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A B S T R A C T

An overview of the recent developments of time-series neural network modeling is presented along with its
use in model predictive control (MPC). A tutorial on the construction of a neural network-based model is
provided and key practical implementation issues are discussed. A nonlinear process example is introduced
to demonstrate the application of different neural network-based modeling approaches and evaluate their
performance in terms of closed-loop stability and prediction accuracy. Finally, the paper concludes with a
brief discussion of future research directions on neural network modeling and its integration with MPC.
1. Introduction

Model predictive control (MPC) has attracted significant research
interest as it is one of the major achievements in the development
of advanced multivariate process control systems due to its ability to
compute the optimal control actions based on not only the instanta-
neous state measurements but also the anticipated process response.
Specifically, MPC relies on its built-in linear/nonlinear model to cap-
ture the dynamic behavior of the process and predict the response
of the process over a finite horizon window, such that it can deter-
mine the optimal control trajectory by solving a dynamic optimization
problem subject to input and state constraints at every sampling time.
Attributed to the achievement of developing self-tuning controllers in
the 1970s, such as minimum variance (MV), generalized minimum
variance (GMV) (Clarke and Gawthrop, 1975, 1979), and Pole Place-
ment (Wellstead et al., 1979) controls, the methodology of MPC was
proposed. Since its conceptualization, MPC has been developed and
modified in various ways over the past few decades. Rawlings (2000)
provided a tutorial review of MPC approaches for control practitioners
and the variables/parameters that must be considered when designing
an MPC. Mayne et al. (2000) carried out an exhaustive literature
review of the advances in MPC to handle hard constraints in both
linear and nonlinear systems, with an emphasis on the results re-
garding stability and optimality. Morari and Lee (1999) summarized
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the previous 15 years of research in MPC and proposed several new
directions for the future such as performance monitoring, process di-
agnostics, estimating states in nonlinear systems, improving system
identification in the multi-input multi-output (MIMO) system context,
and the challenges and reliability of the on-line dynamic optimization
problem. Following these advances, MPC has been widely accepted
in industry (Holkar and Waghmare, 2010). For example, in Hrovat
et al. (2012), MPC was implemented in an industrial automotive system
and demonstrated superior closed-loop performance compared to tra-
ditional control schemes. However, as stated in Mohanty (2009), Amrit
et al. (2011), Ellis et al. (2014), Angeli et al. (2011), a reliable process
model that can capture the input–output relation of the dynamic system
is essential to the success of advanced model-based control systems
(e.g., Lyapunov-based MPC (LMPC) and economic MPC (EMPC)) as
these systems require process models with well-characterized accuracy
to predict the temporal evolution of the states, and thus, the identi-
fication of process models is a central pillar of control science and
engineering.

Traditionally, mathematical and statistical models are widely used
to derive process models in the field of chemical engineering. For in-
stance, famous first-principles models such as the Navier–Stokes equa-
tions are crucial to modeling the fluid dynamics within physical sys-
tems. However, deriving first-principles models for chemical processes
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can be challenging due to the complexity of determining the fundamen-
tal physico-chemical phenomena of a process. In contrast, modeling
dynamic systems using data-driven models has attracted significant
attention, both historically and recently. In the context of developing
dynamic models to embed into controllers, linear models have been
studied exhaustively over the past few decades, leading to a well-
developed framework and literature in this field. This is primarily due
to the mathematical simplicity and results that can be derived for con-
trollers with linear process models, despite the fact that most chemical
processes exhibit highly nonlinear behavior and are characterized by
numerous complex interactions between variables as seen in distillation
columns (Lévine and Rouchon, 1991) and catalytic continuous stirred-
tank reactors (CSTR) (e.g., Chang and Aluko, 1984). For industrial
process control systems, the parameters of a linear data-driven model
are typically identified from industrial or simulation data (e.g., Wil-
son and Sahinidis, 2017). A category of such data-driven models is
autoregressive models such as autoregressive with exogenous inputs
(ARX) or autoregressive-moving-average model with exogenous inputs
(ARMAX) (e.g., Maner and Doyle III, 1997). An ARX model takes the
weighted sum of the lagged states and inputs to predict the current
states and may also be reformulated as a linear time-invariant state–
space model, which has been studied in-depth in the control literature.
The primary reason linear models are still employed in the control of
nonlinear processes is that, besides the aforementioned mathematical
considerations, they are often able to be used for the design of a
controller that can stabilize the nonlinear process itself. For exam-
ple, Alanqar et al. (2015b) investigated the design of a Lyapunov-based
EMPC (LEMPC) using empirical linear state–space models, derived con-
ditions to guarantee closed-loop stability of the nonlinear process under
the LEMPC based on the linear empirical model, applied the controller
to a nonlinear chemical process, and found it to be a computationally
efficient framework. Furthermore, when using a linear state–space
model as the process model in MPC, its structure becomes similar to
that of a linear–quadratic regulator (LQR), which has convex properties
and guaranteed convergence (Chow et al., 1975). In practice, this can
lead to faster convergence of the MPC optimization problem compared
to the usage of nonlinear models in MPC.

While the above methods perform well for linear systems, process
modeling using linear models continues to be challenging for large-
scale complex processes due to the limitation of enough and flexible
parameters to capture all nonlinearities in the system. Even though
linearized models can still provide accurate approximations around
steady-state regions, as the process deviates from the steady-state re-
gions, linear models’ performance suffers because the linearization
approximation no longer holds. In response, nonlinear autoregressive
models such as nonlinear autoregressive with exogenous inputs (NARX)
are constructed where a more flexible nonlinear mapping can be added
to the lagged states and inputs to capture the nonlinear coupling
between known input effects and unknown input effects (Billings,
1980; Pemberton, 1990; Henson and Seborg, 1997). One problem that
autoregressive models have is the large number of parameters that need
to be estimated. Therefore, extensive research has been done regarding
methods to reduce the dimension of these models. For example, by
using input projection methods such as principal component analysis
(PCA) and partial least squares (PLS), the dimensions of autoregressive
models can be reduced to a reasonable amount (Qin and McAvoy,
1992). In addition, constraints to the number of parameters can be
added to the model such as in the case of nonlinear additive auto regres-
sive model with exogenous input (NAARX) (Henson and Seborg, 1997).
However, even with the use of dimension reduction algorithms, it is
still a laborious task, especially for multivariable systems, to balance
between choosing a suitable model structure and identifying all the
required parameters (Lee, 2000). The field of nonlinear dynamic mod-
eling remains an active area of research. In the recent literature, several
methods have been proposed including explanatory approaches such as
2

sparse identification for nonlinear dynamical systems (SINDy) (Brunton
et al., 2016), which directly identifies a nonlinear system as a first-order
ordinary differential equation that may be integrated in time. For sys-
tems such as chemical processes that evolve on an attractor and reach
a steady-state, explanatory methods such as SINDy have been shown
to accurately capture the long-term trajectories of nonlinear systems
in the presence of time-scale multiplicities (Abdullah et al., 2021a) or
high levels of sensor noise in the data (Abdullah et al., 2022). The
resulting SINDy models have also demonstrated closed-loop stability
and faster convergence than first-principles models when incorporated
into an MPC (Abdullah et al., 2021b). In Alanqar et al. (2015a), well-
conditioned polynomial nonlinear state–space models were developed
to be incorporated into an LEMPC. The model identification explicitly
accounted for conditioning to yield well-conditioned models that could
be integrated with a relatively large integration time-step, leading
to significant reduction in computation time per sampling period.
Other nonlinear dynamic modeling methods in the literature opt for
data-driven approaches such as Runge–Kutta time-steppers embedding
neural networks to handle nonlinearities (González-García et al., 1998;
Fablet et al., 2018; Raissi et al., 2018; Rudy et al., 2019) and entropic
regression (AlMomani et al., 2020). It is noted that these alternative
methods exist and have their advantages as well as disadvantages, but
a comparison study is beyond the scope of this paper.

Entering the era of big data, deep learning (DL) methods such as
artificial neural networks (ANN) have gained much attention for their
exceptional performance in capturing the behavior of complex physical
systems, making them top candidates for model-based control systems.
Deep learning is a subcategory of machine learning that focuses on the
use of neural networks for different tasks. The large number of tunable
parameters and the rich variety of nonlinear functions ANNs possess
allow the capture of previously-considered ‘‘difficult nonlinearities’’.
When given the appropriate parameters, the universal approximation
theorem states that an ANN is capable of capturing any complex
input–output relation (Csáji et al., 2001; Lu et al., 2019). However,
ANNs did not gain popularity until recently due to the difficulties
associated with implementation and training (Qin and McAvoy, 1992).
Specifically, for the modeling of complex physical systems, especially
noisy and/or nonlinear processes, deep ANNs, or Deep Neural Networks
(DNN), which are ANNs with a large number of intermediate layers,
may be necessary to capture the input–output relation. Compared to
traditional machine learning algorithms, DNNs reduce the need for
extensive feature engineering and can learn features directly from input
data (LeCun et al., 2015). Although training DNNs requires a large
volume of data due to the high number of parameters to be estimated,
which renders their implementation generally difficult, several recent
developments have mitigated the challenges of training DNNs. Firstly,
the proliferation of data generated by machines and devices in the last
decade has made the training of data-demanding DNNs viable (Yin and
Kaynak, 2015). Secondly, while DNNs inherently involve many matrix
operations, leading to large demands for computational power during
training, recent advancements in computing infrastructure including
cloud and parallel computing have made training DNNs feasible. Fi-
nally, the development of open-source machine learning libraries such
as Tensorfow (Abadi et al., 2016), PyTorch (Paszke et al., 2019), and
Keras have made the construction and training of complex ANNs much
more straightforward and accessible.

There are many different types of ANNs and DNNs; specifically,
feed-forward neural networks (FNN) and recurrent neural networks
(RNN) and their variants (e.g., Chow and Fang, 1998; Schmidhuber,
2015; Gurney, 2018) have demonstrated potential for use in model-
based control systems. Throughout the scientific history, FNNs have
been proposed to be used as process models in MPC. Draeger et al.
(1995) proposed the use of a two-hidden-layer FNN as the process
model for dynamic matrix control (DMC), which is an early linear
form of MPC. A more recent use of FNN is to model nonlinear dy-

namic processes since the multivariate nature of these processes leads
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to internal state interactions, causing difficulties for traditional mod-
els (Afram et al., 2017). Therefore, research has been conducted to
exploit the nonlinear nature of FNNs to develop process models for
MPC. In Mohanty (2009), a dynamic FNN-based MPC was designed to
control the interface level of a flotation column by manipulating the
tailings flow rate. The dynamic FNN took in a multi-time step history
of the states to predict the interface level after one-time step. The MPC’s
prediction horizon is set to contain multiple sampling periods, and each
sampling period is equal to the prediction length of the dynamic FNN.
Results showed that the dynamic FNN-based MPC performed better
than traditional PID controllers due to faster convergence and smoother
trajectories. Kittisupakorn et al. (2009) reported the use of a stacked
FNN-based MPC for a multivariable nonlinear steel pickling process.
FNNs were stacked in series, and an iterative method was used to
obtain different future time steps of process states within the MPC’s
prediction horizon. The simulation results show that the FNN-based
MPC displayed good convergence and stability even under disturbances
and noise. In addition to using FNNs as the process models, FNNs can
also be used as a model identifier to determine when a process is subject
to parameter variations and uncertainties (Hedjar, 2013). The identifier
FNN updates the weights of the process model, which is a separate
predictor FNN, in case of system variations and thus creates an adaptive
neural network-based MPC. While the above use of FNNs as process
models in MPC displayed good results, modeling complex long-term
dynamic processes was not intuitive given the unidirectional structure
of FNNs.

