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In modern industrial chemical engineering plants, the quality of the product is closely related not only to
the process design but also to the efficiency of human operation. Currently, single-step prediction models
are adopted by process engineers to estimate the immediate system response. However, those single-step
prediction models are limited as they don’t enable the operator to visualize the complete series of effects
associated with the operation in the long run. In order to help make prescient predictions, this paper pro-
poses a novel symbolic hierarchical clustering (SHC) based convolutional neural network (CNN) method
for trend prediction and classification. Firstly, the raw historical operation data series are symbolized
from numerical values to strings according to their distinct characteristics. Secondly, the hierarchical
clustering method is used to eliminate the low-frequency operation trends and to determine and label
the types of operational trends for the symbolized dataset. Subsequently, the categorized dataset and
its respective label are fed into a specially tailored CNN for the training of the CNN model for trend clas-
sification. Finally, to demonstrate the effectiveness of the proposed SHC-CNN algorithm, the proposed
method is applied to the methanol production process of Hainan Petrochemical Co., Ltd. to predict and
classify its main operational trends. In addition, the superiority of SHC-CNN operational trend prediction
is demonstrated through the comparison with traditional neural networks.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In the modern industrial chemical processes, increasingly strin-
gent product quality demands lead to more and more sophisticated
manufacturing process designs (Boguslavskii and Kirsanov, 1989),
for which manual operations from process engineers are often
needed to handle possible process disturbances and guide the nor-
mal plant operation. Due to the complexity of chemical plants, the
aforementioned operations require an abundant prior knowledge
and extensive experience of the processes, which can affect the
efficiency and effectiveness of the overall manufacturing mecha-
nism and the quality of the final product (Wang and Li, 2018). To
ensure that the human interventions will lead to positive influ-
ences on the entire production process and less empirical knowl-
edge is required for process engineers, it is beneficial to develop
a process model and use it to guide the decision making.

Process models are generally developed using first-principles
knowledge (mechanism-based model) or data-driven approach
(data-driven model) (Tong et al., 2015). Specifically, the
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first-principles models are developed based on the physical knowl-
edge of the process. For example, the species, momentum, and
energy transport phenomena, and the reaction kinetics are
involved in the modeling of a chemical engineering plant.
Researchers have delved in utilizing a first-principles model in a
variety of fields, establishing accurate first-principles models to
represent the physical characteristics of processes.

However, the construction of first-principles models face vari-
ous challenges. First, important process parameters in the actual
production process may remain difficult to obtain. Also, it is often
impossible to derive accurate mathematical equations between
process parameters and outputs. As a result, researchers have
begun to investigate and adopt an alternative modeling method,
data-driven modeling. Data-driven modeling is a data-based mod-
eling approach, which utilizes a variety of numerical algorithms to
abstract and extract the key information and the input–output
relationships from the historical database (Smarra et al., 2018;
Kim et al., 2018). In the modern industrial processes, the maturity
of sensor and storage technologies such as distributed control sys-
tems (DCS) enable the generation of a large historical database.
This large database serves as the basis for the data-driven model
formulation, because the comprehensive features of the production
processes are preserved in the rich historical data set, from which,
representative models can be obtained to accurately describe the
industrial processes.

To construct a statistical model based on the data set, machine
learning method is adopted, which is a branch of the field of arti-
ficial intelligence that uses a variety of mathematical algorithms
to analyze the data set for regression and classification in order
to make future predictions (Dunjko and Briegel, 2018). For exam-
ple, Amasyali and El-Gohary (2018) offered a review of the cur-
rently developed data-driven models that predicted building
energy consumption in industry, and highlighted the future
research directions in the area. Li et al. (2018) adopted a support
vector machine (SVM) method to construct a data-driven model
to characterize the non-explicit relationship from the operating
data, which resulted in a good classification and a reasonable com-
putation time in modeling the air-cooling condenser process. Yu
et al. (2018) proposed a data-driven model based on Fourier trans-
form and support vector regression for a precise monthly reservoir
inflow forecasting. Ding et al. (2019) constructed a multi-scale
data-driven model to characterize the thermal atomic layer depo-
sition process and to make predictions for the optimal operating
conditions.

