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a b s t r a c t 

Direct metal laser solidification (DMLS) has been receiving increasing research interest in the additive 

manufacturing (AM) industry due to its outstanding performance in producing parts with ultra-high pre- 

cision and variable geometries. However, the lack of appropriate in-situ disturbance detection techniques 

specialized for DMLS makes real-time quality control extremely difficult. In this work, a first-principles- 

based finite element method (FEM) model focusing on the heat transfer behavior of the DMLS process is 

developed. The model-produced thermal data is processed to reproduce the outputs of two industrially 

used sensors: the optical tomography (OT) sensor and the melt pool monitoring (MPM) sensor. In-situ 

sensor data analytics is then performed through the use of a convolutional neural network (CNN) to 

automatically detect disturbances from each sensor data during the build process in real-time. Transfer 

learning is applied to the pre-trained AlexNet backbone to efficiently construct the disturbance detection 

CNNs for each sensor, and overall accuracy of 73.4% and 82.8% is observed for the melt pool and the OT 

CNN, respectively. To further increase the accuracy, a cross-validation scheme is proposed to combine the 

results from both CNNs based on their confidence levels. The final results demonstrate that the testing 

accuracy increases to 90.4% when cross-validation between both sensor data analytics is applied. The de- 

veloped machine-learning-based algorithms provides a methodology to perform real-time process data 

analytics and thereby reducing defect formation and increasing production throughput. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Additive manufacturing (AM) was invented in the 1990s and it

as been exploited for the manufacturing of industrial parts using

arious kinds of materials including polylactic acid (PLA) plastic,

hotopolymer, gypsum, metal alloys, etc. ( Gibson et al., 2014 ). In

he past 20 years, the market share has grown by 20 percent each

ear, which created massive opportunities in this field. In 2019,

he AM industry reached around 10 billion dollars and was still

volving rapidly. Compared to conventional fabrication techniques

n the industry such as casting, AM technologies are significantly

ore advantageous due to their rapid prototyping time, fast man-

facturing speed, reduced production cost, and versatile build ge-

metry ( Nandwana et al., 2016 ). The adoption of AM techniques
∗ Corresponding author at: Department of Chemical and Biomolecular Engineer- 

ng, University of California, Los Angeles, CA, 90095-1592, USA. 
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lso demonstrates huge economic benefits, where a cost reduction

f about 40% can be achieved ( Baumers et al., 2017 ). Among the

ide range of materials that can be manufactured with AM meth-

ds, metal alloys have particularly drawn attention in the academia

nd the industry, and have taken up to 30% of the total AM market,

ue to their use in high mechanical strength applications, such as

ooling ( Costa et al., 2005 ), pharmaceutical devices, and automotive

quipment ( Leal et al., 2017 ). Two major metal deposition meth-

ds are typically used in the industry: Directed Energy Deposition

DED) and Laser Powder Bed Fusion (LPBF) ( Frazier, 2014 ). DED in-

olves the melting of a powder or wire feed with an energy source

o directly deposit a fused layer onto the substrate. It has the ad-

antages of high printing speed and low-cost feedstock, but also

aces low-resolution issues, causing significant part deformation

nd limited geometric capability. Thus, LPBF becomes the more

uitable option for applications with complicated design, stringent

ield strength, and high precision requirements, which are often

ncountered in the medical ( Singh and Ramakrishna, 2017 ) and

erospace ( Liu et al., 2017 ) industry. 

https://doi.org/10.1016/j.compchemeng.2020.107069
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107069&domain=pdf
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.compchemeng.2020.107069
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In this paper, we focus on a subcategory of LPBF called the di-

rect metal laser solidification (DMLS), which involves a laser power

source with enough energy to fully melt each metal powder layer.

To construct the desirable structure, the first step is to design the

build geometry and support structure, if necessary, with computer-

aided design (CAD) software. Based on the 3D (three-dimensional)

CAD geometry, a specific AM operating recipe is developed, includ-

ing the layer-by-layer laser scanning plan and the layer thickness.

Before each layer is printed, appropriate space in the deposition

chamber is first created in the build platform by lowering the plat-

form base by exactly one layer thickness. Next, the recoater blade

pushes the metal powder from the fresh powder stock onto the

build platform to prepare a uniform powder bed. Then, according

to the predefined recipe, the laser power source scans across the

layer to melt the powder, and the molten powder subsequently

resolidifies to form the desired solid part. Despite the demand for

high resolution, many part failures are encountered in industrial

manufacturing given errors and disturbances during the DLMS pro-

cess. For example, unexpected laser variations including the defo-

cusing of the laser beam or incorrect laser pulsing may lead to

the formation of cold and hot zones on the powder bed. The ther-

mal and mechanical stresses of the build part are highly depen-

dent on the temperature, which is influenced by the laser power,

the energy dissipation of the material phase change, and the con-

duction and convection within the deposition chamber. Thus, laser

and cooling abnormalities may cause mechanical problems of the

build part such as lack of fusion or keyholing ( Grünberger and

Domröse, 2014 ). In addition, recoater streaking and jamming can

happen due to the undesired part deformation above the expected

build surface ( Gong et al., 2014 ). Although it is desirable to under-

stand and control the disturbances, the relationship between the

variety of potential disturbances and operating parameters (e.g.,

scanning strategy, laser power, hatch spacing, and scanning speed)

is very difficult to generalize for different materials and build ge-

ometries ( Delgado et al., 2012 ). 

To better understand the physics in DMLS processes, sev-

eral experimental works have utilized first-principles-based

modeling and analysis methods for deterministic analyses.

Arısoy et al. (2019) utilized a multi-physics algorithm of heat

transport and mechanical strength analytics to understand the in-

fluence of melt pool on the mechanical property of microstructure.

Yan et al. (2018) constructed an integrated model of the energy

density, the material microstructure formation, and the resulting

parts’ mechanical responses. Also, other simulation models inves-

tigated the effect of operating parameters and strategies aided by

FEM models. For example, Ramos et al. (2019) looked at different

scanning strategies, and Dong et al. (2019) delved into the influ-

ence of hatch spacing on melt pool dimensions and associated part

quality. In addition, experimental studies endeavored to optimize

the part design based on model-predicted properties. For instance,

Peralta et al. (2016) developed the approach of probabilistic rapid

qualification design and utilized model-predicted results to reduce

the overall qualification process time. Khurana et al. (2018) used

the model-predicted thermal profile and stress analysis to for-

mulate and optimize the design of build geometry and support

structure. 

