariance of the noise term of the stochastic KSE
is ς2δ(x - x′)δ(t - t′), whereς2 is a process parameter derived
based on the rates of surface microscopic processes.7 The
normalization procedure is detailed in the simulation section
of this work. This convenience is adopted to simplify our
presentation.
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Remark 3. Note that because the termâ0 is canceled in the
computation of the expected value of the surface roughness,
defined in eq 11,â0 does not contribute to the expected surface
roughness. Therefore, the stochastic ODE related toâ0 in the
system of eq 8 is not considered in the development of the
feedback controller for surface roughness control in the next
section.

Remark 4. Stochastic PDE models for many deposition
processes and sputtering processes can be derived based on the
corresponding master equations, which describe the evolution
of the probability that the surface is at a certain configuration
(see, for example, refs 8 and 37). The surface in these processes
is directly formed by microscopic events such as adsorption,
desorption, erosion, diffusion, and reaction. Kinetic Monte Carlo
simulation can also be used to predict the evolution of the
surface configuration in stochastic processes. The kinetic Monte
Carlo model is a first-principle model in the sense that the
microscopic rules are explicitly considered in the model.
Mathematically, kinetic Monte Carlo simulation methods pro-
vide an unbiased realization of the master equation. Therefore,
the evolution of the surface configuration predicted by the
closed-form stochastic PDE model is consistent with that
predicted by the kinetic Monte Carlo model. As a result, the
controller designed based on the stochastic PDE process model
can be applied to the kinetic Monte Carlo model of the same
process.25,26 In the simulation section, we will demonstrate
nonlinear control of a sputtering process including two surface
microprocesses, diffusion and erosion. The fluctuation of surface
height of such a sputtering process can be described by the
stochastic KSE. A nonlinear feedback controller will be designed
based on the stochastic KSE process model and will be applied
to the kinetic Monte Carlo model of the same process to control
the surface roughness to a desired level.

Remark 5. It is also important to note that the problem of
feedback control of the deterministic KSE, which is used to
describe incipient instabilities in a variety of physical/chemical
processes including falling liquid films, unstable flame fronts,
and interfacial instabilities between two viscous fluids, has
attracted significant research effort. Analytical and numerical
studies of the dynamics of the deterministic KSE have revealed
that the dominant dynamics of the KSE can be adequately
characterized by a small number of degrees of freedom.38 This
has motivated extensive research focusing on the design of
linear/nonlinear finite-dimensional output feedback control-
lers31,32 for stabilization of the zero solution of the KSE on the
basis of ordinary differential equation approximations, obtained
through linear32 and nonlinear31 Galerkin’s method, that ac-
curately describe the dominant dynamics of the KSE for a given
value of the instability parameter. The accuracy of the solutions
of the ODE systems obtained through Galerkin’s method to the
ones of the PDE can be analyzed by using a methodology
developed in.39 The global stabilization of the KSE has also
been addressed via distributed static output feedback control.33

A nonlinear boundary feedback controller was also proposed
in ref 40 that enhances the rate of convergence to the spatially
uniform steady state of the KSE, for values of the instability
parameter for which this steady state is open-loop stable. The
issue of optimal actuator/sensor placement for the KSE was also
addressed in ref 34 so that the desired control objectives are
achieved with minimal energy use.

3. Feedback Control

In this section, we design a nonlinear state feedback controller
for the system of eq 8 so that the expected value of the surface
roughness defined in eq 11 can be controlled to a desired level.

3.1. Model Reduction. Owing to its infinite-dimensional
nature, the system of eq 8 cannot be directly used for the design
of controllers that can be implemented in practice (i.e., the
practical implementation of controllers that are designed on the
basis of this system will require the computation of infinite sums
which cannot be done by a computer). Instead, we will base
the controller design on a finite-dimensional approximation of
this system. Subsequently, we will show that the resulting
controller will enforce the desired control objective in the closed-
loop infinite-dimensional system. Specifically, we rewrite the
system of eq 8 as follows:

wherexs ) [R1 ‚‚‚ Rm â1 ‚‚‚ âm]T, xf ) [Rm+1 âm+1 ‚‚‚]T, Λs )
diag[λ1 ‚‚‚ λm λ1 ‚‚‚ λm], Λf ) diag[λm+1 λm+1 λm+2 λm+2 ‚‚‚],
fs(xs, xf) ) [f1R(xs, xf) ‚‚‚ fmR(xs, xf) f1â(xs, xf) ‚‚‚ fmâ(xs, xf)]T,
ff(xs, xf) ) [fm+1R(xs, xf) fm+1â(xs, xf) ‚‚‚]T, u ) [u1 ‚‚‚ up], ês )
[êR

1 ‚‚‚ êR
m êâ

1 ‚‚‚ êâ
m], and êf ) [êR

m+1 êâ
m+1 ‚‚‚]:

In our development, we will need the following notations.
The 2-norms for vectorsxs, xf, and fs(xs, xf) are defined as
follows:

The covariance matrices forxs(t) andxf(t), Ps(t) andPf(t) are
defined as follows:

where〈‚〉 denotes the expected value andxs
T(t) and xf

T(t) are
transposes of the vectorsxs(t) andxf(t), respectively.