Among the large realm of machine learning methods, deep
learning has recently drawn a lot of attention due to the increasing
computational power and its unparalleled advantage in extracting
hidden information in complex data sets (Zhao et al., 2019). Deep
learning network consists of the following popular forms of neural
networks: convolutional neural network (CNN) (Krizhevsky et al.,
2012), recurrent neural network (RNN) (Lukoševičius and Jaeger,
2009), and deep belief network (DBN) (Mohamed et al., 2011).
Within those structures, CNN is widely recognized and applied
for its ability to extract deep and correlational features. CNN is a
feedforward neural network with convolutional layers, often
involving deep network structures (Wang et al., 2019). A lot of
scholars have focused on the theory and application of CNN in
recent years. For example, LeCun et al. (2015) first introduced
CNN to classify the handwriting, which became the most generic
CNN structure adopted in future studies. Lu et al. (2019) used par-
allel network structure to increase the classification accuracy of
pathological brain detection, which is known as the AlexNet,
whereas GoogleNet used a deeper network structure and a higher
number but smaller scale convolution kernels to achieve higher
precision (Szegedy et al., 2015). VGG, born out of the need to min-
imize the number of parameters in the CONV layers and improve
on training time, inherited and improved the deep multi-
convergence features of GoogleNet (Simonyan and Zisserman,
2014). CNN structures have the ability to learn and to classify the
input information according to its hierarchical structure. Specifi-
cally, CNN accomplishes the extraction and fusion of specific fea-
tures through the use of sliding window techniques and enables
the classification of the labeled results through the dense classifi-
cation links. In our work, the operation trend prediction requires
the selected machine learning method to be able to recognize
and extract the hidden operational features out of the complex his-
torical data set. Thus, CNN is considered suitable for our purpose
and is used to handle operational prediction problems.

To develop a supervised machine-learning model that learns
and classifies the operational trends, we first need to extract the
types of operational trends from historical data. Specifically, we
adopt the clustering method for the training data series clustering
as we want to classify the similar operational trend as the same
category. Clustering is a process that divides a collection of physi-
cal or abstract objects into multiple subsets consisting of similar
objects, which preserves the main features of the data, thereby
greatly reducing the difficulty of feature extraction (Jain et al.,
1999). Commonly used clustering methods for time-series data
are: segmentation clustering (Iwahashi et al., 2018), hierarchical
clustering (Murtagh, 1983), density clustering (Bryant and Cios,
2018), model clustering (Ding et al., 2018) and grid clustering
(Xu et al., 2018).

Nevertheless, because it is impossible to determine the types of
clusters in advance, the classification of operational trends in
industrial processes cannot adopt simple segmentation clustering
methods. Additionally, model clustering and grid clustering meth-
ods are not suitable due to the complex characteristics of the pro-
cess industry. Moreover, since the dense steady-state in the data
set is very close, it is difficult to be separated by the density clus-
tering method. Therefore, in this paper, we use the hierarchical
clustering method to classify the operation trend data series, in
which the historical operation data set is categorized according
to the learned trend types. The basic idea behind the hierarchical
clustering method is to calculate the similarity between nodes
with a similarity checking criterion, and then the nodes can be
sorted from high to low according to the calculated similarity.
Finally, the nodes are reconnected and regrouped according to
the classification criterion. Hierarchical based clustering methods
have been extensively studied by various researchers. Dasgupta
framed a similarity-based hierarchical clustering as a combinato-
rial optimization problem, which showed the beneficial attributes
of the resulted cost function (Cohen-Addad et al., 2019). Lu et al.
(2018) proposed a novel data clustering algorithm, which did not
require the number of clusters as the input parameter, allowing
the user to conveniently acquire the proper number of clusters.
In addition, Peterson et al. (2018) presented a hybrid non–para-
metric clustering approach, which could find the general shapes
and structures in data sets.

Despite the popularity of the neural network trend prediction
models, the established models only allowed prediction of one
sampling step, which did not enable the operator to have a far-
sighted and prescient view of the future outcome of the operation.
Motivated by the above considerations, this paper proposes a
convolutional neural network operation trend prediction and
classification method, based on symbolic hierarchical clustering
(SHC-CNN). First, the historical data of the industrial process are
collected, which are then symbolized and classified with the hier-
archical clustering method. The obtained operational trend data
and group labels are fed into CNN for classification prediction
training. In order to demonstrate the validity and effectiveness of
the proposed method, we apply it to the methanol production pro-
cess of Hainan Petrochemical Co., Ltd., and the result is compared
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with that of the traditional CNN and RNN methods. The rest of this
paper is structured as follows: Section 2 explains the symboliza-
tion method, the hierarchical clustering method, and the convolu-
tional neural network. Section 3 describes the construction of the
integrated SHC-CNN operation trend prediction and the classifica-
tion method. In Section 4, the developed SHC-CNN algorithm is
applied to the methanol production process of Hainan Petrochem-
ical Co., Ltd., and the results are compared with other traditional
classification methods.
2. Preliminaries

The SHC-CNN operation trend prediction for a complex indus-
trial process consists of the following three aspects: symbolization,
hierarchical clustering and convolutional neural network. In this
section, we will introduce the underlying theory and the basic
structure of each of the aforementioned methods.