Therefore, the idea of incorporating recurrency to neural networks
was proposed to better capture the ordinal nature within time-series
datasets. The first RNNs can be traced back to the 1980s, when Hopfield
networks were first created for pattern recognition purposes (Hopfield,
1982; Rumelhart et al., 1986). There were also attempts to use RNNs
to model nonlinear dynamic processes, but they were not widespread
due to difficulties to train generalizable and accurate RNNs (Miller
et al., 1995). However, with recent progress in technology and neural
network structure, RNNs have now emerged as a leading method
to model nonlinear dynamic processes (Schuster and Paliwal, 1997;
Schmidhuber, 2015). Esche et al. (2022) evaluated the applicability of
several neural network architectures, including FNN and RNN variants,
for different dynamic processes as surrogate models. For dynamic
processes, FNNs may not perform as well as RNNs due to the lack
of feedback connections that introduce past information derived from
earlier inputs into the current output. Furthermore, the incorporation
of feedback loops in RNNs leads to capturing dynamic behavior in a
way conceptually similar to nonlinear dynamic models derived from
first-principles (Miljanovic, 2012). As a result, modern RNN-based
process models (e.g., Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997), Gated recurrent unit (GRU) (Cho et al., 2014a),
and encoder–decoder (Sutskever et al., 2014)) have been integrated
with different model-based control schemes and used in many re-
search fields, including chemical (Zheng et al., 2022), mechanical (Xu
et al., 2016), and pharmaceutical (Wong et al., 2018) engineering.
Specifically for process control, Zarzycki and Ławryńczuk (2021) has
conducted a comparative study on the use of LSTM- and GRUs as
dynamic process models in predictive control for two chemical reactors.
It was found that both models approximated the properties of the
dynamic systems with high accuracy and drove the systems to desired
set-points. For certain stochastic processes, a single RNN process model
may not be adequate to capture the complex nature of the system;
therefore, multiple RNNs can be used in conjunction, creating an
ensemble in which the mean or median of the ensemble is taken as
the final prediction. Wu et al. (2019b) utilized an ensemble of RNNs as
the MPC process model to model the behavior of a fixed-bed catalytic
reactor and demonstrated its performance with respect to computa-
tional fluid dynamics (CFD) results. In addition to traditional RNN
architectures, an encoder–decoder architecture was proposed by Cho
3

et al. (2014b) in which two RNNs were used in series to capture p
input sequences of various lengths and long-term dependencies. Zhang
et al. (2021b) have demonstrated that, for dynamic processes that
contain many long-term dependencies, encoder–decoder-based RNNs
perform better than LSTM/GRU-based RNNs. Li and Tong (2021) have
adopted an encoder–decoder RNN model to develop an MPC for the
control of an HVAC system and demonstrated good convergence and
stability. In addition to performance, Ellis and Chinde (2020) have
argued that encoder–decoder models can easily be constructed from
a model definition perspective for HVAC systems. Specifically, the list
of inputs and outputs of encoder–decoder model is clearly aligned
with the inputs and outputs of the HVAC process and this may help
simplify model construction and reduce training costs of EMPC. Fi-
nally, Bonassi et al. (2022) discusses the incorporation and evaluation
of different RNN structures in MPC. Specifically, these RNNs were as-
sessed from the perspective of a control system designer with emphasis
on stability guarantees, safety verification, and consistency with the
physical system for the RNN models. Wu et al. (2020) proposed that
the incorporation of physical knowledge into RNN models improves
the performance of the MPC system. This claim was further supported
by Alhajeri et al. (2022), in which two RNN models, one with physical
knowledge and one without, were compared against each other for a
two-CSTR-in-series system simulated on a high-fidelity chemical pro-
cess simulator. It was found that the physics-based RNN-MPC system
converged faster and required less computational time.

This article aims to survey the popular neural network modeling
approaches and provide a tutorial on the construction and integration
of these models with MPC. Recent advances in the development of
neural network models for specific scenarios such as noisy data and
on-line adaptation learning are presented as remarks throughout the
tutorial. The explanations presented in this paper are meant to be
accessible to a beginning graduate student with limited knowledge in
control and machine learning. The remainder of the paper is organized
as follows: in the next section, preliminary knowledge on the class of
systems considered and stability assumptions are presented. The third
section discusses the concept of MPC and real-time optimization (RTO)
and their implementation in process control. In addition, the role of
process model within MPC and RTO is presented with a focus on neural
network model-based MPC and RTO. In the fourth section, the theories
behind neural networks are discussed with an emphasis on the intuition
behind their architecture. This survey on neural network models is
not meant to be comprehensive, but to give readers an idea on the
evolution of neural networks and background theories. The fifth section
aims to give a brief tutorial on the construction of a neural network
model. Starting from problem identification to model evaluation, the
workflow is meant to be iterative and change with new findings during
application. The sixth section gives an example of applying different
neural network model-based MPCs and their performance on a chemi-
cal process. Finally, a summary and future directions of neural networks
for MPC are discussed.

2. Preliminaries

2.1. Notation

The notation |⋅|1 is used to represent the 𝐿1 norm, and |⋅| is used
o represent the Euclidean norm. A function 𝑓 (⋅) is of class 1 if it
s continuously differentiable in its domain. ⊙ denotes the Hadamard
roduct or element-wise multiplication. ∶= denotes the assignment
perator. The expression 𝑥 → 𝑐 represents the variable 𝑥 approaching
ome constant 𝑐.

For time step notation, each time step represents a single integration
tep ℎ𝑐 , and 𝛥 represents the sampling time, which is the time interval

at which state measurements are available. 𝑡 = 𝑡𝑘 is defined as the
urrent time step, and any time before 𝑡 = 𝑡𝑘 is considered historical
nformation. 𝑀 is the number of inputs that are fed to the model for

rediction, which can include historical and present values of the state
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and manipulated input variables. 𝑁 is the number of outputs that are
produced by the model, which indicates the predicted process states in
the next 𝑁 time steps with an interval of ℎ𝑐 . The predicted outputs from
the machine learning model constitute the intermediate and final states
within and at the end of one sampling period 𝛥, respectively, where
𝛥 = 𝑁 ⋅ ℎ𝑐 . For each prediction, a sequence of historical and present
information (𝑡𝑘−𝑀+1,… , 𝑡𝑘) is used to predict the future trajectory over
a single sampling period (𝑡𝑘+1,… , 𝑡𝑘+𝑁 ). Since the machine-learning
model provides 𝑁 future predictions over one 𝛥, the model will be
called iteratively 𝐾 times to solve the MPC with a prediction horizon
of 𝐾 sampling periods.

Finally, for variable notation in this paper, 𝑥 is used to denote two
objects depending on the context. In the context of control, 𝑥 denotes
the states within the system. In the context of machine learning, 𝑥
denotes the input to the model. This is to keep the notation consistent
with other work in the fields of both control systems and machine
learning.

2.2. Class of systems

In this work, the class of multi-input multi-output nonlinear conti-
nuous-time systems is considered and can be represented by the follow-
ing state–space form:

̇ = 𝐹 (𝑥, 𝑢) = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (1a)

𝑦 = ℎ(𝑥) (1b)

where 𝑥 ∈ 𝐑𝑎 denotes the state vector, 𝑢 ∈ 𝐑𝑏 is the vector of
manipulated inputs and 𝑦 ∈ 𝐑𝑎 represents the vector of state measure-
ments which are available at every sampling period. The input vector
is bounded by 𝑢 ∈ 𝑈 = {𝑢min

𝑖 ≤ 𝑢𝑖 ≤ 𝑢max
𝑖 , 𝑖 = 1,… , 𝑚} ⊂ 𝐑𝑏. The terms

𝑓 (⋅), 𝑔(⋅), and ℎ(⋅) are sufficiently smooth vector and matrix functions of
dimensions 𝑛×1, 𝑛×𝑚, and 𝑛×1, respectively, with the assumption that
state and input variables are in deviation from their steady-state values
such that the origin is a steady-state of the nominal system of Eq. (1)
(i.e., (𝑥∗𝑠𝑠, 𝑢

∗
𝑠𝑠) = (0, 0), where the subscript ‘‘𝑠𝑠’’ indicates the steady-

state). Throughout this tutorial review, initial time is assumed to be
𝑡0 = 0, and all states are assumed to be measurable.

2.3. Stabilizability assumption

The existence of a stabilizing feedback control law of the form
𝑢 = 𝛷(𝑥) ∈ 𝑈 is assumed for stability considerations. The objective
of this controller is to ensure that the origin of the nominal system
of Eq. (1) is exponentially stable under this controller. This assumption
implies that there is a control Lyapunov function of class 1 denoted as
𝑉 (𝑥) such that the following inequalities hold for all 𝑥 within an open
neighborhood 𝐷 around the origin:

𝑐1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2, (2a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥)) ≤ −𝑐3|𝑥|
2, (2b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (2c)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are all positive real numbers. The controller 𝛷(𝑥) can
e constructed in the form of the universal Sontag control law proposed
n Lin and Sontag (1991). Following Wu et al. (2019c), first, the open
eighborhood around the origin, 𝐷, is identified where Eq. (2b) holds
nder the stabilizing controller 𝑢 = 𝛷(𝑥) ∈ 𝑈 . Then, the closed-loop
tability region 𝛺𝜌 is identified as a level set of 𝑉 (𝑥) within the region

where 𝛺𝜌 = {𝑥 ∈ 𝐷 ∣ 𝑉 (𝑥) ≤ 𝜌}, with 𝜌 > 0. Moreover, the Lipschitz
property of 𝐹 (𝑥, 𝑢) with the upper and lower bounds on 𝑢 implies
the existence of positive constants 𝛤 , 𝐿𝑥, 𝐿′

𝑥 such that the following
inequalities hold for all 𝑥 and 𝑥′ ∈ 𝐷, and 𝑢 ∈ 𝑈 :
4

|𝐹 (𝑥, 𝑢)| ≤ 𝛤 (3a)
|𝐹 (𝑥, 𝑢) − 𝐹 (𝑥′, 𝑢)| ≤ 𝐿𝑥|𝑥 − 𝑥′| (3b)
|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑉 (𝑥′)
𝜕𝑥

𝐹 (𝑥′, 𝑢)
|

|

|

|

≤ 𝐿′
𝑥|𝑥 − 𝑥′| (3c)

3. Real-time optimization (RTO) and model predictive control
(MPC)

3.1. Real-time optimization (RTO)

Real-time optimization (RTO) system is an advanced model-based
process optimization and control tool to compute the optimum oper-
ating steady-state condition based on a user-defined objective function
(e.g., minimum energy consumption, maximum economic profitability,
etc. (Zhang et al., 2019)). Typically, RTO is computed over a signifi-
cantly longer window than the supervisory control layer. For example,
RTO may be computed over hours or days while the supervisory control
layer may be computed over minutes. As a result, the setpoint is
updated in real-time according to the RTO output by addressing the
optimization problem described in Eq. (4):

min
𝑥,𝑢

𝐿𝑒(𝑥, 𝑢)

s.t. 𝐹 (𝑥, 𝑢) = 0
𝑔𝑝(𝑥, 𝑢) ≤ 0
𝑔𝑒(𝑥, 𝑢) ≤ 0

(4)

hich minimizes a user-defined cost function expressed by 𝐿𝑒(𝑥, 𝑢). This
unction is commonly termed the economic cost function or economic
tage cost, since it is a direct or indirect reflection of the process
conomics. The objective function can be designed to maximize typical
hemical engineering performance measures such as the production
ate of the desired product, selectivity of the desired product, and
roduct yield. 𝐹 is a steady-state model. As for 𝑔𝑝, it is a vector function,
nd represents process constraints (i.e., physical constrains) such as
imits on inputs, and 𝑔𝑒 is the economic constraints that includes oil
nd energy prices, etc. Both terms are matrix functions of dimensions
𝑝 and 𝐑𝑒, respectively.

.2. Model predictive control (MPC)

MPC is an advanced control scheme that is able to anticipate the
uture states of the process to make intelligent decisions with respect
o the constraints of the process. Theoretically, MPC consists of three
ain components (i.e., an objective function, a process model, and a

eal-time optimizer (Camacho and Bordons, 2013)), where the process
odel provides the prediction of state responses based on the under-

ying physical and chemical phenomena of the system. Subsequently,
he real-time optimizer will compute the optimal control actions 𝑢∗(𝑡)
or each sampling period (denoted by 𝛥) within the prediction horizon
y solving a finite-horizon optimization problem with respect to the
bjective function and constraints. The operation of MPC is to address
he following optimization problem:

min
∈𝑆(𝛥)∫

𝑡𝑘+𝐾𝛥

𝑡𝑘
𝐿(�̂�(𝜁 ), 𝑢(𝜁 )) 𝑑𝜁 (5a)

.t. ̇̂𝑥 = 𝐹 (�̂�(𝑡), 𝑢(𝑡)) (5b)

̂(𝑡𝑘) = 𝑥(𝑡𝑘) (5c)

(𝑡) ∈ 𝑈,∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝐾𝛥) (5d)

(�̂�(𝑡), 𝑢(𝑡)) ∈ 𝐺,∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝐾𝛥) (5e)

here �̂� represents the predicted states of the process model and 𝑆(𝛥)
enotes the set of piecewise constant functions with 𝛥. The optimal con-
rol actions are calculated to minimize the time integral of the objective
unction 𝐿(�̂�(𝑡), 𝑢(𝑡)) in Eq. (5a) over the prediction horizon 𝐾, meaning
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that the predicted trajectory over 𝐾𝛥 into the future is accounted for
within the optimization problem. However, only the control action for
the first sampling period will be implemented to the process system.
In other words, 𝐾 optimal input actions are computed for each 𝛥 from
the current time step 𝑡 = 𝑡𝑘 until 𝑡 = 𝑡𝑘 + 𝐾𝛥 in a feedback control
manner on the basis of the predicted state trajectory �̂�, but only the
first optimal input 𝑢∗(𝑡𝑘) is applied to the process over the next sampling
period and is held constant over 𝛥, which is known as sample-and-hold
implementation. The predicted state trajectory �̂� is computed using the
process model of Eq. (5b), which can be a first-principles or a data-
driven model. Moreover, as shown in Eq. (5c), the initial condition
for the process model is obtained from the real-time measurement. In
addition, the feasible range of control actions is defined in Eq. (5d).
Lastly, Eq. (5e) represents any additional constraints (e.g., Lyapunov
stability constraints (Wu et al., 2019c)) that are imposed to ensure that
the optimal control actions meet the necessary conditions to guarantee
closed-loop stability under sample-and-hold implementation.

