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Abstract: Process operational safety plays an important role in designing control systems for
chemical processes. Motivated by this, in this work, we develop a process Safeness Index-based
economic model predictive control system for a broad class of stochastic nonlinear systems with input
constraints. A stochastic Lyapunov-based controller is first utilized to characterize a region of the
state-space surrounding the origin, starting from which the origin is rendered asymptotically stable
in probability. Using this stability region characterization and a process Safeness Index function that
characterizes the region in state-space in which it is safe to operate the process, an economic model
predictive control system is then developed using Lyapunov-based constraints to ensure economic
optimality, as well as process operational safety and closed-loop stability in probability. A chemical
process example is used to demonstrate the applicability and effectiveness of the proposed approach.

Keywords: process operational safety; economic model predictive control; Safeness Index; nonlinear
systems; chemical processes; probabilistic uncertainty

1. Introduction

Process operational safety has become crucially important in the chemical industry since the
failure of process safety devices/human error often leads to disastrous incidents causing human
and capital loss [1]. Motivated by this, recently, a new class of economic model predictive control
systems (EMPC), in which the cost function penalizes process economics instead of the distances
from the steady-state in a general quadratic form, was utilized to account for process operational
safety and economic optimality based on a function called the Safeness Index [2,3]. These new EMPC
methods complement previous efforts on economic model predictive control (e.g., [4–7]), which were
not concerned explicitly with process operational safety. Specifically, in [2], a Safeness Index function
that indicates the level of safety of a given state was utilized to characterize a safe operating region
and used as a constraint in the EMPC design such that the closed-loop state of a nonlinear process
is guaranteed to be driven into the safe operating region in finite time in the presence of sufficiently
small bounded disturbances and, if the Safeness Index takes a special form related to a Lyapunov
function used in the EMPC design, to never again exit that safe operating region while maximizing
the economics of the process. However, in general, the Safeness Index does not have to take this
special form and may therefore leave the safe operating region for finite periods of time (this may be
acceptable depending on how the notion of a “safe” region of operation is selected; e.g., perhaps a
“safe” region of operation means it is safe to operate in for all times, but that if the state is not in that
region for short periods of time, there is not an immediate concern). Therefore, with a general form
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of the Safeness Index, the hard constraint on this function in the EMPC design of [2] with a Safeness
Index-based constraint may not be feasible. Due to the potential infeasibility issue caused by the
hard constraint, the potential for the state to leave the safe operating region unless the Safeness Index
has a specific form and the fact that disturbances may not be sufficiently small to guarantee that the
closed-loop state re-enters this safe operating region, the EMPC design with a Safeness Index-based
constraint may be limited in terms of its applicability to stochastic nonlinear systems.

On the other hand, MPC and EMPC of stochastic nonlinear systems have received a lot of
attention recently (e.g., [8,9]). Uncertainty in the process model may be considered to have a worst-case
upper and lower bound, or it may be considered to have unbounded variation and therefore be
treated in a probabilistic manner. Since the variation of disturbances is not bounded in a stochastic
nonlinear system, the Lyapunov-based economic model predictive control (LEMPC) framework [4]
developed for nonlinear systems with small bounded disturbances is unable to guarantee closed-loop
stability (i.e., the state of the closed-loop system stays within a well-characterized region of the
state-space); instead, probabilistic closed-loop stability results are expected in this case. To that end,
in [10], the Markov-chain Monte Carlo technique was used to derive the probabilistic convergence to a
near-optimal solution for a constrained stochastic optimization problem. In [9], a Lyapunov-based
model predictive control (LMPC) method was proposed for stochastic nonlinear systems to drive the
state to a steady-state within an explicitly characterized region of attraction in probability. Recently, the
work [11] developed a Lyapunov-based EMPC method for stochastic nonlinear systems by utilizing the
probability distribution of the disturbance term to derive closed-loop stability and recursive feasibility
results in probability.

In the same direction, this work focuses on the design of Safeness Index-based economic model
predictive control systems for a broad class of stochastic nonlinear systems with input constraints.
Specifically, under the assumption of the stabilizability of the origin of the stochastic nonlinear system
via a stochastic Lyapunov-based control law, a process Safeness Index function and the level sets of
multiple Lyapunov functions are first utilized to characterize a safe operating region in state-space,
starting from which recursive feasibility and process operational safety are derived in probability
for the stochastic nonlinear system under an economic model predictive controller. This economic
model predictive control method is then designed that utilizes stochastic Lyapunov-based constraints
to achieve economic optimality, as well as feasibility and process operational safety in probability in
the well-characterized safe operating region.

The rest of the manuscript is organized as follows: in the Preliminaries, the notation, the class
of systems and the stabilizability assumptions are given. In the Main Results, the process Safeness
Index and the Safeness Index-based LEMPC are introduced. Subsequently, the Safeness Index-based
LEMPC using multiple level sets of Lyapunov functions (to broaden the state-space set for which it is
recursively feasible) is developed for the nominal system. Based on this, the corresponding stochastic
Safeness Index-based LEMPC and its probabilistic process operational safety and feasibility properties
are developed for the nonlinear stochastic system. Finally, a nonlinear chemical process example is
used to demonstrate the application of the proposed stochastic Safeness Index-based LEMPC.

2. Preliminaries

2.1. Notations

Throughout the paper, we use the notation (Ω,F , P) to denote a probability space. The notation
|·| is used to denote the Euclidean norm of a vector, and the notation |·|Q denotes the weighted
Euclidean norm of a vector (i.e., |x|Q = xTQx where Q is a positive definite matrix). xT denotes the
transpose of x. R+ denotes the set [0, ∞). The notation L f V(x) denotes the standard Lie derivative

L f V(x) := ∂V(x)
∂x f (x). Given a set D, we denote the boundary of D by ∂D, the closure of D by D and

the interior of D by Do. Set subtraction is denoted by “\”, i.e., A\B := {x ∈ Rn : x ∈ A, x /∈ B}.
A continuous function α : [0, a) → [0, ∞) is said to be a class K function if α(0) = 0 and it is strictly
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increasing. The function f (x) is said to be a class Ck function if the i-th derivative of f exists and is
continuous for all i = 1, 2, ..., k. Consider a stochastic process x(t, w) : [0, ∞)×Ω→ Rn on (Ω,F , P).
For each w ∈ Ω, x(·, w) is a realization or trajectory of the stochastic process, and we abbreviate
x(t, w) as xw(t). E(A), P(A), E(A | ·) and P(A | ·) are the expectation, the probability, the conditional
expectation and the conditional probability of the occurrence of the event A, respectively. The hitting
time τX of a set X is the first time that the state trajectory hits the boundary of X. Additionally, we
define τX,T(t) = min{τX , T, t}, where T is the operation time.

