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Nonlinear Feedback Control of Surface Roughness Using a Stochastic PDE:
Design and Application to a Sputtering Process

Yiming Lou ™ and Panagiotis D. Christofides*

Advanced Projects Research, Inc., 1925 McKinleyeBue, Suite B, La Verne, California 91750, and
Department of Chemical and Biomolecular Engineering, 2énsity of California,
Los Angeles, California 90095

In this work, we develop a method for nonlinear feedback control of the roughness of a one-dimensional
surface whose evolution is described by the stochastic Kuran®it@ashinsky equation (KSE), a fourth-
order nonlinear stochastic partial differential equation. We initially formulate the stochastic KSE into a system
of infinite nonlinear stochastic ordinary differential equations by using Galerkin’s method. A finite-dimensional
approximation of the stochastic KSE is then derived that captures the dominant mode contribution to the
surface roughness. A nonlinear feedback controller is then designed based on the finite-dimensional
approximation to control the surface roughness. An analysis of the closed-loop nonlinear infinite-dimensional
system is performed to characterize the closed-loop performance enforced by the nonlinear feedback controller
in the closed-loop infinite-dimensional system. The effectiveness of the proposed nonlinear controller and
the advantages of the nonlinear controller over a linear controller resulting from the linearization of the nonlinear
controller around the zero solution are demonstrated through numerical simulations. Finally, a successful
application of a stochastic KSE-based nonlinear feedback controller to the kinetic Monte Carlo model of a
sputtering process is also demonstrated.

1. Introduction small lattice kinetic Monte Carlo simulators, adaptive filters,
L . and measurement error compensators and (b) feedback control-

The sur_face roughness of thin fllms stro_ngly affects th_e quality lers based on the real-time Poughness estir(nz)ators. The method
of such films and consequently IS an important _vanat_JIe to was successfully applied to control surface roughness in a GaAs
control. Therefore, modeling and control of thin film micro- deposition process mod&.Moreover. kinetic Monte Carlo
structure have attracted significant research efforts in the recentmeﬁho ds W‘fre also used 1o stu dy dynlamics of complex deposi-
years. Fundamental ma_themaﬂcgl model_lng techniques haVetion processes including multiple components with both short-
been developed to describe the microscopic features of surfgce§ange and long-range interactions and to perform predictive
formed by surface microprocesses, whlch mcluc}e (1.) dynamlcal control design to control final surface roughness in ref 16.
Monte Carlo methods* and (2) stochastic partial differential However. the fact that Kinetic Monte Carlo models are not
equation$8 The development of modern roughness measure- '

ment techniques provides the opportunity to obtain roughness"’“""“Iabkle n (I:Iosetlj-fc_er rr:jakr(]es L;ve_ry d|ff|céu|_t toluse the”.‘ . f
measurements in real-time using spectroscopic eIIipsometrysyStem' evel analysis and the design and implementation o
techniques, by grazing-incidence small-angle X-ray scattering model-based feedback control systems. To achieve better closed-
(GISAXS)10 or by combination of on-line measurement tech- loop perforr_nance, itis _d_esirable to design feedback controllers
nigues for measuring gas-phase compositions with off-line on the bg5|s of deposition process _models. An ?‘PPFO""C“ was
measurement techniques for measuring surface roughness. A eported in refs 17 and 18 to identify linear deterministic models

implementation of the latter approach was recently reported in rom outputs of !<|net|c Monte Carlo s!mulators ar)d deS|gn
ref 11 where it was used to measure carbon composition of thin _controllers_ using linear co_ntrol t_heory. Th'.s approach is effec_tlve
films in plasma-enhanced chemical vapor deposition using in controlling macroscopic variables, which are low statistical
combination of optical emission spectroscopy (OES) and X-ray moments of the microscopic dlstnbupons.(e.g., ;urface coverage,
photoelectron spectroscopy (XPS). Also, experimental methodsWhICh is the zeroth moment of SPecies distribution on a Iat'tlce).
have been developed to perform scanning tunneling microscopyHOW_ever’ to co_ntrol higher statistical moments of the micro-
(STM) measurement on the surface during epitaxial growth of scopic d|str|but|_ons, SL_’Ch. as _the surface royghness (the second
semiconductor layers moment of height distribution on a lattice) or even the
The kinetic Monte Carlo simulation methods can be used to M!CroScopIC configuration (such as Fh_e surfa_ce_ morphology),
predict average properties of thin films (which are of interest deterministic models may not be sufficient. This is because the

from a control point of view, for example, surface roughness), effect of the stochastic nature of the microscopic processes

by explicitly accounting for the microprocesses that directly pecomes very significant in these cases and must be addressed

shape thin film microstructure. A methodology for feedback in both the model co_nstruction and_controller design. On the
control of surface roughness using kinetic Monte Carlo models Other hand, stochastic PDEs contain the surface morphology

was developed in refs 13 and 14. The methodology led to the information of thin films; thus, they may be used for the purpose

design of (a) real-time roughness estimators by using multiple of feedback controller design. For example, it has been
¢ @ g Y g P experimentally verified that the KardaParisi-Zhang (KPZ)

I . .
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simulations provide realizations of a stochastic process that areroughness. An analysis of the closed-loop nonlinear infinite-

consistent with the master equation that describes the evolutiondimensional system is performed to characterize the closed-
of the probability distribution of the system being at a certain loop performance enforced by the nonlinear feedback controller
microconfiguration, a method to construct reduced-order ap- in the closed-loop infinite-dimensional system. The proposed
proximations of the master equation was reported in ref 22. nonlinear controller is successfully applied to a high-order

Recently, a method was also developed to identify an empirical approximation of the stochastic KSE and the kinetic Monte

input—output model for a copper electrodeposition process using Carlo model of a sputtering process.

simulation data from a coupled kinetic Monte Carlo and finite-

difference simulation code and perform controller design using 2. Preliminaries

the identified modet?

For many deposition and sputtering processes, closed-form
process models, in the form of linear or nonlinear stochastic
partial differential equations (PDEs), can be derived based on

the microscopic rules and the.corresponding master equationsmoothing by energetic clustéisand ZrG thin film growth
(e.g., refs 58 and 24). To achieve better closed-loop perfor- ., reactive ion beam sputterid@We consider the stochastic
mance, it is desirable to design feedback controllers on the basis sk in a one-dimensional dom&iwith distributed control in

of process models. This has motivated recent research on the,q spatial domainz, 7] (see also refs 3134 for distributed
development of a method for feedback control of surface ool problem formulation for the deterministic KSE):

roughness based on linear stochastic PDE process niddels.

