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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Machine learning (ML) developed to 
track UF seawater RO pretreatment 
performance. 

• UF performance predicted by ensemble 
back propagation neural network 
(BPNN) model. 

• UF ML model developed using 13 
million data samples from a four year 
field study. 

• Model accurately predicted UF perfor
mance during periods of varying water 
quality.  
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A B S T R A C T   

A machine learning approach to describing the dynamics of ultrafiltration performance in pretreatment of 
seawater reverse osmosis (RO) feedwater was explored via ensemble back propagation neural network (BPNN) 
model. The BPNN model was developed with Alopex evolutionary algorithm (AEA) optimization and AdaBoost 
strategy. The progression of ultrafiltration (UF) membrane resistance during both filtration and backwash, along 
with backwash efficiency were modeled via the ensemble BPNN-AEA approach relying on 422 days of opera
tional data for an integrated SWRO UF-RO system. Model performance, for UF membrane resistance and 
backwash efficiency, evaluated over a wide range of operating conditions and coagulant dosing strategies, 
revealed excellent performance with a forecasting capability even for cases of temporally variable water quality. 
The performance level attained with the current machine learning modeling approach, which is particularly 
suited for handling the dynamics of UF operation, should prove useful for (a) determining UF performance 
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deviation from intended baseline performance, (b) forecasting expected UF performance due to anticipated 
changes in water quality, and (c) providing a basis for model-based control of UF operation.   

1. Introduction 

Dwindling fresh water supplies from traditional sources, coupled 
with more frequent drought conditions across the globe, intensify the 
need to develop alternative and sustainable potable water supplies 
[1,2]. In recent years, the deployment of reverse osmosis (RO) seawater 
and brackish water desalination and water reuse technologies have 
accelerated in various regions of the U.S. and around the globe as part of 
the movement to diversify the portfolio of available water resources. 
However, membrane fouling remains a major challenge for effective 
operation of both seawater and brackish water RO plants [3,4]. Effective 
RO feed water pretreatment is critical in order to reduce the propensity 
for RO membrane fouling by particulate/colloidal matter, biofoulants, 
and extracellular polymeric substances (EPS), the latter being particu
larly in littoral seawater [3,5–7]. RO membrane fouling degrades 
membrane performance (e.g., reduced permeability leading to increased 
applied pressure needed for a given target flux), thus increasing the 
frequency of required chemical cleaning, shortening membrane 
longevity and increasing operational costs [5,8–10]. 

In recent years, ultrafiltration (UF) has emerged as an attractive 
effective method for pre-treatment of RO feed water relative to other 
conventional options (e.g. sand filters, cartridge filters) [3,11–14]. UF 
membranes, having a pore size typically in the range of 0.01–0.1 μm, can 
remove particulates, colloids, microorganisms, and some dissolved or
ganics matter (often with the aid of coagulant dosing), and accordingly 
produce high quality filtrate. UF operation for RO feed pretreatment is 
typically carried out in a dead-end filtration mode with periodic UF el
ements backwash to remove foulants buildup on the UF filters 
[11,15,16]. Both UF filtration and backwash effectiveness [17] can be 
improved through optimal coagulant dosing of the UF feed [7,8,18] and 
timed backwash frequency [16,17]. Coagulant dosing promotes floc 
formation (i.e., aggregation of fine particles and colloidal matter), 
thereby improving both UF and MF membrane filtration and hydraulic 
cleaning [19–22]. UF foulants that are not removed by backwash result 
in progressive irreversible foulant layer buildup, which at a certain 
threshold necessitate chemical cleaning-in-place (CIP) to restore UF 
membrane permeability [23,24]. To improve UF effectiveness and 
reduce overall cost associated with UF fouling [25,26] (e.g., due to 
chemical costs and possible loss of productivity), it is critical to optimize 
both UF filtration and backwash operations [16,27,28]. Accordingly, 
efforts have been devoted to elucidate the impact of various factors on 
UF fouling and backwash effectiveness that include, but are not limited 
to, feed water quality [17,20], filtration period length [15], backwash 
water composition [29], backwash flux [16,30], duration and frequency 
of backwash, UF feed coagulant dosing, CIP strategies and membrane 
properties [17,24,31,32]. 

Invariably, arriving at effective UF filtration and backwash strategies 
requires tracking the extent of UF fouling and assessment of backwash 
effectiveness. Conventional UF operations rely on tracking of UF fouling 
via the UF transmembrane pressure (TMP), UF filtration resistance or 
membrane permeability normalized with respect to their initial values in 
the filtration step post-CIP [7,16,20,33,34]. Admittedly, UF perme
ability loss due to fouling is a complex phenomenon governed by envi
ronmental factors (e.g., water source quality and temperature, and the 
stochastic nature of fouling phenomena). Clearly, establishing an 
effective UF process control strategy [35,36] would benefit from being 
able to describe the temporality of UF field performance along with 
quantification of fouling progression. At present, however, first principle 
mechanistic models of UF fouling fall short of being able to describe the 
dynamics of UF fouling and backwash effectiveness, particularly when 
continuous adjustments of coagulant, backwash flux and frequency may 

be required. In recent years, data-driven machine-learning (ML) UF 
operational models (for UF filtration and backwash) have been proposed 
based on artificial neural networks (ANNs) and support vector machine 
(SVM). ANNs models can handle non-linearities through complex in
teractions between neurons, but require large datasets and overfitting 
can be an issue when attempting to increase model predictive accuracy 
[37]. In contrast, SVM can handle the local minimum problem and is 
suitable for small sample size [38]. Irrespective of the utilized machine 
learning approach, sufficient data are necessary that spans a sufficient 
range of the operating parameters space to generate a state of the plant 
model capable of describing plant operation when subjected to vari
ability of water quality and various operating conditions. 