2.2. Class of Systems

Consider a class of continuous-time stochastic nonlinear systems described by the following
system of stochastic differential equations:

dx(t) = f (x(t))dt + g(x(t))u(t)dt + h(x(t))dw(t) (1)

where x ∈ Rn is the stochastic state vector and u ∈ Rm is the input vector. The available control action
is defined by U := {u ∈ Rm | umin

i ≤ u ≤ umax
i , i = 1, 2, ..., m}. The disturbance w(t) is a standard

q-dimensional independent Wiener process defined on the probability space (Ω,F , P). f (·), g(·),
and h(·) are sufficiently smooth vector and matrix functions of dimensions n× 1, n×m and n× q,
respectively. It is assumed that the steady-state of the system with w(t) ≡ 0 is (x∗s , u∗s ) = (0, 0).
The initial time t0 is defined as zero (t0 = 0). We also assume that h(0) = 0 such that the disturbance
term h(x(t))dw(t) of Equation (1) vanishes at the origin.

Definition 1. Given a C2 Lyapunov function V : Rn → R+, the infinitesimal generator (LV) of the system of
Equation (1) is defined as follows:

LV(x) =L f V(x) + LgV(x)u +
1
2

Tr{h(x)T ∂2V
∂x2 h(x)} (2)

We assume that L f V(x), LgV(x) and h(x)T ∂2V
∂x2 h(x) are locally Lipschitz throughout the work.

Definition 2. Assuming that the equilibrium of the uncontrolled system dx(t) = f (x(t))dt + h(x(t))dw(t)
is at the origin, then the origin is said to be asymptotically stable in probability, if for any ε > 0, the following
conditions hold ([12]):

lim
x(0)→0

P( lim
t→∞

x(t) = 0) = 1 (3a)

lim
x(0)→0

P(sup
t≥0
|x(t)| > ε) = 0 (3b)

Proposition 1. Given the uncontrolled system dx(t) = f (x(t))dt + h(x(t))dw(t), if for all x ∈ D0 ⊂ Rn,
where D0 is an open neighborhood of the origin, LV < 0 holds ∀t ∈ (0, ∞), then E(V(x(t))) < V(x(0)),
∀t ∈ (0, ∞), and the origin of the uncontrolled system is asymptotically stable in probability ([12]).

2.3. Stabilizability Assumptions

We assume there exists a stochastic stabilizing feedback control law u = Φs(x) ∈ U (e.g., [13,14])
such that the origin of the system of Equation (1) can be rendered asymptotically stable in probability
for all x ∈ D ⊂ Rn, where D is an open neighborhood of the origin, in the sense that there exists a
positive definite C2 stochastic control Lyapunov function V that satisfies the following inequality:

LV = L f V(x) + LgV(x)Φs(x) +
1
2

Tr{hT ∂2V
∂x2 h}

≤ −α1(|x|)
(4)
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where α1(·) is a class K function.
Based on the controller Φs(x), we characterize the set φd := {x ∈ Rn | LV + κV(x) ≤ 0, u =

Φs(x) ∈ U, κ > 0}. We also choose a level set Ωρ := {x ∈ φd | V(x) ≤ ρ} of V(x) inside φd as the
stability region for the system of Equation (1). Therefore, the origin of the system of Equation (1) is
rendered asymptotically stable via the controller Φs(x) in probability if x(0) = x0 ∈ Ωρ.

In this work, we develop an economic MPC design that takes advantage of the Safeness Index
function [2] in its design to achieve probabilistic process operational safety in the following sense:

Definition 3. Consider the system of Equation (1) with input constraints u ∈ U. If there exists a control law
u = Φ ∈ U such that the state trajectories of the system for any initial state x(0) = x0 ∈ S satisfy x(t) ∈ S ,
∀ t ≥ 0 with the probability p, where S is a safe operating region in state-space that excludes the unsafe region D,
we say that the control law Φ maintains the process state within a safe operating region S with probability p.

Remark 1. In general, the safe operating region S is characterized as a subset of the stability region (because
process operation is safe provided that the system is operated within a closed-loop stability region) for the
closed-loop system of Equation (1) to account for the additional safety constraints. Therefore, if there exists a
control law u = Φ(x) ∈ U that maintains the process state within S with the probability p, it also maintains
the process state within the stability region at least with probability p. This implies that the probability of process
operational safety of the system of Equation (1), which we will discuss in the following sections, also gives a
lower bound on probabilistic closed-loop stability.

3. Main Results

In this section, the process Safeness Index and the optimization problem of Safeness Index-based
LEMPC designed for the nominal system of Equation (1) with w(t) ≡ 0 are first presented. Based on
that, the Safeness Index-based LEMPC using multiple level sets of Lyapunov functions is developed
for the nominal system of Equation (1) to guarantee recursive feasibility and to guarantee that the
closed-loop state does not enter an unsafe operating region D. Subsequently, the stochastic Safeness
Index-based LEMPC is developed for the system of Equation (1) to account for the disturbances w(t)
with unbounded variation. The stochastic safety and feasibility in probability of the closed-loop system
of Equation (1) are finally investigated under the sample-and-hold implementation of the proposed
stochastic Safeness Index-based LEMPC.

3.1. Process Safeness Index

In [2], the Safeness Index function S(x) was developed to indicate the level of safety of a given
state, through which process operational safety was integrated with process control system design to
account for the process operational safety considerations resulting from multivariable interactions or
interactions between units. There are various methods of determining the functional form of S(x), for
example by utilizing first-principles process models or using systematic safety analysis tools such as
HAZOP and fault tree analysis.