2.1. Symbolization

Symbolization techniques convert raw numerical data to spatial
data with classification, simplification and exaggeration. From the
symbolized results, various patterns can be extracted according to
the distinct characteristics, relative importance, and related posi-
tions. Symbolic aggregate approximation (SAX) algorithm is a com-
mon method for time-series data symbolization, which creates a
discretized symbolization pattern according to the magnitude of
the time-series data points, and then transforms each raw data into
its respective symbolic form. Thus, it helps solve problems which
involve data sets that cannot be easily visualized, by extracting
the implicit patterns. SAX usually involves a two-step
transformation.

(1) In time-series standardization, we normalize the time-series
with respect to the mean and standard deviation:
x� ¼ x� l
r ð1Þ

where x represents the original data, x� represents the stan-
dardized data, l and r represent the mean and standard
deviation of the original data, respectively. Specifically, the
original time-series data we considered in the simulation
example of this manuscript satisfies Gaussian distribution
on the vertical axis. As a result, it will be normalized through
Eq. (1) to a standardized Gaussian distribution.
(2) In time-series data segmentation, we split a piece of time
data of length n into w equal length blocks, and obtain a ser-
ies of blocked data S ¼ s1; . . . ; sw½ ], with the ith data point as
the average of data points in ith block:
si ¼ w
n

Xn�iw

j¼n i�1ð Þ
w þ1

xj; 1 6 i 6 w ð2Þ

where xj represents a single sample point of time-series
data, j represents the serial number of the block, n is the
integer multiple of w, andw stands for the length of the time
series data. After the standardization process, the time-
series data will be redistributed on the axes.
Fig. 1 shows an example of data symbolization under SAX. It is
demonstrated that the vertical axis is divided into three regions
according to our classification criterion, and thus, the time-series
data can be equally distributed into the respective region. Subse-
quently, the fluctuating time-series data is converted to a string
of characters baabccbc00 under SAX. Therefore, the SAX algorithm
is able to convert any length of time-series data into a correspond-
ing string, allowing for easier computation and achieving good
noise elimination.

2.2. Hierarchical clustering

Hierarchical clustering is a type of clustering algorithm, which
creates a hierarchical nested clustering tree by calculating the sim-
ilarity between different types of data points. In the clustering tree,
the lowest layer consists of the original data points of different cat-
egories, and the top layer of the tree consists of the cluster root
node. There are two methods for clustering tree creation: a
bottom-up merging method and a top-down splitting method.
The top-down split-level clustering method treats all samples as
one cluster, which are then iteratively divided into smaller clusters
until only one sample is left in each cluster. The bottom-up con-
densed hierarchical clustering treats each sample in a different
cluster, and the nearest pair of clusters are merged until all the
samples belong to the same cluster. clustering method can be con-
structed as follows: (1) Obtain the number of the samples, which is
the number of initial clusters. (2) Calculate the samples merging
according to the similar metrics between samples. (3) Combine
the samples that satisfy the similarity criterion into one cluster.
(4) Repeat Step (1), (2) and (3) until the historical data is con-
densed into one cluster. Three kinds of similarity metrics are usu-
ally involved in the hierarchical clustering; which are given as
follows:

(1) Single chain: The distance between the clusters that is the
closest.
Dmin ¼ min
x2Cm ;z2Cn

dist x; zð Þ ð3Þ
(2) Full chain: The distance between the clusters that is the
farthest.
Dmax ¼ max
x2Cm ;z2Cn

dist x; zð Þ ð4Þ
(3) Average chain: The average distance between clusters.
Daverage ¼ average
x2Cm ;z2Cn

dist x; zð Þ ¼ 1
Cmj j

1
Cnj j

X
x2Cm

X
x2Cn

dist x; zð Þ ð5Þ

where Cm and Cn represent two different kinds of clusters,
and x and z are the data points that are contained in each
of the clusters, respectively.
2.3. Convolutional neural network (CNN)

As discussed in the introduction, CNN is a feedforward neural
network with convolutional layers and is able to learn and classify
the input information according to its hierarchical structure. Here,
we introduce the most classical CNN structure. Fig. 2 shows the
general form of the CNN structure that involves the convolutional
layers and sub-sampling layers repetitively, which are the two
major component layers of CNN. Additionally, parameter sharing
and sparse connectivity are the two distinctive features of network
connection. These important features will be explained in more
details in the following subsection.

2.3.1. Convolutional layer
Convolutional layers are introduced in CNN for the extraction of

correlational feature and reduction of the size of the computational
matrix. Each convolutional layer in a CNN is obtained by a group of
filters, and the dimension of a convolutional layer is equal to the
number of filters. Depending on the characteristic of the filter,