We note that the subsystemxf in eq 12 is infinite-dimensional.
Neglecting thexf subsystem, the following 2m-dimensional
system is obtained:

dxs

dt
) Λsxs + fs(xs, xf) + Bsu + ês

dxf

dt
) Λfxf + ff(xs, xf) + Bfu + êf (12)

Bs ) [b1R1 · · · bpR1

··· ··· ···
b1Rm · · · bpRm

b1â1 · · · bpâ1

· · · ··· ···
b1âm · · · bpâm

]
Bf ) [b1Rm+1 · · · bpRm+1

b1âm+1 · · · bpâm+1

b1Rm+2 · · · bpRm+2

b1âm+2 · · · bpâm+2

··· ··· ···
] (13)

||xs||2 ) x∑
j)1

m

Rj
2 + ∑

j)1

m

âj
2

||xf||2 ) x ∑
j)m+1

∞

Rj
2 + ∑

j)m+1

∞

âj
2

||fs(xs, xf)||2 ) x∑
j)1

m

fjR(xs, xf)
2 + ∑

j)1

m

fjâ(xs, xf)
2 (14)

Ps(t) ) 〈xs(t)xs
T(t)〉 Pf(t) ) 〈xf(t)xf

T(t)〉 (15)
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where the tilde symbol inx̃s denotes that this state variable is
associated with a finite-dimensional system.

3.2. Feedback Control Design.We design the nonlinear state
feedback controller on the basis of eq 16. To simplify our
development, we assume thatp ) 2m (i.e., the number of control
actuators is equal to the dimension of the finite-dimensional
system) and pick the actuator distribution functions such that
Bs

-1 exists. The state feedback control law then takes the form:

where the matrixΛcs contains the desired poles of the closed-
loop system;Λcs ) diag[λcR1 ‚‚‚ λcRm λcâ1 ‚‚‚ λcâm], λcRi and
λcâi (1 e i e m) are desired poles of the closed-loop finite-
dimensional system, which satisfyRe{λcRi} < 0 andRe{λcâi}
< 0 for (1 e i e m) and can be determined from the desired
closed-loop surface roughness level. The method to determine
the eigenvalues ofΛcs will be discussed in section 3.3.

The control action is computed using the formula of eq 17,
and the computation cost is growing with the number of
actuators,p. SinceBs

-1 depends only on the configuration of
the control actuators, it can be computed off-line. The major
computational requirement involved in eq 17 is the evaluation
of the nonlinear termfs(x̃s, 0), whose specific form is given in
eq 18 below:

Therefore, the computation offs(x̃s, 0) involves standard
numerical operations and can be completed very fast relative
to the time scale of process evolution using currently available
computing power.

We will show in section 3.3 that the expected surface
roughness of the closed-loop infinite-dimensional system of eq
8 can be controlled to the desired level by using the state
feedback controller of eq 17, which only uses a finite number
of actuators.

3.3. Analysis of the Closed-Loop Infinite-Dimensional
System.By applying the controller of eq 17 to the infinite-
dimensional system of eq 12, and using thatε ) |λ1|/|λm+1|,
the closed-loop system takes the form:

whereλ1 andλm+1 are the first and the (m + 1)th eigenvalues
of the linear operator in eq 6, andΛfε ) diag[λε1 λε1 λε2 λε2 ‚‚‚]
is an infinite-dimensional matrix defined asΛfε ) ε‚Λf.

Computing the linearization of the nonlinear system of eq
19 around (xs, xf) ) (0, 0) and using the fact that the terms
{fs(xs, xf) - fs(xs, 0)}, ff(xs, xf), and fs(xs, 0) include terms of
second-order and do not include linear terms (this follows from
the quadratic structure of the nonlinear term of the stochastic
KSE and from eq 9), we obtain the following linear system:

Owing to the stability properties ofΛcs and Λfε and the
decoupled nature of the system of eq 20, this system is
asymptotically stable; thus, the nonlinear system of eq 19 is
locally (i.e., for sufficiently small initial conditions) asymptoti-
cally stable. This implies that under the assumption that the
initial condition is sufficient small, ast f ∞, the covariance
matrices ofxs andxf of the system of eq 19 converge toPs(∞)
andPf(∞), respectively.Ps(∞) andPf(∞) are defined as follows:

where〈‚〉 denotes the expected value, andxs
T(t) andxf

T(t) are
transposes of the vectorsxs(t) andxf(t), respectively.

We now proceed to characterize the accuracy with which the
closed-loop surface roughness is controlled. Theorem 1 provides
estimates of the contribution of the expected surface roughness
from thexs andxf subsystems of the closed-loop system of eq
19 and a characterization of the expected value of the surface
roughness enforced by the controller of eq 17 in the closed-
loop stochastic KSE. The proof of Theorem 1 is given in the
Appendix.

Theorem 1.Consider the closed-loop stochastic KSE of eq
19. Define the expected surface roughness and the contribution
to the expected surface roughness of the closed-loop system
from thexf andxs subsystems ast f ∞ as follows:

where〈‚〉 denotes the expected value,〈r(∞)2〉 is the expected
surface roughness of the closed-loop system of eq 19,〈rf(∞)2〉
is the contribution to the expected surface roughness from the
xf subsystem of eq 19,〈rs(∞)2〉 is the contribution to the expected
surface roughness from thexs subsystem of eq 19,xf ) [Rm+1

âm+1 Rm+2 âm+2 ‚‚‚]T, andxs ) [R1 ‚‚‚ Rm â1 ‚‚‚ âm]T.
Then, there existµ* > 0 andε* > 0 such that if||xf0||2 +

||xs0||2 e µ* andε ∈(0,ε*], 〈rf(∞)2〉, 〈rs(∞)2〉, and〈r(∞)2〉 satisfy:

dxs

dt
) Λcsxs + ês

ε
dxf

dt
) Λfεxf + εBfBs

-1(Λcs - Λs)x̃s + εêf (20)

Ps(∞) ) lim
tf∞

〈xs(t)xs
T(t)〉 Pf(∞) ) lim

tf∞
〈xf(t)xf

T(t)〉 (21)

〈r(∞)2〉 )
1

2π
∑
i)1

∞

[〈Ri(∞)2〉 + 〈âi(∞)2〉]

〈r f(∞)2〉 )
1

2π
∑

i)m+1

∞

[〈Ri(∞)2〉 + 〈âi(∞)2〉]

〈rs(∞)2〉 )
1

2π
∑
i)1

m

[〈Ri(∞)2〉 + 〈âi(∞)2〉] (22)

