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Optimal Actuator/Sensor Placement for Nonlinear
Control of the Kuramoto-Sivashinsky Equation

Yiming Lou and Panagiotis D. Christofides, Member, IEEE

Abstract—In this paper, we use a methodology that was
recently proposed by Antoniades and Christofides to compute
the optimal actuator/sensor locations for the stabilization, via
nonlinear static output feedback control, of the zero solution
of the Kuramoto–Sivashinsky equation (KSE) for values of the
instability parameter for which this solution is unstable. The
theoretical results are illustrated through computer simulations
of the closed-loop system using a high-order discretization of the
KSE.

Index Terms—Galerkin’s method, highly dissipative partial
differential equations, nonlinear control, optimal actuator/sensor
placement, waves.

I. INTRODUCTION

T HE Kuramoto–Sivashinsky equation (KSE) is a nonlinear
dissipative fourth-order partial differential equation (PDE)

of the form

(1)

where is the so-called instability parameter, which de-
scribes incipient instabilities in a variety of physical and chem-
ical systems. Examples include falling liquid films [6], unstable
flame fronts [19], and interfacial instabilities between two vis-
cous fluids [12]. Analytical and numerical studies of the dy-
namics of (1) with periodic boundary conditions (e.g., [6] and
[20]) have revealed the existence of steady and periodic wave
solutions, as well as chaotic behavior for very small values of.

In addition to the existence of complex solution patterns, the
above studies have revealed that the dominant dynamics of the
KSE can be adequately characterized by a small number of
degrees of freedom (e.g., [20]). Motivated by this, research has
focused on the design of linear/nonlinear finite-dimensional
output feedback controllers [4], [5] for stabilization of the
zero solution of the KSE on the basis of ordinary differential
equation (ODE) approximations, obtained through linear [4]
and nonlinear [5] Galerkin’s method, that accurately describe
the dominant dynamics of the KSE for a given value of the
instability parameter. The global stabilization of the KSE has
also been addressed via distributed static output feedback
control [9]. A nonlinear boundary feedback controller was
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also proposed in [17] that enhances the rate of convergence to
the spatially uniform steady-state of the KSE for values of
for which this steady-state is open-loop stable. Even though
the above works led to the systematic design of practically
implementable feedback controllers for the KSE, they do not
address the issue of optimal actuator/sensor placement so that
the desired control objectives are achieved with minimal energy
use.

The area of integration of feedback control design with op-
timal placement of control actuators and measurement sensors
so that the desired control objectives are achieved with min-
imal energy use has received significant attention, especially in
1970s and early 1980s (see, for example, the review paper [14]),
in the context of linear distributed parameter systems (DPS).
Specifically, several results have been derived on the problem of
integrating linear feedback control and optimal actuator place-
ment for several classes of linear DPS including controllability
measures and actuator placement in oscillatory systems [3], as
well as optimal placement of actuators for linear feedback con-
trollers in parabolic PDEs (see, e.g., [11]) and in actively con-
trolled structures (see, e.g., [7]). Furthermore, the problem of
selecting optimal locations for measurement sensors in linear
distributed parameter systems has also received very significant
attention (see, e.g., [15], [18]). Significant research efforts have
also been made on the integrated optimal placement of actu-
ators and sensors for various classes of linear DPS [14]. Re-
cently, we initiated a line of work on the computation of op-
timal actuator/sensor locations of nonlinear controllers for spa-
tially-distributed processes. In a previous work [1], we proposed
a method for the integration of nonlinear output feedback con-
trol with optimal actuator/sensor placement for transport-reac-
tion processes described by a broad class of quasilinear para-
bolic PDEs. The proposed method, based on Galerkin’s method
and the concept of full state-feedback linearization, allows si-
multaneously designing a stabilizing nonlinear output feedback
controller and solving the optimal actuator/sensor placement
problem in a highly efficient fashion.