Fig. 1. Schematic of SAX method, where the blue curve represents the data samples, and a; b; c represent the symbolized variables. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Convolutional neural network structure showing that the first convolutional results C1 with n1 feature maps of dimension m1 �m1 are obtained after the first
convolution layer, followed by subsampling, convolution and pooling processes, where X� represents the input data of dimension m �m, S1 represents the results of
subsampling with n2 feature maps of dimension m2 �m2;Cn represents the 1 � a-dimensional data after flattening, and Y� of dimension 1 � b represents the final output.
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the corresponding convolution operation can extract different
input features, and therefore, multiple distinctive convolution ker-
nels can be used together to process the same input object and to
extract its different features. The convolutional output can be
obtained using the weight parameter and convolution kernels. It
is demonstrated that the convolutional kernels have much smaller
dimensions than the original input layer, which substantially
reduces the computational cost compared to processing everything
together with a dense layer. After the information is passed
through the convolutional layer, the results are sent to the pooling
process.
2.3.2. Pooling layer
The results from the previous convolutional layer are trans-

ferred as input to the following pooling layer, which down-
samples the feature maps by summarizing the characteristics of
features according to the given criterion in patches of the feature
map. In order to process the upstream information, the neurons
of the pooling layer are connected to the local accepting domain
of the input layer, while different receiving regions do not over-
lap. Also, the characteristics of a pooling kernel correspond to
the features of the connected convolutional kernel. Thus, accord-
ing to the translation of the pooling layer, the pooling layer can
distinctly perform quadratic feature extraction on its local accept-
ing domain. Commonly used pooling methods include maximum
pooling, average pooling, and random pooling. Among the three
methods, maximum pooling and average pooling are considered
in this paper.
2.3.3. Sparse connection
The sparse connection, also known as sparse interaction or

sparse weight, is an important feature of CNN that considerably
improves the computational efficiency. This concept of non-
dense connection roots from neuroscience, where each visual cell
in the human eye is only sensitive to a small portion of the entire
retina area. In the dense neural network layer connection, a neuron
in the input layer is connected to each pixel in the given input
layer, and the same is true for every other neuron. In contrast, in
the sparse connected neural networks, each of the neuron is only
connected to a portion of the pixels. This localization reduces the
number of weights need in the neural network, which not only cuts
down the need for storage but also speeds up the matrix calcula-
tion in each layer. One of the most popular applications of CNN
is in image processing domain, particular when dealing with an
image of a large dimension, with millions of pixels. In that case,
each convolutional and pooling kernel only take in less than ten
pixels to detect small and meaningful features, such as the contour
of an object. As a result, instead of processing and storing millions
time millions of weights in each layer, the sparse connection
reduces the computational cost dramatically.
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2.3.4. Weight sharing
Weight sharing refers to the extraction process of a feature

using the same filter. It is demonstrated that in a feed forward neu-
ral network, each element of the weight matrix is used for every
calculation of the element in the output layer, where lines with dif-
ferent colors represent different kinds of parameters. Nevertheless,
in the weight sharing networks, each element of the kernel only
acts on its local inputs. This weight sharing feature in the convolu-
tion operation enables the network to only learn a set of parame-
ters without the need to explore a separate set of parameters for
each location. Although this feature does not change the run time
of the forward propagation, the storage requirements of the model
can be significantly reduced since a significantly smaller amount of
the parameters is required compared to the dense neural networks.
Therefore, the weight sharing mechanism facilitates the multipli-
cation of dense matrices with simpler storage requirements and
improved computational efficiency.
3. Integrated CNN operational trend prediction and
classification method

As introduced in Section 1, the proposed industrial operation
trends prediction method has the ability to learn from the histori-
cal trend of the process and thus to guide the operator to control
the whole process system in a more effective and efficient way,
which will lead to higher productivity for industrial plants. If we
can extract valuable information from the operation data, we could
establish this model based on the extracted operation modes. For-
tunately, DCS can keep a huge amount of operation data in time-
series, which could help the operators, even without rich experi-
ence, to maintain the whole process to always work under optimal
operating conditions. In this section, we will explain in detail the
integrated construction of a novel operation trend prediction and
classification method based on symbolic hierarchical clustering
and the CNN structure (SHC-CNN) that has been discussed in Sec-
tion 2. The integrated process of the proposed convolutional neural
network method based on symbolic hierarchical clustering (SHC-
CNN) is illustrated in Fig. 3.
3.1. Symbolic hierarchical clustering

Utilizing the SAX method discussed in Section 2, the original
time-series data can be processed into a one-dimensional form of
a string, with each character preserving the numerical and process
time information. The time-series data symbolization can reduce
the storage requirement and the computational time. Additionally,
it is demonstrated that this division of the time-series numerical
interval is a better reflection of the intrinsic historical trend, which
greatly enhances the effectiveness of the classification and
prediction.