〈r f(∞)2〉 ) O(ε) (23)

〈rs(∞)2〉 )
1

4π
∑
i)1

m ( 1

|λcRi|
+

1

|λcâi|) + O(xε) (24)

dx̃s

dt
) Λsx̃s + fs(x̃s, 0) + Bsu + ês (16)

u ) Bs
-1{(Λcs - Λs)x̃s - fs(x̃s, 0)} (17)

fs(x̃s, 0) ) [f1R(x̃s, 0) ‚‚‚ fmR(x̃s, 0)f1â(x̃s, 0) ‚‚‚ fmâ(x̃s, 0)]T

fnR(x̃s, 0) )
λ

2
∫-π

π
φn(x)(∑

j)1

m

Rj(t)
dφj

dx
(x) + ∑

j)1

m

âj(t)
dψj

dx
(x))2

dx

n ) 1, ...,m

fnâ(x̃s, 0) )

λ

2
∫-π

π
ψn(x)(∑

j)1

m

Rj(t)
dφj

dx
(x) + ∑

j)1

m

âj(t)
dψj

dx
(x))2

dx (18)

dxs

dt
) Λcsxs + (fs(xs, xf) - fs(xs, 0)) + ês

ε
dxf

dt
) Λfεxf + εBfBs-1(Λcs - Λs)x̃s + εff(xs, xf) -

εBfBs
-1 fs(x̃s, 0) + εêf (19)
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wherexf0 andxs0 are the initial conditions forxf andxs in eq
19, respectively, andλcRi and λcâi (i ) 1, 2,‚‚‚, m) are the
eigenvalues ofΛcs in the system of eq 19.

Remark 6. Note that in order to regulate the surface
roughness to a desired level,rd, the number of actuators should
be large enough so that the value ofrd is achievable.

Remark 7. Note that to control the expected value of the
square of the surface roughness to〈r(∞)2〉, we need to design a
controller to assign the eigenvalues of the matrixΛcs in the
system of eq 19 to appropriate values. The controller which
assigns the eigenvalues of the matrixΛcs in the system of eq
19 to satisfy eq 25 is not unique. Consequently, for a fixed
number of actuators,p, the controller that can drive the closed-
loop surface roughness to a desired level is not unique either.
Furthermore, we note that the proposed nonlinear feedback
controller of eq 17 is a multivariable controller (i.e., the numbers
of the manipulated inputs adjusted by this controller is equal to
p). Therefore, the number of independent output variables that
this controller is capable of simultaneously regulating is equal
to p. If control of surface configuration variables other than the
surface roughness is of interest (for example, surface coverage,
island size, etc.), then these variables should be mathematically
expressed as controlled outputs of the stochastic PDE and the
nonlinear feedback controller should be designed to regulate
these new outputs to the desired set-point values in a similar
way to the one that is followed to achieve this task for the
expected value of the surface roughness.

Remark 8. In case where the desired value of the steady-
state surface roughness of the closed-loop system isrd, the
controller should be designed such that

Under this controller, the expected value of the square of surface
roughness of the infinite-dimensional system is shown in eq
25, which is anO(xε) approximation ofrd

2, which means
there exists a positive real numberkr such that|〈r(∞)2〉 -rd

2| <
kr · xε. Under the assumption that the number of control
actuators is equal to the dimension of thexs subsystem, the value
of ε is dependent on the number of actuators used by the
controller. Therefore, the larger the number of control actuators
used, the smaller theε. Consequently, the closed-loop surface
roughness is closer to the desired surface roughness as the
number of control actuators used to control the process increases.
If the allowable error between the closed-loop surface roughness
and the desired surface roughness is pre-specified aser ) |rd

2

- 〈r(∞)2〉|, then the number of control actuators should be
chosen such thatkr · xε < er to achieve the desired closed-loop
performance. However, it is not straightforward to solve forkr

analytically. Therefore, the number of control actuators can be
determined using a two-step procedure. First, an estimate of
the number of actuators,p1 is made and anε1 is computed.
Closed-loop simulations can be performed to evaluate the error
between the expected closed-loop surface roughness and the
desired value,ejr1 whenp1 actuators are used. Ifejr1 > er, then
the number of actuators should be increased top2 (and the value
of ε is reduced fromε1 to ε2) such thatejr1 · xε2 > er · xε1 in
order to achieve the desired closed-loop performance.

Remark 9. We note that a full-scale model of a sputtering
process would consist of a two-dimensional (2D) lattice
representation of the surface. Although we developed the method
for nonlinear feedback control design based on a one-
dimensional (1D) lattice representation of the surface, it is
possible to extend the proposed method to control the surface
roughness of material preparation processes taking place in 2D
domains. In a 2D space process, the feedback control design
and the analysis of the closed-loop system will be based on a
two-dimensional extension of the model of eq 12. Moreover,
eq 12 will be obtained by solving the eigenvalue/eigenfunction
problem of the operatorA in the 2D spatial domain subject to
the appropriate boundary conditions; this can be achieved in a
similar way to that followed for the 1D spatial domain (see
recent work by Ni and Christofides28 for results on the solution
of the eigenvalue/eigenfunction problem for a 2D spatial
domain). Once the modal representation of eq 12 corresponding
to the 2D stochastic PDE is obtained, the method for control
design and closed-loop analysis presented above can be applied
to control the surface roughness.

4. Simulation Results

In this section, we present applications of the proposed
nonlinear state feedback controller to the stochastic KSE to
demonstrate that the nonlinear controller is able to regulate the
expected value of the surface roughness to a desired level and
to achieve an improved closed-loop performance over a linear
controller. To demonstrate the applicability of the proposed
control method to control surface directly formed by microscopic
events, we also apply the nonlinear feedback controller to the
kinetic Monte Carlo model of a sputtering process to demon-
strate that the controller designed based on the stochastic KSE
model of the process can drive the surface roughness in the
kinetic Monte Carlo model of the same process to a desired
level.