In this work, we use the methodology proposed in [1] to
compute optimal locations of point control actuators and mea-
surement sensors for nonlinear output feedback control of the
KSE with periodic boundary conditions. We initially synthe-
size stabilizing nonlinear state feedback controllers via geo-
metric techniques on the basis of finite-dimensional approxima-
tions, obtained via Galerkin’s method, that capture the dominant
dynamics of the KSE. The optimal actuator location problem
is subsequently formulated as the one of minimizing a mean-
ingful cost functional that includes penalty on the response of
the closed-loop system and the control action. Then, under the
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assumption that the number of measurement sensors is equal to
the number of slow modes, we employ a procedure proposed in
[10] for obtaining estimates for the states of the approximate fi-
nite-dimensional model from the measurements. The estimates
are combined with the state feedback controllers to derive output
feedback controllers. The optimal location of the measurement
sensors is computed by minimizing a cost function of the es-
timation error in the closed-loop infinite-dimensional system.
The theoretical results are successfully illustrated through com-
puter simulations of the closed-loop system using a high-order
discretization of the KSE.

II. PRELIMINARIES

We consider the KSE in one spatial dimension with dis-
tributed control

(2)

subject to the periodic boundary conditions

(3)

and the initial condition

(4)

where is the state of the PDE, is the spatial
coordinate, is the time and is the length of the spatial do-
main, is the instability parameter, and is the initial con-
dition. denotes theth manipulated input, is the total
number of manipulated inputs, is the th actuator distribu-
tion function (i.e., determines how the control action com-
puted by theth control actuator, , is distributed (e.g., point
or distributed actuation) in the spatial interval ),
denotes a measured output and is a known smooth func-
tion of which is determined by the location and type of the
measurement sensors (e.g., point/distributed sensing). We note
that whenever the control action (or sensing) is applied to the
system at a single point , with (i.e., point actua-
tion), the function is taken to be nonzero in a finite spatial
interval of the form , where is a small positive real
number, and zero elsewhere in . Throughout the manu-
script, we will consider the problem of optimal actuator/sensor
placement by considering point control actuators.

To present the method that we use for output feedback con-
troller design and optimal actuator/sensor placement, we for-
mulate (2) as an infinite dimensional system in the Hilbert space

, with being the space of measurable functions
defined on , with inner product and norm

(5)

where , are two elements of and the nota-
tion denotes the standard inner product in. Defining
the state function on as

(6)

the operator in as

(7)

and the input, controlled output, and measured output operators
as

(8)

the system of (2)–(4) takes the form

(9)

where and .
For , we can formulate the following eigenvalue problem:

(10)

subject to

(11)

where denotes an eigenvalue and denotes an eigenfunc-
tion. A direct computation of the solution of the above eigen-
value problem yields with , and

( is an eigenvalue of multiplicity two)
with eigenfunctions and

for . We also define the eigen-
spectrum of , , as the set of all eigenvalues of, i.e.,

. We note that the fact that has a pure
real point spectrum is a result of the fact that the spatial differ-
ential operator of the KSE with periodic boundary conditions is
self-adjoint and the problem is considered in a bounded domain.

From the expression for the eigenvalues, it follows that for a
fixed value of the number of unstable eigenvalues of
is finite and the distance between two consecutive eigenvalues
(i.e., and ) increases as increases. Furthermore, for
a fixed value of , can be partitioned as

, where contains the first (with fi-
nite) “slow” eigenvalues (i.e., ) and

contains the remaining “fast” eigenvalues (i.e.,
where ). To capture the separation be-

tween the “slow” and “fast” eigenvalues, we define the param-
eter (note that as ). We note
that the occurrence of a finite number of unstable eigenvalues
and the separation of “slow” and “fast” eigenvalues is a common
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characteristic of the spectrum of spatial differential operators as-
sociated with diffusion-reaction processes and various classes of
fluid dynamic systems [8].

The separation between the “slow” and “fast” eigenvalues
suggests that the dominant dynamics of the KSE can be
described by a finite-dimensional system. We apply stan-
dard Galerkin’s method to the system of (9) to derive an
approximate finite-dimensional system. Let , be modal
subspaces of , defined as and

(the existence of ,
follows from the properties of ). Defining the orthogonal
projection operators and such that , ,
the state of the system of (9) can be decomposed as

(12)

Applying and to the system of (9) and using the above de-
composition for , the system of (9) can be equivalently written
in the following form:

(13)

where , , , ,
and and the notation is used

to denote that the state belongs in an infinite-dimensional
space. In the above system, is a diagonal matrix of dimension

of the form , and
are Lipschitz vector functions, and is an unbounded differ-
ential operator which is exponentially stable (following from the
fact that and the selection of ). Neglecting the
fast and stable infinite-dimensional -subsystem in the system
of (13), the following -dimensional slow system is obtained:

(14)

where the bar symbol in and denotes that these variables
are associated with a finite-dimensional system.

