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a b s t r a c t 

Metal alloy additive manufacturing (AM) has gained wide industrial interest in the past decade due to its capabil- 

ity to efficiently deliver complicated mechanical parts with high quality. However, due to a lack of understanding 

of the fundamental correlation between the operating conditions and build quality, the exploration of the optimal 

operating policy of the AM process is costly and difficult. In this work, a data-driven process optimization frame- 

work has been proposed for the additive manufacturing process, integrating machine learning, finite-element 

method (FEM) modeling, and cloud-edge data storage/transfer optimization. A three-level hierarchy of local ma- 

chines, factory clouds, and a research center is introduced with each level responsible for its dedicated tasks. In 

addition, to ensure the efficiency of data transfer and storage, an edge-cloud data transfer scheme is constructed, 

which serves as a guideline for the data flow in the AM framework. Moreover, an overview of the connections 

between the proposed framework and the Industry 4.0 framework is presented. 
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. Introduction 

Additive manufacturing (AM) has been developed as a promising

echnique that has received wide utilization both in the prototyping and

he production of parts in various industries. Compared to casting, forg-

ng, and other traditional manufacturing techniques, AM processes have

any advantages, such as fast prototyping and manufacturing, high au-

omation level, and versatile capability over various build geometries

 Nandwana et al., 2016 ). In addition, a large variety of materials, such

s polymers and metal alloys, can be used as the manufacturing me-

ia in the AM process ( Gibson et al., 2014 ). The identification of the

est operating recipes for these materials, especially for metal alloys,

as been a major task for researchers in the field of AM. One of the

ost widely adopted methods for metal alloy AM is the laser powder

ed fusion (LPBF) method ( Frazier, 2014 ). Compared to other deposi-

ion methods, the LPBF method, by taking advantage of laser melting,

roduces build parts with better quality, higher resolution, and wider

ompatibility with build geometries. Thus, LPBF is the preferable tech-

ique for the manufacturing of devices that are quality-demanding and

eometrically complex. 

However, despite the advantages provided by LPBF, the exploration

f the best operating policy for the production of different parts remains

 difficult task. The difficulty can be attributed to the lack of an effi-

ient method to understand the relationship between operating condi-

ions and the build quality, as well as the absence of a systematic frame-

ork that takes full advantage of the massive amount of manufactur-
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ng data. Therefore, this work attempts to amend this gap by proposing

n inclusive framework that takes advantage of machine manufactur-

ng data, first-principles modeling and simulation results, and machine

earning techniques. The framework is structured with a three-level hi-

rarchy: the machine level, the factory cloud level, and the research

enter level. On the machine level, an automated monitoring and cross-

alidation scheme merging different process monitoring tools is pro-

osed to enhance the robustness of in-situ defect detection using convo-

utional neural networks (CNN). If defects or build errors on the machine

re detected, the build and error information will be sent to the second

evel: factory cloud. The factory cloud is a factory-level computer clus-

er with moderate computing power, which receives data from all local

achines, where an operating policy update is performed based on a

ecipe update scheme to eliminate the defect in the subsequent builds.

he recipe update scheme can be formulated using the combined effort

f engineering knowledge and data-mining techniques such as recur-

ent neural network (RNN) models. In the cases where the recipe up-

ate scheme fails to provide an effective recipe update, a finite element

ethod (FEM) simulation of the key physics of the AM process will be

erformed on the factory cloud to understand the physics and shed more

nsights on recipe updates. 

In addition to the machine and factory cloud, the framework also

roposes the inclusion of a research center cloud, which interacts with

ultiple factories, which serves as a data storage hub and is responsi-

le for performing the higher computationally demanding tasks, such

s the data-intensive derivation of new operating recipes as well as the
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l  
ormulation of FEM models for new build geometries. Moreover, the

arge amount of manufacturing data facilitates the design of advanced

ontrollers based on machine learning (ML) methods, which is a topic

hat has received extensive research attention recently. For example,

hadriraju et al. (2019) investigated the use of machine learning to per-

orm adaptive model identification of a continuous stirred tank reac-

or (CSTR). On the other hand, Chaffart and Ricardez-Sandoval (2018) ,

nd Kimaev and Ricardez-Sandoval (2019, 2020a, 2020b) adopted neu-

al network-based control schemes for thin-film growth processes. Also,

ing et al. (2021) proposed a design of a hybrid controller for the

lasma-enhanced atomic layer deposition (PEALD) process by integrat-

ng proportional-integral (PI) and run-to-run (R2R) control schemes

ased on a recurrent neural network model. With such ML-based con-

rollers, defect formation can be further minimized during production.

inally, along with the proposed framework, to optimize the data-

ransfer flow efficiency, a data-transfer scheme is proposed accounting

or the severity of defects, data size, and flexibility. The AM framework

s a whole is also an attempt to integrate the AM process into the indus-

ry 4.0 framework. Industry 4.0 is a novel concept that encourages the

ncorporation of smart manufacturing and information technologies into

he manufacturing industry. Due to the close relationship between addi-

ive manufacturing and industry 4.0, this work also provides the context

f industry 4.0 and how the proposed framework fits in the broad in-

ustry 4.0 framework. 

. AM framework hierarchy 

The following sections discuss the proposed additive manufacturing

ramework, which is constituted of three levels: the machine level, the

actory level and the research center level. An overview of the roles and

esponsibilities of each level is demonstrated in Fig. 1 . 