Based on the functional form of S(x), the closed-loop state predictions are required to be
maintained within a safe region S (where S(x) is below the threshold on the Safeness Index STH) by
using the Safeness Index-based constraint within the process control design. Additionally, the safety
systems (e.g., the alarm, emergency shut-down and relief systems) can be triggered if the threshold
STH is sufficiently exceeded, which implies that the process operation becomes unsafe and further
actions are required.

3.2. Safeness Index-Based LEMPC

Safeness Index-based LEMPC optimizes an economic cost function Le(·, ·) and maintains the
closed-loop state of the nominal system of Equation (1) with w(t) ≡ 0 in a safe operating region by
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utilizing the Safeness Index function as a hard constraint within the LEMPC design. Specifically, the
formulation of the Safeness Index-based LEMPC is as follows:

max
u(t)∈ST(∆)

∫ tk+τP∆

tk

Le(x̃(τ), u(τ)) dτ (5a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (5b)

u(t) ∈ U, ∀ t ∈ [tk, tk + τP∆) (5c)

x̃(tk) = x(tk) (5d)

V(x̃(t)) < ρ′e, ∀ t ∈ [tk, tk + τP∆)

if x(tk) ∈ Ωo
ρ′e

(5e)

S(x̃(t)) ≤ STH , ∀ t ∈ [tk, tk + τP∆)

if S(x(tk)) ≤ STH (5f)

V̇(x(tk), u(tk)) ≤ V̇(x(tk), Φn(x(tk))),

if x(tk) ∈ Ωρ′\Ωo
ρ′e

or S(x(tk)) > STH (5g)

where x̃ is the predicted state trajectory, ST(∆) is the set of piecewise constant functions with sampling
period ∆, τP is the number of sampling periods of the prediction horizon and V̇ = L f V(x) + LgV(x)u.
Φn(x) is the stabilizing feedback control law designed for the nominal system of Equation (1) with w(t) ≡ 0
such that the origin of the system of Equation (1) can be rendered asymptotically stable. Under the controller
Φn(x), we first characterize the set φn := {x ∈ Rn | V̇ + κV(x) ≤ 0, u = Φn(x) ∈ U, κ > 0} and choose
the level set Ωρ′ := {x ∈ φn | V(x) ≤ ρ′} inside φn as the stability region. Ωρ′e := {x ∈ Rn | V(x) ≤ ρ′e}
where 0 < ρ′e < ρ′ is further designed to make the region Ωρ′ a forward invariant set in the presence of
sufficiently small bounded disturbances.

The constraint of Equation (5e) allows the cost function of Equation (5a) to be maximized while
keeping the predicted closed-loop state within Ωo

ρ′e
if x(tk) ∈ Ωo

ρ′e
. The safety constraint of Equation (5f)

is applied to maintain the predictions of the closed-loop state within the safe operating region
S := {x ∈ Rn | S(x) ≤ STH} if x(tk) ∈ S. On the other hand, if x(tk) ∈ Ωρ′\Ωo

ρ′e
or x(tk) is outside of S,

the constraint of Equation (5g) is activated to decrease V(x) such that x(t) will move towards the origin
within the current sampling period.

Remark 2. Since the safe operating region S is not necessarily a forward invariant set based on the formulation
of the Safeness Index function, the threshold STH set on the Safeness Index may define a region that is irregularly
shaped, for example the grey region in Figure 1 [2] corresponding to a chemical reactor example similar to the
one in the section “Application to a Chemical Process Example” of this manuscript. Therefore, the existence of
feasible solutions (i.e., the satisfaction of the constraints of Equation (5)) of the Safeness Index-based LEMPC is
not guaranteed in S due to the constraint of Equation (5f). Additionally, S(x(t)) may not even decrease under
the constraint of Equation (5g) due to the same reason (that S is not an invariant set). Considering the above
feasibility issue in the formulation of the Safeness Index-based LEMPC, a new Safeness Index-based LEMPC is
developed in the following subsection by using multiple Lyapunov functions to characterize the safe operating
region S .



Mathematics 2018, 6, 69 6 of 19

2 1.5 1 0.5 0 0.5 1 1.5 2
80

60

40

20

0

20

40

60

80

x1

x
2

S(x) ≤ STH

Safeness Index-based LEMPC
Ωρ '

Figure 1. A schematic representing the safe operating region S (the gray region) with an example
closed-loop trajectory under the Safeness Index-based Lyapunov-based economic model predictive
control (LEMPC) design of Equation (5) for the initial condition (0, 0).

3.3. Safeness Index-Based LEMPC Using Multiple Level Sets

The improved Safeness Index-based LEMPC for the nominal system of Equation (1) with w(t) ≡ 0
is developed utilizing the level sets of two Lyapunov functions V1 and V2 to characterize the safe
and unsafe operating regions. Throughout this work, we assume that the shape of the stability
regions, D, and their intersection are amenable to the treatment in this work, such as the use of only
two Lyapunov functions in the LEMPC design and also the types of overlap of the stability regions
described. Specifically, as shown in Figure 2, we define two level sets: Ωρ′ := {x ∈ φ′n | V1(x) ≤ ρ′} and
Us′ := {x ∈ φ′n | V2(x) ≤ s′} inside φ′n := {x ∈ Rn | V̇i + κVi(x) ≤ 0, i = 1, 2, u = Φn(x) ∈ U, κ > 0},
from which the origin of the nominal system of Equation (1) is rendered asymptotically stable.

-3 -2 -1 0 1 2 3
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-50

0

50
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′

Ωρ′

Figure 2. A schematic representing the unsafe region D (dark gray) and the safe operating region
S := S1 ∪ S2 (light gray).
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Ωρ′ represents the stability region as it is in the Safeness Index-based LEMPC of Equation (5),
and Us′ is designed to exclude the unsafe region D where S(x) > STH . Therefore, the safe operating
region S becomes the union of S1 := Ωρ′ ∩ Us′ and S2 := Ωρ′\(S1 ∪D) in Figure 2. This new Safeness
Index-based LEMPC design is formulated by the following optimization problem:

max
u∈ST(∆)

∫ tk+τP∆

tk

Le(x̃(t), u(t)) dt (6a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (6b)

x̃(tk) = x(tk) (6c)

u(t) ∈ U, ∀ t ∈ [tk, tk + τP∆) (6d)