Remark 1: A physical system that can be described by the
KSE is the motion of a liquid film falling down on a vertical
wall [6]. In this case, is the film height. Such a system
has been found experimentally to exhibit wavy behavior of the
type predicted by the KSE for values ofsmaller than one (see
also Fig. 1). In many instances, it is desirable to suppress wavy
behavior by using control actuators that add/remove fluid mass
via blowing/suction. In this case, the control input enters directly
into the partial differential equation and does not appear in the
boundary conditions. This physical problem is consistent with
the formulation of (2) since we consider distributed control ac-
tuation. Note that problems for which the inputs enters directly
into the KSE but nonlinearly can be readily handled within our
formulation by simply solving for through the inversion of a
nonlinear algebraic equation.

Fig. 1. Open-loop spatiotemporal profile ofU(z; t) for � = 0:2.

Remark 2: The consideration of approximate point control
is motivated by the fact that most experimental point control
actuators (including the ones that add/remove fluid mass via
blowing/suction) have finite (but small) support and the fact that

(where is the standard Dirac function) is
not an element of .

III. I NTEGRATING NONLINEAR CONTROL AND OPTIMAL

ACTUATOR PLACEMENT

A. Nonlinear State Feedback Controller Synthesis

In this section, we assume the use of point control actuators
and assume that measurements of the states of the system of
(14) are available. We first address the problem of synthesizing
nonlinear static state feedback control laws of the general form

(15)

where is a nonlinear vector function and
denotes the vector of the point

actuator locations, that guarantee exponential stability of the
closed-loop finite-dimensional system. To address this problem
and simplify our development, we need to impose the following
assumption.

Assumption 1: (i.e., the number of control actuators
is equal to the number of slow modes), and the inverse of the
matrix exists.

The requirement is sufficient and not necessary, and
it is made to simplify the synthesis of the controller and the
solution of the optimal placement problem (see also discussion
in Remark 4 below).

Proposition 1 that follows provides the explicit formula for
the state feedback controller that achieves the control objective
(the proof can be found in [1]).

Proposition 1: Consider the finite-dimensional system of
(14) for which assumption 1 holds. Then, the state feedback
controller

(16)

where is a stable matrix, guarantees global exponential sta-
bility of the closed-loop finite-dimensional system.
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Remark 3: The structure of the closed-loop finite-dimen-
sional system under the controller of (16) has the following
form:

(17)

and, thus, the response of this system depends only on the stable
matrix and the initial condition and is independent of
the actuator locations.

Remark 4: While the requirements and existence
of are sufficient to design a state feedback law that fully
linearizes the closed-loop finite dimensional system (17), it is
important to note that full linearization of the closed-loop fi-
nite-dimensional system through coordinate change and non-
linear feedback can be achieved for any number of manipulated
inputs (i.e., for any ), provided that an appropriate
set of involutivity conditions is satisfied by the corresponding
vector fields of the system of (14) (see [13, p. 165] for details).

B. Computation of Optimal Actuator Locations

In this subsection, we compute the actuator locations so that
the state feedback controller of (16) is near-optimal for the full
KSE system of (13) with respect to a meaningful cost func-
tional which is defined over the infinite time-interval and im-
poses penalty on the response of the closed-loop system and the
control action. To this end, we initially focus on the ODE system
of (14) and consider the following cost functional:

(18)

where and are positive definite matrices and the inner
product in notation of (5) is used in the first term of the in-
tegrand. The cost of (18) is well defined and meaningful since
it imposes penalty on the response of the closed-loop finite-di-
mensional system and the control action. However, a potential
problem of this cost is its dependence on the choice of a par-
ticular initial condition, , and thus, the solution to the op-
timal placement problem based on this cost may lead to actuator
locations that perform very poorly for a large set of initial con-
ditions. To reduce this dependence and obtain optimality over a
broad set of initial conditions, we follow [16] and consider an
average cost over a set of linearly independent initial condi-
tions and , of the following form:

(19)

Referring to the above cost, we first note that the penalty on the
response of the closed-loop system:

(20)

is finite because the solution of the closed-loop system of (17) is
exponentially stable by appropriate choice of. Moreover,

is independent of the actuator locations (Remark 3), and thus,
the optimal actuator placement problem reduces to the one of
minimizing the following cost which only includes penalty on
the control action:

(21)
is a function of multiple variables,

, and thus, it obtains its local
minimum values when its gradient with respect to the actuator
locations is equal to zero, i.e.,

(22)

and where is the Hessian ma-
trix of and is a solution of the system of nonlinear al-
gebraic equations of (22) (which includesequations with un-
knowns). The solution for which the above conditions are
satisfied and obtains its smallest value (global minimum)
corresponds to the optimal actuator locations for the closed-loop
finite-dimensional system.