Confidence in developed ML models is predicated on the availability 
of real-time operational field data to describe temporal system patterns 
and utilize such information to arrive at suitable operational adjustments. 
Accordingly, the present work focused on investigating the complex re
lationships between various UF operational variables (include coagulant 
dosing) and UF fouling behavior as observed under field conditions for UF 
treatment of RO seawater feed. UF system behavior (i.e., impact of fouling 
on increased UF hydraulic resistance and backwash efficiency), was 
modeled via back propagation neural network (BPNN) models with 
Alopex evolutionary algorithm (AEA) (BPNN-AEA) model [37]. The data- 
driven models were developed based on extensive data generated from an 
integrated UF-RO seawater desalination field study. An ensemble learning 
approach (AdaBoost strategy) [39] utilizing a family of BPNN-AEA 
models was developed for a real system with over 13 million data sam
ples collected over a period of four years. System performance, with 
respect to the evolution of post-backwash UF resistance and backwash 
efficiency, was evaluated under both normal and atypical conditions (e.g., 
storm event) using two variations of BPNN-AEA model. System opera
tional data, which consisted of both typical and atypical operating con
ditions, enabled the development of robust and adaptive models whereby 
filtration and backwash modes were automatically recognized via binary 
Bayesian classification. The utility of the present approach was then 
evaluated with respect to predicting UF operating performance during 
temporally changing water quality. 

2. Materials and methods 

2.1. Integrated UF-RO seawater desalination system 

Predictive BPNN-AEA models were developed based on operational 
data of UF seawater RO feed pretreatment in an integrated UF-RO 
desalination system (Fig. 1). Data were collected over the course of a 
four year study at the Naval Facilities Engineering and Expeditionary 
Warfare Center (NAVFAC-EXWC) at Port Hueneme, CA [40]. The inte
grated UF/RO system, described in detail elsewhere [15,41], had a 
permeate water production capacity of up to 66.8 m3/day (17,640 GPD) 
utilizing three 8-in. RO elements (Dow Filmtec SW30HRLE-400, Dow 
Chemical Company, Midland, MI), and three inside-out poly
ethersulfone (PES) multi-bore hollow fiber (0.02 μm pore size) UF 
membrane modules (each having membrane surface area of 50 m2; 
Dizzer 5000 +, Inge, Greifenberg, Germany) arranged in parallel. Feed 
water from open sea intake was pumped directly (offshore from the port) 
to a 7571 L (2000 gal) holding tank (< 3 h detention time) and then 
delivered to the RO pretreatment unit by a feed pump (XT100 SS, 3.73 
kW, Price Pump, Sonoma, CA) controlled by a variable-frequency drive 
(VFD) (VLT AQUA Drive FC202, Danfoss, Denmark). 

Feedwater to the UF modules was first filtered via an inline basket 
strainer (Hayward SB Simplex, Clemmons, NC), followed by a 200 μm 
self-cleaning microfilter (TAF-500, Amiad Corp., Mooresville, NC). 
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Switching between filtration and backwash mode, and changing filtra
tion/backwash directions (top or bottom) for the individual UF module 
banks was facilitated by electrically actuated 2 and 3 way ball valves 
[41]. Prior to delivery of the UF filtrate to the RO modules, it was passed 
through a cartridge filter (Ahlstrom Standard Disruptor) consisting of 
woven nano-alumina fibers (boehmite nanofibers) with a high adsorp
tive capacity for a wide range of dissolved organic matter (DOM). This 
filtration unit provided additional protection of the RO elements to 
capture both nanoparticles and potentially DOM that may have passed 
through the UF module. 

UF Filtrate and backwash flowrates were monitored using magnetic 
flow meters (Signet 2551, George Fischer Signet, Inc. El Monte, CA) and 
hydraulic pressure was monitored via sensors (AST4000, American 
Sensor Technologies, Mt. Olive, NJ). Inline coagulant (FeCl3) dosing of 
the UF feed at the UF pump inlet was accomplished using a metering 
pump (DDA 7.5–16, Grundfos, Bjerringbro, Denmark), to enhance the 
effectiveness of suspended matter removal and backwash efficiency 
[42]. A turbidity meter (Signet 4150, Georg Fischer Signet LLC, El 
Monte, CA), fluorometer sensor (Turner Designs, Cyclops-72,108, San 
Jose, CA), pH meter (Sensorex S8000CD, EM802/pH, Garden Grove, 
CA), and a temperature sensor (Signet 2350–3, George Fischer Signet 
LLC, El Monte, CA) were installed on the UF filtrate line. A summary of 
the relevant physical sensors and calculated process metrics used for 
model development are provided in Table 1. 

2.2. Field study conditions 

Seawater feed to the integrated UF-RO system was of variable quality 
over the study period. A summary of the range of intake water quality 
parameters is provided in Table 2. Feedwater turbidity, Chlorophyll a 
and total organic carbon levels varied over the ranges of 0.6–19 NTU, 
12–300 μg/L and 0.7–1.3 mg/L, respectively. Seawater feed to the UF 
modules was not chlorinated and that UF backwash was accomplished 
without chemical additives. The RO unit was operated at 35% recovery 
without antiscalant dosing as scaling was not observed at this recovery 
level. A total of 178 short-term and 2 long-term UF filtration tests were 
carried out in three sequential phases. In the first phase, UF perfor
mance, with respect to progression of UF filtration fouling resistance and 

backwash effectiveness, was assessed for different inline coagulant 
(FeCl3) dose levels for all 180 field tests (422 operational days). UF 
performance with coagulant dosing was evaluated for the range of 
1.9–4.7 mg/L Fe3+ for fixed filtration periods, each of minimum of 64 
filtration/backwash cycles. In the second phase, 178 tests were con
ducted to evaluate the impact of coagulant dose, backwash flux, dura
tion, and frequency on UF performance. 

Short UF tests were carried out over 15–60 min periods, each 

Table 1 
The description of UF-RO system sensorsa.  