.1. Machine 

The lowest level of the additive manufacturing framework hierarchy

s the machine level, where build parts are produced and manufacturing

ata are constantly generated and collected. An AM machine, e.g. EOS

290, receives the build recipe from the factory level and makes the

uild with the received recipe. A typical additive manufacturing recipe

ncludes, but does not limit to, laser scanning path, hatch spacing, laser

ower, and powder thickness. Depending on the build geometry and

aterial, the building parameters can vary dramatically, causing the

uilding process to range from a couple of hours to a day. Due to a lack

f an efficient real-time model that predicts the build part details online,

t is crucial to monitor the AM process with the appropriate sensors to

revent and understand undesirable defects. The adoption of multiple

ensors to provide better manufacturing results is prevalent in the addi-

ive manufacturing process. For example, Xu et al. (2018) developed a

ulti-sensor framework for the wire arc additive manufacturing, where

ndividual sensors contribute differently to the final decision making. In

ddition, Dickins et al. (2018) also designed a multi-sensor in-situ mon-

toring system for the AM process. For the LPBF process, two of the most

ommonly used sensors to monitor the in-situ heat transfer aspect of the

rocess, based on their functionalities, are the optical tomography (OT)

ensor and melt pool (MP) sensor ( EOS, 2018 ). The EOS M290 machine

ses the EOS Suite, a process monitoring software, to perform the on-

ine monitoring using the information from these sensors. Both sensors

an provide a unique perspective on the AM process. Specifically, the

T sensor outputs a whole image of the powder bed that summarizes

he maximal temperature that occurred on the platform throughout the

uild process. The OT sensor is an off-axis sensor, which does not move

long the laser path and in-sensor post-processing is necessary to adjust

or the optical distortion due to different view angles. Additionally, since

he OT sensor captures the entire build plate, the overall resolution will

e lower. On the other hand, the MP sensor captures the local image

f the melt pool. Since the MP sensor is an on-axis camera and aims
2 
o observe the transient behavior of the melt pool, it generates images

t a much higher frequency than the OT sensor. Since the MP sensor

ocuses on a much smaller area, it produces a higher resolution over

he local melt pool region. In other types of machines, e.g. Renishaw

M250, the EOS monitor suite is unavailable, but analogous cameras

an be installed to achieve a similar effect. Specifically, ( Lough et al.,

020 ) have installed a short-wave infrared (SWIR) camera on a Ren-

shaw M250 machine to monitor the in-situ melt pool behavior of the

rocess, similarly to the MP sensor. Experiments are also be done with

hermal feature processing with the long-wave infrared (LWIR) camera

o achieve similar results to the OT sensor. 

.1.1. Machine sensor monitoring 

Even though sensor results are interpretable to process engineers, to

urther automate the defect identification process, it is desirable to adopt

echniques that make the sensor results machine-readable. Moreover,

he raw data size from sensors can be extremely large, reaching up to

0 Gb per build. Therefore, it is also important to perform efficient data

eduction on the machine level to ensure the efficiency of data transfer

peed and data storage size. Since AM sensor results are more easily in-

erpreted as images, the raw time-series sensor data is first processed and

onverted into a layer-wise image of the build plate. For example, the

hermal temperature data from an LWIR camera is transformed into a

hermal mapping of the build plate through a thermal feature extraction

lgorithm. To classify these processed sensor images, CNNs have been

idely adopted as an image classification technique and their accuracy

as been acclaimed by a variety of industries ( Krizhevsky et al., 2012 ).

NN can extract and recognize important features within an image in a

ighly efficient manner. Therefore, we propose to utilize CNN to process

nd interpret the AM sensor results. In this framework, each sensor is

roposed to pair with a dedicated and specifically-trained CNN to per-

orm the defect identification task on the local machine. The extracted

eatures allow automated error detection and recipe update, which also

llows redundant information to be discarded and keeps only essential

nformation. It is also noteworthy that, a deployed CNN is relatively

ast at execution and does not require a large amount of computation

ower to run. Thus, even if the machine-level computers may not have

he strongest hardware, these computers are adequately equipped to

erform the image classification task. Ren et al. (2021) has proposed

 CNN defect detection workflow and tested using experimental data.

he proposed CNN workflow can classify images at high accuracy and

imely manner. 

.1.2. Sensor cross validation and machine transmission details 

Different sensors, such as the OT, MP, or powder-bed sensors, pro-

ide different perspectives on the manufacturing process. Therefore, it

s important to weigh the sensor results based on the intrinsic strengths

f each sensor. Ren et al. (2020) has shown that the OT sensor per-

orms better at identifying the over-melting problem, while the MP sen-

or performs better at identifying the under-melting problem. Similarly,

he powder-bed sensor can also be cross-validated against the OT or MP

ensors to identify problems such as recoater jams. Therefore, to fully

ake advantage of the strengths of the sensors, a cross-validation scheme

s proposed to select the most reasonable sensor results using statistical

nalysis. 

A crucial aspect of the proposed AM framework at the machine level

s the information that is transmitted from machine to factory. CNNs and

ther process monitoring workflows can be implemented to reduce the

mount of data transmitted. This filtered process information should be

tored in an efficient and ready for use format before being transmitted

o the next hierarchy of the framework, the factory level. In the follow-

ng section, a cross-validation scheme between different sensors and the

ata transfer format is proposed for the example of two types of errors,

 1 and 𝑒 2 , monitored by two different sensors, 𝑆 1 and 𝑆 2 . 

First, the problematic areas within each build are identified and their

ocations and error types are collected using the dedicated sensor CNNs,
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Fig. 1. An overview of the components of the additive manufacturing framework and their respective responsibilities. (a) A hierarchical depiction of the AM 

framework. (b) The machine level is shown in the gray block, the factory level is shown in the yellow block and the research center level is shown in the blue block. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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( 𝑒 1 , 𝑙) 𝑗 , ( 𝑒 2 , 𝑙) 𝑗 ] = 𝐶𝑁𝑁 𝑖 ( 𝐼 𝑖 ) , 𝑖 ∈ { 𝑆 1 , 𝑆 2 } (1)

here CNN 𝑖 is the trained network for a specific sensor 𝑖 , 𝐼 𝑖 is the sensor

aw data, 𝑖 is the type of sensor image, 𝑒 𝑗 is the likelihood of a potential

rror label, 𝑙 𝑗 is the error location, 𝑗 ∈ [0 , 𝑁 𝑒 ] is the error index, and

 𝑒 is the total number of errors. Additionally, the output dimension is

 × 2 due to the two types of sensors involved in this case. 
𝑒 

3 
For one particular location 𝑙 𝑗 , it will have two types of error confi-

ence levels reported by two types of sensors, 

( 𝑒 1 , 𝑙 𝑗 ) 𝑓𝑖𝑛𝑎𝑙 = 𝜆𝑆 1 , 1 ( 𝑒 1 , 𝑙 𝑗 ) 𝑆 1 + 𝜆𝑆 2 , 1 ( 𝑒 1 , 𝑙 𝑗 ) 𝑆 2 
( 𝑒 2 , 𝑙 𝑗 ) 𝑓𝑖𝑛𝑎𝑙 = 𝜆𝑆 1 , 2 ( 𝑒 2 , 𝑙 𝑗 ) 𝑆 1 + 𝜆𝑆 2 , 2 ( 𝑒 2 , 𝑙 𝑗 ) 𝑆 2 

(2) 

here ( 𝑒 𝑖 , 𝑙 𝑗 ) 𝑓𝑖𝑛𝑎𝑙 is the overall likelihood of an error type 𝑖 at location

 𝑗 and 𝜆𝑘,𝑖 is the weight determined by cross-validation for sensor 𝑘 . 
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Then a filter is applied to every location to determine the most likely

rror. Confidence levels below a certain threshold will be regarded as

rror-free. 