There are two important parameters in the implementation of
the SAX algorithm: the number of divisions needed and the divi-
sion criterion. In this paper, the number of divisions is nominally
assumed to be q, which should be determined in the real industrial
manufacturing process according to the need for the operation. In
addition, a Gaussian distribution is demonstrated to provide an
appropriate division criterion, as the normalized distribution
ensures the unbiased division of the continuous data point. As dis-
cussed in the normalization step of Eq. (1), our post-processed
time-series data follows the standardized Gaussian distribution.
As a result, the vertical axis is divided into q intervals with the
Gaussian distribution probability ‘‘breakpoint”, where
p1; p2; . . . ; pq�1 are the ‘‘breakpoints” and the area of the interval
in the Gaussian distribution N 0;1ð Þ between two adjacent ‘‘break-
points” is 1=q. The ‘‘breakpoints” determined is shown in Table 1.
Utilizing the Gaussian distribution division criterion for q types
of divisions, we can convert the raw numerical data set into sets of
strings with the SAX algorithm. In order to visualize the industrial
data set segmentation, we take the SAX results of a selected period
of sequence data as an example. As shown in Fig. 4, it is a piece of
industrial process data that is standardized and divided into five
intervals. We can learn from Table 1 that the four ‘‘breakpoints”
are: �0.84, �0.25, 0.25, and 0.84. The five sections have the same
area in the Gaussian distribution, where the interval smaller than
�0.84 is labeled as a, and the others are labeled as b; c; d, and e
as follows. In this fashion, the entire sequence of the data can be
dissected and classified into discrete symbolized time-series form
from 1 to k. In addition, it should be noted that the proposed
method is not restricted to data from Gaussian distribution. To
address the time-series data with non-Gaussian characteristic,
we can adopt other normalization methods (e.g., dispersion nor-
malization for data of positive distribution such as the exponential
distribution and Poisson distribution). Thus, the statistical infor-
mation can then be used to determine the distribution probability
break-point following the similar approach.

S ¼ S1; S2; � � � ; Skf g ð6Þ
After the raw numerical data series are transformed into string ser-
ies via SAX, we need to determine the number of types in order to
learn and classify the symbolized data set. As introduced in Sec-
tion 2, we use the bottom-up condensed hierarchical clustering
method to merge similar clusters together. To quantitatively deter-
mine the similarity between the string series, the Levenshtein dis-
tance method is used, which utilizes the minimum number of edit
operations required between two strings, from one to another.
Assuming that there are two sub-sequences S and T, we can calcu-
late the Levenshtein distance levS;T between the two time-series
data as follows:

levSi ;Tj ¼

Dmaxi;j ; if Dmini;j ¼ 0

min

levSi�1 ;Tj þ 1
levSi ;Tj�1

þ 1;
levSi�1 ;Tj�1

þ 1 Si–Tjð Þ

8><
>:

otherwise

8>>>><
>>>>:

ð7Þ

where Si stands for the ith letter of the string S; Tj stands for the let-
ter of the string T, and 1Si–Tj stands for a Dirichlet function, repre-
senting that the value equals 1 when Si – Tj, and equals 0 when
Si ¼ Tj. The i and j are the indices for letters in each string, and
Dmini;j refers to the minimum distance between the i and j character.
Dmaxi;j refers to the maximum distance between the i and j character.
S and T stand for two different sub-sequences, respectively, which
are obtained through the symbolization method mentioned in the
previous section. Utilizing this equation, we will calculate the dis-
tance between all of the sub-sequences to build a clustering tree.
The similarity g between two strings, S and T, can be calculated as
follows after the Levenshtein distance is obtained:

g ¼ 1� levS;T i; jð Þ
Slength

ð8Þ

where Slength stands for the length of the string S. In this work, in
order to make the calculation result to be comparable easily with
the correct dimension, we divide the strings into subsets with equal
lengths. In the hierarchical clustering process, every single data can
be regarded as a cluster at first. The Levenshtein distance matrix
consists of one row per node and one column per node and contains
all the pairwise distances. Metric calculations between samples are
performed according to the distance. The samples with the smallest
distance are condensed into one cluster, and then the distance
matrices in the clusters are updated after condensing. This process
is repeated until it can no longer continue to condense. The cluster-



Fig. 3. Workflow of the proposed SHC-CNN method.

Table 1
Breakpoint division of the SAX method for data symbolization.

q 3 4 5 6 7 8 9 10

p1 �0.43 �0.67 �0.84 �0.97 �1.07 �1.05 �1.22 �1.28
p2 0.43 0 �0.25 �0.43 �0.57 �0.67 �0.76 �0.84
p3 0.67 0.25 0 �1.08 �0.32 �0.43 �0.52
p4 0.84 0.43 0.18 0 �0.14 �0.25
p5 0.97 0.57 0.32 0.14 0
p6 1.07 0.67 0.43 0.25
p7 1.15 0.76 0.52
p8 1.22 0.84
p9 1.28
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ing results are shown as a tree diagram in Fig. 5. In Fig. 5, we use the
data presented on the Fig. 4 to make the description more consis-
tent. The letters represent the symbolized time-series data, and
the dashed lines of different colors represent different maximum
similar distances, respectively, where the time-series below each
dashed line can be considered similar. Different distances will lead
to different clustering results. For example, if we set the maximum
similar distance as the purple dotted line, we will get two different
kinds of categories (see Fig. 6).