Parameter and descriptiona Parameter 

UF Inflow Rate QUF,feed 

UF Element 1 (E1) Inflow rate QUF,p1 

UF Element 2 (E2) Inflow rate QUF,p2 

UF Element 3 (E3) Inflow rate QUF,p3 

UF Backwash Flow Rate QUF,backwash 

UF Filtrate pH pHUF,permeate 

Microfilter (MF) Inlet Pressure PMF,feed 

Microfilter (MF) Trans-filter Pressure ∆PMF=PMF, feed-PMF, 

permeate 

UF Inlet Filtration Pressure PUF, feed 

UF Feed-Side Backwash Pressure PUF, feed, backwash 

UF Filtrate Side Backwash Pressure PUF, backwash 

UF Filtrate-Side Pressure PUF,permeate 

UF Filtrate Turbidity TuUF,permeate 

UF Feedwater Turbidity (Post-MF) TuUF,feed 

UF Feed Pump RPM VRPM 

UF Filtrate Temperature TUF,feed 

Coagulant Dose) d 
NFeedwaterChlorophyll a RFU (determined at pump houseb CUF,feed 

Initial UF Resistance (Calculated Metric, Section 2.3) RUF,o 
UF Filtration Duration tUF,filtration 

UF Backwash Flux JUF, backwash 

UF Backwash Duration tUF,backwash  

a Online sensor data was acquired at a frequency of 1 Hz; Unless otherwise 
indicated all variables relate to the UF unit; E1, E2 and E3 denote the first, 
second and third UF elements, respectively. 

b Raw seawater pumped from open intake. Note: Filtration and backwash 
modes were categorical parameters designating the corresponding operational 
periods. 

Fig. 1. Simplified schematic diagram of the UF-RO seawater desalination system showing an operational mode whereby UF modules 1 and 2 are infiltration mode 
while module 3 is undergoing backwash. (AC – hydraulic accumulator; CF – carbon filter; CV – retentate control valve; DV-flow splitter; HP – high pressure RO feed 
pump; LP – low pressure pump; MF – microfilter; UF – ultrafilters as three modules arranged in parallel; RO – RO elements in pressure vessels; CG – coagulant dosing 
unit). The various lines represent the following: thick solid lines - feed flow to and from filtering UF units and the RO elements feed-channels; Dashed-dot line – 
backwash stream from MF filter; Thin solid line – permeate streams; line with short dashes – feed flow to UF module 3 when either UF modules 1 or 2 are in backwash 
mode; Lines with wide dashes – RO concentrate backwash stream to UF module 1; Dotted lines – RO concentrate backwash to UF modules 1 and 2 when these 
undergo backwash. 
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consisting of at least 12 filtration/backwash cycles. The third phase 
focused on two longer term (>240 h) tests in which various fouling 
indicators were quantified to characterize UF filtration and backwash 
performance during periods of temporal variability of feedwater quality. 
At the end of each test, the UF modules were backwashed with the RO 
concentrate for two minutes at a flux of 162 L/m2h (approximately 3.6- 
fold the filtration flux). Chemical cleaning in place was carried out 
approximately every two months following a manufacturer protocol 
using an alkaline detergent and surfactant solutions. 

UF filtrate turbidity, chlorophyll a and TOC levels were <0.03 NTU, 
<0.7 μg/L, and <0.5 mg/L, respectively. Throughout the study duration, 
the RO elements were well protected by UF pretreatment of the RO feed as 
reported in previous studies with the integrated UF-RO system at the same 
location [15,17,41]. The permeability and salt rejection of the RO elements 
remained stable at 1.85 ± 0.137 × 10− 12 m/Pa⋅s and ~ 99.5% over the 
course of the four-year study. It is also noted that RO Permeate salinity and 
TOC were consistent at levels of 148 ± 13 mg/L TDS and < 0.5 mg/L, 
respectively. 

2.3. Online UF fouling and performance indicators 

UF pretreatment of RO feed water was carried out at constant 
filtration flux in a “dead-end” mode. Each UF cycle comprised of a 
filtration period and a subsequent backwash period as illustrated in 
Fig. 2. The critical UF performance indicators utilized in the study were 
the time-dependent UF membrane resistance during filtration, post- 
backwash UF resistance and its evolution, as well as backwash effi
ciency [43]. These metrics were based on real-time monitoring of UF 
process parameters which included filtrate and backwash durations, 
filtration backwash fluxes, corresponding feed-side and filtrate-side 
pressures, in addition to coagulant dose, feedwater turbidity, chloro
phyll a and feed temperature. 

UF filtration resistance was determined given the measured filtration 
flux, JF (m/s), and transmembrane pressure, ΔP (kPa), where the 
filtration flux was expressed as JF=∆P/μRt, in which μ is the feed water 
viscosity (Pa⋅s), and the overall (or total) membrane hydraulic resis
tance is denoted by Rt [42]. The typical resistance-in-series model [44] 

Fig. 2. Illustration of the operation (filtration/backwash) cycles. Rinitial,n and Rfinal,n are the initial and final UF membrane resistances, respectively (ΔRT,n = Rfinal,n −

Rinitial,n) for cycle n filtration duration of Δtn, and ΔRUB,n is the cycle n unbackwashed portion of the membrane fouling resistance buildup from cycle n-1. (Rinitial,n also 
represents the post-backwash resistance associated with cycle n-1 and ΔRBW,n = ΔRT,n + ΔRUB,n). (Adapted from [43]). 

Table 2 
Seawater quality datasets for the study period at the study field site.  

No. of Datasets Dataset Type No. of operating days  
(No. Cycles) 

Turbidity (NTU) Chlorophyll (RFU, μg/L) Coagulant dosec 

(mg/L Fe3+) 
pH Temperature (◦C) 

180 Total 422 (18014) [0.6, 19.0] [12, 300] [1.9, 4.7] [7.5, 8.2] [11.2, 25.6] 
150 Traininga 324 (14287) [0.6, 17.7] [12, 260] [1.9, 4.7] [7.5, 8.0] [11.2, 25.6] 
30 Testb (total) 98 (3727) [0.9, 19.0] [32, 300] [1.9, 4.4] [7.5, 8.2] [12.5, 24.9] 
1d Test (#TE1) 13 (689) [1.3, 2.3] [46, 98] 2.7 [7.8, 8.0] [19.7, 24.0] 
1e Test (#TE10) 3 (142) [3.4, 5.1] [75, 89] 2.7 [7.9, 8.2] [12.7, 17.0] 
1f Test (#TE15) 3 (130) [1.5, 3.2] [61, 124] [2.6, 3] [7.7, 7.9] [17.3, 21.9] 
1g Test (#TE22) 4 (170) [0.6, 4.4] [58, 244] 2.7 [7.7, 8.1] [14.3, 16.4] 
1h Test (#TE23, Storm) 8 (520) [1.5, 19] [43, 142] [3.6, 4.4] [7.6, 8.1] [14.8, 17.1]  