V1(x̃(t)) < ρ′e,

if x(tk) ∈ Ωo
ρ′e

, ∀t ∈ [tk, tk + τP∆) (6e)

V2(x̃(t)) < s′e,

if x(tk) ∈ Uo
s′e

, ∀t ∈ [tk, tk + τP∆) (6f)

V̇i(x(tk), u(tk)) ≤ V̇i(x(tk), Φn(x(tk))), i = 1, 2

if x(tk) ∈ Ωρ′\Ωo
ρ′e

, or x(tk) ∈ Us′\Uo
s′e

(6g)

where the notation follows that in Equation (5). Ωρ′e and Us′e are again chosen as the level sets inside φ′n
to make Ωρ′ and Us′ forward invariant sets, respectively. In the optimization problem of Equation (6),
the objective function of Equation (6a) is the integral of Le(x̃(t), u(t)) over the prediction horizon.
The constraint of Equation (6b) is the nominal system of Equation (1) with w(t) ≡ 0 that is used to
predict the states of the closed-loop system. Equation (6c) defines the initial condition x̃(tk) of the
optimization problem determined from a state measurement x(tk) at t = tk. Equation (6d) represents
the input constraints applied over the entire prediction horizon. The constraint of Equation (6e)
maintains the predicted states in Ωo

ρ′e
when the current state x(tk) ∈ Ωo

ρ′e
. Similarly, the constraint of

Equation (6f) maintains the predicted states in Uo
s′e

when x(tk) ∈ Uo
s′e

. The contractive constraint of
Equation (6g) is activated to decrease both V1 and V2 such that the closed-loop state enters the smaller
level sets of V1 and V2 (i.e., towards the interior of S1). Therefore, under the Safeness Index-based
LEMPC of Equation (6), if x(tk) ∈ S1, the constraints of Equations (6e)–(6g) maintain the closed-loop
state in S1. If x(tk) ∈ S2, the constraints of Equations (6e) and (6g) are applied to maintain the
closed-loop state in Ωρ′ , under which x(t) will stay in S2 or enter S1 in some time.

Remark 3. Based on the Safeness Index function S(x) and its threshold STH , the level set Us′ of the Lyapunov
function V2 is chosen to exclude the unsafe region D that is originally in the level set Ωρ′ of the Lyapunov
function V1 as shown in Figure 2. Since Us′ and Ωρ′ are both forward invariant sets for the nominal system
(or the system with sufficiently small bounded disturbances) of Equation (1) under the controller Φn(x) ∈ U that
satisfies V̇i + κVi(x) ≤ 0, i = 1, 2, κ > 0, it follows that under the corresponding constraint of Equation (6g),
the overlapping region S1 is also an invariant set. Therefore, the infeasibility problem caused by the Safeness
Index constraint of Equation (5f) is solved by introducing the second level set Us′ into the LEMPC design.
For the remaining part of the safe operating region S2, the constraints of Equations (6e) and (6g) are utilized
to ensure that the closed-loop state stays in Ωρ′ all the time, which is similar to closed-loop stability under
the traditional LEMPC [4]. Since the sampling period ∆ has to be sufficiently small in the sample-and-hold
implementation of the Safeness Index-based LEMPC of Equation (6), we can utilize a sufficiently small ∆ such
that x(tk+1) is unable to jump into D within one sampling period if x(tk) ∈ S2. This implies that at the next
sampling time, the state x(tk+1) either stays in S2 or enters S1 via the boundary between S1 and S2. In both
cases, it is considered that the state is maintained in the safe operating region according to Definition 3.
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Remark 4. Besides the above development of Safeness Index-based LEMPC using multiple Lyapunov functions,
there are also other methods that can guarantee the feasibility of the Safeness Index-based constraint in the
LEMPC design. For example, in the optimization problem of Equation (5), we can choose a more conservative
level set of V(x) (i.e., a small level set inside Ωρ′ that excludes D) as the safe operating region. However, if the
unsafe region characterized by the Safeness Index function is a set of points inside the stability region and is
difficult to exclude by a single level set like Us′ , we may want to use control Lyapunov barrier functions to design
the constraints that account for the unsafe region in state-space [15] and overcome the infeasibility problem.

3.4. Stochastic Safeness Index-Based LEMPC

Inspired by the Safeness Index-based LEMPC design of Equation (6), the stochastic Safeness
Index-based LEMPC design is given by the following optimization problem:

max
u∈ST(∆)

∫ tk+τP∆

tk

Le(x̃(t), u(t)) dt (7a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (7b)

x̃(tk) = x(tk) (7c)

u(t) ∈ U, ∀ t ∈ [tk, tk + τP∆) (7d)

V1(x̃(t)) < ρe,

if x(tk) ∈ Ωo
ρe , ∀t ∈ [tk, tk + τP∆) (7e)

V2(x̃(t)) < se,

if x(tk) ∈ Uo
se , ∀t ∈ [tk, tk + τP∆) (7f)

LVi(x(tk), u(tk)) ≤ LVi(x(tk), Φs(x(tk))), i = 1, 2

if x(tk) ∈ Ωρ\Ωo
ρe , or x(tk) ∈ Us\Uo

se (7g)

where the notation follows that in Equation (6) except using ρ, ρe, s, se, Φs(x) and LV to replace ρ′, ρ′e,
s′, s′e, Φn(x) and V̇, respectively. For the system of Equation (1) with multiple Lyapunov functions,
φd is characterized as: φd = {x ∈ Rn | LVi + κVi(x) ≤ 0, i = 1, 2, u = Φs(x) ∈ U, κ > 0}. Ωρ, Ωρe , Us

and Use are level sets of V1 and V2 inside φd, where 0 < ρe < ρ and 0 < se < s. Similar to the LEMPC
designs of Equations (5) and (6), the optimal input trajectory determined by the optimization problem
of the stochastic Safeness Index-based LEMPC is denoted by u∗(t), which is calculated over the entire
prediction horizon t ∈ [tk, tk + τP∆). The control action computed for the first sampling period of
the prediction horizon u∗(tk) is sent to the actuators to be applied over the sampling period, and the
optimization problem of Equation (7) is re-solved at the next sampling time.