3.2. The SHC-CNN algorithm

In order to perform the operation trend prediction, an input–
output model is developed using the aforementioned CNN struc-
ture. Specifically, the category of classification can be obtained
with the hierarchical clustering method mentioned in Section 3.1,
and the data series and the respective labels are fed into the CNN
for classification learning and prediction. The constructed CNN
has the data flow as shown in Fig. 3. The symbolized input vari-
ables X� first pass through a convolution link, and then, the results
of the convolution are sent to the pooling link. The number of con-
volution kernels can be obtained by grid search method based on
the training and validation accuracy. The convolution and pooling
operations are repeated m� times, where the value of m� can be
obtained from the actual industrial process data by a random trial
and error method. The magnitude of m� is selected as small as pos-
sible to reduce the computation costs and avoid the possibly asso-
ciated over fitting. After the consecutive convolutional and pooling
operation, the results of the last pooling P� are flattened in the form
of a full convolution, and then the network’s trend prediction



Fig. 4. Illustration of time-series data symbolization, where the blue profile represents the historical data and the red profile with letters ‘‘a, b, c, d, e” represent the
symbolization result. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Clustering tree that clusters multiple classes ‘‘1, 2, 3, 4, 5” at the bottom into one class at the top based on Levenshtein distance matrix. The time series data is the same
with the data in previous figure, and every class contain five characters (consists of a; b; c; d; e) and every character contains five samples.
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results Oprediction are obtained through a fully connected structure
(FC). At the same time, the previous clustering results Cr are used
as classification criteria. The classification probability Cprob can be
obtained through a softmax layer, and the category M with the lar-
gest probability Cprobmax

is the final classification result.
4. Case study

The development of the size and of the time scale of chemical
engineering plants has led to a substantial increase in demand
for energy consumption. Additionally, the operating cost associ-
ated with non-renewable energy sources such as coal, petroleum,
and natural gas has been spiking in the recent decade (Silva
et al., 2016). In order to meet the demand of the industrial energy
requirement and reduce the reliance on non-renewable energy
sources, new chemical compounds are investigated and manufac-
tured as the energy source substitutes. Methanol has been devel-
oped as a popular source of energy, which has a high octane
number and a low risk-factor. Therefore, it can be safely manufac-
tured from a variety of carbon-based sources, generating environ-
mentally friendly by-products and providing a cost-effective
alternative to non-renewable energy sources (Wasmus and
Küver, 1999). In the modern engineering industry, methanol is
usually synthesized by catalytically reacting carbon monoxide, car-
bon dioxide, and hydrogen, which is governed by the following
reactions:

COþ 2H2 ! CH3OH ð9Þ

CO2 þ 3H2 ! CH3OHþ H2O ð10Þ

CO2 þ H2 ! COþ H2O ð11Þ
A typical methanol production industrial processing includes the
processing of the feed gas, the purification in advance to the main
reactor, the synthesis of methanol, and the rectification of metha-
nol. In this work, we will take the production plant of Hainan Petro-
chemical Co., Ltd. as an example, where the core process diagram is
shown in Fig. 7. First, the fresh feed gas, driven by a compressor sys-
tem, is mixed with the overhead recycle gas of the methanol sepa-
rator. The combined synthesis gas is pressurized by a recycle gas



Fig. 6. Flowchart of the proposed SHC-CNN method, where the historical data is first symbolized into letters, and fed into a CNN to predict the operation trend based on
clustering results.

Fig. 7. Central processing part of the Hainan Petrochemical Co., Ltd. methanol production process.
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Table 2
Operational variables in the central processing part of the Hainan Petrochemical Co.,
Ltd. methanol production process in Fig. 7.

Device
Number

Variable Name Variable
Unit

FIC3103 The airflow of the factory Nm3/h
FIC3106 Hydrogen flow Nm3/h
FIC3503 Crude methanol flow t/h
PIC3302 Outlet pressure of methanol separator MPa
PIC3701B Outlet pressure of methanol separator MPa
TIC3010 The temperature of the first synthetic tower �C
TIC3210 The temperature of the second synthetic tower �C
TIC3401 Outlet gas temperature of the first synthetic

tower

�C

TIC3402 Outlet gas temperature of the second synthetic
tower

�C
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compressor and preheated in a heat exchanger before entering the
methanol synthesis column. Next, the hot product gas stream leav-
ing the methanol synthesis column is cooled by a second heat
exchanger and then by a water cooler. Finally, the crude methanol
is then distilled off in the separator. Fig. 7 shows the most impor-
tant part of the methanol production process, in which J121 repre-
sents the compressor, E121 and E122 represent the preheaters,
D121 and D122 represent the synthesis reactors, E122 and E124
represent the cooling device, and D321 and D322 represent the
separator.