a 150 training datasets of which 47 were for UF operation at variable coagulant dose (mg/L as Fe3+) for the ranges: [1.9, 3], [2.6, 3] and [3.6, 4.7]. 
b Thirty test datasets of which 15 sets were with variable coagulant dose in the range of 1.9–4.4 mg/L Fe3+. 
c Coagulant dose range for the indicated dataset types or dataset number. 
d Dataset #TE1–13 day operational period. 
e Dataset #TE10–3 days of operation with variable filtration cycle duration. 
f Dataset #TE15 - UF operation at a progressively increasing and then decreasing coagulant dose. 
g Dataset #TE22 - UF operation during the widest variability of feedwater Chlorophyll a and turbidity. 
h Dataset #TE23 - acquired during a storm event. 
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was used to describe the total resistance expressed as Rt=Rm+Rcake+Rirr, 
in which Rm, Rcake, and Rirr represent the hydraulic resistance of the 
clean membrane, and the added foulant cake and irreversible fouling 
resistances, respectively. The cake layer that builds on the membrane 
surface which can be removed by backwash is regarded as the reversible 
fouling resistance. The irreversible resistance is attributed to the foulant 
not removed by backwash. For a given filtration cycle n, the initial UF 
resistance (Rinitial,n) (i.e., post-backwash resistance for cycle n-1), the 
final UF filtration resistance (Rfinal,n), and filtration duration (Δtn) were 
computed based on the measured UF transmembrane pressure and 
filtration flux. 

For a given cycle, n, the increase in UF fouling resistance, ΔRT,n (i.e., 
Rfinal,n - Rinitial,n-1) was expressed as ∆Rt,n=∆RUB,n+∆RBW,n, in which 
resistance removed in the previous backwash period is given by ΔRBW,n 
= Rfinal,n - Rinitial,n, and the unbackwashed fouling resistance is ΔRUB,n =

Rinitial,n - Rinitial,n-1. With progressive filtration/backwash cycles the 
change in ΔRUB,n is indicative of the foulant removal efficacy by UF 
backwash. In principle, ΔRUB can be negative (i.e., ΔRUB ≫ Rirr) when 
foulant removal, in a given cycle, is greater in comparison with the 
previous cycle (e.g., due to changing environmental conditions and 
improved water quality). The above behavior can occur when foulant 
not removed from the UF elements in a given backwash cycle is partially 
or completely removed in subsequent backwash cycles. The progression 
of post-backwash (PB) UF resistance for each cycle, i.e., RPB, n - Rinitial, 

n+1, and the ability to reduce the rate of PB resistance (RPB) increase are 
governed by the ability to reduce the cycle-to-cycle unbackwashed 
membrane resistance (ΔRUB, n) increase. The progressive post-backwash 
resistance increase with progressive filtration/backwash cycles is given 
by: 

RPB =
∑N

n=0

(
RPB,n− 1 − Rinitial,n− 1

)
=

∑N

n=0
∆RUB,n = Rinitial,N − Rinitial,0 (6)  

where RPB, which is indicative of the overall state of UF membrane 
fouling, is the summation of the cycle-to-cycle UF unbackwashed 
resistance change, and where Rinitial,N and Rinitial,0 are the final post- 
backwash and initial UF membrane filtration resistances, respectively. 
Finally, the efficiency of UF backwash (BWeff,n) for a given cycle [16] can 
thus be conveniently expressed as, 

BWeff ,n(%) =
∆RBW,n

∆RT,n
∙100 =

(

1 −
∆RUB,n

FRn∙∆tn

)

∙100 (5)  

in which BWeff,n(%) represents the percentage of removed fouling 
resistance, and FRn is the fouling rate for the given filtration cycle n, i.e., 
FRn=∆RT,n/∆tn. The above fouling metrics and backwash efficiency were 
determined based on the compiled UF performance datasets (Table 2, 
Table S1, Section S1 Supplementary Material) and then utilized for 
model building as described in Section 2.2. 

2.4. Workflow 

UF data-driven Back Propagation Neural Networks, with Alopex- 
based evolutionary algorithm (BPNN-AEA), were developed as 
ensemble BPNN-AEA models to describe UF resistance (during filtration 
and backwash) and backwash efficiency, respectively. The above model 
development followed the workflow shown in Fig. 3. Briefly, after data 
collection and preprocessing, exploratory data analysis was carried out 
to remove attributes redundancy and then evaluate attribute signifi
cance based on model performance, thereby establishing the reasonably 
needed (and optional) set of model attributes (Section 2.6). Subse
quently, the identified significant attributes were used to establish an 
ensemble BPNN-AEA model that provides predictions based on a 
weighted aggregation of ourcomes from the individual BPNN-AEA 
models. Finally, the ensemble BPNN-AEA model was tested using both 
normal and storm data demonstrating the utility of the modeling 
approach for forecasting UF operational performance. Model training 
and test datasets comprised of 150 and 30 UF operational tests, 
respectively, whereby the overall dataset consisted of a total of 13.4 
million raw data samples, each with the 22 quantitative attributes listed 
in Table 1. 

2.5. Data collection and preprocessing 

UF operational performance was determined based on measurements 
from multiple sensors (Table 1). The compiled dataset were interrogated 
with respect to attribute correlations to enable pruning (i.e., model 
tuning) for final BPNN-AEA model development. The overall dataset was 
compiled from 53 thousand UF operational cycles, acquired from a four- 
year study (2012–2015), and comprised of 180 distinct field tests of 
durations ranging from hours to 45 days. Each UF cycle consisted of a 
filtration period followed by a backwash period. A summary of the field 
tests with the relevant attribute definitions and their ranges is provided 
in Table 2. The compiled data, comprising of 180 datasets, were split 
into two sets of 150 and 30 datasets for BPNN-AEA model training and 
testing, respectively. Model training with binary Bayesian classification 
was then carried out to enable the BPNN-AEA model to switch between 
the two distinct UF operational filtration and backwash modes. 

The BPNN-AEA models for UF resistance and backwash efficiency 
were developed based on the attributes of greatest significance (Section 
2.6). Model attributes were normalized in the range of [0,1] as (x −
xmin)/(xmax − xmin) for n = 1,2, …,N where N is the total number of data 
samples, and xmin and xmax are the minimum and maximum reported 
values in a dataset, respectively. UF resistance and backwash efficiency 
data revealed temporal irregularity (i.e., the mean values were non- 
stationary for the time-series data) and followed non-stationary sto
chastic patterns with non-uniform statistical measures (i.e., increasing 
or decreasing mean value) [45]. Accordingly, for BPNN-AEA model 

Fig. 3. Workflow for UF filtration and backwash efficiency assessment and BPNN-AEA model development.  
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development, non-stationarity was removed via a second order differ
encing [46]. 