Remark 1. The MPC is implemented in a receding horizon manner so
that, at every sampling time, the optimization problem is solved again
when new feedback measurements are received. Note that state and
input variables are typically represented in their deviation forms such
that the steady-state values are at the origin. The operating steady-state
values can be the optimal states and inputs that are calculated by the
RTO, which is executed at a slower frequency compared to MPC.

Remark 2. The mathematical setup of MPC and RTO is similar to
each other, but RTO is based on steady-state process models and MPC
is based on dynamic models (Qin and Badgwell, 2003). Therefore,
both functionalities are critically dependent on the respective process
models. As mentioned, the first-principles models are the primary
candidates for this role. However, in practical operations, oftentimes
an accurate first-principles model is not available. Thus, by replacing
the process model with a neural network model, machine learning can
be integrated with RTO and MPC to accomplish their respective goals
using a data-driven modeling approach.

3.3. Multi-layer control scheme

Traditional architecture-process optimization, particularly with re-
gard to economic considerations, and chemical process control have
been resolved in a hierarchical multi-layer control scheme, as illus-
trated in Fig. 1. Specifically, the first layer is the RTO, which solves for
optimal set points in accordance with the steady-state process model
and supervises the sublayers by sending out the optimization results.
MPC is implemented in the second layer of this control scheme to direct
and derive the process to the new operating point through manipulating
the inputs with its constrained optimal control methodology, which
takes into account physical limitations, process variable interactions,
and predicted responses. Control actions from the MPC are employed
to the system by the regulatory control layer.

In addition to the top two-layer control scheme, an EMPC, which
introduces penalization terms into the objective function based on
the economic performance of the process, has been proposed for its
ability to achieve similar functionality without RTO and has attracted
increasing attention recently (Amrit et al., 2011; Ellis et al., 2014).
However, regardless of the control scheme, a reliable process model
is one of the most critical components of MPC and EMPC.

4. Neural network architecture overview

4.1. Feed-forward neural networks (FNN)

Feed-forward neural networks are generally made up of multi-
ple layers of neurons, with each neuron being a single logistic unit.
Figs. 2(a) and (b) show the schematics of an FNN and the model
5

Fig. 1. The typical process optimization and control perspective used in the field of
chemical process industries.

graph describing the calculations conducted within a logistic unit,
respectively. The main concept behind the FNN or any neural network
can be summarized into two parts: a forward pass to predict the desired
output and a backward pass to update the weights and biases. In the
forward pass, the input features are propagated through the neural
network to generate the predicted output. In the backward pass, the
predicted output is compared with the true output, and the error is
back propagated through all the logistic units. The weights and biases
of each logistic unit are updated with respect to the error to improve
the next prediction.

Similar to how real neurons operate in the human brain, the forward
propagation of a logistic unit functions analogously and is described
mathematically by the following equations:

𝑧[𝑙]𝑘 =
𝑛[𝑙−1]
∑

𝑗=1
ℎ[𝑙−1]𝑗 𝑤[𝑙]

𝑗𝑘 + 𝑏[𝑙]𝑘 (6a)

ℎ[𝑙]𝑘 = 𝑔[𝑙](𝑧[𝑙]𝑘 ) (6b)

where superscripts in brackets, [⋅], denote the layer number of the
neural network. 𝑙 denotes the 𝑙th layer of the neural network that varies
between 0 and 𝐿. Only generalized intermediate layer equations within
a neural network are shown in Eq. (6). The input layer is represented
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Fig. 2. Schematics of (a) general FNN structure and (b) logistic unit within FNNs.
by 𝑙 = 0 where ℎ[0]𝑗 is the equivalent of the input 𝑥𝑗 and the output
layer is represented by 𝑙 = 𝐿 where ℎ[𝐿]𝑗 is the equivalent of the
predicted output �̂�𝑗 . Subscripts 𝑗 and 𝑘 denote the 𝑗th and 𝑘th units
within their respective layer in the neural network, 𝑏 denotes the bias,
and ℎ denotes the hidden state. 𝑤[𝑙]

𝑗𝑘 is the weight connecting the 𝑗th
neuron of the layer 𝑙 − 1 to the current 𝑘th neuron in the layer 𝑙.
𝑧 denotes the weighted hidden states and the bias term. 𝑛[𝑙] is the
total number of neurons in the 𝑙th layer. In the forward propagation
step, first, following Eq. (6a), each logistic unit takes inputs from all
connected units from the previous layer, ℎ[𝑙−1]𝑗 , and aggregates the input
signals together with its own bias, 𝑏[𝑙]𝑘 . The summed signal, 𝑧[𝑙]𝑘 , then
undergoes a certain activation function, 𝑔[𝑙], with common ones being
the rectified linear unit (ReLu) or tanh, before being sent as the input
ℎ[𝑙]𝑘 to the next layer as per Eq. (6b). During training and inference,
signals start from the input layer and propagate to the final output layer
𝐿 using this two-step procedure.

𝐸 = 1
𝑅

𝑅
∑

𝑖=1
𝐿(�̂�, 𝑦) (7)

where 𝐸 is the cost function, 𝐿 is the loss function for each sample, 𝑖 is
the index of data samples, 𝑅 is the total number of data samples, �̂� is
the predicted output, and 𝑦 is the true output. During training, the cost
function is minimized using optimization algorithms to find the optimal
set of weights and biases.

Optimization algorithms are used to update the weights and biases
within the FNN. Gradient descent (GD), when applied to weights and
biases, respectively, is shown in Eq. (8) below, and its variants are com-
monly used as the optimization algorithm for neural network training.
The general structure of the GD algorithm is of the form,

𝑤[𝑙]
𝑗𝑘 ∶= 𝑤[𝑙]

𝑗𝑘 − 𝛼 𝜕𝐸
𝜕𝑤[𝑙]

𝑗𝑘
(8a)

𝑏[𝑙]𝑘 ∶= 𝑏[𝑙]𝑘 − 𝛼 𝜕𝐸
𝜕𝑏[𝑙]𝑘

(8b)

where 𝑤[𝑙]
𝑗𝑘 and 𝑏[𝑙]𝑘 are being updated and 𝛼 is the learning rate and

is conventionally positive (i.e., 𝛼 > 0). The main idea behind gradient
descent is to find the local minimum of a differentiable function by
iteratively moving in the opposite direction of the gradient of the func-
tion at each point. During neural network training, the gradient descent
algorithm minimizes the loss at each iteration or epoch by varying
the weights and biases. In machine learning, a single epoch refers to
one complete pass of the training dataset through the algorithm. As
shown in Eq. (8), the gradient of the cost function with respect to
each weight and bias needs to be calculated at each layer using the
6

backpropagation algorithm. The backpropagation algorithm calculates
the gradients starting from the final output layer and propagates to
the input layer, which ensures computational efficiency by avoiding
redundant calculations of intermediate terms (Goodfellow et al., 2016).
Using the chain rule, the gradient can be transformed into two partial
derivatives involving 𝑧[𝑙]𝑘 as shown below:

𝜕𝐸
𝜕𝑤[𝑙]

𝑗𝑘

= 1
𝑅

𝑅
∑

𝑖=1

𝜕𝐿𝑖

𝜕𝑤[𝑙]
𝑗𝑘

= 1
𝑅

𝑅
∑

𝑖=1

⎛

⎜

⎜

⎝

𝜕𝐿𝑖

𝜕𝑧[𝑙]𝑘

𝜕𝑧[𝑙]𝑘
𝜕𝑤[𝑙]

𝑗𝑘

⎞

⎟

⎟

⎠

(9a)

𝜕𝐸
𝜕𝑏[𝑙]𝑘

= 1
𝑅

𝑅
∑

𝑖=1

𝜕𝐿𝑖

𝜕𝑏[𝑙]𝑗𝑘
= 1

𝑅

𝑅
∑

𝑖=1

(

𝜕𝐿𝑖

𝜕𝑧[𝑙]𝑘

𝜕𝑧[𝑙]𝑘
𝜕𝑏[𝑙]𝑘

)

(9b)

where 𝐿𝑖 is the loss for the 𝑖th sample. For weights, in Eq. (9a), the
partial derivative of 𝑧[𝑙]𝑘 with respect to 𝑤[𝑙]

𝑗𝑘 is the incoming hidden
state of the previous layer, 𝑧[𝑙−1]𝑗 . For biases, the partial derivative of
𝑧[𝑙]𝑘 with respect to 𝑏[𝑙]𝑘 is simply 1 due to the bias being a constant.
Finally, as shown in Eq. (9), the partial derivative of 𝐿𝑖 with respect to
𝑧[𝑙]𝑘 is also needed to calculate the partial derivative of 𝐿𝑖 with respect
to 𝑤 and 𝑏. This partial derivative is often denoted as the error term,
𝛿[𝑙]𝑘 . Using the aforementioned simplifications, the gradient of the loss
function with respect to weights and biases can be transformed into the
following equations:

𝛿[𝑙]𝑘 =
𝜕𝐿𝑖

𝜕𝑧[𝑙]𝑘
(10a)

𝜕𝐿𝑖

𝜕𝑤[𝑙]
𝑗𝑘

= 𝛿[𝑙]𝑘 𝑧[𝑙−1]𝑗 (10b)

𝜕𝐿𝑖

𝜕𝑏[𝑙]𝑘
= 𝛿[𝑙]𝑘 (10c)

where 𝛿[𝑙]𝑘 is the error of the 𝑘th neuron within the 𝑙th layer. The
mathematical formulation of the error term is shown by the following
equations:

𝛿[𝐿]𝑘 = (�̂� − 𝑦)𝑔′(𝑧[𝐿]𝑘 ) (11a)

𝛿[𝑙]𝑘 = 𝑔′(𝑧[𝑙]𝑘 )
⎛

⎜

⎜

⎝

𝑛[𝑙+1]
∑

𝑟=1
𝛿[𝑙+1]𝑟 𝑤[𝑙+1]

𝑘𝑟

⎞

⎟

⎟

⎠

(11b)

where 𝑔′(⋅) is the derivative of the activation function 𝑔(⋅). 𝛿[𝑙]𝑘 , as
defined in Eq. (10a), is calculated starting from the final output layer
and propagated through to the input layer. At the output layer, assum-
ing square loss, 𝛿[𝐿]𝑘 is equal to the difference between the true and
predicted output multiplied by the derivative of the activation function,
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Fig. 3. Schematics of (a) general unfolded RNN structure, (b) recurrent unit, and (c) output layer within RNNs.
𝑔′(𝑧[𝐿]𝑘 ), as shown in Eq. (11a). For all other layers, the calculation of
𝛿[𝑙]𝑘 requires the errors from the next layer 𝛿[𝑙+1]𝑘 and the derivative of
the current activation function, 𝑔′(𝑧[𝑙]𝑘 ) as shown in Eq. (11b).

In this section, all equations are shown in vector form with in-
dividual neurons and weight connections labeled with subscripts 𝑗
and 𝑘. In the following sections, all equations will be shown in their
capitalized matrix form for simplicity. For example, Eqs. (6a) and (6b)
are rewritten in their matrix form as follows:

𝑍[𝑙] = 𝐻 [𝑙−1]𝑊 [𝑙] + 𝑏[𝑙] (12a)

𝐻 [𝑙] = 𝑓 [𝑙](𝑍[𝑙]) (12b)

where the dimensions of each variable in Eq. (12) are as follows:
𝐻 [𝑙−1] ∈ 𝐑𝑛×𝑑 ,𝐻 [𝑙] ∈ 𝐑𝑛×ℎ, 𝑍[𝑙] ∈ 𝐑𝑛×ℎ,𝑊 [𝑙] ∈ 𝐑𝑑×ℎ, and 𝑏[𝑙] ∈ 𝐑1×ℎ

where the superscripts of 𝐑 represent the dimensions of the matrix.
Specifically, 𝑛 is the batch size, which is the number of samples that
will be propagated through the neural network and ranges from 1 to
𝑁 , 𝑑 is the input size, and ℎ is the number of hidden units. Data samples
are fed into the model in batches to promote computational efficiency
during training.

4.2. Sequential neural network models

Sequential data is prevalent in many real-world problems and ma-
chine learning tasks—most popularly known for its role in natural lan-
guage processing (NLP) and signal processing. Specifically, in chemical
engineering, sequential data can exist in the form of sensor measure-
ments. Sequential models are designed to account for the ordinal nature
of these datasets. The main focus of this work will be on neural network
model structures that are widely used to conduct time-series forecasting
tasks for MPC.

4.2.1. Recurrent neural network (RNN)
RNNs can be thought of as FNNs with two dimensions instead of

one, as shown by the unfolded diagram of an RNN in Fig. 3(a). FNN
inputs are batches of feature vectors 𝑋 ∈ 𝐑𝑛×𝑑 , while RNN inputs
7

𝐹𝑁𝑁
are batches of sequential feature vectors 𝑋𝑅𝑁𝑁 ∈ 𝐑𝑛×𝑑×𝑡. Therefore, an
additional dimension, 𝑡, is added to the neural network to account for
the data’s ordinal property. In FNNs, the output of each neuron, ℎ, is
propagated through the network to the last layer before making a final
prediction. In multilayer RNNs, ℎ is passed to both the next layer and
the next ordinal input. 𝐻 is a matrix that contains all the hidden states,
ℎ, within the same layer. Most RNNs are made up of two different
types of units: a recurrent unit and an output unit. The recurrent unit
inside the RNN takes in two inputs: the current input vector, 𝑋𝑡, and
the previous hidden state, 𝐻𝑡−1. For simplicity, all following equations
will omit the superscript 𝑙 that refers to the layer number in the case
of multilayer RNNs.