The constraint of Equation (7e) maintains the predicted state in Ωo
ρe when the current state

x(tk) ∈ Ωo
ρe and the constraint of Equation (7f) maintains the predicted state in Uo

se when the current
state x(tk) ∈ Uo

se . However, if x(tk) ∈ Ωρ\Ωo
ρe or x(tk) ∈ Us\Uo

se , the constraint of Equation (7g) is
activated to decrease V1(x) and V2(x) such that it is possible that x(t) moves back to Ωo

ρe ∩ U
o
se .

Since there exists a disturbance w(t) with unbounded variation dw(t) in the system of Equation (1),
process operational safety (i.e., the closed-loop state is bounded in the safe operating region S) can only be
ensured in probability. Therefore, in the following sections, we will establish the probabilities of process
operational safety of the system of Equation (1) under the stochastic Safeness Index-based LEMPC of
Equation (7).

3.5. Sample-And-Hold Implementation

We first investigate the impact of the sample-and-hold implementation of Equation (7) on the
stability of the closed-loop system of Equation (1) following similar arguments to those in [9,11].
Specifically, the probabilities of the sets Ωρ and Us remaining invariant under the sample-and-hold
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implementation of the Safeness Index-based LEMPC of Equation (7) with a sampling period ∆ are
given as follows.

Theorem 1. Consider the system of Equation (1) with Ωρ and Us inside φd under the control actions u
computed by the LEMPC of Equation (7). Let u(t) = u(tk), ∀t ∈ [tk, tk + ∆). Then, given any probability
λ ∈ (0, 1], there exist positive real numbers ρs < ρe < ρ and ρs < se < s where Ωρs and Uρs are level sets of V1

and V2, respectively, around the origin where LVi, i = 1, 2 are not required to remain negative for the nominal
system of Equation (1) under the sample-and-hold implementation of u(t), and there also exists a sampling
period ∆∗ := ∆∗(λ), such that if ∆ ∈ (0, ∆∗], then:

P( sup
t∈[0,∆]

V1(x(t)) < ρ) ≥ 1− λ, ∀x(0) ∈ Ωo
ρe (8)

P( sup
t∈[0,∆]

V2(x(t)) < s) ≥ 1− λ, ∀x(0) ∈ U o
se (9)

P( sup
t∈[0,∆]

LVi(x(t)) < −ε < 0) ≥ 1− λ, i = 1, 2,

∀x(0) ∈ (Ωρ ∪ Us)\(Ωo
ρs ∩ U

o
ρs)

(10)

Proof. Let AB := {w : supt∈[0,∆∗ ] |w(t)| ≤ B}. Using the results for standard Brownian motion [16],
given any probability λ ∈ (0, 1], there exists a sufficiently small B, s.t. P(AB) = 1− λ. For each
realization xw(t) with x(0) ∈ Ωρ ∪ Us and w ∈ AB, there almost surely exists a positive real number
k1, s.t. supt∈[0,∆∗ ] |xw(t)− x(0)| ≤ k1(∆∗)r, where r < 1/2, according to the local Hölder continuity.
Therefore, the probability of the event AW := {w : supt∈[0,∆∗ ] |x(t)− x(0)| ≤ k1(∆∗)r} is:

P(AW) ≥ 1− λ (11)

We first prove that the probabilities of Equations (8) and (9) hold for the first sampling period.
It should be noted that the probabilities of Equations (8)–(10) can be generalized to any sampling
period t ∈ [tk, tk + ∆] with the measurement of x(tk) playing the role of x(0) in Equations (8)–(10).

Since Vi(x), i = 1, 2 satisfies the local Lipschitz condition, there exist positive real numbers
k2i, i = 1, 2, such that |Vi(x(t))− Vi(x(0))| ≤ k2i|x(t)− x(0)|, i = 1, 2. Therefore, for all w ∈ AW , if
∆∗ < ∆1 = ( ρ−ρe

k21k1
)(

1
r ), it follows that |V1(xw(t))−V1(x(0))| < ρ− ρe,∀t ≤ ∆∗. Furthermore, ∀x(0) ∈ Ωo

ρe ,
it is obtained that V1(xw(t)) < ρ, ∀t ≤ ∆∗ since −(ρ − ρe) < V1(x(t)) − V1(x(0)) < ρ − ρe and
supx(0)∈Ωo

ρe
V1(x(0)) = ρe. Therefore, if x(0) ∈ Ωo

ρe , the probability of x(t) staying inside Ωρ is

P(supt∈[0,∆∗ ] V1(x(t)) < ρ) ≥ 1 − λ. Similarly, if ∆∗ < ∆2 = ( s−se
k22k1

)(
1
r ), for any x(0) ∈ Uo

se , the
probability of x(t) staying inside Us is P(supt∈[0,∆∗ ] V2(x(t)) < s) ≥ 1− λ.

We now prove the probability of Equation (10) by using the equation LVi(x(t)) = LVi(x(0)) +
(LVi(x(t))− LVi(x(0))), ∀t ∈ [0, ∆∗], i = 1, 2. It is shown that there exists a positive real number
ε such that LVi(x(t)) < −ε holds ∀x(0) ∈ (Ωρ ∪ Us)\(Ωo

ρs ∩ U
o
ρs) for the nominal system of

Equation (1) based on the definition of the value of LVi in φd. However, LVi(x(t)) < −ε only
holds in probability for the system in the presence of the disturbances w(t). Based on the local Lipschitz

conditions of L f Vi(x), LgVi(x) and h(x(t))T ∂2Vi(x(t))
∂x2 h(x(t)), there exist positive real numbers k3, k4, k5,

such that |L f Vi(x(t)) − L f Vi(x(0))| ≤ k3|x(t) − x(0)|, |LgVi(x(t)) − LgVi(x(0))| ≤ k4|x(t) − x(0)|,
| 12 Tr{h(x(t))T ∂2Vi(x(t))

∂x2 h(x(t))}− 1
2 Tr {h(x(0))T ∂2Vi(x(0))

∂x2 h(x(0))}| ≤ k5|x(t)− x(0)|, i = 1, 2.