Nevertheless, existing simulation models fail to reflect the laser

heating induced damage to the part during the building process.

Thus, to avoid this problem, in-situ sensor monitoring technolo-

gies are developed to record the manufacturing information. Many

types of real-time monitoring technologies have been developed in

the academia and the industry, including the physical powder bed

images, the layer-wise temperature history maps, the melt pool di-

mension data, etc. Clijsters et al. (2014) developed an optical sen-

sor setup that is connected with a field-programmable gate array

(FPGA). This setup allows the transfer of sensor information at a
ampling rate higher than 10 kHz. Everton et al. (2016) provided

 general review of valuable sensors that can be integrated with

ll types of metal additive manufacturing methods and applica-

ions. Moreover, the EOS company has developed advanced moni-

oring devices which consist of EOSTATE Optical Tomography (OT),

OSTATE MELTPOOL, EOSTATE BASE, and EOSTATE POWDERBED

 Scott, 2017 ). Due to the superior performance of EOS devices, they

ave been selected as the reference metrics in this work. However,

everal challenges are associated with the sensor data that make it

ifficult to be efficiently utilized. The two major issues that need to

e addressed are the overwhelming data size and the data analyt-

cs efficiency to enable real-time process control. As demonstrated

y EOS , high-resolution camera sensors provide pictures at a very

ast sampling rate, which produces terabytes of data per build. It

s impossible to accommodate all the information because of the

imitations on the data transfer speed and storage space. In addi-

ion, it is also not possible for engineers to read and analyze sen-

or images manually. Thus, modern computational resources and

he advanced data processing algorithms form a central compo-

ent that ties the process information, data storage, and data an-

lytics together. For example, Zhang et al. (2018) utilized the con-

olution matrix and support vector machine (SVM) techniques to

xtract and evaluate plume and spatter information. Scime and

euth (2019) used scale-invariant feature transform (SIFT) to ex-

ract features from the images and then used histogram of oriented

radients (HOG) to relate melt pool abnormality with the result-

ng defects. The same group also tried using convolutional neural

etwork (CNN) with transfer learning from an AlexNet backbone

o classify physical disturbances like super-elevation and recoater

ams. Yuan et al. (2019) exploited a semi-supervised learning al-

orithm, which bases the CNN model on the Temporal Ensemble

ethod, to allow successful training with limited sensor images for

ootstrap. 

In this paper, we develop an automated data-flow that inte-

rates the simulation model and a machine learning network for

eal-time process monitoring and sensor data analytics. The simu-

ation models are tailored to incorporate possible disturbances, and

ensor-specific outputs are generated from the simulation results

o reflect realistic disturbances that might be identified in-situ dur-

ng the manufacturing process. In particular, we first develop a

odel that simulates the heat transfer and phase change based

n the operating parameter combination using COMSOL Multi-

hysics. Next, according to the EOSTATE OT and EOSTATE MELT-

OOL measurements, the heat map sensor data are generated from

he simulation model with disturbances introduced as classifica-

ion categories. Then, two separate CNN networks are designed and

rained with transfer learning with an AlexNet backbone to iden-

ify the problems that lie in the OT and Meltpool images, respec-

ively. In addition, the two CNN results are cross-validated using

eta-analysis to make a final robust decision. The accuracy of the

rained CNN and the computation time are demonstrated to be ap-

licable to the in-situ AM process monitoring purposes. 

. FEM model of DMLS and thermal sensor output 

As discussed in the introduction, first-principles-based numer-

cal simulations have been utilized to model the DMLS processes

o understand the effects of the operating parameters on the final

uild part properties. In the presented work, we specifically tai-

or our simulation model to predict and reproduce in-situ sensor

onitoring information produced during the real-time manufactur-

ng process. In this section, we first discuss the construction of a

ime-dependent FEM model that integrates heat transfer, the phase

hanges between powder, liquid and resolidified metal, the associ-

ted boundaries, and the operating recipes. Next, the performance

f the developed model is validated with respect to experimental
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Fig. 1. Proposed automated data-flow which integrates FEM simulation and machine learning-based sensor data analytics. 

Fig. 2. (a) Build part geometry and scan pattern. (b) FEM mesh scheme. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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ata and theoretical standards. Then, we will discuss the details of

he melt pool and thermal OT sensors and the procedures taken

o process the simulation results to reproduce realistic sensor out-

uts. 

.1. Build part geometry and mesh 

To ensure the generality of the developed method, a simple

uild geometry is adopted, which is a 1.4 × 1.5 mm rectangle with

 height of 40 μm representing a single layer of IN-718 powder.

he rectangular build part is printed on top of a square steel sub-

trate with dimensions of 2.0 × 2.0 × 1.0 mm in length times

idth times height. This is shown in Fig. 2 (a). The build part is po-

itioned near the middle of the steel substrate so that there is suf-

cient room to the nearest boundaries to observe the heat transfer

ehavior. 

As shown by the Fig. 2 (b), the FEM model geometry is first

eshed with two different mesh resolutions. Due to the powder

ayer being the domain where most heat transfer takes place, we

enerate a finer mesh for this domain with free tetrahedral mesh

lements of a maximum element size of 3 . 32 × 10 −5 m and a min-
mum element size of 2 . 16 × 10 −6 m. Since we are mostly inter-

sted in the x − y plane which is captured by the sensors, we em-

loy a higher resolution factor for the x and y- directions than the

 -direction. For the steel substrate mesh, we use a much lower res-

lution mesh to enhance computational efficiency. The z -axis is dy-

amically meshed so that the mesh nearest to the powder bed is

uch smaller in size than the one at the bottom. Such an inflation

ethod gives rise to a maximum element size of 4 . 76 × 10 −4 m

nd a minimum element size of 1 . 01 × 10 −4 m. 