A complex industrial process as described above requires the
in-depth knowledge and extensive experience from the operators
for optimal plant operation, which is necessary to ensure the effi-
cient and safe operation of methanol production. As a result, we
adopt the proposed trend prediction and classification model to
assist the operator’s handling of this methanol production process.
In this section, the application and the results of the SHC-CNN
model for the Hainan Petrochemical Co., Ltd methanol production
process will be discussed in detail.

To construct a computationally tractable model that generates
accurate predictions, we first need to learn about the key knowl-
edge of the methanol production process before modeling to select
variables of the most importance for the methanol production pro-
cess. The list of operating parameters is shown in Table 2, where
the device numbers are acquired from the actual chemical plant.
Fig. 8. Example of historical data of th
For each of these operating units, a randomly chosen set of the his-
torical operating data is shown in Fig. 8 to illustrate the typical
behavior in the historical operations. From this illustration, it is
demonstrated that the values of variable TIC3010 and variable
TIC3210, which represent the temperature of the two synthetic
towers, respectively, are always maintained at the same tempera-
ture. Therefore, these two variables replaced by the outlet gas tem-
perature variables of the two synthetic tower, TIC3401 and
TIC3402 in the input–output modeling. As a result, the crude
methanol flow, FIC3503, is regarded as the final output variable,
and the remaining operand variables are used as input, for the con-
structed SHC-CNN model.

The data is collected at a sampling time of 30 s. 20000 sets of
data series are selected, in which 12000 groups of selected data
are randomly chosen as the training set and 8000 groups of
selected data are then used as the test set. After the historical data
set is obtained, we adopt the proposed symbolization method to
convert the raw numerical data series into sets of strings, which
are then processed through the clustering algorithm. Because the
clustering method is computationally inefficient for a large data-
base, we divided 12000 training samples equally into 12 groups
for parallel computing to improve the computational speed. In
order to make it more convenient for the operator to observe the
operation effect and to carry out the SHC-CNN algorithm, the same
SAX clustering analysis is also performed on the training output,
the crude methanol production.

Fig. 9 shows the symbolized data series corresponding to the
sample numerical operational variable data, every five-second data
points are characterized by a lowercase letter, and every 5 lower-
case letters are processed into one category. According to the dis-
tinct characteristics observed from each of the parameter data
series, the symbolized historical data are automatically clustered
with different patterns into their respective types, as shown in
Fig. 10. In addition, Figs. 11 and 12 show a part of the symbolized
output results and a part of the hierarchical clustering results of
the output crude methanol production history, respectively. It is
demonstrated from Figs. 9 and 11 that the historical inputs and
output numerical data are successfully replaced by different letter
series. Also, as shown in Figs. 10 and 12, the symbolized data are
gathered into different categories through the hierarchical cluster-
ing method. In order to reduce the computational burden, we use
e selected operational variables.



Fig. 9. Symbolization results (red profiles with the letters ‘‘a, b, c, d, e”) of the operational variables based on the historical data (blue profiles). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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the yellow dotted line as the boundary, and the clustering result of
crude methanol is divided into seven categories based on the yel-
low dotted line.

Next, we input the post-processed results of symbolic clustering
into CNN for classification. This model consists of 6 variables as
model inputs and the time lag of the variables is one sampling point
time interval. The number of levels and parameters is determined
through a grid search, which ends up giving the optimal training
result with 5 convolution layers, 36 filters and 3 pooling layers.
There are 12 filters between the first convolution layer and the
input data. The weight matrix w for every filter is of dimension
6� 6, and the width is equal to the number of the input variables.
The number of the bias b in every filter is the samewith the number
of the weights. Each of the first three convolutional layers is fol-
lowed by a pooling layer, and the last two convolutional layers
Fig. 10. Hierarchical clustering result
are the fully connected convolutional layers. It is noted that the
number of the filters needs to be carefully chosen. Specifically, if
the number of filters is small, we cannot extract enough features
from the history data. However, a large number of filters could lead
to over fitting and computation burdens. Besides, too much filters
and layers also increase the computation burden of the algorithm.
In addition, we use stochastic gradient descent method to train
the model, where the iteration number is 200, the learning rate is
0.001, and the weight decay term is 0.0001. These values are chosen
based on empirical neural network training knowledge and also via
trial-and-error tuning. Also, the proposed SHC-CNN inherits the
sparse connection and value sharing characteristics of traditional
CNN, as described in sections ‘‘sparse connection” and ‘‘weight
sharing”, and thus, the proposed SHC-CNN can reduce the computa-
tional burden and improve the computational efficiency.
s for input operational variables.