𝐸 = 

[
𝑓𝑖𝑙𝑡𝑒𝑟 

(
( 𝑒 1 , 𝑙 𝑗 ) 𝑓𝑖𝑛𝑎𝑙 , ( 𝑒 2 , 𝑙 𝑗 ) 𝑓𝑖𝑛𝑎𝑙 

)]
𝑗 ∈ [0 , 𝑁 

′
𝑒 
] 

𝑓𝑖𝑙𝑡𝑒𝑟 ∶ { Pre-filter 𝑒 with a threshold; Then apply max( ⋅, ⋅) } 
(3) 

here 𝐸 is the cross-validated error list. 

Although the example provided here uses two sensors and detects

wo error types, the proposed cross validation scheme can also be poten-

ially generalized to more sensors and more types of errors. In addition,

uman knowledge can also be used for the determination of errors and

hese aspects can be explored in future works which focus more on the

etailed implementation of the proposed framework. 

.2. Factory 

As mentioned in the previous section, the factory level is a local

omputation cluster with moderate computing power and its physical

ocation would ideally be in the AM factory to ensure efficient com-

unication with the AM machines. The role of the factory level is to

erve as a checkpoint and coordinator of the AM machines. When the

re-trained CNNs on the AM machine detect some potential defects, the

rror information, as well as the corresponding operating policies, will

e sent to the factory for quality assurance and recipe correction if pos-

ible. Process engineers will be stationed at the factory level to per-

orm quality control on incoming data. In the event of an error, pro-

ess engineers first can utilize the local resources at the factory level

ncluding the local recipe book and simulation center in an attempt to

nd solutions to the error. Process engineers can transmit the error and

ts corresponding build information to the research center if further in-

estigation is needed. In the case of misclassification of incoming data

y the CNN algorithm, process engineers can selectively transmit the

ecessary data to the research center to improve and update the CNN

lgorithm. 

.2.1. CNN deployment monitoring 

One of the most important tasks at the factory level is the quality

ssurance of the manufacturing process by skilled process engineers. At

he machine level, it is not realistic to have process engineers monitor

he various sensor results of each individual machine, hence the imple-

entation of CNN algorithm to pre-filter out results. However, at the

actory level, it is important for process engineers to regularly perform

uality control on the machine products. While the CNN algorithm on

ach machine should already be performing at an acceptable high level,

t still is susceptible to unexpected events and manufacturing data drift.

or example, during the life cycle of an AM machine, the sensor calibra-

ion may shift and result in a systematic error in data distribution. If the

ew distribution is beyond the implemented range of the trained CNN

etwork, then the CNN classification results will not be accurate and

otentially impact the product quality. Examples of other unexpected

vents include sensor failures and faulty machines, which are also be-

ond the knowledge of the original CNN algorithm. Process engineers

ill monitor subsets of the incoming data from the machine level and

espond to any potential events following the appropriate protocol. In

ddition, another benefit in having human experts monitor the results of

he CNN data is the opportunity to improve CNN performance. If an in-

oming dataset contains incorrect classifications, the process engineers

an selectively transmit a subset of the incoming images with the cor-

ected labels to the research center for updates to the CNN algorithm.

etailed transmission schemes and a case study of this proposed work-

ow will be explained further in Section 3 . 

.2.2. RNN workflow 

On the factory level, a hybrid recipe update scheme is proposed

hich aims to provide smart recipe correction through the combined
4 
ffort of both a high-level recurrent neural network (RNN) and human

xperts. A recurrent network is often used to predict outcomes based on

istorical data ( Medsker and Jain, 2001 ). Since the machine-level man-

facturing data are essentially time sequences of thermal and structural

nformation, they can be processed by an RNN using a high-level anal-

sis. Therefore, at the factory level, a pre-trained high-level RNN can

e used as an operating recipe encyclopedia. The operating encyclope-

ia contains a large manufacturing dataset that can be used to derive

he correlation between the operating conditions and potential defects.

herefore, the RNN can provide suggestions in the adjustment of AM op-

rating policies when defects are detected. However, in the early phase

f the manufacturing of a new build geometry, the manufacturing data

re usually insufficient for the training of a meaningful RNN. Therefore,

uman knowledge can be extremely helpful in assisting the adjustment

f AM recipes. In addition to that, human knowledge can also be applied

o efficiently select the dataset to train the RNN with higher accuracy.

owever, with the collection of more manufacturing data, the feedback

rocess can further be automated, thereby, reducing human interven-

ion. 

As mentioned in Section 2.1.2 , the proposed recipe-update scheme

s implemented using the transmitted error list, 𝐸, from individual local

achines. Due to the standardized format of the transmitted data, the

NN-based workflow can be directly implemented without too much

re-processing. The formulation of the RNN network is shown as fol-

ows, 

𝑢 ′ = 𝑅𝑁 𝑁 ( 𝐸, 𝑏, 𝑢 ) 
𝑅𝑁𝑁 ∶ 𝑓 ( ℎ ( 𝑡 ) , 𝑚 ( 𝑡 ) , 𝑢 ( 𝑡 ) , [ 𝑒, 𝑙] , 𝑏 ) = ℎ ( 𝑡 + 𝐿 ) , 𝑚 ( 𝑡 + 𝐿 ) , 𝑢 ′( 𝑡 + 𝐿 ) 

here ℎ is a hidden state and 𝑚 is a memory state. Using the error list and

he additional build history around errors 𝑏 , from an individual machine,

he RNN can predict an updated recipe 𝑢 ′ that can potentially fix the

efects during the production. The same RNN network can be directly

pplied for multiple local machines and resolve the errors of the same

ype. It is noteworthy that, in the beginning phase of the manufacturing,

t is difficult to derive a good RNN network due to the limited amount

f manufacturing data. Therefore, human expert knowledge can also be

dopted to facilitate the recipe enhancement. 