.2. Thermal energy transport governing equations 

In this work, we utilize the heat transfer module from COM-

OL Multiphysics to capture the major thermal characteristics of

he DMLS process. In the proposed model, we consider the heat

ransport (conduction, convection, and radiation) and the associ-

ted boundary conditions, the latent heat of phase change, and

he temperature/phase thermal dependent material properties. It

s important to note that the model does not consider the de-

ailed microstructure formation and the possible fluid flow within

he melt pool. Fig. 3 summarizes the thermal boundary conditions
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Fig. 3. Boundary conditions applied to the build part geometry. Gaussian heat 

source, convection, and radiation is considered for the top surface while no heat 

loss is assumed for the remaining surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

IN-718 physical properties. 

IN-718 properties Value 

solidus temperature 1533 K 

liquidus Tempearture 1609 K 

Latent heat of fusion 210 kJ/kg 

Emissivity 0.35 

Density, Specific heat, Thermal conductivity See Fig. 4 
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used for FEM modeling in this study. The top powder surface con-

siders the effect of the Gaussian laser source, convection, and radi-

ation while the remaining surfaces assume no heat loss. 

In each cell, the overall transient heat transfer is governed by

the following heat balance equation: 

∂(ρ(T ) C p (T ) T ) 

∂t 
+ ∇q = q s (1)

where ρ is the density of the material, C p is the specific heat ca-

pacity of the material, T is the temperature, and q s is the rate of

internal energy generation. Without the natural convection in the

melt pool, the bulk energy transport is solely influenced by the

conduction q as follows: 

q = −∇(k (T ) T ) (2)

where k is the thermal conductivity. 

2.2.1. Boundary and initial conditions 

The top surface boundary condition in the z -direction is de-

scribed by the following equation: 

−∂(k (T ) T ) 

∂z 
(x, y, z = 0) = −Q ext + h c (T − T 0 ) + εσ0 (T 4 − T 4 0 ) (3)

where h c is the convective heat transfer coefficient, T 0 is the am-

bient gas temperature, ε is the emissivity, and σ 0 is the Stefan-

Boltzmann constant. The heat loss due to convection and radia-

tion is described by the second and the third term on the right

hand side of the equation, respectively. In addition, the external

heat source, Q ext , is the laser source, which is assumed to have a

Gaussian distribution: 

Q ext (r) = 

2 AP 

πω 

2 
e 

− 2 r 2 

ω 2 (4)

where A is the absorptivity, P is the laser power, ω is the laser

beam radius, and r is the radial distance from the center of the

laser beam. 

For the other five surfaces, the assumption of no heat loss is

assumed: 

∂(k (T ) T ) 

∂x 
(x = (0 , l) , y, z) = 0 , 

∂(k (T ) T ) 

∂y 
(x, y = (0 , w ) , z) = 0 , 

∂(k (T ) T ) 

∂z 
(x, y, z = h ) = 0 (5)

where l is the length of the build platform, w is the width of the

build platform, and h is the height of the build platform. 
In addition, the initial condition is that the temperature of the

ntire substrate at the beginning (t = 0) is at the ambient temper-

ture of the printing chamber: 

 (t = 0) = T 0 (6)

.2.2. Phase/temperature-dependent thermal properties 

In our model, we consider three different phases of IN-718 al-

oy including powder, re-solidified metal, and liquid, which all have

istinctive thermal properties. For metal alloys used in AM pro-

ess such as IN-718, the melting point is not at a single tempera-

ure due to their mixed composition. Instead, a transitional zone of

olid or liquid exists, which is defined by the solidus temperature

nd the liquidus temperature. Any material below the solidus tem-

erature is considered to be purely in the solid phase, and similar

ogic applies for the liquidus temperature. While the solid and liq-

id phase of the material can be differentiated through the inspec-

ion of temperature, the powder and re-solidified metal phase of

he material both exist in the same solid phase temperature range.

n this model, we attempt to differentiate between the powder and

e-solidified metal phase using porosity, φ, which is a function of

ocal temperature: 

(T ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

φ0 if T ≤ T s 
0 if T ≥ T l 

φ0 

T s − T l 
(T − T l ) if T s < T < T l 

(7)

here T s is the solidus temperature, T l is the liquidus temperature,

nd φ0 is the initial porosity of the powder. 

In addition, we are interested in the three temperature-

ependent material properties that are important to the simula-

ion: the specific heat capacity, the thermal conductivity, and the

ensity of IN-718, whose profiles are shown in Fig. 4 . Fig. 4 is plot-

ed using experimental results reported from Romano et al. (2016) .

he heat capacity C p is governed by functions of temperature at

he solid and liquid phase, the latent heat of fusion l f and the per-

entage at each phase θ also contribute to the effective heat ca-

acity as follows: 

 p (T ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

C p,s (T ) if T ≤ T s 
C p,l (T ) if T ≥ T l 

L f 

T l − T s 
+ θs C p,s (T s ) + θl C p,l (T l ) if T s < T < T l 

(8)

here subscripts s and l refer to the solid and liquid phase, respec-

ively. The key thermodynamic parameters are shown in Table 1 . In

ontrast, the thermal conductivity and density of the powder and

he re-solidified metal can be distinguished by porosity: 

 powder = k solid (1 − φ(T )) 4 (9)

powder = ρsolid (1 − φ(T )) (10)

here k and ρ are the thermal conductivity and the density of

he material, respectively. As stated in Eq. (7) , φ is dependent on

emperature, which makes k and ρ also indirectly dependent on

emperature. 
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Fig. 4. Temperature dependent thermal properties of IN718: (a) specific heat capacity, (b) density, and (c) thermal conductivity. The vertical dotted lines represent the 

transition region between the solidus and liquidus temperature. 
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Table 2 

FEM model operating process parame- 

ters. 

Process Parameters Value 

Laser power 70–300 W 

Scanning speed 0.2-1.2 m/s 

Hatch spacing 0.1 mm 

Powder thickness 40 μm 

Laser spot diameter 70 μm 

Absorbance 0.6 

2

r

 

F  

2  

r  

c  

s  

F  

t  

t  

t  

p  
.3. Model implementation and verification 

To validate the model, a range of combinations of the laser

ower and the scan speed were tested. While laser power and

can speed influence the resulting melt pool differently, they are

ften used in conjunction to calculate the total laser energy den-

ity which dominates the comprehensive trend of the overall heat-

ng effect and melt pool dimensions. The energy density can be

alculated as follows: 

 = 

P 

V 

(11) 

here E is the energy density, P is the laser power, and V is the

can speed. 