The stochastic KSE is a fourth-order nonlinear stochastic
partial differential equation that describes the evolution of the
height fluctuation for surfaces in a variety of material preparation
processes including surface erosion by ion sputteffrgyrface

This method involves reformulation of the linear stochastic PDE 2h  oh Alah\2 P
into a system of infinite linear stochastic ordinary differential — = —y— — — + —(—) + ) bJu(t) + &(x, 1) (1)
equations (ODEs) by using modal decomposition, derivation ot N w2 =

of a finite-dimensional approximation that captures the dominant

mode contribution to the surface roughness, and state feedbacleubject to periodic boundary conditions:

controller design based on the finite-dimensional approximation. : :

Furthermore, a method for construction of linear stochastic PDE @(_ﬂ t) = @(ﬂ ) j=0 3 @)
models for thin film growth using first principles-based micro- o . T

scopic simulations was developed in ref 27, and a multi-variable

predictive control based on a linear stochastic PDE model wasand the initial condition:

developed in ref 28 to simultaneously control surface roughness

and growth rate in a thin film deposition process taking place h(x, 0) = hy(x) ®3)

in a 2-D lattice.
However, nonlinearities exist in many material preparation wherev, «, and4 are parameters related to surface mecha-
' y prep nisms3 x e[—, 7] is the spatial coordinate,is the time h(x,

processes in which surface evolution can be modeled by ; L . p
stochastic PDEs. A typical example of such processes is the.t) is the height of the surface at positiarand timet, u; is the

sputtering process whose surface evolution is described by the'th ma}nipulfated inputp iS. th_e ngmber Of ma_nipulated ir_1puts,
nonlinear stochastic Kuramot@ivashinsky equation (KSE) andb; is theith actugtord|str|but|on function (i.eb; determines
In a simplified setting, the sputtering process includes two tybes hovx_/ thg control action compqteql by tit contr.ol actuatony,
of surface microproc’esses erosion and diffusion. The nonlin- 1S distributed (e.g., pomt or dlstrlb.uted a.ctuatllon) in the spatlal
earity of the sputtering proéess originates from thé dependence'merval .[_n’ ). _E,(x, Hisa Gaussmn_ noise with the following

- ) . : . expressions for its mean and covariance:
of the rate of erosion on a nonlinear sputtering yield function.

In our previous work® feedback control of surface roughness E(x, )= 0
in sputtering processes was designed based on a linearized
stochastic KSE process model, which was identified by using E(x, DEX, )= o(x — X)o(t — t) (4)

data from multiple kinetic Monte Carlo simulations of the same ] ] _
process. However, it is expected that such a linear controller is Whereo() is the dirac function andiCdenotes the expected
only going to provide good closed-loop performance locally (i.e., V@lue. Note that the noise covariance depends on both space
for initial conditions close to the desired set point) for the andtimet.

nonlinear closed-loop system, due to the fact that the inherent Our objective is to control the expected roughness of the
process nonlinearities are not explicitly considered in the Surface described by the stochastic KSE. The surface roughness,
linearized process model. To perform feedback control design ' IS represented by the standard deviation of the surface from
for nonlinear stochastic processes (i.e., provide good perfor-its average height and is computed as follows:

mance for a wide range of process initial conditions and
operat|'ng pond|t|ons), it is deswgble that a nonlinear process r(t) = \/i fj [h(x, t) — h(t)]2 dx (5)
model is directly used as the basis for controller synthesis. This 27 /-7

motivates research on nonlinear feedback control of nonlinear
stochastic PDEs.

In this work, we develop a method for nonlinear feedback _ 1
control of the roughness of a one-dimensional surface whose h(t) = o f_n h(x, t) dx
evolution is described by the stochastic KSE. A finite-
dimensional approximation of the stochastic KSE is first derived is the average surface height.
that captures the dominant mode contribution to the surface To study the dynamics of eq 1, we initially consider the
roughness and a nonlinear feedback controller is designed baseéigenvalue problem of the linear operator of eq 1, which takes
on this finite-dimensional approximation to control the surface the form:

where



o¢,(x) 3 Kd4&)n(x) _
dx® dx*

A‘%n(x) =V ln&n(x)

do
dx

dg,
dx’

(—n)=—"(+7) j=0,..,3, n=1,..,0 (6)

wherel, denotes an eigenvalue aggldenotes an eigenfunction.
A direct computation of the solution of the above eigenvalue
problem yieldst, = 0 with 1o = 1/v/27, andi, = vn?2 — xkn*

(n is an eigenvalue of multiplicity two) with eigenfunctions
én = (UV7) sin(X) andyn = (1V/7) cospx) for n= 1, ...,c0.
Note that theg, in eq 6 denotes eithep, or y,. From the
expression of the eigenvalues, it follows that for fixed values
of v > 0 andk > 0, the number of unstable eigenvalues of the
operatorA in eq 6 is finite and the distance between two
consecutive eigenvalues (i.d, and An+1) increases as
increases.

To present the method that we use to control eq 1, we first
derive nonlinear stochastic ODE approximations of eq 1 using
Galerkin’s method. To this end, we first expand the solution of
eg 1 in an infinite series in terms of the eigenfunctions of the
operator of eq 6 as follows:

00

h(x, t) = Zl

wherea,(t) andpn(t) are time-varying coefficients. Substituting
the above expansion for the solutidix, t), into eq 1 and taking
the inner product with the adjoint eigenfunctiog$(z) = (1/
ﬁ) sin(h2 andy(2) = (1/«/5) cosf2), the following system
of infinite nonlinear stochastic ODEs is obtained:

o (Hn(¥) + ) Ba(Dyn(X)

n=

@)

do, P
(Vn2 — Kn4)0ln + fot bianui(t) + &,(t)

dt
n=1, ..,

dg p
0 — kB, + T+ Y b U +E'0  (8)

n

dt

where

fna

A S tOlqu +°° tdwj 2d
5 I 640 ; oy( )&(X) 1; Bi( )&(X) X

f A (w tdd)j +w tdwj )2d 9
” zf,ﬂwn<x);aj() e ;ﬂj() S 0 a9

and
b, = 7, $a(XBi() dx
by = 7 ,(bi(x) dx
ED = 7 E(x Dy(x) dx
() = [T &0 Dy, dx (10)

The covariances df,"(t) and§g"(t) can be computed by using
the following result:
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Result 1If (1) f () is a deterministic function, (2)(x) is a
random process withy(x)[0= 0 and covariancéh(x)n(x')0=
0%0(x — X), and (3)e = fgf (¥)n(x) dx, thene is a random
number with[d= 0 and covarianc&?20= 02,2 f2(x) dx.3°

Using Result 1, we obtaing,"(t)&(t)O= 6(t — t') and
EN(OE()0= 0t - 1).

In this work, the controlled variable is the expected value of
the square of the surface roughness defined in e@(§20]
According to eq 7, we havh(t) = Bo(t)yo. Therefore,T(t)20
can be rewritten in terms af,(t) andgy(t) as follows:

0= 50, (B, ) — R)

1 .2 ®
Z—HDL [; 0y (), (x) + B —
Bo(D)yel > dxOI

= 3 [0 (®’$i(9° + Bi()7i(%*] dxT

.
=5

2 (a.(t)2+ﬁ.(t)2)m=i [0y (t)°CH
2J[ ( | 2]_[ 1

B0 (11)

0

Therefore, the surface roughness control problem for the
stochastic KSE of eq 1 is formulated as the one of controlling
the covariance of the stateg andf, in the nonlinear stochastic
ODE system of eq 8.

Remark 1. Note that in practice, the control actiom, can
be implemented by manipulating the gas composition across
the surface in either a deposition process or a sputtering process.
Spatially controllable CVD reactors have been developed to
enable across-wafer spatial control of surface gas composition
during depositior$® In such a control problem formulation, the
rate that particles land on the surface or the rate that surface
particles are eroded is spatially distributed and is computed by
the controller. The parameters of the stochastic KSE model of
eq 1 depend on both the temperature and the rate that particles
land on the surface or that surface particles are erédiedhis
work, the temperature is assumed to be a constant. The rate
that particles land on the surface or the rate that surface particles
are eroded used to compute the stochastic KSE model param-
eters corresponds to that under open-loop operation, and thus,
it is also a constant. The contribution of the spatially distributed
rate that particles land on the surface or the rate that surface
particles are eroded to the fluctuations of the surface height
profile (e.g., the surface roughness) is captured by the term
P bi(Xu(t). This control problem formulation is further
supported by our simulation results, which demonstrate that the
controller designed on the basis of the stochastic KSE model
of a sputtering process can be successfully applied to the kinetic
Monte Carlo model of the same sputtering process to control
the surface roughness to desired levels (see simulation results
section).