Let 0 < ε < κρs and ∆∗ < ∆3 = ( κρs−ε
k1(k3+k4+k5)

)(
1
r ). It follows from LVi(x(t)) ≤ LVi(x(0)) +

|LVi(x(t))−LVi(x(0))| < LVi(x(0)) + κρs − ε (which follows from the application of the Lipschitz
properties of the components of LVi with ∆∗ < ∆3) and the fact that x(0) ∈ (Ωρ ∪ Us)\(Ωo

ρs ∩ U
o
ρs) and

LVi(x0) < −κVi(x(0)), that ∀w ∈ AW , LVi(xw(t)) < −ε < 0, ∀t ≤ ∆∗, i = 1, 2 holds. Therefore, by
choosing the sampling period ∆ ∈ (0, ∆∗], given any initial condition x(0) ∈ (Ωρ ∪ Us)\(Ωo

ρs ∩ U
o
ρs),
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the probability that LVi(x(t)) < −ε is as follows: P(supt∈[0,∆∗ ] LVi(x(t)) < −ε, i = 1, 2) ≥ 1− λ.
Finally, let ∆∗ ≤ min{∆1, ∆2, ∆3}, and the probabilities of Equations (8)–(10) are all satisfied for
∆ ∈ (0, ∆∗].

3.6. Stability in Probability

Based on the results from the above section, the probabilistic process operational safety of the
closed-loop system of Equation (1) under the Safeness Index-based LEMPC of Equation (7) applied in
a sample-and-hold fashion is established by the following theorem.

Theorem 2. Consider the system of Equation (1) under the stochastic Safeness Index-based LEMPC of
Equation (7) applied in a sample-and-hold implementation (i.e., u(t) = u(i∆), ∀ i∆ ≤ t < (i + 1)∆,
i = 0, 1, 2, ...). Then, given ρe ∈ (0, ρ), se ∈ (0, s) and probability λ ∈ (0, 1], there exist a sampling time
∆ ∈ (0, ∆∗(λ)] and probabilities β, β′, γ, γ′ ∈ [0, 1]:

supx∈∂Ωρe
V1(x)

infx∈Rn\Ωρ
V1(x)

≤ β (12a)

supx∈∂Use
V2(x)

infx∈Rn\Us V2(x)
≤ β′ (12b)

max{V1(x(0))
ρ

, β} ≤ γ (12c)

max{V2(x(0))
s

, β′} ≤ γ′ (12d)

such that the following probabilities hold:

P( sup
t∈[0,∆)

V1(x(t)) < ρ, sup
t∈[0,∆)

V2(x(t)) < s)

≥ (1− β)(1− β′)(1− λ), ∀x(0) ∈ S1e

(13)

P( sup
t∈[0,∆)

V1(x(t)) < ρ)

≥ (1− β)(1− λ), ∀x(0) ∈ S2e

(14)

P(τRn\S1e
(∆) ≤ τS1(∆))

≥ (1− γ)(1− γ′)(1− λ), ∀x(0) ∈ S1\So
1e

(15)

where Se := S1e ∪ S2e is a subset of S that subtracts the risk margins ρ− ρe and s− se. The relationship
among the sets S1e := Ωρe ∩ Use and S2e := Se\S1e and the unsafe region D are shown in Figure 3.
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Figure 3. A schematic representing the unsafe region D (dark gray) and the region Se := S1e ∪ S2e

(light gray), which is the safe operating region S subtracting the risk margins ρ− ρe and s− se.

Proof. The proof consists of three parts. We first show that under the Safeness Index-based LEMPC of
Equation (7), any state trajectory initiated from x(0) ∈ S1e has the probability defined by Equation (13)
of staying in S1 := Ωρ ∩ Us. However, if x(0) ∈ S2e, we prove that under the Safeness Index-based
LEMPC of Equation (7), there exists the probability of Equation (14) for the state of the closed-loop
system to stay in Ωρ and with a sufficiently small ∆ to stay in the part of Ωρ that excludes D. Finally, if
x(0) is inside S1\So

1e, we can show that the closed-loop state trajectory reaches the boundary of S1e
first before it leaves S1 (implying it does not enterD) with the probability of Equation (15). However, if
x(0) ∈ Ωρ\Ωo

ρe and x(0) /∈ (Us ∪ D) (i.e., the white risk margin around S2e in Figure 3), we show
that it does not enter D, ∀t ∈ [0, ∆) in probability, as well. Additionally, for the sake of simplicity,
we denote the probabilities and expectations conditional on the event of AW given in the section
“Sample-And-Hold Implementation” as P∗(·) and E∗(·).

Part 1: To show that Equation (13) holds for all x(0) ∈ S1e, we consider both the case that x(0) ∈ So
1e

and that x(0) ∈ ∂S1e. The former case is handled by Equations (8) and (9). Specifically, if x(0) ∈ So
1e,

then both x(0) ∈ Ωo
ρe and also x(0) ∈ U o

se . Then, P(supt∈[0,∆) V1(x(t)) < ρ, supt∈[0,∆) V2(x(t)) < s) ≥
1−λ (Equations (8) and (9) for ∆∗ ≤ min{∆1, ∆2}). Since (1−λ) ≥ (1− β)(1− β′)(1−λ) for β ∈ [0, 1],
β′ ∈ [0, 1], Equation (13) holds when x(0) ∈ So

1e. When x(0) ∈ ∂S1e, Equation (13) is also satisfied.
To show this, we first assume x(0) ∈ ∂Ωρe and prove that the probability of x(t) staying in Ωρ within
one sampling period conditioned on the event of AW is (1− β). When x(0) ∈ ∂Ωρe , Equation (7g)
will be utilized in the LEMPC of Equation (7). Under the constraint of Equation (7g), the optimization
problem of Equation (7) is solved such that LV1 is forced to be negative for any x(tk) ∈ Ωρ\Ωo

ρe , which
implies that Equation (10) holds (i.e., LV1 < −ε for t ∈ [0, ∆] with the probability of the event AW).
Using Dynkin’s formula [17], the following equation can be derived:

E∗(V1(x(τΩρ\Ωo
ρe
(t))))

= V1(x(0)) + E∗(
∫ τΩρ\Ωo

ρe
(t)

0
LV1(x(s))ds)

(16)
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The following probability is derived using similar arguments as in [11], for all x(0) ∈ ∂Ωρe :

P∗(V1(x(t)) ≥ ρ, for some t ∈ [0, ∆))

≤ V1(x(0))
infx∈Rn\Ωρ

V1(x)
(17)

Bounding Equation (17) with Equation (12a) and taking the complementary events, the following
probability is obtained:

inf
x(0)∈∂Ωρe

P∗(V1(x(t)) < ρ, ∀t ∈ [0, ∆)) ≥ (1− β) (18)

Using the same steps as performed above, we can prove that ∀x(0) ∈ ∂Use , the probability of x(t)
staying in Us within one sampling period conditioned on the event of AW is as follows:

inf
x(0)∈∂Use

P∗(V2(x(t)) < s, ∀t ∈ [0, ∆)) ≥ (1− β′) (19)

Since the set of initial conditions x(0) ∈ S1e is the intersection of Ωρe and Use , by combining
the probabilities of Equations (18) and (19) together and using Equation (10), the probability of
Equation (13) is obtained via the definition of conditional probability.