Process parameters excluding laser power and scan speed are

xed at a constant 40 μm layer thickness and 0.1 mm hatch spac-

ng. A commonly used bidirectional laser scanning scheme is cho-

en. In particular, the laser scans in the x -direction until reaching

he build part’s edge, jumps one hatch spacing in the y -direction,

nd then reverses the scanning direction along the negative x -

irection. The range of operating conditions explored is listed in

able 2 . The outputs collected from the FEM model are the melt

ool dimensions and the temperature characteristics, which are

ompared to analytical solution to the Rosenthal equation and ex-

erimental findings. 
.3.1. Comparison with experimental results and solution to the 

osenthal equation 

First, we compare the melt pool dynamics developed in the

EM model with that of the experimental works ( Sadowski et al.,

016 ), as shown in Table 3 . It is demonstrated that the FEM model

esults closely resemble the experimental results for all operating

ombinations with an error smaller than 10%. One trend we ob-

erve is that the experimental values are constantly larger than the

EM results. The major reason behind this discrepancy between

he FEM and experimental results can be attributed to the fact that

he FEM model does not consider the influence of fluid flow of

he molten metal in the melt pool. During the actual rapid heating

rocess, the molten metal is driven outwards due to the higher



6 Y.M. Ren, Y. Zhang and Y. Ding et al. / Computers and Chemical Engineering 143 (2020) 107069 

Table 3 

Comparison between experimental and FEM model melt pool width. 

Power (W) Scan Speed (m/s) Energy Density (J/m) Experimental (μm) FEM (μm) Error 

200 1.2 166.7 197.8–261.6 180.4 8.79% 

200 0.7 285.7 184.9–300.9 173.2 6.33% 

100 0.2 500.0 242.6–297.4 230.0 5.19% 

Table 4 

Ambient temperature (273 K) IN-718 thermal 

properties. 

Thermal Property Value 

Absorptivity, λ 0.6 

Density, ρ 8220 kg · m 

−3 

Specific heat, C p 43 J( kg · K) −1 

Thermal conductivity, k 11.4 W (m · K) −1 
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m  
surface tension in the outer sections of the melt pool compared

to the inner sections of the melt pool ( Ma et al., 2013 ). This phe-

nomenon thus causes the experimental melt pool to be larger than

the FEM model predicted melt pool. 

In addition, the solution to the analytical Rosenthal equation

is an important criterion that is often used to judge the melt

pool dimension, which was originally developed for metal weld-

ing ( Rosenthal, 1941 ). However, due to the similarity in the melting

mechanism between welding and metal AM processes, the Rosen-

thal equation can be applied to describe the DMLS process. The

following assumptions are made by the Rosenthal equation solu-

tion: 

1. Thermophysical properties are temperature independent. 

2. Quasi-stationary temperature distribution condition around

melt pool. 

3. Heat source is a point source. 

4. Heat transfer is governed purely by conduction, ignoring con-

vection and radiation. 

Adopting these assumptions, the Rosenthal equation can be for-

mulated as follows: 

T = T 0 − λP 

2 πkr 
exp 

(
−V (r + ξ ) 

2 α

)
(12)

where T 0 is the ambient temperature, λ is the absorptivity, P is the

laser power, k is the thermal conductivity, V is the scanning speed,

α is the thermal diffusivity, ξ is the x -direction moving coordinate

expressed by ξ = x − V t as the laser moves along the x -axis, and r

is the distance from the heat source defined as 
√ 

ξ 2 + y 2 + z 2 . The

thermophysical properties of IN-718 for the above calculation are

listed in Table 4 . 

Based on the Rosenthal equation, the width of the melt pool of

low thermal diffusivity material including IN-718 can be estimated

( Tang et al., 2017 ): 

 ≈
√ 

8 

πe 

λP 

ρC p V (T m 

− T 0 ) 
(13)

where W is the approximate melt pool width, T m 

is the melting

point of the material, and ρ is the density listed in Table 5 . The

differences between the analytical solution to the Rosenthal equa-

tion and the FEM generated melt pool dynamics and their respec-

tive errors are shown in Table 3 . In general, the Rosenthal equa-

tion predicts the melt pool width to be larger than the FEM melt

pool width. An explanation for this discrepancy is the assumptions

made by the Rosenthal equation. As shown earlier, the Rosenthal

equation assumes the thermophysical properties to be temperature

independent, and only conductive heat transfer is considered. Due
o the lack of consideration of convection and radiation heat loss,

he solution to the Rosenthal equation estimates a larger melt pool

idth than the FEM model. 

.4. Sensor output representation 

After the thermal performances are validated, we use our pro-

osed FEM model to reproduce the industrial monitoring sensor

utput: the melt pool monitoring (MPM) sensor and the optical

omography (OT) sensor. The MPM sensor reports the detailed be-

avior of the region where the laser focuses on at each timestep.

n contrast, the OT sensor outputs monitor the overall tempera-

ure map of the whole layer. These two sensors can provide dif-

erent views and information about the thermal features of the

uild platform. As shown in the previous section, the FEM model

s capable of producing realistic thermal results at any time inter-

al, which demonstrates a great potential to reproduce the realistic

PM and OT intensity maps. 

.4.1. Melt pool 

The MPM sensor aims to capture the melt pool behavior

hrough the implementation of an on-axis photodiode sensor or

 short-wave infrared (SWIR) camera that follows the laser scan

attern. It is capable of capturing high-quality melt pool dynamics

ue to its on-axis configuration and small focal domain. A typi-

al melt pool photodiode sensor has a very high capturing rate in

he range of 10 kHz to 25 kHz. Due to this high capture rate, the

PM sensor can generally produce near-continuous process mon-

toring. However, the disadvantages of the MPM sensor include its

imited field of view, the influence from scanning parameters, and

he huge amount of data to be generated, stored, and analyzed. It

as been demonstrated in our previous section that the FEM model

an directly reproduce the melt pool with reasonable dimensions.

tarting with this preliminary result, we can reproduce the result

f the MPM sensor through calibrating our camera sampling rate

o that of a real sensor by tuning the FEM model solution sam-

ling rate to 1 × 10 -4 s, i.e., 10 kHz. Thus, the model generates

ear-continuous melt pool images similar to those produced by a

ealistic sensor. An example of a single melt pool captured by the

EM model is shown in Fig. 5 . 