Forward propagation within RNNs is similar to that within FNNs
and is described by the following equations:

𝐻𝑡 = 𝑔1(𝑋𝑡𝑊𝑥ℎ +𝐻𝑡−1𝑊ℎℎ + 𝑏ℎ) (13a)

𝑂𝑡 = 𝑔2(𝐻𝑡𝑊ℎ𝑞 + 𝑏𝑞) (13b)

where 𝑋𝑡 ∈ 𝐑𝑛×𝑑 ,𝐻𝑡,𝐻𝑡−1 ∈ 𝐑𝑛×ℎ,𝑊𝑥ℎ ∈ 𝐑𝑑×ℎ,𝑊ℎℎ ∈ 𝐑ℎ×ℎ, 𝑏ℎ ∈
𝐑1×ℎ, 𝑂𝑡 ∈ 𝐑𝑛×𝑞 ,𝑊ℎ𝑞 ∈ 𝐑ℎ×𝑞 , and 𝑏𝑞 ∈ 𝐑1×𝑞 where 𝑞 denotes the
dimension of the output. 𝑋𝑡 represents the input matrix, 𝐻𝑡 represents
the hidden state, and 𝑂𝑡 represents the output matrix where 𝑡 denotes
the current time step. 𝑊𝑥ℎ is the input weight matrix, 𝑊ℎℎ is the
previous hidden state weight matrix, and 𝑊ℎ𝑞 is the output weight
matrix. 𝑏ℎ and 𝑏𝑞 are the bias terms associated with the hidden layer
vector and the output vector, respectively. Figs. 3(b) and (c) show a
schematic of the operations conducted on the inputs within a recurrent
and output layer, respectively. Within a recurrent layer, the calculation
of 𝐻𝑡 from one time step to the next is the same as shown in Eq. (13a).
Two different weight matrices, 𝑊𝑥ℎ and 𝑊ℎℎ, are generated for the
current input and the previous hidden state. An optional bias vector, 𝑏ℎ,
can also be included in the 𝐻𝑡 calculation. The output unit is analogous
to a feed-forward logistic unit in that it contains a single weight matrix
with a bias vector as shown in Eq. (13b).

The backpropagation process within RNNs is much more compli-

cated than that within FNNs because of the additional time dimension.
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Fig. 4. Schematics of (a) GRU and (b) LSTM.
In order to obtain the exact gradients with respect to all weights and
parameters, the computational graph of the RNN needs to be calculated
one time step at a time (Werbos, 1990). A problem with this calculation
is that, when input sequences are long (>1000), it could result in
large matrix products, making the training computationally infeasible
in many situations (Zhang et al., 2021a). Another problem associated
with long input sequences and gradients is divergent gradient values.
As the input sequences become longer and the exponents of the weight
matrices increase, the output becomes more likely to be divergent. This
phenomenon is often referred to as vanishing or exploding gradients. A
solution to this problem is to truncate the gradient at certain time steps
to avoid large matrix calculations and divergent eigenvalues. However,
truncation may result in loss of relevant information from the early time
steps.

4.2.2. Gated recurrent unit (GRU)
Gating in neural networks refers to controlling the expression of

key states in neurons. Generally, gating is achieved through the use
of the gates which are sigmoid activation functions, 𝑓 (𝑥) = 1

1+𝑒−𝑥 , that
limit the output from 0 to 1. The output is then multiplied by the state
variable to control its expression. As mentioned in the previous section,
traditional RNN units have difficulties capturing longer-term depen-
dencies due to the phenomenon of exploding or vanishing gradients.
GRUs try to alleviate this issue by the addition of reset and update
gates (Chung et al., 2014), and are mathematically described by the
following equations:

𝑅𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑟 +𝐻𝑡−1𝑊ℎ𝑟 + 𝑏𝑟) (14a)

𝑍𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑧 +𝐻𝑡−1𝑊ℎ𝑧 + 𝑏𝑧) (14b)

�̂�𝑡 = tanh(𝑋𝑡𝑊𝑥ℎ + (𝑅𝑡 ⊙𝐻𝑡−1)𝑊ℎℎ + 𝑏ℎ) (14c)

𝐻𝑡 = 𝑍𝑡 ⊙𝐻𝑡−1 + (1 −𝑍𝑡)⊙ �̂�𝑡 (14d)

where 𝑅𝑡, 𝑍𝑡, and �̂�𝑡 denote the reset gate, update gate, and candidate
hidden state, respectively. The subscripts 𝑟 and 𝑧 denotes the associa-
tion of variables with the reset and update gate, respectively, and 𝑅𝑡 ∈
𝐑𝑛×ℎ, 𝑍𝑡 ∈ 𝐑𝑛×ℎ, �̂�𝑡 ∈ 𝐑𝑛×ℎ,𝑊𝑥𝑟,𝑊𝑥𝑧 ∈ 𝐑𝑑×ℎ,𝑊ℎ𝑟,𝑊ℎ𝑧 ∈ 𝐑ℎ×ℎ, and
𝑏𝑟, 𝑏𝑧 ∈ 𝐑1×ℎ. As shown in Eq. (14), the reset and update gates control
the formulation of the candidate hidden state, �̂�𝑡, and the extent to
which to update the hidden state, 𝐻𝑡, with the candidate hidden state.
The reset and update gate values are calculated from the current input,
𝑋𝑡, and the previous hidden state, 𝐻𝑡−1, with the only difference being
different multiplicative weight matrices and bias vectors.

The reset gate aims to capture short-term dependencies by control-
ling the extent of 𝐻𝑡−1 that RNN should remember by limiting the
expression of �̂� . Therefore, 𝑅 is element-wise multiplied with 𝐻
8

𝑡 𝑡 𝑡−1
to control its expression in �̂�𝑡 as shown in Eq. (14c). When 𝑅𝑡 → 1, �̂�𝑡
will be equal to the hidden state calculation of a traditional RNN unit.
When 𝑅𝑡 → 0, �̂�𝑡 will be equal to the calculations performed within an
FNN unit, since there is no information from the previous state.

The update gate aims to capture longer-term dependencies, as it
controls the extent to which the new hidden state is a copy of the old
hidden state by controlling the ratio between �̂�𝑡 and 𝐻𝑡−1. The current
hidden state, 𝐻𝑡, is simply a weighted average between �̂�𝑡 and 𝐻𝑡−1
controlled by 𝑍𝑡, as shown in Eq. (14d). When 𝑍𝑡 → 1, 𝐻𝑡 ignores �̂�𝑡
and subsequently, the current input 𝑋𝑡, resulting in 𝐻𝑡 = 𝐻𝑡−1. In this
case, the current hidden state is a direct copy of the previous hidden
state. When 𝑍𝑡 → 0, 𝐻𝑡 = �̂�𝑡, but this does not imply that the previous
hidden state is ignored. As seen in Eqs. (14c) and (14d), 𝐻𝑡 can still
depend on 𝐻𝑡−1 if 𝑅𝑡 → 0. Thus, only when both 𝑍𝑡, 𝑅𝑡 → 0, will the
current hidden state solely consider the current input and ignore all
previous hidden states.

4.2.3. Long short-term memory (LSTM) unit
GRUs attempt to solve the problem of vanishing and exploding

gradients by directly changing the hidden state from one unit to the
next. In contrast, the LSTM unit introduces a new state, the memory cell
state 𝐶𝑡, to store additional information regarding short-term and long-
term dependencies (Hochreiter and Schmidhuber, 1997). As shown by
Fig. 4(b), this new memory cell state is passed between LSTM units like
a hidden state. In addition, the LSTM unit uses three different gates—
the input, forget, and output gates—to dynamically update the values
of previous hidden and memory cell states. The motivation behind the
memory states and the three gates is similar to that of the GRU, which
is to decide how to control the expression of previous states and current
inputs in the hidden state.

Similarly to the gates in GRUs, the input, forget, and output gates
are all activated by sigmoid functions using the current input, 𝑋𝑡, and
the previous hidden state, 𝐻𝑡−1. Their mathematical formulations are
shown below:

𝐼𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑖 +𝐻𝑡−1𝑊ℎ𝑖 + 𝑏𝑖) (15a)

𝐹𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑓 +𝐻𝑡−1𝑊ℎ𝑓 + 𝑏𝑓 ) (15b)

𝑂𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑜 +𝐻𝑡−1𝑊ℎ𝑜 + 𝑏𝑜) (15c)

where 𝐼𝑡, 𝐹𝑡, and 𝑂𝑡 denote the input, forget, and output gate, respec-
tively. The subscripts 𝑖, 𝑓 and 𝑜 denote the association of variables
with the input, forget, and output gate, respectively, and 𝐼𝑡, 𝐹𝑡, 𝑂𝑡 ∈
𝐑𝑛×ℎ,𝑊𝑥𝑖,𝑊𝑥𝑓 ,𝑊𝑥𝑜 ∈ 𝐑𝑑×ℎ,𝑊ℎ𝑖,𝑊ℎ𝑓 ,𝑊ℎ𝑜 ∈ 𝐑ℎ×ℎ, and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 ∈
𝐑1×ℎ. Specifically, the input, forget, and output gates will output values
ranging from 0 to 1 to control the expression of key information in the
new hidden state.
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In an LSTM unit, instead of having a candidate hidden state as in
a GRU, a candidate memory cell, �̂�𝑡, and memory cell state, 𝐶𝑡, are
tilized to capture dependencies in the sequence and are shown by the
ollowing equations:

̂𝑡 = tanh(𝑋𝑡𝑊𝑥𝑐 +𝐻𝑡−1𝑊ℎ𝑐 + 𝑏𝑐 ) (16a)

𝑡 = 𝐹𝑡 ⊙ �̂�𝑡−1 + 𝐼𝑡 ⊙ �̂�𝑡 (16b)

here �̂�𝑡, 𝐶𝑡 ∈ 𝐑𝑛×ℎ,𝑊𝑥𝑐 ∈ 𝐑𝑑×ℎ,𝑊ℎ𝑐 ∈ 𝐑ℎ×ℎ, and 𝑏𝑐 ∈ 𝐑1×ℎ.
The computation of �̂�𝑡 is similar to that of the three gates except
with a tanh activation function that limits the output from −1 to 1 as
shown in Eq. (16a). 𝐼𝑡 is used to introduce new information to 𝐶𝑡 by
ontrolling the expression of �̂�𝑡 in 𝐶𝑡. 𝐹𝑡 is used to dictate how much old

information is to be forgotten from the previous 𝐶𝑡 through controlling
the expression of 𝐶𝑡−1 in 𝐶𝑡 as shown in Eq. (16b). Finally, as shown
in Eq. (17) below, the hidden state, 𝐻𝑡, is the element-wise product
between 𝑂𝑡 and tanh(𝐶𝑡):

𝐻𝑡 = 𝑂𝑡 ⊙ tanh(𝐶𝑡) (17)

where 𝑂𝑡 dictates how much of 𝐶𝑡 is relevant to the current output and
controls the extent of the contribution of 𝐶𝑡 to 𝐻𝑡. A difference between
LSTM and GRU is that even though the current input information
may not be relevant to the current hidden state, this information is
still stored in the memory cell state so that it can be used for the
computation of future hidden states. In summary, by resolving the
issue of vanishing and exploding gradients, the GRU or LSTM units
will suppress irrelevant information and better capture longer-term
dependencies using a combination of gates. For example, if an earlier
input is highly significant for the prediction of future outputs, it is
necessary to capture and store this dependency into the hidden state
or a separate cell state. In addition, using a vanilla RNN unit without
this storage may result in a very large or a very small gradient with
respect to the weight matrices associated with the earlier inputs during
training, and thus may cause exploding or vanishing gradient when
propagated through the layers of the neural network.

4.2.4. Encoder–decoder architecture
One problem with traditional RNN architectures is that they struggle

with variable-length input and output sequences (Cho et al., 2014b).
In most popular NLP tasks such as language translation, the input and
output sequence will likely have different lengths (Sutskever et al.,
2014). In the field of time-series forecasting, it can be beneficial to
use previous sequences as opposed to a single point to predict a future
sequence as certain patterns can be dependent on previous patterns.
While the use of GRU and LSTM units alleviate this problem through
the usage of memory cells, long-term dependencies are still difficult to
capture due to the models’ Markov property. Traditional RNN models
rely on the previous state to fully capture even earlier states and do not
have direct access to those early states. In the encoder–decoder system,
the encoder has direct access to all past states within a certain historical
window and thus can better capture long-term dependencies. In the
context of MPC, the historical window used in calculating the predic-
tion horizon should be tuned to capture different length dependencies
within the time-series data. In order to address the aforementioned
problems, the encoder–decoder system is designed with two major
components: an encoder followed by a decoder. The encoder first takes
a variable-length sequence as the input and summarizes it to a context
state, which is passed to the decoder. The decoder then maps the
context state to a variable-length sequence as the output. The encoder–
decoder system can be thought of as a special RNN architecture, since
each encoder–decoder unit can be any of the RNN/GRU/LSTM units
shown in Fig. 5.