Part 2: If x(0) ∈ S2e ⊂ Ωρe , then either x(0) ∈ Ωo
ρe or x(0) ∈ ∂Ωρe . If x(0) ∈ S2e and Ωo

ρe ,
then Equation (8) holds and P(supt∈[0,∆) V1(x(t)) < ρ) ≥ 1− λ ≥ (1− β)(1− λ) for β ∈ [0, 1], and
Equation (14) therefore holds. If instead x(0) ∈ S2e and ∂Ωρe , then the results of Part 1 indicate that
Equation (18) holds. Applying the definition of conditional probability, this also gives that Equation (14)
holds. Moreover, we show that x(t) is maintained inside the safe operating region S within one
sampling period with the probability of Equation (14) (i.e., ∀t ∈ [0, ∆), x(t) will not jump into D
in probability). It is shown in the section “Sample-And-Hold Implementation” that ∀t ∈ [0, ∆), the
change of Vi(x) is limited (i.e., |V1(x(t))−V1(x(0))| < k1k21∆∗, ∀t ≤ ∆∗ and |V2(x(t))−V2(x(0))| <
k1k22∆∗, ∀t ≤ ∆∗) with a sufficiently small sampling period ∆∗ (maybe smaller than the one derived
by ∆∗ ≤ min{∆1, ∆2, ∆3}). Therefore, if x(0) ∈ S2e ⊂ Ωρe , x(t) cannot move across the entire level set
Us and jump into D within a sufficiently small ∆ with the probability (1− λ). Instead, the closed-loop
state at the next sampling time either stays in S2e or moves into S1e in probability. If x(t) enters S1e, the
probability of Equation (13) will be used to estimate the probability of closed-loop process operational
safety thereafter. Because (1− λ) ≥ (1− β)(1− λ), for β, λ ∈ (0, 1], Equation (14) establishes the
probability of x(t) staying in the safe operating region S within one sampling period ∀x(0) ∈ S2e.

Part 3: If x(0) ∈ S1\So
1e, we show that it is possible that the closed-loop state trajectory hits the

boundary of So
1e before it hits the boundary of S1. If both hitting times τRn\S1e

(∆) and τS1(∆) are longer
than a sampling period ∆, Equation (15) is trivially satisfied. However, if one of them or both occur
within one sampling period, we show that the probability of Equation (15) holds by first showing
that the extreme case that x(0) ∈ (Ωρ\Ωo

ρe) ∩ (Us\Uo
se) (which are the corners where the risk margins

ρ− ρe and s− se overlap in Figure 3) satisfies Equation (15). We first show that the probability of the
event AT := {τRn\Ωo

ρe
> τΩρ

} can be given as follows ∀x(0) ∈ Ωρ\Ωo
ρe :

P∗(τRn\Ωo
ρe
> τΩρ

) ≤ P∗(
V1(x(τΩρ\Ωo

ρe
))

ρ
≥ 1) ≤ V1(x(0))

ρ
(20)

The event AT indicates that the state of the closed-loop system of Equation (1) reaches the
boundary of Ωρ before it reaches the boundary of Ωρe . The probability of Equation (20) is determined

via Equation (17) and the fact that the event {τRn\Ωo
ρe
> τΩρ

} belongs to the event {
V1(x(τΩρ\Ωo

ρe
))

ρ ≥ 1}.
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Assuming x(0) ∈ ∂Ωρc , where Ωρc := {x ∈ φd | V1(x) ≤ ρc} and ρc ∈ [ρe, ρ], the following probability
is derived by bounding Equation (20) by Equation (12c):

sup
x(0)∈Ωρc\Ωo

ρe

P∗(τRn\Ωo
ρe
> τΩρ

) ≤ γ (21)

Using the same steps as performed above, we can prove that ∀x(0) ∈ Us\Uo
se , the probabilities

similar to Equations (20) and (21) are derived as follows:

P∗(τRn\Uo
s
> τUs) ≤

V2(x(0))
s

(22a)

sup
x(0)∈Usc\Uo

se

P∗(τRn\Uo
se
> τUs) ≤ γ′ (22b)

where Usc := {x ∈ φd | V2(x) ≤ sc} and sc ∈ [se, s]. Hence, the probability P(τRn\S1e
(∆) ≤ τS1(∆))

(i.e., Equation (15)) for the case where x(0) ∈ (Ωρ\Ωo
ρe) ∩ (Us\Uo

se) ⊂ S1\So
1e is obtained by taking the

complementary event of Equations (21) and (22b) and using the definition of conditional probability.
We now address the other two possibilities for x(0) ∈ S1\So

1e besides x(0) ∈ (Ωρ\Ωo
ρe) ∩ (Us\U o

se),
which are: (1) x(0) ∈ (Ωρ\Ωo

ρe) ∩ U
o
se and (2) x(0) ∈ (Us\U o

se) ∩ Ωo
ρe . Consider the case where

x(0) ∈ (Ωρ\Ωo
ρe) ∩ U

o
se . If x(t) ∈ U o

se , ∀t ∈ [0, ∆), then P∗(τRn\S1e
(∆) ≤ τS1(∆))=P∗(τRn\Ωo

ρe
(∆) ≤

τΩρ
(∆)). If x(t) enters Us\U o

se before it leaves Ωρ\Ωo
ρe , for some t ∈ [0, ∆), then for sure it holds

that τRn\S1e
(∆) < τS1(∆) because the closed-loop state trajectory crosses the boundary of S1e first.