Remark 5: Owing to the numerical complexity involved in
computing the actuator locations that exactly minimize the cost
of (21) (it involves search over an infinite number of locations),
we initially assume a large number, say, of equispaced loca-
tions along the length of the spatial domain in which the control
actuators are possible to be placed (i.e., locations for which
exists and the closed-loop finite-dimensional system is stabiliz-
able). Then, we compute the value of the cost of (21) for all
possible combinations of the actuator locations to calculate the
optimal locations.

Remark 6: While the cost of (19) is meaningful in the sense
that it imposes penalty both on the system response and the con-
trol effort and standard in the context of optimal actuator place-
ment problems, it is possible to compute optimal actuator loca-
tions with respect to cost functionals that include penalty on the
rate of change of the state and of the control action in order to
enforce additional control objectives. The consideration of such
costs can be addressed and studied in the context of the proposed
framework however, it may lead to an increase in the magnitude
of the computational demand needed to solve the optimization
problem.

C. Output Feedback Control and Sensor Placement

The nonlinear controller of (16) was derived under the
assumption that measurements of the statesare available,
which implies that measurements of the state variable, ,
are available at all positions and times. However, from a
practical point of view, measurements of the state variables are
only available at a finite number of spatial positions. Motivated
by these practical problems, we address in this section: 1) the
synthesis of nonlinear output feedback controllers that use
measurements of the process outputs,, to enforce stability
in the closed-loop infinite-dimensional system and 2) the
computation of optimal locations of the measurement sensors.
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Specifically, we consider output feedback control laws of the
general form

(23)

where is a nonlinear vector function and is the vector
of measured outputs. The synthesis of the controller of (23) will
be achieved by combining the state feedback controller of (16)
with a procedure proposed in [10] for obtaining estimates for the
states of the approximate ODE model of (14) from the measure-
ments. To this end, we need to impose the following requirement
on the number of measured outputs in order to obtain estimates
of the states of the finite-dimensional system of (14), from
the measurements , .

Assumption 2: (i.e., the number of measurements
is equal to the number of slow modes), and the inverse of the
operator exist, so that .

We note that the requirement that the inverse of the operator
exists can be achieved by appropriate choice of the location

of the measurement sensors [i.e., functions ]. When point
measurement sensors are used, this requirement can be verified
by checking the invertibility of a matrix (see (33) in Section IV).
The optimal locations for the measurement sensors can be then
computed by minimizing an average cost function of the esti-
mation error of the closed-loop infinite-dimensional system of
the form:

(24)

where is the slow state of the closed-loop infinite-dimen-
sional system of (13), , and is
the estimation error. In contrast to the solution of the optimal lo-
cation problem for the control actuators, the solution to this op-
timization problem requires the solution of the closed-loop in-
finite-dimensional system in order to compute, and (from
the measurements , ), and thus, it is more
computationally demanding.

Theorem 1 that follows establishes that the proposed output
feedback controller enforces stability in the closed-loop infi-
nite-dimensional system and that the solution to the optimal
actuator/sensor problem, which is obtained on the basis of the
closed-loop finite-dimensional system, is near-optimal in the
sense that it approaches the optimal solution for the infinite-di-
mensional system as the separation of the slow and fast eigen-
modes increases. The proof can be found in [1].

Theorem 1: Consider the system of (13), and the finite-di-
mensional system of (14), for which assumptions 1 and 2 hold,
under the nonlinear output feedback controller:

(25)

Then, there exist positive real numbers, , and such that
if , , and , then the
controller of (25):

1) guarantees exponential stability of the infinite-dimen-
sional closed-loop system

2) the locations of the point actuators and measurement sen-
sors are near-optimal in the sense that the cost function

associated with the controller of (25) and the system of
(13) satisfies

(26)

where and are the average cost functions of the in-
finite-dimensional system of (13) and the finite-dimen-
sional system of (14), respectively, under the output feed-
back controller of (25).