The encoder takes a fixed input sequence with length 𝑀 − 1 and
summarizes it into a context state that is passed to the decoder. In
each encoder unit, each individual input 𝑥 is transformed into the
9

𝑖

hidden state only and passed to the next encoder unit. As a result
of this, the final context state, 𝐶, can be thought of as a function
of all the previous hidden states within the historical window 𝐶 =
𝑓 (ℎ𝑡𝑘−𝑀+1

,… , ℎ𝑡𝑘−1). The decoder uses the context state and decoder
input sequence, 𝑥𝑡𝑘 ,… , 𝑥𝑡𝑘+𝑁−1

, to predict the desired future sequence,
�̂�𝑡𝑘 ,… , �̂�𝑡𝑘+𝑁−1

. In the case of time-series forecasting, �̂�𝑡𝑘 is generally the
predicted states for the next time step at 𝑡 = 𝑡𝑘+1.

5. Neural network model construction tutorial

Incorporating machine learning to solve realistic problems is not a
straightforward process. It is often a cyclical process that uses model
evaluation to iterate between improving the data and improving the
model. This cycle is crucial in developing a successful machine learning
model, since it evaluates feedback from previous results and imple-
ments changes to further improve the earlier steps. A general workflow
of the iterative cycle is outlined in Fig. 6. In the following subsections,
each step of the proposed workflow is explained in detail, with a focus
on developing a neural network-based process model for MPC.

5.1. Problem identification

The first step in developing any ML model is to identify a general
problem statement and transform it into a specific ML task. For ex-
ample, the problem statement might be to optimize the operation of
a series of reactors. It is of utmost important to specify if the goal is
to optimize a certain chemical species’ yield, minimize environmental
impact, or maximize overall profits. Even with a well-defined problem
statement, there is still no clearly defined ML problem. Following the
reactor example, if the goal is to optimize profit, an EMPC can be im-
plemented to control the reactor in real-time to produce at the optimal
rate under varying operating costs. For real-time control to be imple-
mented, a dynamic model of the system must be constructed, which is
where a neural network model may be considered. In the absence of
a traditional first-principles model, a neural network surrogate model
is able to provide accurate real-time state information of the reactor
comparable to that of the traditional first-principles model (Esche et al.,
2022). At this step, the ML task details, such as classification versus
regression and supervised versus unsupervised versus semi-supervised,
should be formulated based on the task description and data avail-
ability. In supervised learning, ML algorithms are trained to learn the
target relationship within datasets that contain both the inputs and the
labeled outputs. In unsupervised learning, no outputs are given, and ML
algorithms attempt to find possible relationships between inputs alone.
Finally, in semi-supervised learning, unsupervised learning techniques
are incorporated into supervised ML algorithms to avoid the need to
label large amounts of data. In the case of most MPC and RTO problems,
a regression neural network model trained with supervised learning is
sufficient for implementation.

5.2. Data collection

After the ML task is identified, it is important to understand the
variety of data sources. This can range from physical devices to network
traffic service information. In this work, some of the most common
types of data sources will be highlighted to give the reader a general
overview, focusing on physical equipment, such as sensors. Sensors are
the core data sources for many chemical or manufacturing systems.
They aim to measure explicit physical properties, such as tempera-
ture, pressure, and flow rate, at different levels of the system (device,
subsystems, systems, and environment). Sensors can be classified into
two types: direct and indirect. Direct sensors measure the desired
quantity directly, for example using a pressure sensor to detect low tire
pressure, while indirect sensors measure other quantities and calculate
the desired quantity based on the measured quantity, for example,
detecting low tire pressure by comparing the relative wheel speed. The
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Fig. 5. Structure of an encoder–decoder with RNN units.
Fig. 6. Proposed neural network-based model construction workflow.
major difference is the error and uncertainties produced by the two
types of sensors. Indirect sensors are more prone to large uncertainty,
as they may involve multiple measurements, and thereby, they may
compound the measurement error through the additional calculations.
Therefore, depending on the problem statement, levels of uncertainty
and error need to be evaluated against the sensors’ inherent error to
see if the sensor’s error range is acceptable. Regardless of how well the
ML model is able to reproduce the given dataset, if the data error is
10
too large, applications of the ML model will fail due to the discrepancy
between on-line and off-line testing.

When implementing an MPC system, another point to consider is
the sampling frequency at which the desired quantity can be measured
or the control action can be enacted. In certain situations, the state
can only be measured after large time intervals, resulting in a large
sampling period with respect to the time constant of the process, which
can cause the model to fail to effectively capture the process dynamics
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within each sampling period. In addition, due to the sample-and-hold
implementation of the MPC, a large sampling period also implies that
the MPC may be activated less frequently than the dynamics of the
process, leading to performance deterioration. Therefore, the sampling
frequency of states and the process behavior must be considered in the
design of an MPC. An example of the above concern is the use of gas
chromatography to measure the composition within a chemical reactor
because the measurement and subsequent analysis may take more than
ten minutes to report a concentration, which does not provide sufficient
real-time concentrations for certain processes with fast dynamics.

Data collected from the system may come in a variety of different
forms. Even when measuring the same physical property, the data can
come in both structured and unstructured forms. For example, a sensor
can produce time-series temperature data in the form of a numerical
list or table, which is considered structured data. Alternatively, infrared
cameras may generate a heat map that may be more relevant than
time-series data but in an unstructured form. In addition, the data
preprocessing step may vary as a result of the state of the process—
static versus dynamic. In the chemical engineering context, static data
can be thought of as steady-state, whereas dynamic data refers to
transient behavior. For dynamic data, the order may be important
to the process, whereas static data can be shuffled. Whether it is
structured/unstructured or static/dynamic data, identifying the data
type and quality is of utmost importance to ensure the success of the
ML model.

5.3. Data preprocessing

Data preprocessing is an essential step to convert the raw data
collected from sensors and experiments to a clean and usable dataset
(e.g., Modified National Institute of Standards and Technology
(MNIST), UCI official dataset). The amount of work necessary to
transform raw data to a usable dataset is often overlooked. A clear
overview of data preprocessing steps for machine learning is demon-
strated in Kotsiantis et al. (2006). Specifically, the first step is to
remove duplicates and irrelevant observations from the raw dataset,
which is almost inevitable in large datasets. In a manufacturing setting,
multiple sensors are implemented but they may not all be relevant
to the ML task. The main goal of data preprocessing is to reduce the
size of the dataset while maintaining all the relevant information. The
next step is to look for structural errors such as corrupted data values
and missing or mislabeled features. The process of filling in missing
data values is called data imputation (Zhang et al., 2006), which can
range from simply using the mean, median, or mode of the column
to implementing simple machine learning techniques such as k-nearest
neighbors. Interpolation methods can also be used depending on the
nature of the dataset. Finally, after the dataset is treated for missing and
irrelevant information, outlier detection methods can be implemented
to increase the performance of the ML models. Common outlier detec-
tion methods include 𝑍-score (Habib et al., 2015), probabilistic models,
and clustering methods. For parametric datasets, which are datasets
with a known distribution, the 𝑍-score method proves to be an efficient
way to eliminate outliers and is shown below:

𝑧 =
𝑥 − 𝜇
𝜎

(18)

where 𝑥 is the current data point, 𝜇 and 𝜎 are the mean and standard
deviation within the dataset, and 𝑧 is the 𝑍-score for the data point.
As shown in Eq. (18), 𝑍-score uses the mean, 𝜇, and the standard
deviation, 𝜎, to assess whether a data point is an outlier or not. The
common 𝑍-score threshold is around ±2.5 ∼ 3.5. Clustering methods
can be used to detect outliers for non-parametric datasets, and specif-
ically, the density-based spatial clustering of applications with noise
(DBSCAN) method is particularly effective. DBSCAN focuses on finding
neighbors by density on an ‘‘𝑛-dimensional sphere’’ with radius, 𝜖 (Ester
et al., 1996). DBSCAN aims to cluster all the outliers to an out-of-bound
cluster where they can be further processed or removed.
11
In addition to off-line outlier detection methods, on-line outlier de-
tection algorithms have been proposed to deal with dynamic time-series
data. Liu et al. (2004) have proposed an algorithm that combines an
autoregressive moving average process model with a modified Kalman
filter that uses past and current data to estimate the current data
point and its variation. Kieu et al. (2018) have proposed the use of
deep neural networks in detecting outliers within time-series data.
Specifically, the raw time-series data is enriched with more statistical
features and an autoencoder is used to select the most representative
statistical features. Outliers often have non-representative features and
thus deviations from the enriched time-series data is taken as outliers.
Finally, Li et al. (2019) have used generative adversarial networks
(GAN) for anomaly detection in time-series data. The proposed GAN
framework uses LSTM units as the basis for its discriminator and
generator to capture the temporal correlation in the time-series dataset.
The discriminator itself is a direct tool for anomaly detection. The
generator is exploited to capture the mapping from the latent space
to the real data distribution, and this distribution can be used to detect
anomalies in the test dataset. A combination of the discriminator and
generator aspect of the proposed GAN is used as a metric to classify
outliers within time-series data.

For any ML project, it is important to have at least two sets of
data for training and testing purposes. In the case of neural network
models, a third validation split is also recommended for model tuning.
A typical split ratio is 80/20 or 70/15/15 with validation, although
these ratios can and should be tuned based on the problem statement
and availability of data. The training dataset is used to adjust the
weights and biases of the neural network, the validation dataset is used
to adjust the hyperparameters (number of neurons, number of layers,
etc.) of the neural network, and the testing dataset is used to evaluate
the performance of the neural network to an unseen dataset. Data
splitting is conducted before any further data processing to prevent data
leakage. Data leakage refers to the leakage of information, such as the
mean or standard deviation of the testing to the training dataset, that
can affect the testing accuracy. The next step in data preparation is
data processing, which refers to the application of different transfor-
mations to the dataset to improve training performance. Data scaling,
which applies some type of scaler to normalize the dataset within
a certain range, can be applied to both structured and unstructured
data, making it commonly the first transformation applied to a dataset.
This prevents large discrepancies in the gradient between different
input features during model training, which can cause weight values
to change dramatically, making the training process unstable. The
two most commonly used scalers are the Min–Max scaler and the 𝑍-
score scaler. A min–max scaler, shown in Eq. (19) below, scales the
entire dataset’s values between the user-defined feature range and is
calculated using the following equation:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) + 𝑓𝑚𝑖𝑛 (19)

where 𝑥 is the current data point, 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and
minimum values within the dataset, 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 are the user-defined
maximum and minimum feature values, and 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is the min–max
scaled data point. Generally, 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 are 1 and 0 by default,
respectively, which results in 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 to be within the range of 0 to 1.
On the other hand, the 𝑍-score scaler, shown in Eq. (18), scales the
dataset to a zero-mean distribution with unit standard deviation. After
data scaling, more task-specific transformations can be implemented to
generate the input tensor. Based on the type of ML library (Tensorflow,
Keras, Pytorch) and the type of neural network chosen (FNN, RNN), the
input shape of the training data is processed differently. Custom helper
functions can be implemented to transform the original dataset into the
desired training shape.

Remark 3. For time-series forecasting tasks, data cannot be entered
into the model for training as a single sequence. For the training of
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neural networks, the input sequence needs to be partitioned into fixed
length intervals of historical and prediction sequences. In other words,
the neural network training sequence would have a total length of 𝑀 +
𝑁 with the input being the historical window plus the instantaneous
measurement and the output being the prediction sequence of length
𝑁 . A common algorithm to achieve this sequence format is the sliding
window algorithm (Dietterich, 2002). In the sliding window algorithm,
criteria for the desired window are defined, and the window is slid
across the entire sequence with a fixed step size. In this scenario, the
criteria are that the total window length is equal to 𝑀 + 𝑁 and less
han the total sequence length.

.4. Model construction

Depending on the ML task, there are various models that can be
pplied. As mentioned previously, the focus of this article will be
n supervised regression models for dynamic data with considera-
ion for control purposes. A variety of different models are compared
ith clearly defined trade-offs in performance, interoperability, and

omputational cost.