.4.2. Optical tomography (OT) 

The OT sensor also tries to capture the thermal aspect of the

MLS process but it aims to generate a layer-wise temperature

ap of each build layer. The OT camera can usually be an infrared

IR) camera and has several different types including long-wave

nfrared (LWIR) or medium-wave infrared (MWIR). The OT sensor

icks up the light intensity in a fixed sensor radius and processes

hese light signals into temperature values. Each temperature value

s assigned to a region/pixel of the final image depending on the

ensor specification. Under normal process operating conditions,

he highest temperature values within the melt pool would con-

ribute predominantly to the signal produced ( Mohr et al., 2020 ).

his is due to the nonlinearity of the temperature-intensity depen-

ence relationship despite the rapid cooling of the material after

he laser passes. 

In order to reproduce the OT sensor results, we utilize the FEM

odel and the temperature information of individual mesh cells
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Table 5 

Comparison between experimental and FEM model melt pool width. 

Power (W) Scan Speed (m/s) Energy Density (J/m) Rosenthal Solution (μm) FEM (μm) Error 

300 1.2 250.0 178.5 172.3 3.48% 

200 0.7 285.7 190.8 173.2 9.23% 

100 0.2 500.0 252.5 230.0 8.88% 

Fig. 5. Example melt pool image at one timestep generated by FEM. The melt pool 

region is zoomed in and is highlighted by the red circle. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 6. Single layer temperature mapping processed to reproduce OT sensor output. 

The red spots represent the potentially overheated regions in various sizes due to 

process disturbances. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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o create the layer-wise temperature map. Since the sensor radius

s much larger than the individual FEM mesh cells, we average all

f the values of mesh cells within the sensor radius and assign

he averaged value as the final value for that sensor location at

ach capturing timestep. A sensor radius of 0.25 mm is used due

o the build part’s small dimensions. Then, we analyze the whole

veraged temperature history of each previously defined radius and

ake the maximum temperature as the final value in our OT tem-

erature map. An example of a single layer OT temperature map is

hown in Fig. 6 . 

. Sensor data analytics through convolutional neural network 

After melt pool and OT sensor images are collected, in-situ

ata analyses need to be constructed for real-time analytics, as

iscussed in the introduction. In this work, we adopt the con-

olutional neural network (CNN), a deep learning technique that

s widely adopted for image-processing. Through training, CNN is

ble to automatically detect the disturbances and defects in the

uild part during the manufacturing process with high accuracy

nd efficiency. In this section, first, we will discuss the construction

f CNNs. Next, the prediction results from the trained constructed

NN trained for both melt pool data and OT data are discussed. 

.1. CNN construction 

The major distinction of a convolutional neural network is the

sage of convolutional layers to extract the correlational informa-

ion from the high dimensional inputs, which makes CNN a good
andidate for solving image recognition problems. A variety of

rained general-purpose, high-performance CNN backbones, such 

s AlexNet, ResNet, and VggNet, have been demonstrated to pro-

uce highly-accurate image classifications. By changing only the

nal classification criteria and preserving the trained feature ex-

raction functionality, CNN backbones can be easily modified and

ailored to analyze DMLS sensor data. This process, which aims to

pecialize a pre-trained generic CNN model, is known as transfer

earning ( Goodfellow et al., 2016 ). 

In this work, the AlexNet CNN backbone developed by

rizhevsky et al. (2012) is used as the base CNN architecture, and

ransfer learning is performed using MATLAB for the purpose of

n-situ sensor data classification. Fig. 7 shows the data flow di-

ensions through the modified AlexNet CNN and Table 6 shows

he specific dimensions of the proposed CNN. As shown in Fig. 7 ,

he hidden layers consist of five sets of convolution layers fol-

owed by pooling layers and fully connected layers. The ReLU func-

ion, i.e., ReLu (x ) = max (0 , x ) , is applied between layers to intro-

uce non-linearity, and Local Response Normalization (LRN) is per-

ormed to limit the unbounded output from the ReLu functions

 Krizhevsky et al., 2012 ). In addition, dropout layers are imple-

ented to reduce network overfitting and computational resources

eeded by randomly deactivating neurons. The CNN terminates

ith a softmax layer followed by a classification layer. During

ransfer learning, only the dense layers are restructured and re-

rained to identify features that are specific to the DMLS process

sing training data containing known errors in OT and MPM sen-

or data. 
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Fig. 7. Modified AlexNet convolutional neural network structure. 

Table 6 

Modified AlexNet convolutional neural network with specific layer dimen- 

sions. 

Layer Dimension Number of filters 

Input 227 × 227 × 3 

Convolution 11 × 11 × 3 96 

ReLU 

Channel normalization (LRN) 

Max Pooling 

Convolution 5 × 5 × 96 256 

ReLU 

Channel normalization 

Max Pooling 

Convolution 3 × 3 × 256 384 

ReLU 

Convolution 3 × 3 × 384 384 

ReLU 

Convolution 3 × 3 × 384 256 

ReLU 

Max Pooling 

Fully Connected 

ReLU 

Dropout 

Fully Connected 

ReLU 

Dropout 

Fully Connected 1 × 1 × 4096 

Softmax 

Classification 3 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Convolutional process of transforming the input image using filters S to fea- 

ture maps F . 
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The exact structure and dimensions of the crucial layers are

shown in Table 6 . Specifically, the training data are the melt pool

and the OT images generated from the FEM model and will be

used to train their own respective CNN. The melt pool images are

exported from the FEM model with a resolution of 227 × 227 pix-

els in order to match the AlexNet input requirement. However,

since each OT image represents the entire build platform, a res-

olution of 227 × 227 pixels is too low to capture all informa-

tion. Therefore, through trials-and-errors, each OT image is dis-

sected into 20 × 20 sub-regions of size 227 × 227 pixels to

preserve all information in the original image, and each regional

OT image is individually processed by the CNN. 
After passing the initial input layer, the processed input images

nter sets of combinations of convolution layers and pooling lay-

rs. By using trained weighted matrices known as filters or ker-

els, the convolution layers are able to recognize specific features.