.2.3. Simulation center 

The other role of the factory is to serve as a local AM process simu-

ation center. The computation power of the factory cluster can be used

o perform the solution of a pre-built FEM model simulation that does

ot require too much computational resource. These simulations, such

s elementary structural and thermal analysis, can provide additional

nformation regarding printing processes and avoid the usage of ex-situ

nalysis, which is often destructive to the printing product. Even with

he limited computation power on the factory cloud, many types of sim-

lations can be performed. Ren et al. (2020) has explored the possible

imulations that can be performed on the factory level. According to

he domain and scale that simulation models focus on, three types of

imulations can be conducted on the factory level: micro-scale, meso-

cale, and part-scale. An example of a micro-scale simulation is shown

n Fig. 2 (a). The shown 1-D microscopic transport model can be used

o explore the thermodynamic and transport properties of the materials

hat are manufactured. In this particular case, the built 1-D model is

sed to compute the effective thermal conductivity of the powder ma-

erial through numerical experiments. These types of simulations can

e used as a useful supplement to the parameter determination studies,

uch as described in Economidou and Karalekas (2016) . For meso-scale

imulation, an example is shown in Fig. 2 (b). The meso-scale simula-

ion focuses on a portion of the built part, which can be a feature of

nterest or a sub-part. By constructing an FEM model, the local ther-

al history details of the part can be extracted for further analysis. The

eso-scale simulation is particularly useful to obtain insights into the

efects or distortions that occur on a specific geometric feature or loca-

ion. Finally, part-scale simulation captures the dynamics of the entire
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Fig. 2. Three examples of suitable simulations that can be run at the factory level. (a) Micro-scale simulation on the powder properties. (b) Meso-scale simulation 

on a portion of the build part. (c) Part-scale simulation of the entire build part. 
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c  

w  

l  
uild part or even a build plate where multiple parts are being built.

n exemplary part-scale simulation geometry is shown in Fig. 2 (c). The

art-scale simulation can provide a holistic perspective of the building

rocess, and it can be used to validate the building recipe and pre-

ent part defects through simulation prediction. All three types of sim-

lations are suitable for the computation resources available on a fac-

ory cluster. Additionally, due to the resemblance of part-scale simu-

ation results with the sensor data, part-scale simulations can also be

sed as a data-augmentation method to further enhance the robust-
5 
ess of recipe design, which will be covered in more detail in the next

ection. 

.3. Research center 

The highest level in the hierarchy of the framework is the research

enter, which can be assumed to be a supercomputer cluster equipped

ith strong computation power. Computation resources are typically

imited on local venues due to the lack of sufficient hardware infrastruc-



Y.M. Ren, Y. Ding, Y. Zhang et al. Digital Chemical Engineering 1 (2021) 100001 

Fig. 3. An overview of the edge-cloud data transfer scheme of the additive manufacturing framework. The arrow orientations represent the directions of the data 

flow. 
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ure and high cost. Therefore, cloud computing has been proposed as an

lternative to providing strong computational power to terminal users

n a shared environment. The cloud computing market has witnessed

ignificant growth in the past decade, and the technologies involved

ith cloud computing have matured to be able to meet the computa-

ion demand by the global research and commercial activities nowa-

ays ( Ren et al., 2015 ). Many cloud computing resources are available

ommercially, of which the most representative one is the AWS cloud

ervice provided by Amazon ( Amazon, 2015 ). In this framework, such

 cloud computing hub is used as a dedicated research center for the

M process, which may serve and oversee hundreds of factories. With

he strong computing power of the research center, tasks that are not

easible on the local machine and factory cloud can be performed here.

t is noteworthy that the research center does not directly take part in

he manufacturing process, and does not make recommendations for

he recipe online. Instead, the research center serves as a knowledge

ub that constantly takes in selected manufacturing data and performs

achine learning studies, such as the training of a high-level recurrent

eural network model, to provide the next-generation recipe for process

ptimization. 

The research center can perform more computationally demanding

imulations. For example, on the factory level, only one FEM model can

e executed to validate a certain range of operating conditions due to the

imitation of computational capacity. However, at the research center, a

arametric sweep can be performed to inspect a large range of operating

onditions, thus providing much more insights into the process. The type

f simulations that can be performed at the research center also has a

arger variety than at the factory cloud level. For instance, detailed sim-

lation of the microscopic properties through the first-principles-based

ethod can be performed, which is too computationally expensive on

he factory cloud or local machine. For example, density functional the-

ry calculations can be performed to obtain the necessary thermody-

amic properties of the build material through the efficient approximate

olution of the Schrödinger’s equation ( Gross and Dreizler, 2013 ). These

rst-principles-based simulation results, along with the large amount of

anufacturing data provided by different machines on different build

arts can provide sufficient quantity and generality of the additive man-

facturing process. With these data, a robust model can be trained to

rovide insights on recipe designs for new build parts. Last but not least,

nother role of the research center is data storage. The stable infrastruc-

ure of supercomputer clusters makes the research center the ideal place

or the storage and easy access of manufacturing data, which is typically

n the scale of petabytes or even exabytes. However, as mentioned be-

ore, the research center is expected to receive data from hundreds and

housands of AM machines from the local factories. Therefore, the large

mount of data influx and data transfer may be overwhelming even for a

upercomputer like the research center. As a result, Section 3 proposes

n edge-cloud data transfer scheme that can potentially optimize the

ata transfer and storage. 

With the enormous amount of data gathered from different factories,

he research center can also serve as a decision-making hub for the in-

ustry as a whole. Butt (2020) argued that enterprise-wide profitability

s reliant on a number of integrated factors such as reliability, safety,
 t  

6 
exibility, and environmental concerns. As discussed in Section 2.1.2 ,

n-situ process monitoring of AM machines is an example of reliabil-

ty and safety factors. The integration of ML techniques will allow more

exibility and turn-over rate on recipe design experiments through tech-

iques such as AI-surrogate models and digital twins ( Biegler et al.,

014 ). Environmental concerns may include the design of the input

owder material and geometric shapes. It is important to allow con-

istent information flow between different factors as it contributes to

ligning the enterprise-wide short-term milestones with long-term mile-

tones. Following this approach, a number of short-term and long-term

oals can be established with the large and expansive range of data col-

ected in the research center. 