.4.1. Model architecture

eed-forward Neural Networks (FNN)
Several different neural network structures were introduced in Sec-

ion 4, and all of them can be applied to modeling nonlinear dynamic
ystems depending on the specific process and computational resources
vailable. When constructing the process model for MPC, it should be
oted that the MPC does not require the entire prediction sequence
ithin one sampling period from the process model; as a minimum,
nly the last time step output, 𝑡 = 𝑡𝑘+𝑁 , is required, where 𝑡𝑘+𝑁 −
𝑘 corresponds to one sampling period 𝛥 in the MPC formulation.
herefore, the simplest case of a process model is a MIMO FNN model
ith the input being the process states and manipulated input at the

urrent time step, 𝑡 = 𝑡𝑘, and the output being the process states at
he end of the prediction sequence, 𝑡 = 𝑡𝑘+𝑁 . Note that this time step is
nalogous to the integration time step of numerical integration methods
hen simulating a system of ODEs. A variation of this formulation is

he addition of the previous time steps as input to the FNN as shown
n Mohanty (2009). With this formulation, the FNN will take in 𝑀 dif-
erent time steps of process states and manipulated inputs to predict the
rocess states at 𝑡 = 𝑡𝑘+𝑁 . As proposed in Kittisupakorn et al. (2009),
nother method is to train an FNN that only predicts a single time step
head; this FNN can be called repeatedly for 𝑁 times, or 𝑁 such FNNs
an be trained and stacked together, to obtain the process states at
ime step 𝑡 = 𝑡𝑘+𝑁 . This iterative method is similar to the calculations
one in RNNs but without the feedback/recurrent connections within
ndividual logistic units. It is important to note that it is beneficial
o use a framework that is able to predict intermediate states rather
han only the last states within each sampling period. This is because
ntermediate states provide more information on the predicted state
rajectory and provides a better representation of the cost function of
he MPC optimization problem, since the cost function is typically in
he form of an integral over the entire prediction horizon. Having access
o intermediate states with a shorter time interval in between also
llows for better numerical approximations that are necessary within
he MPC optimization.

ecurrent Neural Networks (RNN)
While directly implementing a MIMO FNN can satisfy the informa-

ion needed by the MPC to calculate the optimal control trajectory,
his approach may not result in the best performance due to the loss
f intermediate information. Therefore, RNNs can be used in place of
NNs as capturing the ordinal aspect of dynamic dataset improves the
erformance since information between the first and last prediction
ime steps may have a significant impact on each other (Mohajerin and
12

aslander, 2019). Based on the iterative FNN model, an improvement a
s to replace the feed-forward logistic units with recurrent units. Specifi-
ally, recurrent units will be used to account for the 𝑁 future time steps
t which the process states will be predicted i.e., every intermediate
ime step between 𝑡 = 𝑡𝑘 and 𝑡 = 𝑡𝑘+𝑁 . In addition, different types of
ecurrent units, such as LSTM or GRU, can be used in place of normal
ecurrent units to improve performance for certain processes. Zarzycki
nd Ławryńczuk (2021) have compared the performance between GRU
nd LSTM as process models in MPC for a chemical reactor system.
oth performed better than regular recurrent units, and GRU was
ecommended due to its lower computational cost. It is important to
ote that the choice between recurrent units is highly process and data
ependent.

Other than using different types of neural network, the specific
onnections within a neural network can also be customized to improve
erformance, interoperability (Bonassi et al., 2022), and computational
fficiency (Xu et al., 2021). Wu et al. (2020) have developed a physics-
ased RNN model with knowledge of the structure of the process.
pecifically, for two CSTRs in series, two partially-connected LSTM lay-
rs were used to model the input and output connections of each CSTR.
ompared to the fully-connected LSTM model, the partially-connected
odel allowed for the decoupling between the second CSTR’s input

rom the first CSTR’s process states, which was also reflected in the
eal system. From a control perspective, the decoupling effect simplifies
he system by reducing the interactions between the control actions
esulting in faster convergence and better stability. Alhajeri et al.
2022) have performed a comparative study on RNNs that incorporate
hysical knowledge and traditional fully-connected RNNs in the context
f a large-scale complex chemical process simulated with Aspen Plus
ynamics. The physics-based RNNs displayed superior accuracy and
omputational efficiency compared to the fully connected RNNs, which
esulted in better convergence speed and stability in MPC integration.

ncoder–decoder Neural Networks
For certain dynamic processes, such as HVAC systems, long-term

ependencies and past sequential trends are particularly important
o predicting future process states. Therefore, a special architecture
f RNNs, encoder–decoder RNNs, can be used to address the above
roblems. Compared to the input of traditional RNN structures, the
nput of the encoder–decoder system will be the sequence from 𝑡 =
𝑘−𝑀+1 to 𝑡 = 𝑡𝑘 rather than the current time step 𝑡 = 𝑡𝑘. The encoder
hen summarizes all the historical information within time period, 𝑡 =
𝑘−𝑀+1 to 𝑡 = 𝑡𝑘−1, into a single context state, which is used in the
ecoder as the initial hidden state. Additionally, the decoder takes input
t the current time step, 𝑡 = 𝑡𝑘, and additional inputs at future time
teps, 𝑡 = 𝑡𝑘+1 to 𝑡 = 𝑡𝑘+𝑁−1, if they are available and relevant to the
rediction process. The implementation of the encoder–decoder system
ay vary depending on the ML library used, but a general pseudocode

tructure is shown in Pseudocode 1. In Pseudocode 1, by defining
𝑒𝑡𝑢𝑟𝑛_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑇 𝑟𝑢𝑒, the RNN unit will return an output at every
ime step rather than only once at the end of the sequence. Similarly,
y defining 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑡𝑎𝑡𝑒 = 𝑇 𝑟𝑢𝑒, the RNN unit will return all states in
ddition to the final hidden state. In the case of a LSTM unit, the cell
tate can also be accessed through the 𝑟𝑒𝑡𝑢𝑟𝑛_𝑠𝑡𝑎𝑡𝑒 argument. Zhang
t al. (2021b) have demonstrated that for air pollution data that contain
any long-term dependencies, encoder–decoder-based RNNs perform

etter than LSTM/GRU-based RNNs. One thing to note is that encoder–
ecoder RNNs typically use more computational resources during both
raining and inference, and for most dynamic processes, an LSTM
r GRU is sufficient to capture the system behavior. Therefore, it is
mportant to start with a simple baseline model and build up the
omplexity of the neural network models. Finally, as there always exists
trade-off between model performance and computational efficiency, it

s recommended to clearly track each model’s accuracy and complexity

fter training.
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Pseudocode 1: Encoder–decoder Architecture
Encoder
{

Input
{

layer class: input layer
shape: (Batch size) × (Encoder Length) × (Number of States

and Inputs)
}
(input: encoder_input_data)
output: encoder_input
Recurrent Layers (can be repeated)
{

layer class: LSTM or GRU
hidden units: n_encoder
return sequence: False
return state: True

}
(input: encoder_input)
output: encoder_state_h, encoder_state_c

ecoder

Input
{

layer class: input layer
shape: (Batch size) × (Decoder Length) × (Number of States

and Inputs)
}
(input: decoder_input_data)
output: decoder_input
Recurrent Layers (can be repeated)
{

layer class: LSTM or GRU
hidden units: n_decoder
return sequence: True
return state: False

}
(

input: decoder_input
initial state: encoder_state_h, encoder_state_c

)
output: decoder_sequence
Dense Layers (can be repeated)
{

layer class: Dense
hidden units: n_decoder

}
(input: decoder_sequence)
output: prediction_sequence

}

Remark 4. Instead of constructing a single neural network model,
multiple models can be created from the same dataset and used to-
gether to predict the future process evolution. This is also known as
ensemble learning and is known to have several advantages over using
a single neural network model. First, ensemble learning allows for more
generalization and prevents overfitting as the algorithm can be exposed
to different subsets of the dataset through 𝑛-fold cross-validation meth-
ods. In other words, ensemble learning can reduce the variance of the
algorithm while maintaining a low bias for individual models (Polikar,
2012). Second, due to the nonlinearity of the neural network models,
the optimization associated with the process model is non-convex and
13
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is an NP-hard problem. Therefore, through the use of different weight
initialization methods, the neural network model can potentially avoid
getting trapped at local minima and arrive at more optimal sets of
weights that allows the neural network to accurately approximate the
latent function that transforms input sequences to corresponding output
sequences (Wu et al., 2019b). Third, uncertainty during model selection
can be better accounted for using ensemble learning algorithms than
individual learning algorithm (Mendes-Moreira et al., 2012).

There are multiple ways to construct an ensemble learning algo-
rithm. In particular, two general categories, homogeneous and het-
erogeneous, will be discussed in this paper. Homogeneous ensemble
learning algorithm consists of models with a single base learning al-
gorithm in which individual models are trained from different subsets
of the given dataset through methods such as 𝑛-fold cross validation
and bootstrap sampling. In 𝑛-fold cross validation, 𝑛 different training
and testing dataset splits are conducted and each dataset split is used to
train a different model (Donate et al., 2013). In bootstrap sampling, also
commonly known as bagging, several bootstrap datasets take samples
from the initial training set without replacement. As a result, multiple
bootstrap training sets are constructed in which the initial training set
may appear once, more than once, or may not appear at all (Domingos,
1997). Individual learning models are then trained using the different
datasets and a weighted average is used to integrate the individual
models together. Conversely, heterogeneous ensemble learning refers to
the compilation of different learning algorithms from the same dataset.
Specifically, multiple machine learning methods, such as FNN, RNN,
support vector regressors (SVR), and gradient boosting machines (GBM)
can promote better diversity within the ensemble learning algorithm
and thus improve performance (Zefrehi and Altınçay, 2020; Ribeiro
et al., 2020).

5.4.2. Hyperparameter tuning
Another important aspect of model development is the tuning of

model hyperparameters. In machine learning, hyperparameters refer to
parameters that are defined by the user rather than those optimized
during training. These can include the number of neurons and layers,
the optimizer, the mini-batch size, and others.

The number of layers and neurons is often very important to the
model performance as it defines the size and complexity of the model.
Depending on the complexity of the input–output relationship, the
size of the neural network should be constructed appropriately. While
increasing the number of layers and neurons will increase the training
performance, it will also make the model less generalizable, which is
also known as overfitting. On the contrary, using an overly simplified
model to model a complex process leads to not capturing input–output
relationships, which is a form of underfitting. Methods to recognize
overfitting and underfitting will be explained more in detail in the
model training section.

In addition to changing the size and complexity of the neural
network, the choice of optimizer is also very important for the final
performance of the model. Three popular optimizers, stochastic gradi-
ent descent (SGD) with momentum, RMSprop, and Adam, are shown in
Eqs. (20a), (20c), and (20e), respectively, below:

𝑤 ∶= 𝑤 − 𝛼𝑚 (20a)

𝑚 = 𝛽𝑚 + (1 − 𝛽)∇𝐸 (20b)

𝑤 ∶= 𝑤 − 𝛼
√

𝜈 + 𝜖
∇𝐸 (20c)

𝜈 = 𝛾𝜈 + (1 − 𝛾)∇2𝐸 (20d)

𝑤 ∶= 𝑤 − 𝛼
√

𝜈 + 𝜖
𝑚 (20e)

here 𝑤, 𝑚, and 𝜈 are the weight, the momentum of the gradient, and

he moving average of squared gradients, respectively, and are updated
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at every epoch. 𝛽 and 𝛾 are hyperparameters for momentum and adap-
tive learning rate, respectively, 𝜖 is a sufficiently small constant (10−8),
and 𝐸 is the cost function. In Section 4.1, the most fundamental and
core ML optimization strategy, gradient descent, is shown in Eq. (8).
GD updates the weights and biases after every epoch which means the
full gradient is calculated for all observations at each epoch. Although
accurate, calculation of the full gradient for every epoch is slow and can
cause long computation times for large datasets. SGD offers a solution
for this problem by approximating the full gradient through calculating
the gradient in mini-batches. Subsequently, a momentum term 𝑚, as
hown by Eq. (20b), can be added to the SGD algorithm to accelerate
he rate in which gradients move, leading to even faster convergence as
hown in Eq. (20a). Up to this point, when the weights are updated, the
earning rate, 𝛼, is constant for all weights. However, the magnitude
f the gradient can be different for different weights, which leads
o the creation of an adaptive learning rate. Thus, RMSProp, shown
n Eq. (20c), adds a square root term of the square of the gradient
, where 𝜈 is calculated in Eq. (20d). Finally, the aforementioned two
ethods, adaptive learning rate and momentum, can be combined into

ne which is the Adam optimizer, as shown in Eq. (20e). Kingma and Ba
2014) has demonstrated that the Adam outperforms other stochastic
ptimization methods and works well on practical datasets in most
ituations.

emark 5. The mini-batch size refers to how many observations are
sed when calculating the gradient and updating the weights. Learning
ate is another important hyperparameter. Learning rates that are too
mall lead to slow convergence of the model, but larger learning rates
ay lead to missing the optimal solution. Therefore, adaptive learning

ate algorithms, such as Adam, are highly recommended.

Several searching algorithms can be applied to conduct hyperpa-
ameter tuning. The most intuitive method is grid search in which
nly one hyperparameter is varied at a time to evaluate the change in
odel performance with respect to the varied hyperparameter. While

rid search is comprehensive, the computational cost of grid search
s immense when associated with a high dimensional hyperparam-
ter space. Therefore, random search was developed to reduce the
arge computational cost of grid search through randomly selecting
ombinations of hyperparameters instead of enumerating all possible
ombinations (Bergstra and Bengio, 2012). Random search greatly
utperforms grid search when only a small amount of hyperparameters
ffect the model performance. In addition to random search, Bayesian-
ased and gradient-based hyperparameter optimization methods have
lso been introduced (Snoek et al., 2012; Maclaurin et al., 2015). Manu-
lly implementing a hyperparameter search algorithm is labor and skill
ntensive. Therefore, commercial services, such as Google’s HyperTune,
re candidate options for conducting hyperparameter tuning.