Remark 2. Note that in the stochastic KSE of eq 1, the
covariance of(x, t) is normalized to b&(x — X)o(t — t'). In
general, the covariance of the noise term of the stochastic KSE
is c20(x — X)o(t — t'), whereg? is a process parameter derived
based on the rates of surface microscopic procesJéw
normalization procedure is detailed in the simulation section
of this work. This convenience is adopted to simplify our
presentation.
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Remark 3. Note that because the teifp is canceled in the 3.1. Model Reduction.Owing to its infinite-dimensional
computation of the expected value of the surface roughness,nature, the system of eq 8 cannot be directly used for the design
defined in eq 11/, does not contribute to the expected surface of controllers that can be implemented in practice (i.e., the
roughness. Therefore, the stochastic ODE relateth i the practical implementation of controllers that are designed on the
system of eq 8 is not considered in the development of the basis of this system will require the computation of infinite sums
feedback controller for surface roughness control in the next which cannot be done by a computer). Instead, we will base
section. the controller design on a finite-dimensional approximation of

Remark 4. Stochastic PDE models for many deposition this system. Subsequently, we will show that the resulting
processes and sputtering processes can be derived based on tlventroller will enforce the desired control objective in the closed-
corresponding master equations, which describe the evolutionloop infinite-dimensional system. Specifically, we rewrite the
of the probability that the surface is at a certain configuration system of eq 8 as follows:

(see, for example, refs 8 and 37). The surface in these processes ox.

is directly formed by microscopic events such as adsorption, _

desorption, erosion, diffusion, and reaction. Kinetic Monte Carlo dt AXs T 1% %) +BUF &

simulation can also be used to predict the evolution of the

surface configuration in stochastic processes. The kinetic Monte dx; _ f

Carlo model is a first-principle model in the sense that the dat A T Ti(xg X)) + B+ & (12)
microscopic rules are explicitly considered in the model.

Mathematically, kinetic Monte Carlo simulation methods pro- Wherexs = [au *** om B1 *** Bl ", X% = [0tme1 Brmr1 =], As =

vide an unbiased realization of the master equation. Therefore,diagits === Am A1 *** Anl, At = diagfme1 Am+1 Amiz Amiz =],

the evolution of the surface configuration predicted by the fs(s %) = [fia(Xs %) *** fma(Xs %) fip(Xs, Xe) =+ frp(Xs, X0)]T,
closed-form stochastic PDE model is consistent with that fi(s X) = [fmt1a(Xs, %) fmr1p(Xs, X¢) =], U= [u1 ** Up], &=
predicted by the kinetic Monte Carlo model. As a result, the [Ea® *** &™ &* +++ &, and & = [Ea™* §g™t «+-]:

controller designed based on the stochastic PDE process model Ib b I
can be applied to the kinetic Monte Carlo model of the same lag *** Mpoy
procesg>26 |In the simulation section, we will demonstrate : i
nonlinear control of a sputtering process including two surface by, - b
microprocesses, diffusion and erosion. The fluctuation of surface B,=
height of such a sputtering process can be described by the

stochastic KSE. A nonlinear feedback controller will be designed

based on the stochastic KSE process model and will be applied

to the kinetic Monte Carlo model of the same process to control ! I,
the surface roughness to a desired level. bmmﬂ bpam+1

Remark 5. It is also important to note that the problem of . b

feedback control of the deterministic KSE, which is used to B =|b bpﬂm+1 (13)
describe incipient instabilities in a variety of physical/chemical f Lot 2 Plms2

processes including falling liquid films, unstable flame fronts, blﬁm bpﬂm

and interfacial instabilities between two viscous fluids, has : FI

attracted significant research effort. Analytical and numerical ' I

studies of the dynamics of the deterministic KSE have revealed In our development, we will need the following notations.
that the dominant dynamics of the KSE can be adequately The 2-norms for vectorss, x;, and f{xs, %) are defined as
characterized by a small number of degrees of freetfonhis follows:

has motivated extensive research focusing on the design of

linear/nonlinear finite-dimensional output feedback control- m m
lers1-32for stabilization of the zero solution of the KSE on the lIxdl, = Z ol + Z ,3.2
basis of ordinary differential equation approximations, obtained = . = .
through linea#? and nonlinea® Galerkin’s method, that ac-

curately describe the dominant dynamics of the KSE for a given

value of the instability parameter. The accuracy of the solutions ||Xf||2=\/ ; Olj2+ ; /3,-2
j=n1 j=m1

of the ODE systems obtained through Galerkin’s method to the
ones of the PDE can be analyzed by using a methodology
developed irf® The global stabilization of the KSE has also m m
been addressed via distributed static output feedback céatrol. — : 2 ] 2

A nonlinear boundary feedback controller was also proposed (X X112 JZ fia(Xs %)™ + ,Z fis(%s )" (14)
in ref 40 that enhances the rate of convergence to the spatially

uniform steady state of the KSE, for values of the instability The covariance matrices fog(t) and x(t), Ps(t) and Ps(t) are
parameter for which this steady state is open-loop stable. Thedefined as follows:

issue of optimal actuator/sensor placement for the KSE was also

addressed in ref 34 so that the desired control objectives are Py(t) = B ()X, ()0 P(t) = B(t)x' () (15)

achieved with minimal energy use.
where [Idenotes the expected value and(t) andx'(t) are
3. Feedback Control transposes of the vectorg(t) and x(t), respectively.
In this section, we design a nonlinear state feedback controller We note that the subsystegin eq 12 is infinite-dimensional.
for the system of eq 8 so that the expected value of the surfaceNeglecting thex; subsystem, the following r&-dimensional
roughness defined in eq 11 can be controlled to a desired level.system is obtained:




d
—)is = A&+ (%, 0)+ Bu+ &

g (16)

where the tilde symbol i denotes that this state variable is
associated with a finite-dimensional system.

3.2. Feedback Control DesignWe design the nonlinear state
feedback controller on the basis of eq 16. To simplify our
development, we assume tipat 2m (i.e., the number of control
actuators is equal to the dimension of the finite-dimensional
system) and pick the actuator distribution functions such that
Bs ! exists. The state feedback control law then takes the form:

U= B, {(Ax— A% — fy%, O)}

where the matrixAs contains the desired poles of the closed-
loop system;Acs = diagficar *** Acom Acpr *** Acpmls Acai @nd
A (1 =i = m) are desired poles of the closed-loop finite-
dimensional system, which satisRg{ ¢} < 0 andReAcsi}
< 0for (1 =i =< m)and can be determined from the desired

(17)

closed-loop surface roughness level. The method to determine

the eigenvalues of\s will be discussed in section 3.3.

The control action is computed using the formula of eq 17,
and the computation cost is growing with the number of
actuatorsp. SinceBs™! depends only on the configuration of
the control actuators, it can be computed off-line. The major
computational requirement involved in eq 17 is the evaluation
of the nonlinear termfs(Xs, 0), whose specific form is given in
eq 18 below:

f(% 0) = [f1o(% 0) +** Firy(% O)fy5(%, 0) +++ frs(Rs O

f (X o—/l " (m td¢j +m tdwj )2d
no s )—zf,mn(X)lZ!aj()dX(X) ;ﬂj()dX(X) X

n=1,..m

5% 0) =
A moo Oy ooy
> I wn(x)(; (lj(t)&(x) + JZ ﬂj(t)&(x)) dx (18)

Therefore, the computation ofy%s, 0) involves standard
numerical operations and can be completed very fast relative
to the time scale of process evolution using currently available
computing power.