. Edge-cloud data transfer details 

As mentioned in Section 2.3 , due to the large size of the AM manu-

acturing data, it is crucial to perform data reduction and maximize the

ata transfer efficiency. The overall data transfer flow occurring in the

M workflow is shown in Fig. 3 . 

In summary, the data transfer procedure is proposed to be the fol-

owing: first, an initial build recipe is provided to the AM machine by

he factory cloud. As the machine builds the part, the sensor data, 𝐼 ,

re processed with CNN, and an error list 𝐸 is generated. The error list

s further processed through the cross-validation scheme and a cross-

alidated error list, 𝐸, is generated. After the data processing has been

ompleted, the data transfer is initiated from the local machine to both

he factory cloud and the research center. The data size of the cross-

alidated error list, 𝐸, is estimated to be about several Megabytes per

ransfer and the data size of the raw sensor data, 𝐼 , is estimated to be

bout several Gigabytes per transfer. Due to the large data size of the raw

ensor data, not all data should be transmitted to the research center for

very build. Instead, a data transfer frequency should be determined to

nsure data completeness, data transfer bandwidth occupation, and data

torage efficiency. To ensure the efficiency in data storage and transfer,

he following data selection and transfer paradigm is proposed based on

f a part defect or recipe error is observed: 

Machine - > Factory 

if error present then 

if new error then 

Factory - > Research Center at 𝑓 1 
else 

Factory - > Research Center at 𝑓 2 % if an old error is 

persistent 

end 

else 
Factory - > Research Center at 𝑓 3 

end 

where 𝑓 1 , 𝑓 2 , 𝑓 3 are different data transfer frequencies; 

𝑓 2 > 𝑓 1 > 𝑓 3 

Specifically, in the proposed paradigm, the data transfers are all ini-

iated in a linear fashion from the local machine to the factory cloud
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Fig. 4. Fraction of transmitted (a) correct and (b) incorrect images and their effect on the retrained CNN accuracy. 
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nd finally to the research center to prevent data duplication. During

anufacturing, if an error or defect is detected by the machine moni-

oring system and has not been encountered before, the machine will

pload the manufacturing data to the factory cloud for error ameliora-

ion. After the data is sent to the factory cloud, according to a pre-trained

ecipe update scheme, an updated recipe will be deployed to the local

achine, attempting to mitigate the error. Besides the feedback to the

ocal machine, if the error has never been encountered before, i.e., a new

rror, the data will be also sent to the research center for bookkeeping

nd further study at a frequency of 𝑓 1 . On the other hand, if the de-

ected error or defect has occurred before and keeps reoccurring despite

he recipe update from the factory cloud, the data will be sent to the

esearch center from the factory cloud and the manufacturing should

e halted if the severity of the defect is high. This data transfer will

appen at a frequency of 𝑓 2 . In the final case, suppose there is no error

ncountered during the manufacturing, the manufacturing data will still

e transferred to the research center for routine backup. However, the

requency of routine backup, 𝑓 3 , should be much slower than 𝑓 1 and 𝑓 2 .

he actual choice of data transfer frequencies is at plant designers’ dis-

retion, but an overall guideline for the priority of data transfer would

e 𝑓 2 > 𝑓 1 > 𝑓 3 . 

.1. Data transfer case study 

Dataset used in this study is the same dataset used in the author’s

revious work ( Ren et al., 2021 ). In summary, the dataset consists of

rocessed LWIR camera data from different semi-arch geometries. The

ataset is split into training, validation, and testing and the testing

ataset is from a more recent build than the training and validation

ataset. In a typical factory setting, the CNN classifier installed on each

achine should already be performing at a relatively high level. The

NN used is able to achieve an accuracy of 92.3 % on a fairly balanced

ataset of defective and non-defective images. The testing dataset will

e used to represent a new set of build information from a typical AM

achine. In this case study, the CNN classifier will be evaluated before

nd after transmitting the testing images and updating the CNN classi-

er. 

In this case study, we will be investigating the effectiveness of the

roposed framework, specifically, the transmission between factory and

loud. As mentioned at the factory level, the incoming images will first

e classified in an AI-assisted manner in which process engineers will

onduct quality control on the CNN classifications. First, we manually

lassify the new images to recreate the job of the process engineers who
7 
ill monitor the incoming images. The new set of images are grouped

nto two categories: images of which the CNN-determined classifications

hat agree with human expert knowledge, and images of which the clas-

ifications that do not agree with human knowledge. As we are dealing

ith classifying unstructured data, images, the human classification, or

he human-level performance, can be thought of as a good ground truth

lassification. Ideally, we want to minimize the total data transmission

ize while maximizing the effectiveness of the transmitted data. There-

ore, these two categories of incoming images should be transmitted at

ifferent rates. Then, we will retrain the CNN classifier with both the

ew images and a subset of the original dataset. This is similar to the

ransmission from the factory to the cloud and the cloud retraining pro-

ess. Finally, we will evaluate the performance of the newly updated

NN similarly to manufacturing ML deployment monitoring. The up-

ated CNN is retrained five times to ensure performance consistency as

here are slight variations between each training since the specific train-

ng images differ from training to training due to uniform selection. In

ddition, different weight initialization methods and stochastic gradient

escent may result in slightly different results from time to time. There-

ore, we reported both the maximum and average performance at each

ransmission rate in our result. 