4.1. Nonlinear Control of the Stochastic KSE. In this
subsection, we consider the following stochastic KSE with
spatially distributed control:

where ui is the ith manipulated input,p is the number of
manipulated inputs,b̂i is the ith actuator distribution function
(i.e., b̂i determines how the control action computed by theith
control actuator,ui, is distributed (e.g., point or distributed
actuation) in the spatial interval [-π, π]), ν ) 1.975× 10-4,
κ ) 1.58× 10-4, λ ) 1.975× 10-4, x ∈[-π, π] is the spatial
coordinate,t is the time,h(x, t) is the height of the surface at
positionx and timet, andê′(x, t) is a Gaussian noise with zero
mean and covariance:

whereς ) 3.52× 10-5. Note that the difference between eq 1
and eq 26 is that in eq 26, the covariance of the Gaussian noise,
ê′(x, t), is ς2δ(x - x′)δ(t - t′) while in eq 1, the covariance of
the Gaussian noise,ê(x, t), is δ(x - x′)δ(t - t′).

We normalize the covariance of the Gaussian noise in the
system of eq 26 to beδ(x - x′)δ(t - t′) by introducing a new
variable for the height of the surface,h′(x, t) ) h(x, t)/ς and
new actuator distribution functions,bi(x) ) b̂i(x)/ς, for i )
1,‚‚‚, p. Equation 26, therefore, can be rewritten as follows:

∂h

∂t
) -ν

∂
2h

∂x2
- κ

∂
4h

∂x4
+

λ

2(∂h

∂x)2

+ ∑
i)1

p

b̂i(x)ui(t) + ê′(x, t) (26)

〈ê′(x, t)ê′(x′, t′)〉 ) ς2δ(x - x′)δ(t - t′) (27)

〈r(∞)2〉 )
1

4π
∑
i)1

m ( 1

|λcRi|
+

1

|λcâi|) + O(xε) (25)

rd
2 )

1

4π
∑
i)1

m ( 1

|λcRi|
+

1

|λcâi|)
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whereê(x, t) ) ê′(x, t)/ς and〈ê(x, t)ê(x′, t′)〉 ) δ(x - x′)δ(t -
t′). Therefore, the system of eq 28 is consistent to the system
of eq 1 which is the basis for feedback control design and closed-
loop analysis. We also use the system of eq 28 for all simulations
in this work.

A 200th order stochastic ordinary differential equation
approximation of eq 28 obtained via Galerkin’s method is used
to simulate the process (the use of higher-order approximations
led to identical numerical results, thereby implying that the
following simulation runs are independent of the discretization).
The δ function involved in the covariances ofêR

n and êâ
n is

approximated by 1/∆t, where∆t is the integration time step.
4.1.1. Open-Loop Dynamics of the Stochastic KSE.In the

first simulation, we compute the expected value of open-loop
surface roughness profile from the solution of the stochastic
KSE of eq 28 by settingui(t) ) 0 for i ) 1, ..., p. For ν )
1.975 × 10-4 and κ ) 1.58 × 10-4, the stochastic KSE
possesses one positive eigenvalue. Therefore, the zero solution
of the open-loop system is unstable. Surface roughness profiles
obtained from 100 independent simulation runs using the same
parameters are averaged and the resulting expected surface
roughness profile is shown in Figure 1. The value of the open-
loop surface roughness increases due to the open-loop instability
of the zero solution.

4.1.2. Closed-Loop Simulation of the Stochastic KSE
under Nonlinear Control. In the closed-loop simulation under
nonlinear control, we design a nonlinear state feedback controller
based on a 20th order stochastic ODE approximation constructed
by using the first 20 eigenmodes of the system of eq 8 and
apply this controller to a 200th order approximation of the
nonlinear stochastic KSE. Twenty control actuators are used to
control the system. Theith actuator distribution function is taken
to be:

Under this control problem formulation,m ) 10 and the value
of ε ) |λ1|/|λ11| ) 1.73× 10-5. Our desired expected value of
the surface roughness is 6.53.

Using eq 25, we design the nonlinear state-feedback controller
such thatλcRi ) λcâi ) - 0.0373, fori ) 1, ..., 10. Closed-loop
simulations are performed to study the evolution of the expected
value of the surface roughness under nonlinear state feedback
control. Closed-loop surface roughness profiles obtained from
100 independent simulation runs using the same simulation
parameters are averaged, and the resulting closed-loop expected
surface roughness profile is shown in Figure 2 (solid line) and
compared with the open-loop expected surface roughness profile
(dotted line). We can see that the controller successfully drives
the surface roughness to the desired level, which is lower than
that corresponding to open-loop operation (ui(t) ) 0, i ) 1, ...,
20).

4.1.3. Comparison of Closed-Loop Performance under
Nonlinear and Linear Control. In this subsection, we dem-
onstrate that the performance of the proposed nonlinear control-

ler is superior to the one of the linear state feedback controller
resulting from the linearization of the nonlinear controller around
the zero solution. The nonlinear controller is the same to that
presented in section 4.1.2. The linear state feedback controller
is designed based on a 20th order stochastic ODE approximation
constructed by using the first 20 eigenmodes of the system of
eq 8 as follows:

where the definitions of the matricesBs, Λcs, andΛs are the
same as those in eq 17 andx̃s ) [R1 ‚‚‚ R10 â1 ‚‚‚ â10]T. Twenty
control actuators are used to control the system. Theith actuator
distribution function is the same to that shown in eq 29. The
desired expected value of the surface roughness is 6.53, and
the linear state feedback controller is designed such thatλcRi )
λcâi ) - 0.0373, fori ) 1, ..., 10. The linear controller is also
applied to the 200th order approximation of the nonlinear
stochastic KSE.