2.6. Data exploration and attribute selection 

In order to address the tradeoff between model complexity and 
performance, the importance of each individual attribute was initially 
assessed using BPNN-AEA models developed for all 22 attributes 
(Table 1). These attributes were selected as the basic process variables 
most likely toimpact UF filtration and backwash [43]. The feed forward 
feature selection (FFFS) [47] and minimal redundancy maximal rele
vance (mRMR) were used to initially identify and then rank the attri
butes assessed individually with respect to model performance (Fig. S1, 
Section S2, Supplementary Material). Subsequently, the assessment of 
attribute significance was carried out iteratively, whereby in each iter
ation an attribute was sequentially added to the model. An attribute was 
considered significant and retained as part of the model attribute set 
when model improvement due to said attribute increased by R2 > 0.01. 
This process continued until no discernible increase in R2 was observed 
(i.e., incremental increase in R2 was <0.01; Section 3.1, Fig. 5). 

2.7. AdaBoost BPNN model with AEA optimization algorithm 

Machine learning models for ultrafiltration (UF) resistance and 
backwash efficiency (Sections 3.2, 3.3) were developed based on back 
propagation neural network (BPNN) models [37] following the work
flow described in Fig. 3. Given the high level of data diversity (Table 2), 
independent BPNN models were developed, and trained utilizing 150 
datasets (Section 2.5) based on the adaptive boosting (AdaBoost) 
ensemble method [39]. It is noted that the BPNN-AEA models were each 
applicable for the different ranges of temporally varying water quality 
and operating conditions. The ensemble model was then developed 
whereby predictions from the family of the individual BPNN models 
were weighted to arrive at a single final ensemble model prediction for 
the target input attributes [47,48]. Detailed description of the ensemble 
learning (AdaBoost) approach can be found elsewhere [39]. Model at
tributes (i.e., input variables) were selected via a forward feature se
lection approach [47]. The BPNN models were tuned via optimization to 
minimize the loss function (i.e., the squared difference between the 
observed and predicted outcomes, i.e., UF resistance and backwash ef
ficiency). At each iteration the loss function for each model was mini
mized via the backpropagation algorithm until the given model 
converged (i.e., the convergence threshold of 10− 5 in term of the 
normalized model output) [37,49]. In the above approach, model 
weights were fine-tuned at every training step, thereby increasing model 
generalizability. Tuning of weight updates per epoch was enhanced 

using the Alopex-based evolutionary algorithm (AEA) [50,51]. 
In the present study, the BPNN-AEA model structure was with 7 input 

nodes, one layer of 15 hidden nodes and 1 output node. Each BPNN-AEA 
model comprised of a filtration and a backwash mode. Binary Bayesian 
classification was introduced to adaptively identify the filtration and 
backwash modes and overcome data non-uniformity and high variance 

Table 3 
Identified most significant and other relevant model attributes.  

Minimum set of required 
attributes 

BPNN-AEA 
UF Model 
Attributes 

(F- filtration, 
B-backwash) 

Attribute impact 

All Storm 

ΔPMF (MF Trans-filter 
pressure) 

F F Increases with rising feedwater 
fouling propensity 

ΔPUF-Filtrate 

(transmembrane pressure 
during filtration) 

F F Higher transmembrane pressure 
results in higher permeate flux and 
higher rate of fouling 

ΔPUF-Backwash 

(transmembrane pressure 
during backwash) 

B B Higher backwash permeate 
pressure, for a target backwash flux, 
is indicative of greater foulant 
buildup from the filtration period 

Initial UF resistance F, 
B 

B The initial resistance at the 
beginning of each filtration period 

Coagulant dose F, 
B 

F, B Coagulant dose increases UF 
filtration and backwash efficiency 
up to a critical level. [43] 

UF feed water turbidity F, 
B 

F, B Required UF feed pressure increases 
with feedwater turbidity and can 
lead to decreased backwash 
efficiency 

Filtrate temperature F, 
B 

F, B Foulant adherence to the UF 
membrane surface may vary with 
temperature 

Backwash duration B B Longer backwash duration will 
improve backwash efficiency but 
may lead to longer filtration period 
to attain the target filtrate 
productivity  

Optional attributes: 
Filtrate pH F F Membrane surface fouling may be 

affected by pH 
Chlorophyll a RFUa F, 

B 
F, B Greater UF fouling and possibly 

lower backwash efficiency may be 
associated with increasing 
Chlorophyll a RFU 

Backwash flux B  Backwash efficiency is expected to 
increase at higher backwash flux  

a Chlorophyll a RFU variability was significant primarily during the storm 
event (Table 2). 

Fig. 4. Flowchart of the ensemble BPNN-AEA 
method. Model predictions from each BPNN-AEA 
model were used to calculate individual BPNN-AEA 
model performance metrics (i.e., R2 and RMSE, i.e., 
box 1). These performance metrics were utilized to 
derive a weight function assigning a weight to each of 
the BPNN-AEA models (i.e., box 2) used for the 
ensemble model weighted average predictions (box 
3), for the target scenario, based on the predictions of 
the individual 150 BPNN-AEA models (Yensemble).   
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for robust prediction. The sets of model parameters of each BPNN-AEA 
model were aggregated to form a generalized BPNN-AEA ensemble 
model (Fig. 4) to describe both the filtration and backwash operational 
modes for each UF operation cycle. The ensemble model was validated 
using a set of 30 test datasets (Table 2). 

Model performance metrics (i.e., R2 and RMSE - box 1 in Fig. 4) were 
calculated using each BPNN-AEA model predictions {Ŷ1, Ŷ2,…, Ŷ150 – 
blue dashed box in the middle column of Fig. 4} which were then used to 
derive a weight function W={ω1,...,ω150} (box 2 in Fig. 4), for each 
model k {k = 1,2, …150), as given by ωk = πk/

∑150
j=1 πj in which πk = 1/ 

(Ravg
2 /Rk

2 + RMSEk/RMSEavg). Given the above, model outcome predic
tion (Yensemble) for an operational scenario (i.e., based on the model at
tributes) was based on a weighted average of the individual BPNN-AEA 
models [37,39], as per the AdaBoost approach, given by Yensemble =
∑150

k=1ωk*Ŷk . The above approach enabled predictions that are specific 
to the operating conditions range over the entire training datasets, as 
well as the 30 test datasets that included a storm event. 