Before the retraining of the CNN, the CNN can achieve an accuracy of

1.3 %. This will be our baseline to which we will compare our updated

NN. As shown in Fig. 4 (a), we have varied the fraction of correctly

lassified images transmitted for retraining to investigate its effect on

NN performance. It is noteworthy that since we retrained our CNN

ith only 60 % of the original training dataset plus the new dataset, at

ractions below 0.1, the updated CNN performs worse than the original.

his decrease is to be expected since we did not use 40 % of the orig-

nal training dataset causing some defect types to be missed. However,

fter merely using more than 0.1 of the new dataset, the updated CNN

tarts to perform much better. In our case study, the performance of the

NN stabilizes after around 0.4 of the total correctly classified images

re transmitted for retraining. This supports our proposed framework

f only needing to transmit a portion of all incoming images for re-

raining as the original CNN can already classify this subset of images

orrectly. However, it is still necessary to transmit them for retraining to

eep up with the data drift and routine backup during manufacturing. In

ig. 4 (b), we have varied the fraction of incorrectly classified images to

NN performance. In our case study, the performance of the CNN con-

inues to increase until around 0.85. This fraction is significantly larger

han the previous 0.4 due to this subset being the incorrectly classified

mages. Specifically, we varied the fraction of correctly classified im-
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ges first where all of the incorrect images are sent. After, we selected

he best performing fraction, 0.4, and held it constant when varying the

umber of incorrectly classified images. We performed the study in this

rder because we know that correctly classified images contribute less

han incorrectly classified images in the process of retraining. We did not

ary both fractions at the same time since that increases the computation

ost from 𝑂( 𝑁 + 𝑀) to 𝑂( 𝑁 ∗ 𝑀) . We do not need to transmit all of the

mages since some of the defect types are repeated, and sending 85 % of

he incorrect images may be enough for the new CNN to recognize such

 defect. In the case of a persistent error type throughout multiple iter-

tions of the retraining process, this type of error should be transferred

t a higher frequency or be assigned a higher weight when retraining

he CNN. It is notable that the exact hyperparameters, such as transmis-

ion fractions and dataset ratios, are specific for our set of images and

an vary when applied to another dataset. However, the general trends

hould be consistent throughout any dataset and in agreement with our

roposed data transfer framework. 

.2. Job scheduling 

The task of data transfer in AM highly resembles the work for the

mplementation of the aforementioned data transfer scheme. To address

his task, one can take advantage of the various network load balanc-

ng schemes and job scheduling libraries available both open-source and

ommercially. Okwudire et al. (2018) investigated the usage of the user

atagram protocol (UDP). For example, the transmission control proto-

ol and the internet protocol ((TCP/IP) or open systems interconnection

OSI) in the field of networking is a great reference for the implementa-

ion of the data transfer scheme ( Kozierok, 2005; Zimmermann, 1980 ).

n the TCP/IP or OSI models, the data being transferred over the internet

s divided into packets that are equal in size, which allows a convenient

ata integrity check and the usage of standardized processing protocol

 Forouzan, 2002; Stevens and Wright, 1996 ). On the other hand, the

un grid engine (SGE) is an example of the job scheduling library. A

ob scheduler like SGE oversees a job scheduling queue and handles the

ob distribution and execution based on both job priority and resource

vailability. When performing the job scheduling, the job scheduler op-

imizes and balances the job load on all available computation nodes

nd ensures no node gets overcrowded or empty under various circum-

tances ( Gentzsch, 2001 ). For the data transfer in the AM framework,

ue to the large data size of the manufacturing data, customization may

e necessary when using existing software or libraries. 

. Additive manufacturing and industry 4.0 

Additive manufacturing is often mentioned together with the con-

ept of Industry 4.0, which represents the fourth industrial revolution.

he key idea of Industry 4.0 is the integration of smart manufacturing

nd information technologies into the traditional manufacturing pro-

ess, which is largely driven by the desire to combine digital and physi-

al applications, to provide efficient product customization and to pro-

ote automation in manufacturing ( Chen et al., 2018; Vaidya et al.,

018 ). Industry 4.0 typically features the usage and development of

elf-aware and self-learning machines, and cloud-based manufacturing

nd smart manufacturing are two of the main drivers of Industry 4.0.

s a result, additive manufacturing is a key component of the Indus-

ry 4.0 due to its superior prototyping capability and close relationship

ith other components of the Industry 4.0 ( Mehrpouya et al., 2019 ).

utt (2020) explained the interrelationships between additive manufac-

uring and cyber security, simulation, internet of things (IoT), and big

ata analytics. 

Though still relatively not-well-developed, additive manufacturing

s a broad field that has many sub-categories ( Wong and Hernan-

ez, 2012 ). Despite the large variety of materials that can be manufac-

ured by AM, the materials that are most relevant with the framework

nd pathway of industrial 4.0 include metallic materials, smart materials
8 
e.g., shape memory alloys and shape memory polymers), printable hy-

raulics and electronics and special materials & applications (e.g., jew-

lry, clothing and food) ( Dilberoglu et al., 2017 ). Although the additive

anufacturing data-driven framework proposed in this work focuses on

he metal additive manufacturing and is based on the powder bed fusion

PBF) process, it can be tailored and adapted to the AM of other mate-

ials with the proper selection of sensors and potential transfer learn-

ng of the trained neural network. Moreover, the proposed data-transfer

cheme is general-purpose and can be applied and customized for any

dditive manufacturing process that is data-intensive. In addition to

he framework proposed in this work, there also exist other attempts

hat have been made to relate additive manufacturing with the industry

.0 framework, from which this work draws inspiration. For example,

ang et al. (2019) has investigated the possibility of an IoT-enabled

loud-based additive manufacturing platform, where machine-learning

echniques and hybrid human knowledge are used for the facilitation of

apid manufacturing. On the other hand, Buckner and Love (2012) has

ooked into the automation and the smart process-improvement of addi-

ive manufacturing through cloud computing and optimization. More-

ver, recently Majeed et al. (2021) developed a big data-driven frame-

ork to assist the development of the smart AM process through big

ata utilization. Baumann and Roller (2017) also provided a compre-

ensive overview of the integration of cloud computing and additive

anufacturing. Therefore, it can be seen that additive manufacturing

s a key element in the industry 4.0 framework, which can potentially

evolutionize the existing business models and manufacturing decisions

 Garrett, 2014; Ivanova and Campbell, 2013; Lemu, 2018 ). 

Finally, an emerging field within industry 4.0 is the integration and

andling of cybersecurity concerns. When calculations, involved in the

olution of process models, and/or when data analysis takes place in the

actory cloud, the issue of cybersecurity should be carefully addressed as

t is a problem that is occurring more and more in a variety of industries.

o this end, cyber-attack detection and mitigation strategies should be

mplemented at the factory cloud to achieve early detection of potential

yber-attacks; a detailed treatment is outside the scope of the present

ork and the reader may refer to Wu and Christofides (2021) ’s book for

n in-depth study on the modeling, detection and mitigation of cyber-

ttacks. 