Closed-loop simulations are carried out to evaluate the
performance of the closed-loop system achieved under the
proposed nonlinear controller and to compare it to the one of
the linear controller. Two cases are studied. In both cases, the
desired expected surface roughness is 6.53, and the initial surface
roughness is chosen to be 18 and 45, respectively. In each case,
closed-loop simulation runs are carried out using both the linear
state feedback controller (eq 30) and the nonlinear state feedback
controller (eq 17). Further, in each case, the closed-loop surface
roughness profiles are obtained by averaging 100 independent
closed-loop simulation runs using the same simulation param-
eters and the resulting expected surface roughness profiles are
presented in Figure 3. Moreover, in both cases, closed-loop
surface roughness profiles under the linear and the nonlinear

Figure 1. Open-loop profile of the expected surface roughness resulting
from the computation of the average of 100 independent simulation runs
of the stochastic KSE of eq 28.

Figure 2. Closed-loop profile of the expected value of the surface roughness
(solid line) vs open-loop profile of the expected value of the surface
roughness (dotted line) when the controller is designed based on the first
20 modes.

u ) Bs
-1(Λcs - Λs)x̃s (30)

∂h′

∂t
)

-ν
∂

2h′

∂x2
- κ

∂
4h′

∂x4
+ ς

λ

2(∂h′

∂x)2

+ ∑
i)1

p

bi(x)ui(t) + ê(x, t) (28)

bi(z) ) { 1

xπ
sin(iz); i ) 1, ..., 10

1

xπ
cos[(i - 10)z]; i ) 11, ..., 20

(29)
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state feedback controllers obtained from a single simulation run
using the same simulation parameters are presented in Figure
4.

The number of actuators used by both the linear controller
and the nonlinear controller is the same (20 control actuators
for all the closed-loop simulations discussed in this subsection).
The parameters of the two controllers are the same except that
the linear controller excludes the nonlinear term of the stochastic
KSE. As a result, when the initial condition is small, both
controllers are able to drive the expected closed-loop surface
roughness to the desired level. However, based on the simulation

results presented in Figure 3, it is clear that a large initial
condition deteriorates the closed-loop performance under the
linear controller while the nonlinear controller consistently
achieves good closed-loop performance independently of the
initial condition. This is because under the nonlinear feedback
controller, the dominant modes of the closed-loop system of
eq 19 (in particular, the first 20 modes) can be approximated
by a stable linear stochastic system (see also eqs 41 and 51 in
the Appendix). In a stable linear stochastic system, the decay
rate of the expected value of the surface roughness to the set-
point value depends on the eigenvalues of the matrixΛcs

(assigned by the nonlinear controller) and is independent of the
initial value of the state (see, for example, refs 26-28).
Therefore, the closed-loop performance (in terms of rate of
convergence of the expected value of surface roughness to the
set-point) under the nonlinear controller is practically indepen-
dent of the initial condition.

Remark 10. Note that a surface roughness profile obtained
from one simulation run is one realization of a stochastic
process. Due to the stochastic nature of the process, surface
roughness profiles from different simulation runs using same
simulation parameters are not identical, but will be around the
expected surface roughness. Also, stochastic fluctuations can
be observed in all simulation results. By averaging the surface
roughness profiles from multiple independent simulation runs,
the stochastic fluctuation can be reduced and the resulted profile
is closer to the expected surface roughness. Conceptually, if
we run a very large number of simulations with the same
parameters, and average the roughness profiles obtained from
each simulation run, the desired expected roughness profile can
be obtained. In this study, we compute the expected values of
surface roughness in both the open-loop and the closed-loop
simulations by averaging surface roughness profiles obtained
from 100 independent simulation runs. The resulted surface
roughness profiles have little stochastic fluctuations and they
are very close to the expected values. Furthermore, our control
objective is to control the expected surface roughness to a
desired level. In practice, a lower surface roughness is usually
preferred. In our control problem formulation, if the expected
surface roughness is controlled to a lower level compared to
that in open-loop operation, it is expected that the surface
roughness from each run will be lowered.

4.2. Application to a Sputtering Process Described by the
Stochastic KSE.Physical processes whose evolution of surface
height can be modeled by the stochastic KSE, such as surface
erosion by ion sputtering, can also be modeled by using kinetic
Monte Carlo techniques (see, for example, refs 7 and 26). Since
kinetic Monte Carlo models predict the evolution of surface
roughness in these processes by directly simulating the formation
of the surface under various surface micro-processes such as
adsorption, desorption, surface erosion and surface reaction,
kinetic Monte Carlo models have a higher accuracy for
prediction of the surface roughness than the stochastic KSE
models do. To better verify the effectiveness of the developed
feedback controller, we implement the proposed nonlinear
feedback controller to the kinetic Monte Carlo process model
of a sputtering process7 to control the surface roughness to a
desired level.

4.2.1. Process Description.We consider a 1D lattice
representation of a crystalline surface in a sputtering process,
which includes two surface microprocesses, erosion and diffu-
sion. The solid-on-solid assumption is made which means that
no defects or overhangs are allowed in the process.41 The
microscopic rules are as follows: a site,i, is first randomly

Figure 3. Comparison of the expected closed-loop surface roughness under
the nonlinear controller (solid line) and that of the linear controller (dotted
line) when the initial surface roughness is 18 (top) and 45 (bottom). The
nonlinear controller performance is superior to the one of the linear
controller.

Figure 4. Comparison of the closed-loop surface roughness under the
nonlinear controller (solid line) and that of the linear controller (dotted line)
from a single simulation run when the initial surface roughness is 18 (top)
and 45 (bottom). The nonlinear controller performance is superior to the
one of the linear controller.
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picked among the sites of the whole lattice and the particle at
the top of this site is subject to (a) erosion with probability 0<
f < 1 or (b) diffusion with probability 1- f.