Remark 7: Even though static output feedback is more sen-
sitive to measurement noise than dynamic output feedback, we
prefer to use static feedback of in the controller of (25) be-
cause the use of a state observer to obtain estimates of the slow
state variables would lead to the formulation of a very computa-
tionally-demanding optimization problem for the computation
of the optimal sensor locations. Furthermore, the solution to the
controller design and optimal actuator/sensor placement prob-
lems for parabolic PDE systems with uncertain variables can be
found in [2].

Remark 8: From the definition of , it follows that
as , which implies that the control design and optimal
actuator/sensor placement problems for the KSE are solvable
provided is sufficiently large. While an estimate of can
be obtained in principle from the proof of Theorem 1, such an
estimate would be in general conservative, and thus, the number
of slow modes is usually determined via computer simulations.

IV. NUMERICAL RESULTS

In this section, we present an application of optimal actu-
ator/sensor placement to the KSE for to achieve sta-
bilization at the spatially-uniform steady state using a nonlinear
static output feedback control law. For simplicity and in order
to better present our theoretical results, we will consider the
KSE in the space of odd functions with spatial zero mean. Intro-
ducing the Hilbert space of sufficiently smooth odd functions
that satisfy the boundary conditions of (3) and have spatial zero
mean (i.e., , ) and defining the state
function as , , the system
of (2)–(4) can be written in the form of (9), where the domain
of definition of the spatial differential operator now takes the
form

(27)

and the eigenvalue problem for yields ,
, (note that

and , are not
considered here, since we focus only on odd functions with spa-
tial zero mean).

All the simulation runs shown below were performed for
, using a 30th-order nonlinear ordinary differential equation

model obtained from the application of Galerkin’s method to



742 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 11, NO. 5, SEPTEMBER 2003

the system of (2) (the use of higher order Galerkin approxima-
tions led to identical numerical results, thereby implying that the
following simulation runs are independent of the discretization).
Linearizing the system around the spatially uniform steady-state
for , we observe that the system of (9) possesses two un-
stable eigenvalues. The spatiotemporal evolution of for

is shown in Fig. 1. It is clear that for , the spa-
tially uniform steady-state is unstable. Therefore,
we consider the first two Galerkin modes of the KSE as the slow
modes and use Galerkin’s method to construct a second-order
ODE system which is used for the design of a state and an output
feedback controllers and the optimal placement of two control
actuators and measurement sensors (assumptions 1 and 2). The
resulting second-order ODE system is of the form

(28)

where and are the locations of the two point actuators
and the explicit forms of the terms and are
omitted for brevity. The system (28) is derived by assuming that
point actuation is applied to the system. When the point actua-
tion is approximated by a control aciton applied to a small spa-
tial interval, the optimal actuator/sensor placement results and
the closed-loop simulation results are almost identical to those
obtained by using the system of (28).

For the system of (28), the nonlinear state feedback controller
of (16) takes the form

(29)

Substituting the above controller into the system of (28), we
obtain the following closed-loop ODE system

(30)

where and are positive real numbers. Since the response of
the above system depends only on the parameters, and the
initial condition , and is independent of the actuator locations,
we compute the optimal actuator locations by minimizing the
following cost functional, which only includes penalty on the
control action

(31)

Using the following values for the initial conditions
and , and taking , , to be unit

matrices of appropriate dimensions and , the optimal
actuator locations were found, using the procedure discussed in
remark 5, to be and . We also compute

TABLE I
RESULTS FORTWO CONTROL ACTUATORS

Fig. 2. Closed-loop norm of the control effort,kuk, for x (0) = [� 0], for
the optimal case (solid line), case 2 (dashed-dotted line), case 3 (dashed line),
and case 4 (dotted line).

the optimal sensor locations by minimizing the following cost
functional of the estimation error:

(32)

where is obtained from the simulation of the full-order
closed-loop system of (13), and is obtained from the mea-
sured outputs of the full-order closed-loop system as follows:

(33)
We found the optimal location of measurement sensors to be:

and .
We performed several simulation runs to evaluate the per-

formance of the proposed method for computing optimal loca-
tions of control actuators and measurement sensors. We initially
apply the state feedback controller to the 30th-order Galerkin
truncation of the system of (2) and investigate the influence of
the different actuator locations on the various cost functions.
Table I shows the values of the costs, , and of the full-
order closed-loop system under the state feedback controller,
in the case of optimal actuator placement, and for the sake of
comparison, the values of these costs in the case of alternative
actuator placements. The cost for the control action used to sta-
bilize the KSE at when the actuators are optimally
placed, is clearly smaller than the case of actuator placement
based on the case 2 (by 18.9%), case 3 (by 35.5%), and case 4
(by 34.0%). Figs. 2 and 3 show the norm of the control action,

, for (Fig. 2) and (Fig. 3), for
the optimal case (solid line), case 2 (long-dashed line), case 3
(short-dashed line), and case 4 (dotted line).