 CNN may contain multiple sets of convolution layers to extract

ifferent levels of features. It has been demonstrated that early fil-

er layers recognize primitive features such as lines, edges, or cor-

ers, whereas latter layers can distinguish more abstract parts of

he desired object, such as heads of animals and wheels of cars.

his hierarchy of abstractions allows the implementation of trans-

er learning as features of low-level abstraction are often consistent

hroughout all geometries. For example, in the AM process, oper-

tional disturbances are usually distinguished by distinctive edges

r lines in the heat map. Thus, a well-trained filter can be easily

pplied to various processes. A successful implementation of trans-

er learning may only require the re-adaptation of high-level filters

r even just the final classification layers. 

When a region of the input image is transformed by the filter,

 i , it is converted to a region on the output feature map, F i , which

etains the feature extracted by the certain filter as shown in Fig. 8 .
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Fig. 9. Max pooling process of an input convoluted layer. 
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ollowing the convolution layers, which expand the overall dimen-

ions of the input data through the creation of multiple feature

aps for each filter, pooling is performed to down-sample and

ummarize the feature map results ( Goodfellow et al., 2016 ). In this

ork, the max-pooling down-sampling method is used, as shown

n Fig. 9 . Max pooling extracts the maximum value from multiple

ixels in a predefined region of the input layer, also known as the

ooling window, and stores it in one pixel of the pooling layer. The

rocess repeats as the pooling window slides across all of the input

ixels, and the sliding distance is known as stride size. A 3 × 3

ooling window with a stride size of 2 is utilized in Alexnet. 

After the convolutional layers and pooling layers have extracted

eatures and reduced the overall dimensionality, fully connected

ayers are used to perform classification. Through training, each ex-

racted feature from the convolutional layers is assigned weights

ith respect to each classification category. Then, the fully con-

ected layers use the weight matrices to compute the confidence

evel of the input belonging to each category. In this work, the last

ully connected layer has input dimensions of 1 × 1 × 4096 pix-

ls and it computes the confidence levels of the input images with

espect to each of the three final categories. Finally, as shown in

ig. 10 , the output of the fully connected layer undergoes the soft-

ax function, i.e., σ ( � z ) = 

e z i ∑ k 
i =1 e 

z i 
for � z ∈ R 

k , where the most likely

ategory will be chosen as the final classification result. 

Stochastic gradient descent algorithm is used to train the neural

etwork model through the alternation of model weights based on

he computed gradients. Specifically, the input training data is first

orward-propagated to calculate the loss function: 

 = −
3 ∑ 

i =1 

y i log ( ̂  y i ) (14)

here L is the loss, y and ˆ y are the ground-truth label and pre-

icted classification label, respectively. Given the loss function, the

odel weights are updated using the gradient computed from

ack-propagation ( Amari, 1993 ). Following this approach, the CNN

s trained for multiple epochs until the desired convergence crite-

ion is reached. One training epoch corresponds to the entire train-

ng dataset being propagated through once. The changes made to

he weights during each training epoch are affected by the learn-

ng rate which determines how quickly the model adapts to the

roblem. 

.2. Individual sensor data analytics through CNN 

As mentioned in the previous section, both the melt pool and

he OT CNNs share the same structure using the modified AlexNet

ackbone. The use of different sets of training images during trans-

er learning enables the melt pool CNN and OT CNN to recognize
isturbances in melt pool images and OT images, respectively. In

his section, we first discuss the selection details regarding each

NN’s training and validation image sets. Next, we discuss the

ardware used for training and the specific training options as-

igned for each CNN. Finally, we further test our CNNs and analyze

he testing results of each CNN using the corresponding confusion

atrix. 

.2.1. Melt pool and OT CNN training 

Before either CNN is trained, training images must be labelled

ith ground truth, i.e., the categories that images actually belong

o, and their respective locations on the build plate. Both types

f sensor images are split into three categories: proper-melting,

nder-melting, and over-melting. A total of nine simulations are

erformed under various disturbances to collect melt pool and OT

NN training images. Disturbances are implemented by varying the

aser power from 70.0 W to 437.5 W to create under-melting and

ver-melting regions. For the melt pool CNN, five simulation re-

ults are used for training where 10 0 0 images are produced dur-

ng each simulation. We notice that the melt pool image dataset

ontains much more proper-melting images than under-melting

nd over-melting images. Therefore, we carefully choose the pro-

ortion of images for each category and exclude excessive proper-

elting images to ensure model accuracy by preventing class im-

alance. The final melt pool CNN training dataset contains a to-

al of 1412 different melt pool images, of which 710 correspond

o proper-melting, 376 correspond to over-melting, and 326 corre-

pond to under-melting. For OT CNN, all nine simulation results are

sed for training, where 400 regional OT images are produced dur-

ng each simulation. Among these 400 regional OT images, 231 of

hem are images of the powder bed which the laser does not pass

hrough and thus only 169 of them are images of interest. Simi-

ar to the melt pool CNN, regional OT images are selectively used

or training to avoid class imbalance. The final training dataset for

he OT CNN consists of 1173 regional images, in which 705 corre-

pond to proper-melting, 274 correspond to over-melting, and 194

orrespond to under-melting. Additionally, among the training im-

ge dataset for both CNNs, 70% of the images are randomly se-

ected as training data while the rest 30% are used as validation

ata. 

The OT CNN is trained for a total of 8 epochs with a learn-

ng rate of 2 × 10 −4 as further training does not increase the CNN

erformance significantly. The total time to train the OT CNN is

round 4 hours on a 6 GB Nvidia GeForce GTX 1060 GPU and the

nal training accuracy of the OT CNN is 86.2%. The melt pool CNN

s trained for a total of 12 epochs. It is observed that the training

f the melt pool CNN is more sensitive to the learning rate, which

s likely to be due to the higher contrast in the melt pool images.

herefore, a lower learning rate of 1 × 10 −5 is used. The total time

o train the melt pool CNN is around 8 hours using the same GPU

nd the final training accuracy achieved is 89.3%. 

.2.2. Melt pool and OT CNN testing 

In order to further test the accuracy and robustness of the

rained CNNs, additional melt pool and OT images are collected

nd tested. The OT CNN test set consists of a total of 156 re-

ional images, in which 86 correspond to proper-melting, 28 cor-

espond to over-melting, and 42 correspond to under-melting. The

elt pool CNN test set consists of a total of 678 melt pool im-

ges, in which 446 correspond to proper-melting, 135 correspond

o over-melting, and 97 correspond to under-melting. The testing

esults of the two models are shown by the confusion matrices in

ig. 11 . The confusion matrix is commonly used as the metric to

emonstrate the accuracy of classification results, which has the

imensions of R 

(N+1) ×(N+1) , where N represents the number of cat-

gories involved in the classification. The categories are laid out
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Fig. 10. Fully connected layer with softmax and classification layers. 