If the particle at the top of sitei is subject to erosion, the
particle is removed from the sitei with probabilityPe‚Y(φi). Pe

is determined as1/7 times the number of occupied sites in a
box of size 3× 3 centered at the sitei, which is shown in Figure
5. There is a total of nine sites in the box. The central one is
the particle to be considered for erosion (the one marked by
b). Among the remaining eight sites, the site above the central
site of interest must be vacant since the central site is a surface
site. Therefore, only seven of the eight sites can be occupied,
and the maximum value ofPe is 1.Y(φi) is the sputtering yield
function defined as follows:

wherey0, y1, andy2 are process-dependent constants andφi is
the local slope defined as follows:

wherea is the lattice parameter andhi+1 andhi-1 are the values
of surface height at sitesi + 1 andi - 1, respectively.

If the particle at the top of sitei is subject to diffusion, one
of its two nearest neighbors,j (j ) i + 1 or i - 1) is randomly
chosen, and the particle is moved to the nearest neighbor column
with probability wifj as follows:

where ∆Hifj is the energy difference between the final and
initial states of the move,â ) 1/kBT andH is defined through
the Hamiltonian of an unrestricted solid-on-solid model as
follows:41

whereJ is the bond energy,L is the total number of sites in the
lattice, andn is a positive number. In the simulations presented
in this paper, we usen ) 2 andâJ ) 2.0.

The equation for the height fluctuations of the surface in this
sputtering process was derived in ref 8 and is a stochastic KSE
of the form of eq 35:

wherex ∈[-π, π] is the spatial coordinate,t is the time,h(x, t)
is the height of the surface at positionx and timet, ν andκ are
two constants, andê(x, t) is a Gaussian noise with zero mean
and covariance:

whereσ is a constant,δ(‚) is the dirac function, and〈‚〉 denotes
the expected value. Note that the noise covariance depends on
both spacex and time t. We note that this stochastic KSE
representation for the surface morphological evolution in
sputtering processes is limited to surface morphologies that do
not involve re-entrant features; the re-entrant features could arise
under certain sputtering conditions and are catastrophic for the
surface.

4.2.2. Open-Loop Dynamics of the Sputtering Process.In
this section, we compute the expected surface roughness profile
of the sputtering process by using both the kinetic Monte Carlo
model and the stochastic KSE model of the process.

The following kinetic Monte Carlo simulation algorithm is
used to simulate the sputtering process and to compute the
surface roughness as well as the statesRn(t) and ân(t) of its
corresponding stochastic KSE model:

The first random number,ú1 is generated to pick a site,i,
among all the sites on the 1D lattice.

The second random number,ú2 in the (0, 1) interval, is
generated to decide whether the chosen site,i, is subject to
erosion (ú2 < fh ) or diffusion (ú2 > fh ).

If the chosen site is subject to erosion,Pe and Y(φi) are
computed.Pe is computed by using the box rule shown in Figure
5 and the center of the box is the surface particle on sitei and
Y(φi) is computed by using eq 31 withy0 ) 0.5, y1 ) 1.0065,
andy2 ) -0.5065. Then, another random numberúe3 in the (0,
1) interval is generated. Ifúe3 < Pe‚Y(φi), the surface particle
on site i is removed. Otherwise, no Monte Carlo event is
executed.

If the chosen site is subject to diffusion, a side neighbor,j,
(j ) i + 1 or i - 1 in the case of 1D lattice) is randomly picked
and the hopping rate,wifj, is computed by using eq 33. Then,
another random numberúd3 in the (0, 1) interval is generated.
If úd3 < wifj, the surface atom is moved to the new site.
Otherwise no Monte Carlo event is executed.

Upon the execution of one Monte Carlo event,Rn or ân are
updated. If the executed event is erosion,Rn or ân can be updated
by using eq 37. If the executed event is diffusion from sitei to
site j, Rn or ân are updated by using eq 38:

wherea is the lattice parameter andzi is the coordinates of the
center of sitei.

We also compute the expected surface roughness of the
sputtering process based on its stochastic KSE process model
of eq 35. A 200th order stochastic ordinary differential equation
approximation of the system of eq 35 obtained via Galerkin’s
method is used to simulate the process (the use of higher-order
approximations led to identical numerical results, thereby
implying that the following simulation runs are independent of

Figure 5. Schematic of the rule to determinePe. Pe is defined as1/7 times
the number of occupied sites in a box of size 3× 3 centered at the particle
on the top of sitei; Pe ) 1 in the left figure andPe ) 4/7 in the right
figure, where the particle marked byb is on the top of sitei.

Rn
new ) Rn

old +
a[ψ(n, zi - a/2) - ψ(n, zi + a/2)]

n

ân
new ) ân

old +
a[φ(n, zi + a/2) - φ(n, zi - a/2)]

n
(37)

Rn
new ) Rn

old +
a{[ψ(n, zi - a/2) - ψ(n, zi + a/2)] - [ψ(n, zj - a/2) - ψ(n, zj + a/2)]}

n

ân
new ) ân

old +
a{[φ(n, zi + a/2) - φ(n, zi - a/2)] - [φ(n, zj + a/2) - φ(n, zj - a/2)]}

n
(38)

Y(φi) ) y0 + y1φi
2 + y2φi

4 (31)

φi ) tan-1(hi+1 - hi-1

2a ) (32)

wifj ) 1
1 + exp(â∆Hifj)

(33)

H ) ( J

an)∑k)1

L

(hk - hk+1)
n (34)

∂h
∂t

) -ν∂
2h

∂x2
- κ

∂
4h

∂x4
+ λ

2(∂h
∂x)2

+ ê(x, t) (35)

〈ê(x, t)ê(x′, t′)〉 ) σ2δ(x - x′)δ(t - t′) (36)
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the discretization). Theδ function involved in the covariances
of êR

n and êâ
n is approximated by 1/∆t where ∆t is the

integration time step. The parameters of the stochastic KSE
model areν ) 3.27 × 10-6, κ ) 1.34 × 10-8, λ ) 7.52 ×
10-6, andσ ) 4.65× 10-3.