.4.3. Cost functions and regularization
In Section 4, a generic cost function is shown in Eq. (7). The cost

unction is the mean of all errors within a dataset while the loss
unction refers to the error of a single datapoint. For regression tasks,
he absolute error and the square error are good choices for the loss
unction within the cost function. For certain logarithmic datasets, the
quare logarithmic error can also be used if the data points cannot
e scaled during the data preparation step. Since the cost function
onsiders the entire dataset, the mean of the loss of all the individual
ata points is taken as the cost function, leading to the terminology
f mean absolute error (MAE), mean square error (MSE), and mean
quare logarithmic error (MSLE). Each of the aforementioned loss
unctions can be transformed into their respective cost function using
he following equations:

𝑀𝐴𝐸 = 1
𝑅
|𝑌 − 𝑌 |1 (21a)

𝐸 = 1
|𝑌 − 𝑌 |2 (21b)
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𝑀𝑆𝐸 𝑅
𝐸𝑀𝑆𝐿𝐸 = 1
𝑅
| log(𝑌 + 1) − log(𝑌 + 1)|2 (21c)

In addition to selecting a loss function, a regularization term can
be added to the cost function for smoothing purposes and to prevent
overfitting. Three of the most common regularization methods, 𝐿1, 𝐿2,
and Elastic net, are shown below:

𝐸𝐿1
= 1

𝑅

𝑅
∑

𝑖=1
𝐿(𝑦, �̂�) + 𝜆|𝑊 |1 (22a)

𝐿2
= 1

𝑅

𝑅
∑

𝑖=1
𝐿(𝑦, �̂�) + 𝜆|𝑊 |

2 (22b)

𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐
= 1

𝑅

𝑅
∑

𝑖=1
𝐿(𝑦, �̂�) + 𝜆

(

𝜃|𝑊 |1 +
1 − 𝜃
2

|𝑊 |

2
)

(22c)

where 𝜆 is the regularization hyperparameter and 𝜃 is the Elastic net
hyperparameter. Both 𝐿1 and 𝐿2 regularization methods are based on
the concept of using different 𝐿𝑝 norms to penalize high regression
coefficients for complex models to avoid overfitting. 𝐿1 regularization,
or Lasso regression, penalizes the absolute value, 𝐿1 norm, of the
weights as shown in Eq. (22a). 𝐿1 regularization is generally used for
sparse feature sets, since it can perform feature selection by zeroing
out irrelevant features’ weights. 𝐿2 regularization, or Ridge regression,
penalizes the square, 𝐿2 norm, of the weights as shown in Eq. (22b).
𝐿2 regularization cannot eliminate features due to the nature of the 𝐿2
norm, but performs better than 𝐿1 regularization in most cases. Elastic
net, shown in Eq. (22c), linearly combines 𝐿1 and 𝐿2 regularization
through a weighted sum and adds an additional hyperparameter, 𝜃, to
adjust the ratio between the two methods. In the aforementioned regu-
larization methods, a regularization parameter 𝜆 is included to control
the extent of regularization within models. Elastic net outperforms both
regularization methods in most situations, especially when the number
of features is much larger than the number of observations (Zou and
Hastie, 2005).

5.5. Model training

During model training, it is important to save the training history
of the model. The training history can indicate whether the model has
experienced trends of over- or under-fitting. The most common plot
shows the evolution of the loss function with respect to epochs during
training and validation. In most cases, longer training will result in
model overfitting to the training dataset and will not generalize well
to the validation and testing datasets. In the case of overfitting, the
training loss keeps on decreasing while the validation loss increases
rather than decreases as more epochs pass. An early stopping function
can be implemented to prevent excessive training through the mon-
itoring of validation loss. For example, an early stopping criteria of a
certain number of consecutive increasing validation loss can be defined
and the training process will stop if the criteria is reached. On the
contrary, in underfitting, both the training and validation loss is very
high and is still decreasing at an exponential rate. Ideally, a good model
should have similar training and validation loss at the end of training.
A good application to keep track of all training data is Tensorboard
which automatically plots all training and validation curves as well as
model structure graphs.

Remark 6. In realistic processes, noise is inevitably present due to a
combination of process disturbances and sensor errors. In the earlier
data preparation step, outlier detection techniques, such as DBSCAN,
are introduced to eliminate anomalies. However, a majority of the
noise is within operating range and inherent to the data points. Many
different training routines are developed to combat noisy datasets. The
dropout method is developed to prevent overfitting in large neural
networks through randomly dropping connections to neurons during

training (Srivastava et al., 2014). Dropout has then been extended to
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RNN models and adapted with Monte Carlo method to handle noisy
data during training (Gal and Ghahramani, 2016; Wu et al., 2021a).
In addition to the dropout method, Han et al. (2018) has developed a
new training method called ‘‘Co-teaching’’ to effectively train robust
deep neural networks. The ‘‘Co-teaching’’ method trains two neural
networks in parallel and allows the exchange of information during
each mini-batch. During forward propagation, each neural network
selects a subset of assumed ‘‘clean’’ data and sends them to the other
network. During backpropagation, each neural network updates its
weights using only the ‘‘clean’’ data sent by the other network. Wu
et al. (2021a) has applied both of these techniques to an example of a
chemical process with the integration of MPC. It is demonstrated that
both methods display superior performance compared to the baseline
model in fitting and MPC set-point convergence.

Remark 7. Up to this point, only neural networks trained from a fixed
dataset have been discussed. In reality, a process may change over time
due to a mixture of external (e.g., equipment degradation and distur-
bances) and internal (e.g., fouling within equipment) factors. Therefore,
in the presence of model uncertainty and parameter variations, on-line
adaptive learning is essential to maintaining an accurate and up-to-date
process model. At the same time, the frequency with which process
models are retrained needs to be limited by event-triggered schemes
in order to improve applicability and efficiency of adaptive control
systems (Tabuada, 2007; Wang and Lemmon, 2008). In Hedjar (2013),
a neural network identifier has been trained to detect process variations
and update the parameters of the process model. Alanqar et al. (2017)
has proposed an adaptive EMPC system through the use of an error-
triggered model re-identification scheme in which a threshold is set
between the predicted and measured states as a trigger for model
update. Building on top of the previous works, Wu et al. (2019a)
has developed a dual event and error-triggered on-line update scheme
for RNN models in a Lyapunov-based MPC. Specifically, the event-
triggered model re-identification occurs when a triggering condition
based on state measurements is violated, while the error-triggered
update scheme is activated when the accumulated RNN modeling er-
ror exceeds some error threshold. With the proposed framework, the
adaptive RNN-based LMPC performs better than a standard RNN-based
LMPC in terms of guaranteed stability and control action smoothness.

5.6. Model evaluation

After the machine learning model has been constructed and trained,
it is necessary to evaluate the trained model with meaningful metrics.
In this section, general machine learning metrics are discussed as well
as specific errors for MPC. Previously, the training and validation errors
were used to check the training process and tune the model parameters.
In model evaluation, the testing dataset is used to evaluate the finalized
model’s performance in terms of both accuracy and generalization on
a set of unseen data. In the context of process modeling, the testing
dataset may contain operating conditions unseen in the training oper-
ating conditions. For time-series forecasting tasks, general regression
testing metrics that can be used include MAE, MSE, mean average
percentage error (MAPE), and root mean square error (RMSE). These
error metrics describe how close the model’s predicted states are to
the true process’ states. Hence, errors are used to check the training
process and tune the model parameters. Specifically, it is necessary to
ensure that the training error is below a certain bounded modeling
error threshold in order to guarantee exponential stability for the
nominal system of Eq. (1) under a Lyapunov-based controller built
using an RNN model. Subsequently, the generalization of the model
needs to be tested using a set of unseen data. In the context of a
specific process, the testing dataset may contain some unseen operating
conditions. For time-series forecasting tasks, general regression testing
metrics can be used that include MAE, MSE, mean average percentage
error (MAPE), and root mean square error (RMSE). These error metrics
15
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describe how well the model predicts the future process states. It has
been demonstrated through simulations that lower testing metrics lead
to improved stability in the control system. However, there are also
other aspects that should be considered in the context of integrating
control. For example, the smoothness of the prediction trajectory is very
important for the stability the control action implemented.

Remark 8. A more generalized error bound for RNN can be calculated
using statistical machine learning theory. It is a measure of how well a
neural network hypothesis learned from training data generalizes to un-
seen data so that it is more comprehensive for a wide range of operating
conditions rather than the given training and testing conditions (Wu
et al., 2021b, 2022). The generalization error bound is found to be
such that it does not have any dependency on the states of the neural
network, as it is dependent on the weights, sample size, length of the
input sequence, and width and depth of the neural network.

6. Neural network-based MPC implementation: Chemical process
example

In this section, a nonlinear chemical process is used to demonstrate
the performance of various LMPCs. In particular, three different neural
network models (FNN, RNN, and encoder–decoder) are considered as
the process models for LMPCs. The specific chemical reactor example
has been chosen to be tractable in terms of the understanding of its
dynamic behavior and evolution by chemical engineers and researchers
familiar with chemical processes.

6.1. CSTR process description

Consider a non-isothermal, well-mixed CSTR, where the following
reversible first-order exothermic reaction is taking place:

𝐴 ↔ 𝐵

he following mass and energy balance equations represent the first-
rinciples model that describes the process dynamics:
𝑑𝐶𝐴
𝑑𝑡

= 1
𝜏
(𝐶𝐴0 − 𝐶𝐴) − 𝑟𝐴 + 𝑟𝐵 (23a)

𝑑𝐶𝐵
𝑑𝑡

= −1
𝜏
𝐶𝐵 + 𝑟𝐴 − 𝑟𝐵 (23b)

𝑑𝑇
𝑑𝑡

= 1
𝜏
(𝑇0 − 𝑇 ) + −𝛥𝐻

𝜌𝐶𝑝
(𝑟𝐴 − 𝑟𝐵) +

𝑄
𝜌𝐶𝑝𝑣

(23c)

𝑟𝐴 = 𝑘𝐴𝑒
−𝐸𝐴
𝑅𝑇 𝐶𝐴 (23d)

𝑟𝐵 = 𝑘𝐵𝑒
−𝐸𝐵
𝑅𝑇 𝐶𝐵 (23e)

here the notations 𝐶𝐴 and 𝐶𝐵 represent the concentration of chemical
and 𝐵, respectively. The reactor temperature is denoted as 𝑇 , the

nlet temperature is denoted by 𝑇0, and 𝐶𝐴0 is the inlet concentration.
lso, for the reaction kinetics, the reaction rate constant and the
ctivation energy for the forward reaction are denoted as 𝑘𝐴 and 𝐸𝐴,
espectively, and 𝑘𝐵 and 𝐸𝐵 for the backward reaction. The residence
ime of the reactor is 𝜏, the heat capacity of the liquid mixture is
enoted by 𝐶𝑝, the volume of the reactor is denoted by 𝑣, and the
eaction enthalpy is 𝛥𝐻 . The CSTR is surrounded by a heating/cooling
acket that provides/removes heat at a rate 𝑄 to/from the reactor. The
ptimal steady state point for the process described in Eqs. (23). Table 1
ists the values of the process parameters along with the steady-state
alues at the optimal operating point.

The control objective in this example is to drive the process states,
𝐴, 𝐶𝐵 , and 𝑇 , to the optimal steady-state point by manipulating the
eating rate 𝑄 and the inlet concentration 𝐶𝐴0. The process variables
re all considered in deviation form from their steady-state values,
hich gives 𝑥𝑇 = [𝑥1, 𝑥2 , 𝑥3] = [𝐶𝐴 − 𝐶𝐴𝑠𝑠

, 𝐶𝐵 − 𝐶𝐵𝑠𝑠
, 𝑇 − 𝑇𝑠𝑠]

uch that the origin is the equilibrium point of this system. Further-
ore, this extends to the manipulated inputs 𝑢 = [𝑢 , 𝑢 ] = [𝑄 −
1 2
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Table 1
Parameter and steady-state values for the CSTR.
𝐶𝐴𝑠𝑠

= 0.4977 mol∕L 𝜏 = 60 s
𝐶𝐵𝑠𝑠

= 0.5023 mol/L 𝑄𝑠𝑠 = 40386 cal/s
𝐶𝐴0𝑠𝑠 = 1 mol∕L 𝑉 = 100 L
𝑇𝑜 = 400 K 𝑇𝑠 = 426.743 K
𝑘𝐴 = 5000 ∕s 𝐸𝐴 = 1 × 104 cal∕mol
𝑘𝐵 = 106 ∕s 𝐸𝐵 = 1.5 × 104 cal∕mol
𝑅 = 1.987 cal∕(mol K) 𝛥𝐻 = −5000 cal∕mol
𝜌 = 1 kg∕L 𝐶𝑝 = 1000 cal∕(kg K)

𝑄𝑠𝑠 , 𝐶𝐴0 − 𝐶𝐴0𝑠𝑠 ], where the control action 𝑢 is bounded by a lower
bound 𝑢𝐿𝐵 = [−40, 000 𝑐𝑎𝑙∕𝑠, − 1 𝑚𝑜𝑙∕𝐿] and an upper bound 𝑢𝑈𝐵 =
[40, 000 𝑐𝑎𝑙∕𝑠, 2 𝑚𝑜𝑙∕𝐿].