We will show in section 3.3 that the expected surface
roughness of the closed-loop infinite-dimensional system of eq
8 can be controlled to the desired level by using the state
feedback controller of eq 17, which only uses a finite number
of actuators.

3.3. Analysis of the Closed-Loop Infinite-Dimensional
System. By applying the controller of eq 17 to the infinite-
dimensional system of eq 12, and using that |A1|/|Am+1l,
the closed-loop system takes the form:

dxs
E =AXT (fs(xs' Xf) - fs(xs’ 0))+ ES

— =

G = At BB (Ao — AR+ €fi(x %) —

BB, %, 0)+ €& (19)

wherel; andAm+1 are the first and theng + 1)th eigenvalues
of the linear operator in eq 6, att. = diag[le1 Aex A2 Az ]
is an infinite-dimensional matrix defined &g, = e*As.
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Computing the linearization of the nonlinear system of eq
19 around X5, X) = (0, 0) and using the fact that the terms
{fs(Xs, X)) — fo(Xs, O)}, fi(Xs, X)), and fs(Xs, 0) include terms of
second-order and do not include linear terms (this follows from
the quadratic structure of the nonlinear term of the stochastic
KSE and from eq 9), we obtain the following linear system:

dx

dt = ACSXS + gS

dx; . 3
& Ag X+ BB (A — AJX + €&

(20)
Owing to the stability properties ofA¢cs and A¢ and the
decoupled nature of the system of eq 20, this system is
asymptotically stable; thus, the nonlinear system of eq 19 is
locally (i.e., for sufficiently small initial conditions) asymptoti-
cally stable. This implies that under the assumption that the
initial condition is sufficient small, ag — o, the covariance
matrices ofxs andx; of the system of eq 19 converge By)
andPs(c), respectivelyPy(c0) andPs(w) are defined as follows:

P(e) = lim B0 P(e0) = lim Bh(®x'©0  (21)

where0denotes the expected value, aqf(t) and x'(t) are
transposes of the vectoxrg(t) and x(t), respectively.

We now proceed to characterize the accuracy with which the
closed-loop surface roughness is controlled. Theorem 1 provides
estimates of the contribution of the expected surface roughness
from the xs and X subsystems of the closed-loop system of eq
19 and a characterization of the expected value of the surface
roughness enforced by the controller of eq 17 in the closed-
loop stochastic KSE. The proof of Theorem 1 is given in the
Appendix.

Theorem 1. Consider the closed-loop stochastic KSE of eq
19. Define the expected surface roughness and the contribution
to the expected surface roughness of the closed-loop system
from thex; andxs subsystems as— o« as follows:

(o)’ = 1 [0t(c0)*TH [B,(c0) ]
2.7'[ | |

002 i S 002 002
T = 5 ()Tt B

2 1a 2 2
(o) DZZ [[8(00) TH [Bi(0) T (22)

=
where [A0denotes the expected valugé(w)2is the expected
surface roughness of the closed-loop system of edrii(&)20]
is the contribution to the expected surface roughness from the
X subsystem of eq 19s(c)?[is the contribution to the expected
surface roughness from thxe subsystem of eq 1% = [atm+1
Bt Qme2 Pz ...]T, andxs = [og ==+ Ot 1 *** ﬁm]T.

Then, there exist* > 0 ande* > 0 such that if||Xio||2 +
[1%sol|2 < u* and e €(0,e*], [M(o0)2[) My(e0)2[) andn(e)?satisfy:

[By(c0)’C= O(e) (23)

12(1 1
[ ()= — Y [— +— +0oWe 24
( ) 4 1= (Mcai' Mcﬁi| ( 6) ( )




7182 Ind. Eng. Chem. Res., Vol. 45, No. 21, 2006

1 m 1 Remark 9. We note that a full-scale model of a sputtering
m(oo)zD=— (——!——)—FO(\/;) (25) process would consist of a two-dimensional (2D) lattice
drer \ Ayl 1Agal representation of the surface. Although we developed the method
for nonlinear feedback control design based on a one-

wherexj andXxso are the initial conditions fox; and xs in eq dimensional (1D) lattice representation of the surface, it is
19, respectively, andc, and A (i = 1, 2¢++, m) are the possible to extend the proposed method to control the surface
eigenvalues of\cs in the system of eq 19. roughness of material preparation processes taking place in 2D

Remark 6. Note that in order to regulate the surface domains. In a 2D space process, the feedback control design
roughness to a desired level, the number of actuators should ~and the analysis of the closed-loop system will be based on a
be large enough so that the valuergfis achievable. two-dimensional extension of the model of eq 12. Moreover,

Remark 7. Note that to control the expected value of the €d 12 will be obtained by solving the eigenvalue/eigenfunction
square of the surface roughnessieeo)2[] we need to designa  Problem of the operato in the 2D spatial domain subject to
controller to assign the eigenvalues of the mathix in the the appropriate boundary conditions; this can be achieved in a
system of eq 19 to appropriate values. The controller which Similar way to that followed for the 1D spatial domain (see
assigns the eigenvalues of the matti in the system of eq  recent work by Ni an(_JI Chrlstof_|d'é%for results on the solutlon_

19 to satisfy eq 25 is not unique. Consequently, for a fixed Of the eigenvalue/eigenfunction problem for a 2D spatial
number of actuators, the controller that can drive the closed- domain). Once the modal representation of eq 12 corresponding
loop surface roughness to a desired level is not unique either.t0 the 2D stochastic PDE is obtained, the method for control
Furthermore, we note that the proposed nonlinear feedbackdesign and closed-loop analysis presented above can be applied
controller of eq 17 is a multivariable controller (i.e., the numbers to control the surface roughness.

of the manipulated inputs adjusted by this controller is equal to

p). Therefore, the number of independent output variables that 4. Simulation Results

this controller is capable of simultaneously regulating is equal
to p. If control of surface configuration variables other than the
surface roughness is of interest (for example, surface coverage

In this section, we present applications of the proposed
nonlinear state feedback controller to the stochastic KSE to
demonstrate that the nonlinear controller is able to regulate the

island size, etc.), then these variables should be .mathematicalIyexpected value of the surface roughness to a desired level and
expressed as controlled outputs of the stochastic PDE and the[O achieve an improved closed-loop performance over a linear

nonlinear feedback controller_should be_deS|gned to reg_”"?‘tecontroller. To demonstrate the applicability of the proposed
these new outputs to.the desired set-point valyes na Slmllarcontrol method to control surface directly formed by microscopic
way to the one that is followed to achieve this task for the events, we also apply the nonlinear feedback controller to the
expected value of the surface rough.ness. kinetic Monte Carlo model of a sputtering process to demon-
Remark 8. In case where the desired value of the steady- girate that the controller designed based on the stochastic KSE

state surface roughness of the closed-loop system, ithe model of the process can drive the surface roughness in the
controller should be designed such that kinetic Monte Carlo model of the same process to a desired
level.
, 12(1 1 4.1. Nonlinear Control of the Stochastic KSE.In this
Fg _;TZ Al Al subsection, we consider the following stochastic KSE with
=2 \eal cpi spatially distributed control:

Under this controller, the expected value of the square of surface 2 4 p

o = ) . ; oh h  d"h Afoh)2 .
roughness of the infinite-dimensional system is shown ineq — = —,— _ _ ,— 1+ Z(_ | + b.(xu(t) + E'(x, t) (26)
25, which is anO(v€) approximation ofrs2, which means at »e at 2\0x =

there exists a positive real numbeisuch that [f(co)20—rq?| <

k -+e. Under the assumption that the number of control where u; is the ith manipulated inputp is the number of
actuators is equal to the dimension of #gsubsystem, the value  manipulated inputsh; is theith actuator distribution function
of ¢ is dependent on the number of actuators used by the (i.e., b; determines how the control action computed byithe
controller. Therefore, the larger the number of control actuators control actuator,u;, is distributed (e.g., point or distributed
used, the smaller the Consequently, the closed-loop surface actuation) in the spatial intervat-jr, 7)), v = 1.975x 1074,
roughness is closer to the desired surface roughness as the = 1.58 x 1074, A = 1.975x 1074, x €[—u, 7] is the spatial
number of control actuators used to control the process increasescoordinatet is the time,h(x, t) is the height of the surface at
If the allowable error between the closed-loop surface roughnesspositionx and timet, and&'(x, t) is a Gaussian noise with zero

and the desired surface roughness is pre-specifie as/r 2 mean and covariance:
— [0()2, then the number of control actuators should be
chosen such tht - Ve < & to achieve the desired closed-loop &' (x, )&'(X, t') = gzé(x —X)o(t —t) (27)

performance. However, it is not straightforward to solvekor

analytically. Therefore, the number of control actuators can be wherec = 3.52 x 1075. Note that the difference between eq 1
determined using a two-step procedure. First, an estimate ofand eq 26 is that in eq 26, the covariance of the Gaussian noise,
the number of actuatorgy is made and ar; is computed. E'(x, 1), is 20(x — X)o(t — t') while in eq 1, the covariance of
Closed-loop simulations can be performed to evaluate the errorthe Gaussian noisé(x, t), is d(x — xX)d(t — t).

between the expected closed-loop surface roughness and the We normalize the covariance of the Gaussian noise in the

desired valueg whenp; actuators are used. & > &, then system of eq 26 to bé(x — x)d(t — t') by introducing a new
the number of actuators should be increasegu {@nd the value variable for the height of the surfack(x, t) = h(x, t)/c and
of € is reduced fron¥; to €,) such thatg; - \/6_2 > g \/6_1 in new actuator distribution functiong;(x) = bi(x)/c, for i =

order to achieve the desired closed-loop performance. 1,--, p. Equation 26, therefore, can be rewritten as follows:
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oh' 10
at % 8
h o' N A(ah')z . p 50060 + £ (26 £
—V— —k— + ¢ |— (XU, X, 6
£ ax* 219X a7 S
L 4
whereé&(x, t) = &'(x, t)/c and [&(x, t)&(X, t')O= o(x — X)o(t — By
t'). Therefore, the system of eq 28 is consistent to the system a 2
of eq 1 which is the basis for feedback control design and closed-
loop analysis. We also use the system of eq 28 for all simulations % 20 40 60 80
in this work. Time (sec)

A 200th order stochastic ordinary differential equation Figure 1. Open-loop profile of the expected surface roughness resulting
approximation of eq 28 obtained via Galerkin's method is used from the computation of the average of 100 independent simulation runs
to simulate the process (the use of higher-order approximations®f the stochastic KSE of eq 28.
led to identical numerical results, thereby implying that the 10
following simulation runs are independent of the discretization).
The d function involved in the covariances @f" and &s" is
approximated by t, whereAt is the integration time step.

4.1.1. Open-Loop Dynamics of the Stochastic KSHn the
first simulation, we compute the expected value of open-loop
surface roughness profile from the solution of the stochastic
KSE of eq 28 by settingi(t) = 0 fori = 1, ...,p. Forv =
1975 x 104 and x = 1.58 x 1074 the stochastic KSE
possesses one positive eigenvalue. Therefore, the zero solution 0
of the open-loop system is unstable. Surface roughness profiles 0 20 ) 40 60 80
obtained from 100 independent simulation runs using the same Time (sec)
parameters are averaged and the resulting expected surfacé€igure 2. Closed-loop profile of the expected value of the surface roughness
roughness profile is shown in Figure 1. The value of the open- (solid line) vs oper_1—|oop profile of the exp_ected_ value of the surfac_e
loop surface roughness increases due to the open-loop inStabi”t)é%ug,honde:: (dotted line) when the controller is designed based on the first
of the zero solution. '

4.1.2. CI_osed-Loop Simulation of the St_OChaS_t'C KSE ler is superior to the one of the linear state feedback controller
undgr Nonlinear Control.l In the clqsed-loop simulation under resulting from the linearization of the nonlinear controller around
nonlinear control, we design a nonlinear state feedback controller

based 20th order stochastic ODE imati iruct he zero solution. The nonlinear controller is the same to that
ased on a £uth order stochastic approximation Construcleq, oo o in section 4.1.2. The linear state feedback controller
by using the first 20 eigenmodes of the system of eq 8 and

anoly this controller to a 200th order approximation of the is designed based on atB@rder stochastic ODE approximation
PPl ) PP constructed by using the first 20 eigenmodes of the system of
nonlinear stochastic KSE. Twenty control actuators are used to

control the system. Thi¢h actuator distribution function is taken eq 8 as follows:
to be:

Surface roughness

u=B. (A~ A% (30)

1 .
~ &S'”GZ)’ i=1..,10 where the definitions of the matricé, Ac, andAs are the
b(2) = o (29) same as those in eq 17 afag= [0y *+* otao B1 *** B0l T. Twenty
ﬁcos[q —10); i=11,..,20 control actuators are used to control the system.iffhactuator
distribution function is the same to that shown in eq 29. The

Under this control problem formulatiom = 10 and the value desired expected value of the surface roughness is 6.53, and
of € = |Aal/|A11] = 1.73x 1075, Our desired expected value of the linear state feeo!back controller is <_3IeS|gned sucmg_aa{:
the surface roughness is 6.53. Acp, =- 0.0373, fori =1, ..., 10. The. Imegr controller is a}Iso
Using eq 25, we design the nonlinear state-feedback controller@Pplied to the 200th order approximation of the nonlinear
such thatle, = Ag; = — 0.0373, fori = 1, ..., 10. Closed-loop ~ Stochastic KSE.
simulations are performed to study the evolution of the expected Closed-loop simulations are carried out to evaluate the
value of the surface roughness under nonlinear state feedbackperformance of the closed-loop system achieved under the
control. Closed-loop surface roughness profiles obtained from proposed nonlinear controller and to compare it to the one of
100 independent simulation runs using the same simulation the linear controller. Two cases are studied. In both cases, the
parameters are averaged, and the resulting closed-loop expectedesired expected surface roughness is 6.53, and the initial surface
surface roughness profile is shown in Figure 2 (solid line) and roughness is chosen to be 18 and 45, respectively. In each case,
compared with the open-loop expected surface roughness profileclosed-loop simulation runs are carried out using both the linear
(dotted line). We can see that the controller successfully drives state feedback controller (eq 30) and the nonlinear state feedback
the surface roughness to the desired level, which is lower thancontroller (eq 17). Further, in each case, the closed-loop surface
that corresponding to open-loop operatiorft{ = 0,i = 1, ..., roughness profiles are obtained by averaging 100 independent
20). closed-loop simulation runs using the same simulation param-
4.1.3. Comparison of Closed-Loop Performance under  eters and the resulting expected surface roughness profiles are
Nonlinear and Linear Control. In this subsection, we dem-  presented in Figure 3. Moreover, in both cases, closed-loop
onstrate that the performance of the proposed nonlinear control-surface roughness profiles under the linear and the nonlinear
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18 = results presented in Figure 3, it is clear that a large initial
+ Linear Control s .
@ 16 — Nonlinear Control condition deteriorates the closed-loop performance under the
2 Lk linear controller while the nonlinear controller consistently
S achieves good closed-loop performance independently of the
5 12 initial condition. This is because under the nonlinear feedback
g 10 controller, the dominant modes of the closed-loop system of
S s ] eq 19 (in particular, the first 20 modes) can be approximated
& 6.53 = ey by a stable linear stochastic system (see also eqs 41 and 51 in
the Appendix). In a stable linear stochastic system, the decay
[ 40 80 120 160 200 rate of the expected value of the surface roughness to the set-
Time (Sec) point value depends on the eigenvalues of the matrix