In Figure 6, we compare the expected value of the open-
loop surface roughness of the sputtering process from the
solution of the stochastic KSE model of eq 35 to that from a
kinetic Monte Carlo simulation. The two profiles are very close.
Therefore, by using the stochastic KSE model of eq 35, we can
predict the evolution of the expected surface roughness in this
sputtering process. This stochastic KSE model is used as the
basis for feedback controller design.

4.2.3. Feedback Control Design.Our control objective is
to control the expected surface roughness in the sputtering
process to a desired value. Based on the stochastic KSE model
of the sputtering process (eq 35), a distributed control problem
is formulated by following eq 26. We design a state feedback
controller based on a 40th order stochastic ODE approximation
constructed by using the first 40 eigenmodes of the stochastic
KSE model of eq 35. Forty control actuators are used to control
the system. Theith actuator distribution function is taken to
be:

The desired closed-loop surface roughness is 0.3 in this
simulation. We design the state feedback controller such that
λcRi ) λcâi ) - 0.01, for i ) 1, ,,,, 20.

Then, we apply the designed controller to the kinetic Monte
Carlo model of the sputtering process to control the surface
roughness to the desired level. In this simulation, the initial
surface roughness is about 0.5, and the microstructure of the
initial surface is shown in Figure 7. The controller is imple-
mented by manipulating the probability that a randomly selected
site is subject to erosion rule,f. Specifically, thef of site i is
determined according to the following expression:

The following simulation algorithm is used to run the kinetic
Monte Carlo simulations for the closed-loop system. First, a

random number,ú1 is generated to pick a sitei, among all the
sites on the 1D lattice; the probability that a surface site is
subject to the erosion rules,f (i) is determined by using eq 40.
Then, the second random number,ú2 in the (0, 1) interval is
generated. Ifú2 < f (i), the site i is subject to the erosion,
otherwise, the site is subject to diffusion.

If the sitei is subject to erosion,Pe is computed by using the
box rule shown in Figure 5 with the box centering the surface
particle on sitei andY(φi) is computed by using eq 31. Then,
another random number,úe3 in the (0, 1) interval is generated.
If úe3 < Pe‚Y(φi) the surface particle on sitei is removed.
Otherwise, no Monte Carlo event is executed.

If the site i is subject to diffusion, a side-neighbor,j ) i +
1 or i - 1 is randomly picked and the probability of a hopping
from site i to site j, wifj is computed based on eq 33. Then,
another random numberúd3 in the (0, 1) interval is generated.
If úe3 < wifj, the surface particle on sitei is moved to sitej.
Otherwise, no Monte Carlo event is executed. Once a Monte
Carlo event is executed, the first 40 states (R1, ..., R20 andâ1,
..., â20) are updated and new control actions are computed to
update the value off (defined in eq 40) for each surface site.

The closed-loop system simulation result is shown in Figure
8. The expected surface roughness, which is the average of
surface roughness profiles obtained from 100 independent runs,
under feedback control is plotted in solid line. We can see that
the controller successfully drives the expected surface roughness
to the desired value. The dotted line shows the surface roughness
profile under feedback control from one simulation run; due to
the stochastic nature of the sputtering process, stochastic
fluctuations can be observed in the closed-loop surface rough-
ness profile, but the surface roughness is very close to the
expected surface roughness under the nonlinear feedback

Figure 6. Comparison of the open-loop profile of the expected surface
roughness from the kinetic Monte Carlo simulator (solid line) and that from
the solution of the stochastic KSE process model (dotted line).

bi(z) ) { 1

xπ
sin(iz); i ) 1, ..., 20

1

xπ
cos[(i - 20)z]; i ) 21, ..., 40

(39)

f (i) )

fh + (∑
j)1

40

bj(zi)uj(t))/a

1 + (∑
j)1

40

bj(zi)uj(t))/a

(40)

Figure 7. Surface microconfiguration at the beginning of the closed-loop
simulation run.

Figure 8. Closed-loop surface roughness profiles in the sputtering process.
(a) The expected closed-loop surface roughness profile obtained from 100
independent simulation runs (solid line). (b) The closed-loop surface
roughness profile from one simulation run (dotted line).
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control. We can see that under feedback control, the surface
roughness can be controlled to the desired level.

Figure 9 shows the final surface roughness histogram after
500 monolayers are eroded using 100 different closed-loop
simulation runs and that using 100 different open-loop simula-
tion runs. It is clear that the surface roughness from closed-
loop simulation runs is lower than that from open-loop
simulation runs. Moreover, the variance of the final surface
roughness from 100 closed-loop simulation runs is 0.067% while
the variance of the final surface roughness from 100 open-loop
simulation runs is 0.53%. The relative larger variance among
the final surface roughness by open-loop simulations can be
attributed to the stochastic nature of the sputtering process itself.
As demonstrated in Figure 9, feedback control can not only
reduce the expected final surface roughness, but also effectively
reduce the variance of the final surface roughness.

The microstructure of the surface at the end of the closed-
loop system simulation run is shown in Figure 10. It is clear
that the proposed nonlinear feedback control method can reduce
the surface roughness to the desired level.