The nonlinear minimization problem of LMPC is resolved using
the interior point optimizer (IPOPT) package for each sampling time,
which is 𝛥 = 10 𝑠𝑒𝑐 with ℎ𝑐 = 0.5 𝑠𝑒𝑐. IPOPT is an open source
optimization package that can be employed to solve nonlinear opti-
mization problems (Biegler, 2010). It employs an interior point-line
search filter method, which tries to find a local optimum. Furthermore,
the objective function of the LMPC can be formed as 𝐿(𝑥, 𝑢) = 𝑥𝑇𝐴𝑥 +
𝑢𝑇𝐵𝑢, where 𝐴 and 𝐵 are diagonal penalty matrices. Matrices 𝐴 and

are critical for the MPC performance and are tuned according to
he guidelines discussed in Alhajeri and Soroush (2020). The chosen
yapunov functions are 𝑉 (𝑥) = 𝑥𝑇 𝑃𝑥, where 𝑃 = 𝑑𝑖𝑎𝑔{105, 105, 1} is a

positive definite matrix.

6.2. Data generation and processing

In this work, extensive open-loop simulations is conducted using
the first-principles model to build the training and testing dataset.
Specifically, starting from various initial conditions, the process model
is integrated using the explicit Euler method under time-varying ma-
nipulated inputs while recording the states’ evolution at each time step
(i.e., 𝑥𝑡𝑘+1 ,… , 𝑥𝑡𝑘+𝑁 , where 𝑁 = 𝛥∕ℎ𝑐). Subsequently, the dynamic time-
series data are transformed into the format required for training and
testing through the use of the sliding window algorithm. In our case,
the criteria for the sliding window is that the total window length
is equal to the sum of the input window length, 𝑀 , and prediction
horizon length, 𝑁 . The open-loop simulation runs for 50 time steps for
432 different initial conditions, and the first 30 time steps are used
as the training dataset, while the remaining 20 time steps are used
as the testing dataset. In total, 43200 data samples were available for
training and testing. The goal is to identify whether the model can learn
the behavior of the process within the first 30 time steps to predict
the next 20 time steps starting from different initial conditions. Both
the training and testing datasets are scaled with respect to themselves
only to avoid information leakage. The training and testing datasets are
scaled from 0 to 1 using Eq. (19) to avoid large discrepancies between
gradients during training. Finally, the training and testing datasets
are reshaped into 3-D tensors with input and output dimensions of
(𝑅𝑡𝑟𝑎𝑖𝑛,𝑀 + 𝑁, 𝑛𝑠𝑡𝑎𝑡𝑒𝑠 + 𝑛𝑖𝑛𝑝𝑢𝑡𝑠) and (𝑅𝑡𝑒𝑠𝑡,𝑀 + 𝑁, 𝑛𝑠𝑡𝑎𝑡𝑒𝑠), respectively,
where 𝑅 refers to the total number of training/testing observations and
𝑛𝑠𝑡𝑎𝑡𝑒𝑠 and 𝑛𝑖𝑛𝑝𝑢𝑡𝑠 refers to the number of states and inputs, respectively.

6.3. Neural network models construction

In this work, the performance of using three different types of
neural network models: FNN, RNN with LSTM units, and encoder–
decoder with LSTM units is investigated. A general hyperparameter
search is conducted on the hidden layers, hidden units, and activation
functions for each of the neural network models. The final FNN is
constructed with a single fully-connected layer with 10 hidden units
and a linear activation function. The RNN consists of a single LSTM
layer with eight hidden units and one fully-connected output layer
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on top with 𝑁 hidden units. The LSTM layer and fully-connected
Table 2
MSE comparison of the open-loop prediction results between the neural network models
and the first-principles model.

𝐶𝐴 − 𝐶𝐴𝑠𝑠
[mol/L] 𝐶𝐵 − 𝐶𝐵𝑠𝑠

[mol/L] 𝑇 − 𝑇𝑠𝑠 [K]

LSTM 3.24 × 10−6 1.00 × 10−6 3.61 × 10−2

Encoder–decoder 5.29 × 10−6 7.84 × 10−8 1.69 × 10−2

layer have activation functions of tanh and linear, respectively. The
encoder–decoder model consists of two LSTM layers (one encoder and
one decoder layer) connected at the ends with 8 hidden units each
and a single fully-connected output layer on top of the decoder LSTM
layer with 𝑁 hidden units. The LSTM layers and fully-connected layer
have activation functions of exponential linear unit (ELU) and linear,
respectively. Due to the different model architectures, the inputs to the
models are slightly different. In FNN, the time step 𝑡𝑘 will be used
to predict the time step 𝑡𝑘+𝑁 . In RNN, the time step 𝑡𝑘 will be used
to predict the future sequence 𝑡𝑘+1,… , 𝑡𝑘+𝑁 . In the encoder–decoder
system, the historical and present information 𝑡𝑘−𝑀+1,… , 𝑡𝑘 will be
used to predict future time steps 𝑡𝑘+1,… , 𝑡𝑘+𝑁 . All these models are
comparable since, in our MPC implementation, only the last time step,
𝑡𝑘+𝑁 , is used in the objective function to determine the optimal control
rajectory for one 𝛥. The neural network model will be called 𝐾 times

to determine the control trajectory for the full MPC prediction horizon.
For training, an MSE cost function is used, and each model is

trained for 100 epochs with a callback function that would follow an
early stopping criterion. Each model’s training and validation errors are
logged to ensure no overfitting or underfitting occurs. From the training
and validation errors, the FNN model is rejected because its MSE is
two orders of magnitude larger than the other two models. Therefore,
the FNN is not tested in both open and closed-loop simulations to save
computational resources due to its poor training performance.

Remark 9. The architecture and training procedures of the three
models are kept simple because of the good quality of the simulation
dataset and the large number of available operating conditions. In real
scenarios, data may be contaminated with noise or be insufficient in
quantity, and thus different architectures or processing steps need to
be explored to combat these problems. Some methods for combating
noisy data are included in Section 5.4.

6.4. Open-loop performance

Subsequently, after the development of different NN models, an
open-loop simulation was performed to evaluate the generalization of
the models and their ability to capture the dynamics of the given CSTR
process. During open-loop simulation, the two manipulated inputs,
the heating rate 𝑄 and the initial concentration 𝐶𝐴0, were varied to
compare the states predicted by the models versus the ground truth
given by the first-principles model. Fig. 7 illustrates the open-loop
prediction using the LSTM model and the encoder–decoder model in
response to time-varying inputs. Three different combinations of [𝑄 −
𝑄𝑠𝑠, 𝐶𝐴0−𝐶𝐴0𝑠𝑠 ] with values of [1.5×104, 0], [3×104, 1.5], and [2×104, 1]
were introduced in the forms of two step changes at 𝑡 = 100 sec and
𝑡 = 200 sec. The two models’ trajectories from the plot are in good
agreement with the first-principles model. Specifically, the MSE for
each state given by the LSTM and encoder–decoder models in the open-
loop simulation is computed and shown in Table 2. Since the MSE
values are sufficiently small for both models, it can be concluded that
the two models provided decent accuracy to move to the closed-loop
simulation.
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Fig. 7. Open-loop state and manipulated input profiles for the CSTR example.
Table 3
Final offset for each state from steady-state under LMPC using RNN and
encoder–decoder models.

𝐶𝐴 − 𝐶𝐴𝑠𝑠
[mol/L] 𝐶𝐵 − 𝐶𝐵𝑠𝑠

[mol/L] 𝑇 − 𝑇𝑠𝑠 [K]

LSTM 3.7 × 10−3 1.8 × 10−2 7.3 × 10−2

Encoder–decoder 7.8 × 10−5 −1.2 × 10−4 7.9 × 10−3

6.5. Closed-loop performance

After the open-loop simulation, the models were tested in a closed-
loop simulation of the underlying process under LMPCs based on the
LSTM model and the encoder–decoder model. The dynamics of the
closed-loop process under each controller is illustrated in Figs. 8 and
9. The states trajectories are shown in Fig. 8, while the associated
manipulated inputs (i.e., control actions) are shown in Fig. 9. From
the resulting trajectories, it can be seen that the LMPC based on the
encoder–decoder model outperforms the RNN-based LMPC in terms of
smoothness of the state profiles, but the controller was able to drive
the three states towards steady-state and stabilize the system with
both models. Furthermore, the encoder–decoder based LMPC was able
to drive its states closer to the steady-state state values as shown in
Table 3.

Remark 10. Different state observers, designed on the basis of neural
network models, can be used to provide an estimate of the unmeasured
states from the measured ones in the event that the state vector 𝑥 is
not entirely available online. In a previous work, Alhajeri et al. (2021)
17
proposed two distinct machine learning-based state estimators for non-
linear processes within the framework of ML-based Lyapunov-based
MPC. It was shown that all state trajectories converged to the steady-
state under the LMPC starting from different initial conditions, and that
both the fully ML-based and the hybrid-model-based state estimators
provided accurate estimation.

6.6. MPC computation time considerations

One area not explored in the neural network-MPC example is the
computational time necessary to find the optimal control action. In
practice, there is a limit on the time allocated for the MPC to spend
on solving the nonlinear optimization problem to ensure closed-loop
stability. Some factors that affect the MPC’s speed are the model’s
inference time, initial guesses, and optimization solver. Depending on
what type of model is used in the MPC, the model’s inference time
can vary dramatically. A simple first-principles model takes less time
than a traditional machine learning model, which takes less time than
a deep neural network learning model. The inference time between
different neural networks can also differ depending on their size and
architecture. The inference time of the models used in this work is in
the range of 0.1∼0.5 s. In addition, the initial guess and the solver
choice used in the optimization problem can also greatly affect the
computational load. If the MPC optimization problem is to be solved
with a poor initial guess, an inadequate solver, or if the predictive
model takes too long to calculate, it is possible that the nonlinear
optimization solver will not converge to a solution in the time allotted,
resulting in a suboptimal MPC (Scokaert et al., 1999). The bottleneck
in the MPC is heavily process-dependent and needs to be identified



Computers and Chemical Engineering 165 (2022) 107956Y.M. Ren et al.
Fig. 8. State profiles of the closed-loop simulation of the first-principles process model under the LMPC using three models: first-principles (FP), LSTM, and encoder–decoder.
when attempting to improve the controller performance. For example,
in a very complex process, the model required to capture the dynamics
may be architecturally advanced and lead to a high model inference
time, while a high-dimensional system will require a large number of
values to be provided as initial guesses, which may be non-trivial and
the bottleneck in solving the MPC optimization problem.

7. Conclusion and future directions

A survey on several neural network modeling approaches, in partic-
ular FNN, vanilla RNN, GRU, LSTM, and encoder–decoder architecture-
based RNN, and their integration with MPC was discussed in this
work. In addition, a tutorial was provided on the construction of
the aforementioned neural network models with remarks on dealing
with specific scenarios such as noisy data. Finally, a chemical process
example was studied in closed-loop under the different neural network
model-based MPCs to demonstrate the advantages and disadvantages
of each model.

For future research directions, a recently proposed family of neu-
ral networks, named neural ordinary differential equations (ODE),
provides the potential to improve the performance of modeling of
continuous time-series data. This method proposes to parameterize an
ODE between the states of a neural network and, as a result, the output
of the neural network is the solution of an ODE initial value problem,
which is computed with an explicit ODE solver (e.g., Euler method,
Runge–Kutta methods) (Chen et al., 2018). Compared to traditional
RNNs that are usually interpreted as discrete approximations of time-
series data, theoretically, neural ODEs can be interpreted as continuous
approximations of the data. In particular, recent applications of neural
18
ODEs in the literature include improved performance for forecasting
time-series data, especially for datasets with large or irregular sampling
times (e.g., Rubanova et al., 2019). A potential future direction in-
cludes using neural ODEs as the process model for MPC to improve the
performance of the MPC when dense and synchronous measurements
are not available for model training purposes.

On the other hand, another neural network approach to consider
is the transformer architecture. Up to this point, only sequential neu-
ral network models such as RNN, LSTM, GRU, and encoder–decoder
systems were discussed. These sequential models generally have a re-
current structure which allows them to easily capture the ordinal aspect
of time-series data. However, a drawback of the recurrent property
is that they are not optimized for parallel computation. The input
sequence to sequential models is provided the inputs one element at
a time, which does not allow for parallel training and batch inference.
In the example of an RNN, the hidden state of one RNN unit needs
to be calculated first before being used as an input to the next RNN
unit. In addition, sequential models assume that the previous recurrent
unit is able to fully capture past behaviors as the current unit does
not have direct access to past non-immediate units. Therefore, Vaswani
et al. (2017) have developed a new deep learning architecture, called
transformer, in order to overcome these limitations associated with
sequential models. In the context of MPC, the implementation of trans-
formers can potentially not only improve model accuracy but also speed
up the MPC’s computation time due to the faster model inference as a
result of parallelization.
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Fig. 9. Input profiles of the closed-loop simulation of the first-principles process model under the LMPC using three models: first-principles (FP), LSTM, and encoder–decoder.
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