. Conclusion 

In this work, a data-driven process optimization framework ded-

cated to the additive manufacturing (AM) process is proposed. The

ramework is based on a three-level hierarchy: machine level, factory

evel, and research center level. The machine level is the lowermost

evel, consisting of the AM machine or the computer equipped with the

M machine. The machine level is responsible for online data collection

nd real-time image processing. The second level is the factory level. The

actory level is responsible for adjusting the recipe with a predefined

ecipe-update policy according to the defects reported by machines. In

ddition, the factory level can also coordinate data transfer and perform

ow computationally demanding simulation tasks to provide insights on

he parts that are processed at the factory level. The research center level

s used as the storage hub for the manufacturing data collected from the

ower levels, i.e., factory and machine levels. Using the collected manu-

acturing data, the research center, consisting of a supercomputer with

remendous computational resources, can perform efficient and power-

ul data mining to improve and develop new process recipes. Moreover,

he research center can perform first-principles-based simulations that

urther explore the material properties to facilitate the accurate char-

cterization of the manufacturing process. In addition to the simula-

ion/workflow framework proposed in this work, due to the large size

ypically involved with the AM manufacturing data, a data-transmission

cheme is also proposed to serve as a data transfer guideline for the AM

rocess, and a case study is presented with the data scale suitable for

 typical AM application. Finally, the connection between AM and the
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ndustry 4.0 framework is elaborated to provide further motivation for

he research in this field. Future work can be conducted to explore the

fficient implementation of the framework proposed in this work and

he integration between AM and Industry 4.0 concepts. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

cknowledgement 

Financial support from the Department of Energy is gratefully ac-

nowledged. 

eferences 

mazon, E., 2015. Amazon web services. Available in: http://aws.amazon.com/es/ec2/

(November 2012). 

aumann, F.W. , Roller, D. , 2017. Additive manufacturing, cloud-based 3D printing and

associated services-overview. J. Manuf. Mater. Process. 1 (2), 15 . 

hadriraju, B. , Narasingam, A. , Kwon, J.S.-I. , 2019. Machine learning-based adaptive

model identification of systems: application to a chemical process. Chem. Eng. Res.

Des. 152, 372–383 . 

iegler, L.T. , Lang, Y.-D. , Lin, W. , 2014. Multi-scale optimization for process systems en-

gineering. Comput. Chem. Eng. 60, 17–30 . 

uckner, M.A. , Love, L.J. , 2012. Automating and accelerating the additive manufactur-

ing design process with multi-objective constrained evolutionary optimization and

HPC/cloud computing. In: 2012 Future of Instrumentation International Workshop

(FIIW) Proceedings. IEEE, Gatlinburg, TN, pp. 1–4 . 

utt, J. , 2020. Exploring the interrelationship between additive manufacturing and indus-

try 4.0. Designs 4 (2), 13 . 

haffart, D. , Ricardez-Sandoval, L.A. , 2018. Optimization and control of a thin film growth

process: a hybrid first principles/artificial neural network based multiscale modelling

approach. Comput. Chem. Eng. 119, 465–479 . 

hen, B. , Wan, J. , Shu, L. , Li, P. , Mukherjee, M. , Yin, B. , 2018. Smart factory of industry

4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519 . 

ickins, A. , Widjanarko, T. , Lawes, S. , Stavroulakis, P. , Leach, R. , 2018. Design of a multi-

-sensor in-situ inspection system for additive manufacturing. ASPE and EUSPEN Sum-

mer Topical Meeting on Advancing Precision in Additive Manufacturing, Berkeley,

CA . 248–152 

ilberoglu, U.M. , Gharehpapagh, B. , Yaman, U. , Dolen, M. , 2017. The role of additive

manufacturing in the era of industry 4.0. Procedia Manuf. 11, 545–554 . 

ing, Y. , Zhang, Y. , Chung, H.Y. , Christofides, P.D. , 2021. Machine learning-based model-

ing and operation of plasma-enhanced atomic layer deposition of hafnium oxide thin

films. Comput. Chem. Eng. 144, 107148 . 

conomidou, S.N. , Karalekas, D. , 2016. Optical sensor-based measurements of thermal

expansion coefficient in additive manufacturing. Polym. Test. 51, 117–121 . 

OS, 2018. EOSTATE MeltPool: real-time process monitoring for EOS M 290.

https://www.eos.info/software/monitoring-software/meltpool-monitoring (Accessed 

on 2020-07-19). 

orouzan, B.A. , 2002. TCP/IP Protocol Suite. McGraw-Hill Higher Education . 

razier, W.E. , 2014. Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23,

1917–1928 . 

arrett, B. , 2014. 3D printing: new economic paradigms and strategic shifts. Global Policy

5 (1), 70–75 . 

entzsch, W. , 2001. Sun grid engine: towards creating a compute power grid. In: Proceed-

ing First IEEE/ACM International Symposium on Cluster Computing and the Grid,

Brisbane, Australia, pp. 35–36 . 
9 
ibson, I. , Rosen, D. , Stucker, B. , Khorasani, M. , 2014. Additive Manufacturing Technolo-

gies, vol. 17. Springer . 

ross, E.K. , Dreizler, F.R.M. , 2013. Density Functional Theory, vol. 337. Springer Science

& Business Media . 

vanova, O. , Campbell, T. , 2013. Additive manufacturing as a disruptive technology: Im-

plications of three-dimensional printing. Technol. Innov. 15, 67–69 . 

imaev, G. , Ricardez-Sandoval, L.A. , 2019. Nonlinear model predictive control of a mul-

tiscale thin film deposition process using artificial neural networks. Chem. Eng. Sci.

207, 1230–1245 . 

imaev, G. , Ricardez-Sandoval, L.A. , 2020. Artificial neural network discrimination for

parameter estimation and optimal product design of thin films manufactured by chem-

ical vapor deposition. J. Phys. Chem. C 124, 18615–18627 . 

imaev, G. , Ricardez-Sandoval, L.A. , 2020. Artificial neural networks for dynamic opti-

mization of stochastic multiscale systems subject to uncertainty. Chem. Eng. Res. Des.