Performance of BPNN-AEA models was quantified by the root-mean- 
squared error (RMSE) and R-squared. RMSE was determined from 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(

yi − ŷi

)/

N

√

. R-squared, which was calculated as 

R2 = 1 −
∑N

i=1
(
yi − ŷi

)2
/
∑N

i=1
(
yi − y

)2, represents the variance pro
portion in the dependent variable (UF resistance or backwash efficiency) 
that is predictable based on the independent variables, where N is the 

number of test samples, and y and ŷi are the average and predicted 
(model estimated) values, respectively. 

The deployed ensemble learning approach required ~10 min for 
training the final ensemble BPNN-AEA model, while the validation of 
one set of input parameters (i.e., one sample) was essentially instanta
neous on a PC with i7 Processor and 32 GB RAM. In addition, updating of 
a new ensemble BPNN-AEA model with a new dataset of size in the range 
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Fig. 5. BPNN-AEA model prediction accuracy for the 
most significant attributes identified via FFFS 
approach based on the (a) 150 training datasets 
(Section 2.2, Table 2), and (b) a storm event (dataset 
#TE23, Table 2). The indicated attributes (Table 1) 
were incrementally added to those previously selected 
by FFFS for each BPNN model and the R2 values of 
each BPNN model for the included attribute were then 
averaged (Datasets 1–150)). The order of attribute 
selection by the FFFS based on the highest R2 also 
infers its importance to the correlation.   

Fig. 6. The number of datasets in which the listed top seven attributes were 
ranked as indicated. 
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of the current datasets required ~20 seconds to calculate the new BPNN- 
AEA model parameters and associated model scores for the independent 
models in the ensemble. 

3. Results and discussion 

3.1. Exploration of attribute relevance to modeling of post-backwash UF- 
resistance and backwash efficiency 

In order to assess the most relevant set of attributes for the BPNN- 
AEA models, the significance of each attribute in the initial attribute 
pool (Table 2) was evaluated with the attributes ranked based on the 
FFFS approach (Section 2.6). The average R2 values for the most sig
nificant attributes (Table 3) were determined, based on 150 BPNN-AEA 
models developed following the workflow presented in Fig. 3. The R2 

values are presented in Fig. 5, in the order of their decreasing impor
tance. Ranking of the identified significant attributes and a summary of 
the number of datasets that supported their ranking are provided in 
Fig. 6. In all cases, the ranking was supported by more than 100 of the 
150 datasets used for assessing attribute significance. The same set of top 
10 attributes were also identified via a mRMR coefficient analysis 
(Section S2, Supplementary Material) of the data using the 22 model 
attributes (Table 1). Performance of the above individual models with 
the top ten attributes, for their respective training datasets, was with R2 

~ 0.78–0.92 and RMSE ~0.015–0.132, and R2 ~ 0.76–0.91, RMSE 
~0.01–0.08 for the post-backwash UF resistance and backwash effi
ciency models, respectively. 

Predictive performance of the ensemble BPNN-AEA model (Section 
2.7, Fig. 4), based on the 150 training datasets, was evaluated with 
respect to predictive performance for each of the 30 test datasets (Fig. 7). 
Predictive performance of the ensemble models for the post-backwash 
UF resistance and backwash efficiency models, based on the 30 test 
datasets, with the minimum attributes set (Table 3), was with R2 ~ 
0.87–0.96 and RMSE ~0.019–0.072, and R2 ~ 0.89–0.96, RMSE 
~0.013–0.0260, respectively. The distributions of R2 and RMSE for 
predictions of the post-backwash resistance and backwash efficiency, 
averaged over the 30 test datasets, were R2 ~ 0.945, RMSE ~ 0.0325 and 
R2 ~ 0.922, RMSE ~ 0.0154, respectively. Addition of the optional at
tributes for modeling post-backwash resistance and backwash efficiency 

(Table 3), slightly improved the corresponding model predictions to R2 

~ 0.96, RMSE ~ 0.0277 and R2 ~ 0.94, RMSE ~ 0.0137, respectively. 
Overall, it is apparent that BPNN-AEA model predictions were quite 
reasonable for filtration (i.e., post-backwash resistance) and backwash 
efficiency, even with merely the top 5 and 6 attributes, respectively 
(Fig. 5), over a wide range of raw water quality (Table 2) and coagulant 
dose. It is noted that during periods of significant water quality fluctu
ations, experienced during a four-day storm event (Table 2), inclusion of 
the attributes Chlorophyll a RFU and Filtrate pH slightly improved model 
performance. The post-backwash resistance model (for the filtration) R2 

increased (by 0.005) to 0.945, and RMSE decreased (by 0.005) to 
0.0236, while for backwash efficiency predictions R2 increased to 0.92 
(i.e., improved by 0.02) and RMSE decreased (by 0.006) to 0.016. 
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Fig. 7. Performance of the BPNN-AEA models, using the minimum attribute set (Table 3), for the 30 test datasets in terms of (a) R2, and (b) RMSE for post-backwash 
UF resistance and backwash efficiency using the minimum attribute set (Table 3). The ranges of R2 and RMSE for are provided in Table 4. 

Table 4 
Ensemble BPNN-AEA model performance for hydraulic UF resistance, backwash 
efficiency and post-backwash resistance predictions based on the complete 
attribute set for the 30 test datasetsa.  