45 . - Linear Control (assigned by the nonlinear controller) and is independent of the
@ 40\ — Nonlinear Control initial value of the state (see, for example, refs—2®).
2 E ] Therefore, the closed-loop performance (in terms of rate of
S convergence of the expected value of surface roughness to the
5 set-point) under the nonlinear controller is practically indepen-
8 dent of the initial condition.
g Remark 10. Note that a surface roughness profile obtained
n from one simulation run is one realization of a stochastic

process. Due to the stochastic nature of the process, surface

40 80 120 160 200 roughness profiles from different simulation runs using same
Time (Sec) - ) . . :
simulation parameters are not identical, but will be around the

Figure 3. Comparison of the expected closed-loop surface roughness under gy hacted surface roughness. Also, stochastic fluctuations can
the nonlinear controller (solid line) and that of the linear controller (dotted

line) when the initial surface roughness is 18 (top) and 45 (bottom). The P€ observed in all simulation results. By averaging the surface
nonlinear controller performance is superior to the one of the linear roughness profiles from multiple independent simulation runs,

controller. the stochastic fluctuation can be reduced and the resulted profile
is closer to the expected surface roughness. Conceptually, if

8 | Linear Control we run a very large number of simulations with the same

(7] —— Nonlinear Control . .

2 parameters, and average the roughness profiles obtained from
£ each simulation run, the desired expected roughness profile can
=3 be obtained. In this study, we compute the expected values of
2 surface roughness in both the open-loop and the closed-loop
§6_ simulations by averaging surface roughness profiles obtained
= from 100 independent simulation runs. The resulted surface
« roughness profiles have little stochastic fluctuations and they
are very close to the expected values. Furthermore, our control

0 50 100 150 200 N
Time (Sec) objective is to control the expected surface roughness to a

50 desired level. In practice, a lower surface roughness is usually

T Noear Control ‘ preferred. In our control problem formulation, if the expected

(2]

Y surface roughness is controlled to a lower level compared to

.g) that in open-loop operation, it is expected that the surface

3 30 roughness from each run will be lowered.

é 20t 4.2. Application to a Sputtering Process Described by the

g Stochastic KSE.Physical processes whose evolution of surface

a Sgg* height can be modeled by the stochastic KSE, such as surface
’ erosion by ion sputtering, can also be modeled by using kinetic

% 50 100 150 200 Monte Carlo techniques (see, for example, refs 7 and 26). Since

Time (Sec) kinetic Monte Carlo models predict the evolution of surface
Figure 4. Comparison of the closed-loop surface roughness under the roughness in these processes by directly simulating the formation
nonlinear controller (solid line) and that of the linear controller (dotted line) f the surface under various surface micro-processes such as
from a single simulation run when the initial surface roughness is 18 (top) - : ; :
and 45 (bottom). The nonlinear controller performance is superior to the aplsorpﬂon, desorptlon, surface erosion {?md surface reaction,
one of the linear controller. kinetic Monte Carlo models have a higher accuracy for

prediction of the surface roughness than the stochastic KSE

state feedback controllers obtained from a single simulation run models do. To better verify the effectiveness of the developed
using the same simulation parameters are presented in Figurdeedback controller, we implement the proposed nonlinear
4. feedback controller to the kinetic Monte Carlo process model
The number of actuators used by both the linear controller f @ sputtering proce$go control the surface roughness to a
and the nonlinear controller is the same (20 control actuators desired level.
for all the closed-loop simulations discussed in this subsection). 4.2.1. Process Description.We consider a 1D lattice
The parameters of the two controllers are the same except tharepresentation of a crystalline surface in a sputtering process,
the linear controller excludes the nonlinear term of the stochastic which includes two surface microprocesses, erosion and diffu-
KSE. As a result, when the initial condition is small, both sion. The solid-on-solid assumption is made which means that
controllers are able to drive the expected closed-loop surfaceno defects or overhangs are allowed in the proéksghe
roughness to the desired level. However, based on the simulatiomrmicroscopic rules are as follows: a sife,is first randomly
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whereg is a constant)(-) is the dirac function, an@denotes
the expected value. Note that the noise covariance depends on
both spacex and timet. We note that this stochastic KSE
representation for the surface morphological evolution in
sputtering processes is limited to surface morphologies that do
not involve re-entrant features; the re-entrant features could arise
under certain sputtering conditions and are catastrophic for the
surface.

4.2.2. Open-Loop Dynamics of the Sputtering Procesin
this section, we compute the expected surface roughness profile
of the sputtering process by using both the kinetic Monte Carlo
model and the stochastic KSE model of the process.

The following kinetic Monte Carlo simulation algorithm is
used to simulate the sputtering process and to compute the

% h

Figure 5. Schematic of the rule to determiig. P is defined ad/; times

the number of occupied sites in a box of size 3 centered at the particle
on the top of site; Pe = 1 in the left figure andPe = 4/7 in the right

figure, where the particle marked i@ is on the top of site.

picked among the sites of the whole lattice and the particle at
the top of this site is subject to (a) erosion with probability: 0
f < 1 or (b) diffusion with probability 1— f.

If the particle at the top of sité is subject to erosion, the
particle is removed from the sitevith probability Pe-Y(¢). Pe
is determined ad/; times the number of occupied sites in a

box of sizg 3x 3 centergd at 'Fhe sjtewhich is shown in Figure _ surface roughness as well as the statg#) and fn(t) of its
5. There is a total of nine sites in the box. The central one is corresponding stochastic KSE model:

the particle to be considered for erosion (the one marked by  +1q first random numbet; is generated to pick a sité
@®). Among the remaining eight sites, the site above the central among all the sites on the 1D lattice. ’
site of interest must be vacant since the central site is a surface The second random numbet; in the (0, 1) interval, is

site. Therefore, only seven of the eight sites can be OCC“pied’generated to decide whether the chosen sjtés subject to

and the maximum value d¥. is 1. Y(¢) is the sputtering yield
function defined as follows:

Y(¢) =Yoo+ )’1<l5i2 + Y2¢i4

whereyy, y1, andy, are process-dependent constants gnid
the local slope defined as follows:

h,, —h
_ —1 i+l i—1
¢, =tan (—Za )

(31)

(32)

wherea is the lattice parameter arg.; andh;—; are the values
of surface height at sitas+ 1 andi — 1, respectively.

If the particle at the top of siteis subject to diffusion, one
of its two nearest neighbors(j =i + 1 ori — 1) is randomly

chosen, and the particle is moved to the nearest neighbor column

with probability wi—; as follows:

1
W —=— 33
T 14 exp(BAH_) (33)
where AH;—; is the energy difference between the final and
initial states of the movej = 1/kgT andH is defined through
the Hamiltonian of an unrestricted solid-on-solid model as

follows:41
J L
w= )5 o no
a k=

wherel is the bond energyl, is the total number of sites in the
lattice, andh is a positive number. In the simulations presented
in this paper, we usa = 2 andpJ = 2.0.