We also tested the computed optimal sensor locations
and . To this end, we implement
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Fig. 3. Closed-loop norm of the control effort,kuk, for x (0) = [0 � ], for
the optimal case (solid line), case 2 (dashed-dotted line), case 3 (dashed line),
and case 4 (dotted line).

TABLE II
RESULTS FORTWO CONTROL ACTUATORS ANDMEASUREMENTSENSORS

Fig. 4. Closed-loop estimation errore versus time, for the optimal
actuator/sensor locations, forx (0) = [� 0] (solid line) andx (0) = [0 � ]
(dotted line).

the nonlinear output feedback controller on the 30th-order
Galerkin truncation of the system of (2) with actuator locations

and and different sensor locations.
Table II shows the values of the costs and of the
full-order closed-loop system under the output feedback con-
troller, in the case of optimal sensor placement, and for the sake
of comparison, the values of these costs in the case of two other
sensor locations. The estimation error of the sensor locations
of and computed by the proposed approach is
smaller than the other two cases. In Fig. 4, we display the
closed-loop estimation error ( ) versus time,
for the optimal actuator/sensor locations, for
(solid line) and (dashed line). We can see that
for both initial conditions the estimation error is very small.
Finally, Figs. 5 and 6 show the profiles of the KSE system,
under output feedback control, for the optimal actuator/sensor

Fig. 5. Profile of KSE under output feedback control, for the optimal
actuator/sensor locations, forx (0) = [� 0].

Fig. 6. Profile of KSE under output feedback control, for the optimal
actuator/sensor locations, forx (0) = [0 � ].

locations, for (Fig. 5), and
(Fig. 6). We can see that the proposed controller with optimal
actuator/sensor locations, stabilizes the system to the spatially
uniform operating steady state very quickly, for both cases.

Finally, we tested the robustness of the output feedback con-
trol law, using the optimal actuator/sensor location, for a 25%
decrease in the value of the instability parameter (i.e.,was
taken to be equal to 0.15 in the high-order discretization of the
KSE but it was used as 0.2 in the controller). Fig. 7 shows the
profiles of the state (top plot) and of the manipulated inputs
(bottom plot) for and Fig. 8 shows the profiles
of the state (top plot) and of the manipulated inputs (bottom
plot) for . Our simulations show that the con-
troller is capable of stabilizing the KSE at the spatially uniform
steady-state solution in the presence of significant uncertainty
in .

Summarizing, we have computed the optimal [with respect
to the costs of (31) and (32)] locations for two control actua-
tors and two measurement sensors, associated with a nonlinear
output feedback controller that achieves stabilization of the zero
solution of the KSE for . We have compared the optimal
actuator and sensor locations with respect to alternative place-
ments (Tables I and II) and have verified the optimality of the
computed locations and the robustness of the approach.

Remark 9: Referring to the effect of on the actuator/sensor
locations,wenote thatdetermines how many of the eigenvalues
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Fig. 7. Profile of KSE under output feedback control, for the optimal
actuator/sensor locations, forx (0) = [� 0] and uncertainty in� (top plot).
Manipulated input profiles (bottom plot)—solid lineu and dashed lineu .

Fig. 8. Profile of KSE under output feedback control, for the optimal
actuator/sensor locations, forx (0) = [0 � ] and uncertainty in� (top plot).
Manipulated input profiles (bottom plot)—solid lineu and dashed lineu .

of the spatial differential operator are unstable, and thus, it af-
fects the consideration of the number of slow modes. Since in our

method the number of actuators and sensors is taken to be equal
to the number of slow modes, it is clear that the value of the in-
stability parameter influences the number of actuators and sen-
sors. We also found through simulations that small variations of

around the nominal value considered in our calcula-
tions lead to slight changes in the optimal actuator locations.
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