Prediction Performance 
Metrics 

Typical Operationb Storm Eventc 

Hydraulic Resistance 

Filtration Backwash Filtration Backwash 

R2 0.923–0.98 
(Avg 0.962) 

0.90–0.968 
(Avg 0.948) 

0.945 0.934 

RMSE 0.012–0.051 
(Avg 

0.0273) 

0.021–0.059 
(Avg 

0.0317) 

0.039 0.053    

Backwash 
Efficiency 

<RPB>/<RPB >0 Backwash 
Efficiency 

<RPB>/ 
<RPB >0 

R2 0.917–0.972 
(Avg 0.942) 

0.91–0.967 (Avg 
0.947 

0.92 0.92 

RMSE 0.008–0.016 
(Avg 0.0135) 

0.010–0.02 (Avg 
0.013) 

0.012 0.016  

a Attribute set is provided in Table 2. 
b based on the collection of the 30 test datasets (Table 2). 
c Dataset #TE23 (4-day storm event). 
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3.2. BPNN-AEA model for UF resistance and backwash efficiency 

The range of UF hydraulic resistance prediction accuracy of the 
ensemble model, for the filtration and backwash operational periods, for 
the 30 test datasets, is given in Table 4. The ensemble models R2 for the 
filtration and backwash hydraulic resistances were in the range of 
0.92–0.98 and 0.9–0.97, respectively, with RMSE below 0.051 for all 
cases. Backwash efficiency and post-backwash UF resistance predictions 
for the test datasets were of comparable high levels with RMSE below 
0.016 and 0.02, respectively (Section 3.3, Table 4). It is interesting to 
note that model predictions of UF performance for the storm event 
dataset (Table 2), during which the range of feed water turbidity and 
Chlorophyll a varied significantly during a 4-day period (Table 2), were 
equally good with R2 of 0.945 and 0.934 for the hydraulic resistance 
during UF filtration and backwash, respectively, with the corresponding 
RMSE for the above periods being 0.023 and 0.033. Model performance 
for backwash efficiency and for post-backwash UF resistance during the 
storm event were also of reasonable accuracy with R2 of 0.92 and 0.94, 
respectively and corresponding RMSE of 0.012 and 0.028. 

An illustration of the ensemble BPNN-AEA model (based on Ada
Boost) prediction for UF post-backwash resistance that encompasses 
both the filtration and backwash periods is shown in Fig. 8 (dataset 
#TE1) demonstrating prediction accuracy of R2 ≈ 0.941 with RMSE ≈
0.028 (Fig. 9). Predictions for the UF filtration mode (group A above the 
horizontal dashed line in Fig. 8 and to the right of the dashed vertical 
line in Fig. 9) were with R2 ≈ 0.95 with RMSE ≈ 0.022. There are 
noticeable groupings in Fig. 9, left of the vertical dashed line, which are 
associated with the two backwash modes (B and C; below the horizontal 
dashed line in Fig. 8) that exist in the present UF system (Section 2.1). 
The middle grouping (B) is for post-backwash UF filtration resistance 
after concentrate backwash at a constant permeate flux, while the lowest 
grouping (C) is for post-backwash resistance attained after additional 
pulse backwash [43]. The above groupings that are associated with the 
different operational modes are evident in the illustration of Fig. 8, 
demonstrating a rise in UF resistance during filtration (region above the 
middle horizontal line). In the backwash region (below the horizontal 
dashed line) UF resistance decreases during constant UF backwash (B) 
and rises to a significantly greater degree when pulse backwash is active 
(C). The accuracy of predictions as illustrated in Figs. 8 and 9 confirms 
the adequacy of the identified minimum set of process attributes for 

tracking membrane filtration resistance for both the UF filtration and 
backwash periods. 

3.3. Ensemble BPNN-AEA model performance during conditions of fixed 
and variable coagulant dosing strategy 

The majority of the training datasets (103 groups) were for a fixed 
coagulant dosing strategy (range of 2.7–3.5 mg/L Fe3+), while 15 of the 
test datasets were for UF operation under variable coagulant dosing in 
the range of 1.9–4.4 mg/L Fe3+. Model performance, with the complete 
attribute set (Table 3) for the latter 15 test datasets was with R2 ~ 
0.94–0.98 and RMSE ~0.012–0.047 for UF resistance and R2 ~ 
0.937–0.972, RMSE ~0.008–0.017 for backwash efficiency. Operation 
with suboptimal coagulant dose [43] would lead to rapid decline in 
backwash efficiency and as a consequence progressive increase of UF 
post-backwash resistance. This scenario is illustrated in Fig. 10a and 
Fig. S2 (Section S3, Supplementary Material) for dataset #TE22 for 
operation 170 cycles (over 4 days) at a constant coagulant dose of 2.7 
mg/L Fe3+. During the above operational period Chlorophyll a and 
turbidity were high and in the range of 58–244 mg/L and 0.6–4.4 NTU, 
respectively (Fig. 10c). It is interesting to note that the backwash effi
ciency typically declined when spikes of worsening water quality were 
encountered as can be seen, for example, for UF cycles 86 and 132. 
Overall, the BPNN-AEA model for backwash efficiency (using the com
plete attribute set) demonstrated good performance with R2 of 0.923 
and RMSE of 0.01 (Fig. 10b) tracking the progressive decrease in 
declining backwash efficiency. The above behavior was likely the result 
of ferric chloride coagulant dose which was well below the reported 
critical threshold dose (i.e., above which further backwash efficiency 
enhancement was not observed) of ~4.16 mg/L Fe3+ for the present UF 
system treatment of seawater [43]. Model predictions of post-backwash 
resistance for the filtration and backwash periods were also at a 
reasonable level of R2 ~ 0.932 and RMSE~0.045. 
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Fig. 9. BPNN-AEA model (with binary Bayesian classification) predictions of 
UF resistance (for both the filtration and backwash operational modes) under 
typical operating conditions over a period of 3 days comprising of 142 UF 
filtration cycles (Dataset #TE10). The vertical dashed line represents the sep
aration between the UF filtration (right) and backwash processes. (Note: 
turbidity, and Chlorophyll a ranges were 3.4–5.1 NTU and 61–124 μg/L 
respectively, with UF operation at a constant coagulant dose of 2.7 mg/L Fe3+). 

Fig. 8. Example of BPNN-AEA model (with binary Bayesian classification) 
prediction of UF resistance (for filtration and backwash operational modes) for 
the first ten of the 142 cycles of test dataset #TE10 dataset corresponding 
to Fig. 9. 