Fig. 11. CNN testing confusion matrices: (a) OT CNN, and (b) melt pool CNN. 
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horizontally and vertically to represent the actual class and the

predicted class, respectively. The first N × N entries of the confu-

sion matrix show the counts of correct and incorrect classifications.

The diagonal entries of the confusion matrix show the amount of

correct classifications made by the CNN of each category. The re-

maining entries show the number of incorrect classifications and

the specific types of errors made. The last row summarizes the ac-

curacy given a specific ground-truth class while the last column

summarizes the accuracy given a predicted class. Finally, the last

(lower-right) entry of the confusion matrix summarizes the over-

all accuracy. According to the confusion matrix, the melt pool CNN

is able to achieve an overall accuracy of 89.7% and the OT CNN

achieves an overall accuracy of 84.0%. More specifically, for the OT

CNN, 7.7% of the classifications correspond to false-positive reports,

in which proper-melting images are classified as over-melting or

under-melting. Additionally, 1.9% of the reports are false-negative

reports, in which over-melting or under-melting images are clas-

sified as proper-melting, and 6.4% of the reports are misidentified

errors of disturbances, in which over-melting images are labelled

as under-melting or vice versa. For the melt pool CNN, there are
 C  
o false-positive or misidentified errors for all errors are false-

egative reports. 

Although both CNNs yield acceptable overall accuracy, we ob-

erve that each CNN performs better when categorizing certain

ypes of disturbances. This is due to the different focus on the dis-

urbances by the MPM and OT sensors. The detailed breakdown of

he OT and melt pool CNN performances is shown by the confu-

ion matrices (a) and (b) in Fig. 11 , respectively. The OT CNN has

n accuracy of 92.9% in categorizing under-melting cases while the

elt pool CNN has an accuracy of 100% and 83% in categorizing

roper-melting and over-melting cases, respectively. Thus, it is de-

irable to combine the results of both CNNs to fully exploit their

espective advantages. Therefore, a cross-validation scheme is for-

ulated to further increase the overall accuracy. 

. Cross-validation utilizing two sensor data analytics 

As mentioned in Section 2.4 , the OT and MPM sensors have

ifferent fields of view. Also, it was demonstrated that the OT

NN performs better at identifying under-melting cases while the
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Fig. 12. Confusion matrices of the (a) OT CNN and (b) clustered melt pool CNN classifying the 169 regions of interest. 
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elt pool CNN performs better at identifying over-melting and

roper-melting cases. Therefore, a cross-validation scheme is pro-

osed to combine the respective strength of these two sensors

nd balance the CNN analytic bias. The framework and results

f this cross-validation scheme are discussed in detail in this

ection. 

.1. Cross-validation scheme formulation 

In the cross-validation scheme, we attempt to classify regions

f the build part using results from both the melt pool and the OT

NNs. Each region of interest is 0.1 mm × 0.1 mm in size, which

s the same dimension as one regional OT image. First, both the

elt pool and the OT CNNs will be used to separately classify each

egion and assign a confidence level to that classification. Then, if

ne region is classified differently according to the two CNNs, the

onfidence levels from both CNNs will be used to cross-validate

he classification results and determine a final classification. Ad-

itionally, a final equivalent confidence level is provided through

eta-analysis. 

The location labels are used to correlate the OT and melt pool

mages with the associated CNN labels. Since the field of view of

elt pool images is smaller than each region of interest, one region

orresponds to six melt pool images. Therefore, all melt pool im-

ges corresponding to the same region are collected and compared

o its ground truth. For each melt pool image, a confidence level

s provided by the softmax layer, and a confidence level threshold

s set to filter out melt pool images with low classification con-

dence levels. Based on the remaining qualified classifications, an

mpirically determined criterion is used to decide on the melt pool

lassification of a region, i.e., disturbances that span over three

onsecutive melt pool images can be correlated with disturbances

n the regional OT images. Therefore, if there exist several po-

ential classifications for a region, this empirical criterion is ap-

lied to determine the final classification. Additionally, the com-

ined confidence level of the regional melt pool categorization is

he average of the qualified categorizations, which is calculated as

ollows: 

= 

1 

n 

n ∑ 

i 

x i (15) 
here μ is the average confidence, n is the number of qualified

lassifications, and x i is the individual confidence level of each as-

ociated melt pool image. 

After the melt pool CNN results are correlated with each sep-

rated region of the build part, we obtain the confidence level of

he same region from the OT CNN and compare it with the re-

ults from the melt pool CNN. Since the dimensions of each region

f interest are the same as the OT regional image’s dimensions,

he OT CNN classifications and confidence levels do not need to be

urther processed. Using the confidence levels from both CNNs, a

ross-validated final classification is determined to be the higher

lassification confidence level result between the two CNNs. In ad-

ition, the final confidence level can be calculated through the use

f inverse-variance weighting, which is a meta-analysis method,

o combine the result of different studies on the same problem.

t aims to minimize the variance through the calculation of the

nverse-variance weighted average, ˆ x , which is calculated as fol-

ows: 

2 = 

1 

n 

n ∑ 

i 

(x i − μ) 2 (16) 

here n is the number of images, x i is the individual confience

evel of each OT or MP image and σ 2 is the variance of either the

T or the melt pool CNN. 

ˆ 
 = 

(
x OT 

σOT 
2 

)
+ 

(
x MP 

σMP 
2 

)
(

1 
σOT 

2 

)
+ 

(
1 

σMP 
2 

) (17) 

here ˆ x is the inverse-variance weighted confidence level and σ 2 

s the variance of either the OT or the melt pool CNN. 