161, 11–25 . 

ozierok, C. , 2005. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols

Reference. No Starch Press . 

rizhevsky, A. , Sutskever, I. , Hinton, G.E. , 2012. ImageNet classification with deep con-

volutional neural networks. In: Advances in Neural Information Processing Systems,

pp. 1097–1105 . 

emu, H.G. , 2018. On opportunities and limitations of additive manufacturing technol-

ogy for industry 4.0 era. In: International Workshop of Advanced Manufacturing and

Automation. Springer, Changzhou, China, pp. 106–113 . 

ough, C.S. , Wang, X. , Smith, C.C. , Landers, R.G. , Bristow, D.A. , Drallmeier, J.A. ,

Brown, B. , Kinzel, E.C. , 2020. Correlation of SWIR imaging with LPBF 304L stain-

less steel part properties. Addit. Manuf. 35, 101359 . 

ajeed, A. , Zhang, Y. , Ren, S. , Lv, J. , Peng, T. , Waqar, S. , Yin, E. , 2021. A big data-driven

framework for sustainable and smart additive manufacturing. Rob. Comput.-Integr.

Manuf. 67, 102026 . 

edsker, L.R. , Jain, L. , 2001. Recurrent Neural Networks: Design and Applications. CRC

press . 

ehrpouya, M. , Dehghanghadikolaei, A. , Fotovvati, B. , Vosooghnia, A. , Emamian, S.S. ,

Gisario, A. , 2019. The potential of additive manufacturing in the smart factory indus-

trial 4.0: a review. Appl. Sci. 9 (18), 3865 . 

andwana, P. , Peter, W.H. , Dehoff, R.R. , Lowe, L.E. , Kirka, M.M. , Medina, F. , Babu, S.S. ,

2016. Recyclability study on Inconel 718 and Ti-6Al-4V powders for use in electron

beam melting. Metall. Mater. Trans. B 47, 754–762 . 

kwudire, C.E. , Huggi, S. , Supe, S. , Huang, C. , Zeng, B. , 2018. Low-level control of 3d

printers from the cloud: a step toward 3D printer control as a service. Inventions 3

(3), 56 . 

en, L. , Zhang, L. , Tao, F. , Zhao, C. , Chai, X. , Zhao, X. , 2015. Cloud manufacturing: from

concept to practice. Enterprise Inf. Syst. 9 (2), 186–209 . 

en, Y.M. , Zhang, Y. , Ding, Y. , Liu, T. , Lough, C.S. , Leu, M.C. , Kinzel, E.C. ,

Christofides, P.D. , 2021. Finite element modeling of direct metal laser solidification

process: sensor data replication and use in defect detection and data reduction via

machine learning. Chem. Eng. Res. Des. 171, 254–267 . 

en, Y.M. , Zhang, Y. , Ding, Y. , Wang, Y. , Christofides, P.D. , 2020. Computational fluid dy-

namics-based in-situ sensor analytics of direct metal laser solidification process using

machine learning. Comput. Chem. Eng. 143, 107069 . 

tevens, W.R. , Wright, G.R. , 1996. TCP/IP Illustrated, vol. 2. Addison-Wesley . 

aidya, S. , Ambad, P. , Bhosle, S. , 2018. Industry 4.0 - a glimpse. Procedia Manuf. 20,

233–238 . 

ang, Y. , Lin, Y. , Zhong, R.Y. , Xu, X. , 2019. IoT-enabled cloud-based additive manu-

facturing platform to support rapid product development. Int. J. Prod. Res. 57 (12),

3975–3991 . 

ong, K.V. , Hernandez, A. , 2012. A review of additive manufacturing. Int. Scholarly Res.

Notices 2012, 208760 . 

u, Z. , Christofides, P.D. , 2021. Process Operational Safety and Cybersecurity: A Feedback

Control Approach. Springer . 

u, F. , Dhokia, V. , Colegrove, P. , McAndrew, A. , Williams, S. , Henstridge, A. , New-

man, S.T. , 2018. Realisation of a multi-sensor framework for process monitoring of

the wire arc additive manufacturing in producing Ti-6Al-4V parts. Int. J. Comput.

Integr. Manuf. 31 (8), 785–798 . 

immermann, H. , 1980. OSI reference model - the ISO model of architecture for open

systems interconnection. IEEE Trans. Commun. 28 (4), 425–432 . 

http://aws.amazon.com/es/ec2/
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0002
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0002
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0002
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0003
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0003
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0003
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0003
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0004
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0004
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0004
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0004
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0005
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0005
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0005
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0006
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0006
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0007
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0007
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0007
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0008
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0008
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0008
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0008
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0008
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0008
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0008
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0009
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0009
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0009
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0009
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0009
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0009
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0009
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0010
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0010
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0010
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0010
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0010
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0011
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0011
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0011
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0011
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0011
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0012
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0012
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0012
https://www.eos.info/software/monitoring-software/meltpool-monitoring
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0014
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0014
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0015
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0015
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0016
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0016
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0017
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0017
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0018
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0018
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0018
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0018
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0018
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0019
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0019
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0019
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0020
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0020
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0020
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0021
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0021
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0021
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0022
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0022
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0022
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0023
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0023
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0023
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0024
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0024
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0025
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0025
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0025
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0025
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0026
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0026
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0027
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0028
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0029
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0029
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0029
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0030
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0030
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0030
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0030
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0030
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0030
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0030
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0031
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0032
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0032
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0032
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0032
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0032
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0032
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0033
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0033
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0033
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0033
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0033
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0033
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0033
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0034
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0035
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0035
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0035
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0035
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0035
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0035
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0036
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0036
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0036
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0037
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0037
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0037
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0037
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0038
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0038
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0038
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0038
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0038
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0039
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0039
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0039
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0040
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0040
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0040
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0041
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0042
http://refhub.elsevier.com/S2772-5081(21)00001-6/sbref0042

	A three-level hierachical framework for additive manufacturing
	1 Introduction
	2 AM framework hierarchy
	2.1 Machine
	2.1.1 Machine sensor monitoring
	2.1.2 Sensor cross validation and machine transmission details

	2.2 Factory
	2.2.1 CNN deployment monitoring
	2.2.2 RNN workflow
	2.2.3 Simulation center

	2.3 Research center

	3 Edge-cloud data transfer details
	3.1 Data transfer case study
	3.2 Job scheduling

	4 Additive manufacturing and industry 4.0
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