Y. Zhou et al.                                                                                                                                                                                                                                    



Desalination 513 (2021) 115129

10

Below the critical coagulant threshold dose, as the coagulant dose 
increases so does the rate of foulant cake formation, and in turn the 
backwash efficiency increases [43]. The above behavior is illustrated for 
test dataset #TE15 in Fig. 11a (also, Fig. S3, Section S3 Supplementary 
Material) for UF operation over a period of 3 days (130 UF operational 
cycles) in which the coagulant dose was incrementally lowered and then 
raised over the course of the test. The coagulant dose range remained 
below the critical threshold coagulant dose for the present UF RO 
seawater feed pretreatment [43]. 

BPNN-AEA model predictions, using the full attribute set, tracked the 
backwash efficiency decline to 74% as the coagulant dose was incre
mentally lowered from its initial value of 3 mg/L to 2.6 mg/L. Once the 
coagulant dose was incrementally raised, the backwash efficiency 
correspondingly increased. Over the entire operational period for the 
above dataset, feedwater quality, as quantified by turbidity and by 
Chlorophyl a fluctuated (Fig. 11c) over the range of 1.5–3.2 NTU 61–124 
μg/L, respectively. Nonetheless, model predictions of backwash effi
ciency were excellent with R2 and RMSE of 0.942 and 0.0083, respec
tively (Fig. 11b). However, when Chlorophyll a and turbidity were 
excluded from the set of attributes, model performance declined to R2 ~ 
0.932 and RMSE~0.015. It is noted that if only one of either Chlorophyll 
a or turbidity are excluded, model performance is somewhat greater 
with R2 ~ 0.935, RMSE~0.011 and R2 ~ 0.939, RMSE~0.010, respec
tively, but lower relative to predictions with the full set of attributes. 

A particularly revealing test of the ensemble model in tracking UF 

performance during a storm event (#TE23) is illustrated in Fig. 12, and 
Fig. S4 (Section S3, Supplementary Material) for backwash efficiency, 
post-backwash UF resistance and evolution of UF resistance, respec
tively. During the storm event, water quality in terms of turbidity and 
Chlorophyl a varied significantly (Fig. 12c) by 1.5–19 NTU and 43–142 
μg/L fold, respectively, over the course of 8 days. Prior to the storm 
event, the post-backwash UF resistance increased steadily (Fig. S4, 
Section S3 Supplementary Material) for operation at a coagulant dose of 
3.6–4.4 mg/L Fe3+. However, once the coagulant dose controller was 
activated (about 10 cycles after the start of the storm event), the coag
ulant dose progressively increased up to a level of 4.4 mg/L Fe3+ by 
cycle 245. The post-backwash UF resistance continued to rise (by up to 
25% of its pre-storm level), but after 300 UF operational cycles the 
backwash efficiency began to increase reaching a maximum at the 
highest dose level during the storm. 

It is stressed that backwash efficiency can be greater than 100% 
given that foulant layer not backwashed in previous cycles may be 
removed in subsequent cycles [17,43]. The ensemble model accurately 
predicted the evolution of backwash efficiency (Fig. 12a and b) and post- 
backwash resistance (Fig. S4, Section S3 Supplementary Material), 
during the storm event, at a performance level of R2 and RMSE 0.92 and 
0.012, and 0.94 and 0.042, respectively). It is noted that exclusion of 
both Chlorophyll a and turbidity as model attributes (indicative of 
feedwater quality) reduces the backwash efficiency model performance 
to R2 and RMSE of 0.906 and 0.019, respectively. When only one of 
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Fig. 10. Example of backwash efficiency predictions for 
dataset #TE22 in which the coagulant dose was constant (2.7 
mg/L Fe3+) and the raw seawater UF feed turbidity and 
Chlorophyll a exhibited the widest ranges of 0.6–4.4 NTU and 
58–243.3 μg/L respectively): (a) variation of backwash effi
ciency with UF operational cycles, (b) predicted versus 
observed backwash efficiency, and (c) variability of feedwater 
turbidity and Chlorophyll a. UF operation period was 4 days 
with a total of 170 UF operational cycles.   

Y. Zhou et al.                                                                                                                                                                                                                                    



Desalination 513 (2021) 115129

11

either Chlorophyll a or turbidity were removed as input model attributes, 
model performance was further reduced to R2 and RMSE of 0.916, 0.014 
and 0.911, 0.017, respectively. 

4. Conclusions 

Ensemble BPNN model with AEA optimization was developed to 
describe the progression of ultrafiltration (UF) resistance during filtra
tion and backwash in feed pre-treatment of RO seawater desalination. 
The model was developed based on an extensive 4-year operation of an 
integrated UF-RO seawater desalination system. The model demon
strated good predictive accuracy in describing UF time-series data which 
displayed temporal variability of UF performance in response to varying 
UF feedwater quality. Based on dataset of 422 days of UF-RO operation 
(consisting of 13.4 million data samples), over a wide range of water 
quality and operational settings (e.g., coagulant dose strategy), an 
ensemble model was developed following the AdaBoost strategy. The 
ensemble model was evaluated using test datasets for different operating 
conditions including a storm event that presented highly variable water 
quality conditions in terms of Chlorophyll a and turbidity. The ensemble 
model provided accurate predictive representation of UF operation in 
terms of UF membrane resistance during filtration and backwash, and of 
backwash efficiency and post-backwash UF resistance. In particular, the 
model described UF performance under dynamic conditions of variable 

coagulant dosing strategy. The excellent level of model performance 
suggests that there is potential for practical applications of the present 
machine-learning modeling approach to: (a) assess UF system perfor
mance drift such as deviation from expected baseline performance, (b) 
utilization of the approach for forecasting system performance based on 
expected changes in water quality, and (c) as a basis for model-based 
control of UF coagulant dosing control. 
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Fig. 11. Illustration of BPNN-AEA ensemble model predictions of UF backwash efficiency for operation with variable coagulant dose over 130 UF operational cycles 
of dataset #TE15 (3 days): (a) UF backwash efficiency predictions, (b) prediction versus field data of backwash efficiency, and (c) seawater UF feed turbidity and 
Chlorophyll a demonstrating variability in the ranges of 1.5–3.2 NTU and 61–124 μg/L, respectively. 
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Appendix A. Supplementary Material and Data 

Detailed UF performance data can be found online at: doi:https://doi 
.org/10.5068/D1310B Supplementary material to this article can be 
found online at doi:https://doi.org/10.1016/j.desal.2021.115129. 
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