.2. Case study 

The proposed cross-validation scheme is validated with a case

tudy using images from one layer of the DMLS process generated

rom the FEM simulation. A total of 10 0 0 melt pool images and 169

T regional images corresponding to that layer are cross-validated

ith each other. Individual CNN analysis is first processed and

he classification results for the OT sensor analytics are shown in

ig. 12 (a). To prepare for the cross-validation scheme, the 10 0 0

elt pool images are first labelled with their respective locations
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Fig. 13. Confusion matrices showing the accuracy of the cross-validation scheme with confidence thresholds of (a) 72% and (b) 87%. Some rounding errors exist due to 

summation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Bar graph showing the percent of false-positives, false-negatives, misiden- 

tified errors, and overall accuracy of all considered methods. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web ver- 

sion of this article.) 
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and correlated to each region of interest. These melt pool images

are then categorized and given a confidence level using the previ-

ously trained melt pool CNN. Next, two confidence level thresholds

of 72% and 87% are tested to eliminate unreliable classifications. 

Fig. 12 (a) shows the detailed breakdown of the OT CNN clas-

sifying each region of interest. The overall accuracy of the OT

CNN is 82.8% which is similar to the previous testing accu-

racy. A total of 8.3% of the classifications are false-positive re-

ports, 3% of the reports are false-negative reports, and 5.9% of

the reports are misidentified errors of disturbances. Fig. 12 (b)

displays the testing accuracy of the melt pool CNN categoriza-

tion for each region of interest. The final accuracy is 73.4% with

7.1% false-positive reports, 18.4% false-negative reports, and 1.2%

misidentified errors. While the melt pool CNN overall classi-

fies the regions of interest less accurately than the OT CNN, it

makes less misidentified errors than the OT CNN. Specifically,

for the classification of over-melting images, the melt pool CNN

has an accuracy of 71.4%, which is much higher than the 57.1%

in the OT CNN. As a result, we apply a cross-validation deci-

sion scheme to improve the overall accuracy of the data analytics

process. 

Two confidence thresholds of 72% and 87% are tested for the

cross-validation and their final decision accuracies are shown in

Fig. 13 . According to the two cross-validated confusion matrices

in Fig. 13 , the overall accuracy of the cross-validation is substan-

tially higher than that of the individual, non-cross-validated CNN,

shown in Fig. 12 . The number of false-positive, false-negative, and

misidentified errors all have been reduced, which demonstrates

that the cross-validation scheme successfully incorporates the ad-

vantages of both sensors. A comparison between all types of er-

rors and the overall accuracies of the individual OT, melt pool

and cross-validation methods is shown in Fig. 14 . The amount of

misidentified errors drops from 5.9% when solely using the OT

CNN to 0.6% when cross-validation is performed between the OT

CNN and the melt pool CNN. The explanation for this decrease

can be related back to the different type of sensor data used. As

mentioned in Section 2.4 , the MPM and the OT sensors have dif-
erent fields of view and thus capture different aspects of dis-

urbances. The cross-validation scheme utilizes information from

oth sensors and therefore is able to detect and classify distur-

ances more accurately. The amount of false-positive reports also

ecreases from 8.3% to 6% with the implementation of the cross-

alidation scheme. This decrease is not as significant as that of the

isidentified errors due to the fact that both sensors face a sim-

lar performance issue when presented with false-positive errors.

he major difference between the 72% and 87% cross-validation

hreshold scheme is the amount of false-negative reports. By set-

ing a higher confidence threshold, the 87% threshold result is

elected to contain more trustworthy classifications than its 72%
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ounterpart and thus resulting in a slight decrease in false-negative

eports. At the same time, the 87% threshold results also con-

ain less data than the 72% threshold result as labels with confi-

ence level between 72% and 87% are discarded. This may result

n the cross-validation scheme being less robust due to the limited

ata pool size as more results are discarded when the confidence

evel threshold is increased. Finally, we assign a final confidence

evel to each image through the calculation of the inverse-variance

eighted average between the OT and MP CNN confidence level.

or one correctly identified over-melting image, the OT CNN has

 confidence level of 76.3% with a variance of 3.64% and the MP

NN has a confidence level of 89.2% with a variance 0.932%. The fi-

al confidence level assigned using the inverse-variance weighted

verage method is 88.4% For one misidentified over-melting im-

ge, the OT CNN has a confidence level of 78.3% with a variance

f 3.64% and the MP CNN has a confidence level of 73.2% with a

ariance of 0.932%. The final confidence level assigned is 73.5%. 

. Conclusion 

In this work, an integrated cross-validation framework using

NNs for the in-situ processing of the DMLS process was con-

tructed. First, the DMLS process was simulated using COMSOL

ultiphysics, a physics-based simulation software, to obtain the

elt pool behavior and layer-wise OT image data through finite

lement method (FEM) modeling. Specifically, the FEM model de-

cribed the heat transfer behavior of the DMLS process, account-

ng for phase change, conduction, convection, and radiation. Then,

he FEM model results were validated against both experimental

ata and analytical solutions. Next, the thermal data from the val-

dated FEM model were processed into two sets of images corre-

ponding to the output format of the two types of realistic sen-

ors: the melt pool monitoring (MPM) sensor and the optical to-

ography (OT) sensor. Specifically, the temperature contour map

t each timestep reproduced the output from the MPM sensor,

nd the locally averaged temperature history of the build layer re-

roduced the output of the OT sensor. Afterwards, these two sets

f images were labelled and used to train their respective ma-

hine learning model for each sensor. A convolutional neural net-

ork (CNN) was chosen to be the main machine learning tech-

ique used in this work. Transfer learning was performed on the

lexNet CNN backbone for each sensor, and both trained CNNs

chieve reasonable testing accuracy individually. A single-layer case

tudy demonstrated that the classification accuracy of identifying

T images using OT CNN alone was 82.8%. To further improve

he classification accuracy, a cross-validation scheme was formu-

ated and applied to the model sensor outputs. Based on the sta-

istical analysis of the classification results of the melt pool and

he OT CNNs, the cross-validation scheme determined a final la-

el as well as a final confidence level. With the implementation of

he cross-validation scheme, the testing accuracy increased up to

0.4% while the amount of misidentified errors decreased by 5.3%.

t can be concluded that this cross-validation approach of utiliz-

ng CNN for in-situ DMLS process monitoring shows promise as it

ccurately predicts disturbances and can be potentially applied to

eal-time manufacturing monitoring platforms. In future works, we

ill attempt to further localize the disturbance and increase distur-

ance identification accuracy using more advanced deep learning

echniques, such as Region-based CNN (R-CNN). 
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