The equation for the height fluctuations of the surface in this

(34)

erosion {, < f) or diffusion €, > f).

If the chosen site is subject to erosid®, and Y(¢;) are
computedPe is computed by using the box rule shown in Figure
5 and the center of the box is the surface particle onisied
Y(¢) is computed by using eq 31 witls = 0.5,y; = 1.0065,
andy, = —0.5065. Then, another random numigyin the (0,

1) interval is generated. Be3 < PeY(¢i), the surface particle
on sitei is removed. Otherwise, no Monte Carlo event is
executed.

If the chosen site is subject to diffusion, a side neighpor,
(j=1i+21ori— 1linthe case of 1D lattice) is randomly picked
and the hopping ratey;—;, is computed by using eq 33. Then,
another random numbégs in the (0, 1) interval is generated.
If a3z < wi, the surface atom is moved to the new site.
Otherwise no Monte Carlo event is executed.

Upon the execution of one Monte Carlo evem},or 3, are
updated. If the executed event is erosianor 3, can be updated
by using eq 37. If the executed event is diffusion from bii@
sitej, a, or B, are updated by using eq 38:

new_ o, A3~ a2) —y(n, 7 + &/2)]
o, =, -

new _ pold 4 al¢(n, z + al2) — ¢(n, z — a/2)]
n n .

37)

wherea is the lattice parameter arglis the coordinates of the
center of sita.
(IEEWZ (Xﬁld'f‘
af[yv(n, z —a2) — yp(n, z + a2)] — [y(n, 7 — a/2) — y(n, 7 + al2)]}
n

sputtering process was derived in ref 8 and is a stochastic KSEﬁgew:ﬂﬁw +

of the form of eq 35:

oh_ _ ot o'h &(a_h)z
ot »e axt 20X

wherex €[—, 7] is the spatial coordinate,is the time,h(x, t)

is the height of the surface at positigand timet, v andk are
two constants, ang(x, t) is a Gaussian noise with zero mean
and covariance:

+ &(x 1) (35)

E(x, EX, t') = 0?0(x — X)(t — t') (36)

a{[¢(n. 7 + al2) — ¢(n, z — a/2)] — [§(n, 7 + &/2) — ¢(n, Z — &2)]}
n

(38)

We also compute the expected surface roughness of the
sputtering process based on its stochastic KSE process model
of eq 35. A 200th order stochastic ordinary differential equation
approximation of the system of eq 35 obtained via Galerkin's
method is used to simulate the process (the use of higher-order
approximations led to identical numerical results, thereby
implying that the following simulation runs are independent of
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Figure 6. Comparison of the open-loop profile of the expected surface
roughness from the kinetic Monte Carlo simulator (solid line) and that from &
the solution of the stochastic KSE process model (dotted line). Figure 7. Surface microconfiguration at the beginning of the closed-loop
simulation run.

the discretization). Thé function involved in the covariances

of & and &3 is approximated by Nt where At is the 08
integration time step. The parameters of the stochastic KSE
model arev = 3.27 x 1076, «¥ = 1.34 x 108, 1 = 7.52 x

1076, ando = 4.65 x 1078,

In Figure 6, we compare the expected value of the open-
loop surface roughness of the sputtering process from the
solution of the stochastic KSE model of eq 35 to that from a
kinetic Monte Carlo simulation. The two profiles are very close. M S s -, )
Therefore, by using the stochastic KSE model of eq 35, we can : B
predict the evolution of the expected surface roughness in this 0 100 200 300 200 500
sputtering process. This stochastic KSE model is used as the Monolayers eroded
basis for feedback controller de_3|gn. L Figure 8. Closed-loop surface roughness profiles in the sputtering process.

4.2.3. Feedback Control DesignOur control objective is (a) The expected closed-loop surface roughness profile obtained from 100
to control the expected surface roughness in the sputteringindependent simulation runs (solid line). (b) The closed-loop surface
process to a desired value. Based on the stochastic KSE modetoughness profile from one simulation run (dotted line).
of the sputtering process (eq 35), a distributed control problem
is formulated by following eq 26. We design a state feedback random numbert; is generated to pick a siigamong all the
controller based on a 40th order stochastic ODE approximation Sites on the 1D lattice; the probability that a surface site is
constructed by using the first 40 eigenmodes of the stochasticsubject to the erosion rule(i) is determined by using eq 40.
KSE model of eq 35. Forty control actuators are used to control Then, the second random numbés,in the (0, 1) interval is
the system. Theéth actuator distribution function is taken to generated. It < f (i), the sitei is subject to the erosion,

0.5

Surface roughness

be: otherwise, the site is subject to diffusion.
1 If the sitei is subject to erosiorRe is computed by using the
—sin(iz); i=1,..20 box rule shown in Figure 5 with the box centering the surface
b(2) = Vo (39) particle on site and Y(¢;) is computed by using eq 31. Then,

icos[@ —20)7; =21 .. 40 another random numbefes in the (0, 1) interval is generated.
Jr If Cez < PeY(¢i) the surface particle on siteis removed.
Otherwise, no Monte Carlo event is executed.
The desired closed-loop surface roughness is 0.3 in this |f the sitei is subject to diffusion, a side-neighbgr=i +
simulation. We design the state feedback controller such that1 ori — 1 is randomly picked and the probability of a hopping
Awi = Aegy = — 0.01, fori = 1, ,,,, 20. o from sitei to sitej, wi; is computed based on eq 33. Then,
Then, we apply the designed controller to the kinetic Monte another random numbégs in the (0, 1) interval is generated.
Carlo model of the sputtering process to control the surface | Ees < Wi—j, the surface particle on siieis moved to sitg.
rOUghneSS to the desired level. In this Simulation, the initial Otherwise, no Monte Carlo event is executed. Once a Monte
surface roughness is about 0.5, and the microstructure of thecarlo event is executed, the first 40 states, (.., az0 andfy,
initial surface is shown in Figure 7. The controller is imple- 4, are updated and new control actions are computed to
mented by manipulating the probability that a randomly selected update the value of (defined in eq 40) for each surface site.

ngelrsrn?#:ée;tcé%rﬁggg?g trrl]géf,oS"ga(;‘Irl:lcael)l(y,rg;esfigrfrsne| IS The closed-loop system simulation result is shown in Figure
9 9 exp ’ 8. The expected surface roughness, which is the average of

40 surface roughness profiles obtained from 100 independent runs,
f+ (Z b(z)y(1)/a under feedback control is plotted in solid line. We can see that
) = the controller successfully drives the expected surface roughness
f(i)= ” (40) to the desired value. The dotted line shows the surface roughness
1+ (S b(z)u)/a profile underfeedback control from one simulation run; due to.
]Z 7 the stochastic nature of the sputtering process, stochastic

fluctuations can be observed in the closed-loop surface rough-
The following simulation algorithm is used to run the kinetic ness profile, but the surface roughness is very close to the
Monte Carlo simulations for the closed-loop system. First, a expected surface roughness under the nonlinear feedback
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20 , , , and the advantages of the nonlinear controller over a linear
Il Closed-Loop controller resulting from the linearization of the nonlinear
B Open-Loop controller around the zero solution were demonstrated through
15! ] numerical simulations. Finally, a successful application of a
stochastic KSE-based nonlinear feedback controller to the kinetic
Monte Carlo model of a sputtering process was also demon-
strated.
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Surface roughness Proof of Theorem 1.The proof of Theorem 1 includes three
Figure 9. Histogram of final surface roughness of 100 closed-loop and parts. First, we compute the contribution to the expected surface
100 open-loop simulation runs. roughness from theg subsystem of eq 19 and prove eq 23 in
Theorem 1. Then, we compute the contribution to the expected
surface roughness from tiiesubsystem of eq 19 and prove eq
24 in Theorem 1. Finally, the proof of Theorem 1 is completed
by proving eq 25 based on the results in eqs 23 and 24. Since
we work with sufficiently small initial conditions, local stability
of the closed-loop nonlinear infinite-dimensional system can
be proved by using the linearization argument of section 3.3
and is used without further proof in the remainder.