Fig. 11. Symbolization results of the historical data of crude methanol production.
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The training and predicting results are shown in Figs. 13 and 14.
It is demonstrated from the figures that the operation trends have
been accurately predicted. a; b; c; d; e represent the five different
categories, respectively, and the breakpoints can be found in
Table 1. In addition, the parameters of the BP and RNN methods
are both selected via grid search for optimal results. FIC3103PV,
PIC3302PV, and TIC3401PV receive better results than the rest of
the variables, because these three variables change more gently.
We also give a trend forecast for crude methanol production that
is closely related to the amount of operation, where the classifica-
tion results of the test data are analyzed, as shown in Fig. 16. The
classification accuracy of FIC3103PV, FIC3106PV, PIC3302PV,
PIC3701BPV, TIC3401PV, TIC3402PV and FIC3503PV are 0.865,
0.846, 0.965, 0.897, 0.855, 0.903 and 0.893, respectively. Compared
Fig. 12. Hierarchical clustering results for historic
with historical data, the trend forecast results are highly reliable.
Nevertheless, we can see from Figs. 13 and 14 that there is a time
lag in our prediction result. Since we are dealing with time-series
data, which tend to be correlated in time and exhibit a significant
auto-correlation, the prediction results often exhibit a time lag
between predicted value and true value when using common error
metrics such as RMSE or R2 score to evaluate model accuracy. A
potential approach to addressing this issue is to use the difference
between consecutive time steps, which could provide a stronger
test for model accuracy in this case. In addition, it should be con-
sidered when used for other modeling that the choice of the num-
ber of key parameters will impact the optimal model accuracy but
the exact correlation cannot be explicitly concluded because of the
competition between the training accuracy and over-fitting.
al data of output crude methanol production.



Fig. 14. Trend prediction of crude methanol production, where the blue and the red profiles represent the historical data and predicted results, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Operation trend prediction results, where the blue and the red profiles represent the historical data and predicted results, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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However, the proposed structure seems to be a good starting point
and a subsequent grid search can be done according to the input
and output dataset dimension.

To further demonstrate the effectiveness of the proposed
method, the process data is used to train a traditional CNN, an
RNN and a BP neural network (BPNN) for process fitting and pre-
diction, respectively. The traditional CNN has the exact same struc-
ture without the SHC pre-processing. As for the BP neural network,
we also have the 6 variables as inputs. Three layers are used,
including one input layer, one hidden layer, and one output layer,
where the number of neurons in the hidden layer is selected to be
10. Similarly, in the RNN structure, there are also 3 layers: the
input layer, the hidden layer and the output layer; the number of
neurons in the each layer are the same as that in the BP neural net-
work. The number of neurons and hidden layers are again deter-
mined from grid search. The testing and training of three
networks in comparison all use the same training and testing data-
set, respectively. The RMSE of traditional CNN, RNN, BPNN, and the
proposed SHC-CNN is 0.3192, 0.6998, 0.8272, and 0.2917, respec-
tively. A randomly selected set of data sample is plotted to com-
pare the four models, which is shown in Fig. 15. It can be seen
that the SHC-CNN method provides more accurate trend analysis
than other prediction methods, while the BP feedforward neural
network produces the worst prediction results. Additionally, the
SHC-CNN network has demonstrated its superiority of predicting
not only the next sampling step but also the future trends.



Fig. 16. Classification accuracy of FIC3103PV, FIC3106PV, PIC3302PV, PIC3701BPV, TIC3401PV, TIC3402PV and FIC3503PV based on testing data samples.

Fig. 15. Comparison of the crude methanol production from historical data, and the results predicted by the SHC-CNN, traditional CNN, RNN, and BP methods, respectively.
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Moreover, the category and performance of the operation trend are
accounted for, which greatly improves the auxiliary ability of the
operator and the efficiency of the industrial process.
5. Conclusion

This paper proposed a novel convolutional neural network
operation trend prediction and classification method based on
symbolic hierarchical clustering (SHC-CNN). Firstly, the historical
data was symbolized. Then the symbolized data was categorized
into distinct classes through the hierarchical clustering method.
Finally, a specifically tailored CNN network was trained with the
historical data to obtain an accurate historical trend fitting. To
demonstrate the effectiveness of the proposed SHC-CNN method,
the methanol production process of Hainan Petrochemical Co.,
Ltd was applied, for which accurate fitting results were obtained
for all input variables and output methanol production. Addition-
ally, the proposed SHC-CNN algorithm was also compared with
the traditional CNN and RNN, from which the superiority of the
proposed trend prediction was demonstrated.The proposed SHC-
CNN was demonstrated to be able to extract deep and rich features
through multi-angle description of every local section. It allowed
the time series data to be filtered with interference and to be
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considered in a more complete picture. Overall, CNN-based meth-
ods can greatly overcome the high dependence of modeling on
first-principles model. The precise prediction results from the
SHC-CNN algorithm could help process engineers analyze the cur-
rent state of the process, and provide reliable insights to help engi-
neers operate the system.
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