5. Conclusions

In this work, we developed a method for nonlinear feedback
control of the roughness of a one-dimensional surface whose
evolution is described by the stochastic KSE. Our method
includes the construction of a nonlinear feedback controller that
can be readily implemented in practice and an analysis of the
closed-loop infinite-dimensional system to characterize the
closed-loop performance enforced by the nonlinear feedback
controller. The effectiveness of the proposed nonlinear controller

and the advantages of the nonlinear controller over a linear
controller resulting from the linearization of the nonlinear
controller around the zero solution were demonstrated through
numerical simulations. Finally, a successful application of a
stochastic KSE-based nonlinear feedback controller to the kinetic
Monte Carlo model of a sputtering process was also demon-
strated.
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Appendix

Proof of Theorem 1.The proof of Theorem 1 includes three
parts. First, we compute the contribution to the expected surface
roughness from thexf subsystem of eq 19 and prove eq 23 in
Theorem 1. Then, we compute the contribution to the expected
surface roughness from thexs subsystem of eq 19 and prove eq
24 in Theorem 1. Finally, the proof of Theorem 1 is completed
by proving eq 25 based on the results in eqs 23 and 24. Since
we work with sufficiently small initial conditions, local stability
of the closed-loop nonlinear infinite-dimensional system can
be proved by using the linearization argument of section 3.3
and is used without further proof in the remainder.

Proof of Equation 23 in Theorem 1.Consider the closed-
loop system of eq 19 and note that the terms in the right-hand-
side of thexf subsystem constitute anO(ε) approximation to
the termΛfεxf. Consider also the following linear system:

Following a similar approach to the one employed in the proof
of Theorem A.1 in ref 42, p 361, we have that there exists an
ε̂* > 0 such that for allε∈(0, ε̂*], we have

Therefore, we have the following estimate for〈||xf(t)||22〉:

Furthermore,〈||xf(t)||22〉 and〈||xjf(t)||22〉 are equal to the traces of
the covariance matrices ofxf(t) and xjf(t), Pf(t) ) 〈xf(t)xf(t)T〉,
and Ph f(t) ) 〈xjf(t)xjf(t)T〉, respectively. Finally, ast f ∞, Pf(t)
andPh f(t) converge toPf(∞) andPh f(∞), respectively (bothPf(∞)
andPh f(∞) are bounded quantities which follows from closed-
loop stability). We note that the 2-norm ofxf, ||xf||2, is defined
in eq 14 andPf(∞) is defined in eq 21. BecauseΛfε is a diagonal
matrix, the trace of matrixPh f can be computed as follows:26

whereλεi (i ) 1, 2, ...,∞) are the eigenvalues of the matrixΛfε

in eq 41. Specifically,|λε1| ) |ν - κ| and|λεi| ) |(ν - κ)[ν(2m
+ i)2 - κ(2m + i)4]/[ν(2m + 1)2 - κ(2m + 1)4]| (i ) 1, 2, ...,
∞). It is clear that|λεi| increases with respect toi in the order
of (2m + i),4 where 2m is the size of thexs subsystem in eq 19.
Therefore,Σi)1

∞ |1/λεi| converges to a finite positive number.
Thus, there exists a positive real numberkfε such that

Figure 9. Histogram of final surface roughness of 100 closed-loop and
100 open-loop simulation runs.

Figure 10. Surface microconfiguration at the end of the closed-loop
simulation run under nonlinear feedback control.

ε
dxjf

dt
) Λfεxjf + εêf (41)

xf(t) ) xjf(t) + O(xε) (42)

〈||xf(t)||22〉 ) 〈||xjf(t) + O(xε)||22〉 e 2〈|| xjf(t)||22〉 + O(ε) (43)

Tr{Ph f} )
ε

2
·∑
i)1

∞ | 1

λεi
| (44)
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Therefore, it follows that

According to eq 43, it follows that the contribution to the
expected surface roughness fromxf is O(ε), i.e.:

This completes the proof of eq 23 in Theorem 1.
Proof of Equation 24 in Theorem 1. Consider thexs

subsystem of the closed-loop system of eq 19. First, we note
that there exists a positive real numberk1s such that39,43

where the definitions of||xf||2 and ||fs(‚)||2 can be found in eq
14. From eq 42, we have the following estimate for||xf||2 for t
g tb (wheretb is the time needed for|| xjf(t)|| to approach zero
and tb f 0 asε f 0):

This implies that we have the following estimate for||fs(xs, xf)
- fs(xs, 0)||2 for t g tb:

Therefore, the solution of the following system consists an
O(xε) approximation of thexs of eq 19 [ref 42, Theorem A.1,
p 361]:

In particular, there exists anε̂** > 0 such that for allε ∈(0,
ε̂**], it holds that

and

Because||xs(t)||2 and ||xjs(t)||2 are bounded for allt > 0,
〈||xs(t)||22〉 and 〈||xjs(t)||22〉 are equal to the traces of the
covariance matrices ofxs(t) and xjs(t), Ps(t) ) 〈xs(t)xs(t)T〉 and
Phs(t) ) 〈xjs(t)xjs(t)T〉, respectively. Ast f ∞, Ps(t) and Phs(t)
converge toPs(∞) and Phs(∞), respectively. The definition of
Ps(∞) can be found in eq 21.

BecauseΛcs is a diagonal matrix, the trace of matrixPhs(∞)
can be computed as follows:26

whereλcRi andλcâi (i ) 1, 2, ...,m) are the eigenvalues of the
matrix Λcs in eq 19. Therefore, it holds that

According to eq 53, it holds that the contribution to the expected
surface roughness fromxs is as follows:

This completes the proof of eq 24 in Theorem 1.
Proof of Equation 25 in Theorem 1.The expected surface

roughness from the closed-loop system,〈r(∞)2〉, includes
contributions from both thexs subsystem and thexf subsystem
of eq 19. Therefore, we have the following equation for〈r(∞)2〉:

Using eqs 23 and 24, we immediately have

Since asε f 0, it holds that

The O(ε) term in eq 58 is negligible, and there exists anε* )
min(ε̂*, ε̂**) such that if ε ∈(0, ε*], then

whereλcRi, λcâi (i ) 1, 2, ...,m) are eigenvalues ofΛcs in the
system of eq 19. This completes the proof of Theorem 1.
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