Proof of Equation 23 in Theorem 1.Consider the closed-
loop system of eq 19 and note that the terms in the right-hand-
side of thex; subsystem constitute ab(e) approximation to
the termAsx. Consider also the following linear system:

1 Appendix

2

X <
Figure 10. Surface microconfiguration at the end of the closed-loop G Ae X + €& (41)
simulation run under nonlinear feedback control. t

control. We can see that under feedback control, the surfaceFellowing a similar approach to the one employed in the proof
roughness can be controlled to the desired level. of Theorem A.1 in ref 42, p 361, we have that there exists an

Figure 9 shows the final surface roughness histogram after € = 0 such that for alke(0, €], we have

500 monolayers are eroded using 100 different closed-loop
simulation runs and that using 100 different open-loop simula- X(t) = %(t) + O(Ve) (42)
tion runs. It is clear that the surface roughness from closed-
loop simulation runs is lower than that from open-loop Therefore, we have the following estimate i, (t) |20
simulation runs. Moreover, the variance of the final surface
roughness from 100 closed-loop simulation runs is 0.067% while
the variance of the final surface roughness from 100 open-loop
simulation runs is 0.53%. The relative larger variance among
the final surface roughness by open-loop simulations can be Furthermore[Jjx(t)||50and 0jx(t)| |0are equal to the traces of
attributed to the stochastic nature of the sputtering process itself.the covariance matrices of(t) and x(t), Pr(t) = B(t)x(t)"C)
As demonstrated in Figure 9, feedback control can not only and Pr(t) = B(t)x(t)'C] respectively. Finally, as — oo, P(t)
reduce the expected final surface roughness, but also effectivelyandPx(t) converge tdPt() andP(w), respectively (bottfP(c)
reduce the variance of the final surface roughness. and Py(«) are bounded quantities which follows from closed-
The microstructure of the surface at the end of the closed- loop stability). We note that the 2-norm &f [|x2, is defined
loop system simulation run is shown in Figure 10. It is clear in€eq 14 andPy(x) is defined in eq 21. Becauge. is a diagonal
that the proposed nonlinear feedback control method can reducenatrix, the trace of matri¥s can be computed as follow8:
the surface roughness to the desired level.

OIx ()1 150= DI%(t) + O(Ve)l130< 200 %(0)I|5CH O(e) (43)

00

_ €
5. Conclusions TriPd :5;

In this work, we developed a method for nonlinear feedback

control of the roughness of a one-dimensional surface whosewherel. (i =1, 2, ...,,0) are the eigenvalues of the matrix,
evolution is described by the stochastic KSE. Our method in eq 41. Specifically|la| = |v — «| and|A4| = |(v — «)[v(2m
includes the construction of a nonlinear feedback controller that + i)> — «(2m + i)4/[v(2m + 1? — «(@m + 1)4]| (i = 1, 2, ...,
can be readily implemented in practice and an analysis of the ). It is clear that|A.| increases with respect tan the order
closed-loop infinite-dimensional system to characterize the of (2m+ i),* where 2nis the size of thes subsystem in eq 19.
closed-loop performance enforced by the nonlinear feedback Therefore,=2,|1/A4| converges to a finite positive number.
controller. The effectiveness of the proposed nonlinear controller Thus, there exists a positive real numisgrsuch that

7 (44)

€i
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TH{P} <5k, (45)
Therefore, it follows that
TH{P} = 0] %(e0)|1,"T= O(e) (46)

According to eq 43, it follows that the contribution to the
expected surface roughness froms O(e), i.e.:

B 0= (e, 0=
f 21 2
i c (00 2 (00 2 =
iz% 1['Itbt.( )T [Bi(0)" = O(e) (47)

This completes the proof of eq 23 in Theorem 1.
Proof of Equation 24 in Theorem 1. Consider thexs

wheredei andigi (i = 1, 2, ...,m) are the eigenvalues of the
matrix Acs in eq 19. Therefore, it holds that

A

_I_ R
B

_ 1 m
Ixg(e0)|1,°T= Tr{P(e0)} = 5 Z (55)

cati

According to eq 53, it holds that the contribution to the expected
surface roughness from is as follows:

1 m
B (o)’ = D]IXS(W)IIzZDZZ—n [0(o0)*TH [B,(c0)° T =

This completes the proof of eq 24 in Theorem 1.
Proof of Equation 25 in Theorem 1.The expected surface

+0(«/— ) (56)

4n.—

CO.I

subsystem of the closed-loop system of eq 19. First, we noteroughness from the closed-loop systefii(«)2[] includes

that there exists a positive real numbkeg such that®43

fs(xs! O)l |2 < kls' |Xf| |2 (48)

(s %) =
where the definitions of|x||> and||fy(-)||> can be found in eq
14. From eq 42, we have the following estimate [fay| |, for t
> ty (Wherety is the time needed faif x(t)|| to approach zero
andt, — 0 ase — 0):

%O, = \/ ; [, (e0)’ - (B(0)2] = O(Ve)  (49)
=1

This implies that we have the following estimate f{g(xs, X;)
— fo(Xs, O)||2 for t = ty:

I %) — fdxg O)lI, = O(Ve)

Therefore, the solution of the following system consists an
O(€) approximation of thess of eq 19 [ref 42, Theorem A.1,
p 361]:

(50)

axg

&= AKTE (51)
In particular, there exists a¢t* > 0 such that for alk (0,
€**], it holds that

x(t) — %(t) = O(Ve) (52)

and

X0)11,* = 11 X117 = (IxB)1], — 11 X1 (X011, +
1 %(B)l1,) = O(We) (53)

Becausel[x(t)[|2 and ||x(t)||> are bounded for alt > O,
ixs(t)| 220 and [x(t)||220 are equal to the traces of the
covariance matrices of(t) and x(t), Ps(t) = (t)x«(t)"Tand
Py(t) = F()X(t)'D) respectively. Ast — o, Pg(t) and P(t)
converge toPg) and Pg(«), respectively. The definition of
Py(e0) can be found in eq 21. ~

BecauseAs is a diagonal matrix, the trace of mati(co)
can be computed as follov#s:

o)

_ i
Tr{P{()} = EZ (

(54)

CO.I

contributions from both th& subsystem and the subsystem
of eq 19. Therefore, we have the following equationfige)?[]
[B(00) = [y(e0) - ()’ (57)

Using egs 23 and 24, we immediately have

[H(c0)’= S +0(/e) + O(e) (58

=) 4n.Z (Mm.l )] OO TOO Y
Since asx — 0, it holds that
O(e)

—0 59

o) (59)

The O(¢) term in eq 58 is negligible, and there existsein=
min(e*, €**) such that if e (0, €*], then

) +owe  (60)

2 12
[(c0) = —

4"7.L—I— (M‘cm' |/1cﬁ||

wherelei, Agsi (I = 1, 2, ...,m) are eigenvalues oA in the
system of eq 19. This completes the proof of Theorem 1.
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