Therefore, Equation (15) holds for both cases. The same analysis can be performed for the case
where x(0) ∈ (Us\U o

se) ∩Ωo
ρe . However, if x(0) ∈ Ωρ\Ωo

ρe and x(0) /∈ (Us ∪ D), it is readily shown
that Equation (21) holds due to the fact that x(0) ∈ Ωρ\Ωo

ρe . Additionally, since it is demonstrated
in Part 2 that the change of Vi(x) within one sampling period is limited in probability, it follows
that ∀x(0) ∈ Ωρ\Ωo

ρe and x(0) /∈ (Us ∪ D), x(t) does not enter D in one sampling period with the
probability of 1 − λ, which implies that the closed-loop state either stays in S2 or moves into S1

in probability.

Remark 5. The Safeness Index-based LEMPC of Equation (7) is unable to ensure process operational safety
for the closed-loop system of Equation (1) because of stochastic disturbances with unbounded variation.
Additionally, in order to achieve process operational safety with higher probability, we should characterize
the safe operating region S well and design large enough risk margins (i.e., ρ− ρe and s− se) to avoid frequent
activations of backup safety systems. Specifically, in Theorem 2, it is shown that as ρe and se decrease, the
probabilities of Equations (13)–(15) become larger, which implies that if we want to improve process operational
safety, the Safeness Index-based LEMPC design of Equation (7) should be designed with more conservatism
(i.e., choosing smaller ρe and se). However, an operating region with smaller ρe and se in turn leads to less
economic benefits, which is undesired for the Safeness Index-based LEMPC of Equation (7). Therefore, the
uncertain process operational safety caused by stochastic disturbances with unbounded variation is essentially a
trade-off between economic benefits and probabilistic process operational safety (i.e., in practice, we will choose
a conservative operating region to make the process sufficiently safe with respect to the unbounded disturbances,
especially considering the other safety systems online and the risks involved, while also optimizing process economics).

3.7. Feasibility in Probability

Recursive feasibility for the nominal system of Equation (1) with w(t) ≡ 0 under the Safeness
Index-based LEMPC of Equation (6) is guaranteed since there always exists a solution (e.g., the
Lyapunov-based controller Φn(x) in sample-and-hold) that satisfies all the constraints of Equation (6).
Now, consider the system of Equation (1) that has disturbance w(t) with unbounded variation.
Recursive feasibility under the stochastic Safeness Index-based LEMPC of Equation (7) can only
be guaranteed in probability over the operation period t ∈ [0, τN∆). The probability is established as
follows, from which it is shown that the probabilistic bounds on recursive feasibility for the remainder
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of the entire time of operation decrease as the operation period becomes longer (however, this does not
necessarily mean the closed-loop system will not remain recursively feasible because at every sampling
time, the remaining time of operation decreases and therefore the probability that the LEMPC will
remain recursively feasible for the remaining time of operation increases at the next sampling time if
the closed-loop state was maintained within S throughout the prior sampling period).

Theorem 3. Consider the system of Equation (1) under the stochastic Safeness Index-based LEMPC of Equation (7)
applied in a sample-and-hold fashion. Then, if x(0) ∈ S, let V1(x(t + i∆)) = ρi < ρ, V2(x(t + i∆)) = si <

s, i = 0, 1, ..., τN − 1, and let AF represent the event that the optimization problem of Equation (7) is solved with
the satisfaction of recursive feasibility for time t ∈ [0, τN∆). The probability of AF can be calculated as follows:

P(AF) ≥ (1− λ)τN ∏
i=0,1,...,τN−1

(1− βi)(1− β′i) (23)

where βi and β′i are given as follows:

βi = max{β,
supx∈∂Ωρi

V1(x)

infx∈Rn\Ωρ
V1(x)

} (24a)

β′i = max{β′,
supx∈∂Usi

V2(x)

infx∈Rn\Us V2(x)
} (24b)

Proof. We can derive the probability of Equation (23) following similar arguments to those in [11].
Since the deterministic prediction model of Equation (7b) is used in the stochastic Safeness Index-based
LEMPC of Equation (7), it follows that there always exists a solution u(t) = Φs(x̃(tq)) ∈ U,
∀t ∈ [tq, tq+1), q = k, . . . , k + τP − 1 that satisfies the constraints of Equation (7d–g) over the
prediction horizon provided that x(tk), tk ≥ 0 is inside the safe operating region S . Therefore, this
implies that the probability of recursive feasibility (i.e., Equation (23)) is equal to the probability
of closed-loop process operational safety over t ∈ [0, τN∆), which can be obtained via the recursive
application of Equation (13) with βi and β′i of Equation (24) and the definition of conditional probability.
Additionally, it should be noted that if x(0) ∈ S2e, the state is not in ∂Usi in Equation (24). In this case,
β′i simply takes the value of β′, and the probability of Equation (23) still holds since it is shown in
the proof of Theorem 2 that the state either stays in S2 or moves into S1 with the probability of 1− λ

(i.e., Equation (23) gives a conservative result in this case).

Remark 6. In Theorem 3, probabilistic process operational safety and probabilistic recursive feasibility over
the operation period t ∈ [0, τN∆) are established for the closed-loop system of Equation (1) under the Safeness
Index-based LEMPC of Equation (7). Due to the disturbance w(t) with unbounded variation, the closed-loop
state x(t) may leave S at any sampling step, and thus, closed-loop process operational safety and recursive
feasibility of the Safeness Index-based LEMPC of Equation (7) can only be derived in a probabilistic manner
(i.e., ∀t ∈ [0, τN∆), these properties hold with the probability of Equation (23)). Since the existence of a
feasible control action is only guaranteed in the safe operating region S , backup safety systems should be
designed to handle the process if the state exits the safe operating region. Additionally, since the probabilities of
Equations (13)–(15) are less than one if ρe < ρ and se < s, the probabilities of recursive feasibility and process
operational safety for t ∈ [0, τN∆) decrease as the operation period τN∆ becomes longer. However, it should
be noted that this dependence is not unique to the MPC, but to all control designs that try to keep the process
state within a specific region in state-space in the presence of stochastic disturbances with unbounded variation
(i.e., the probability to keep the closed-loop state in S for all the remaining time of operation goes to zero at t0 as
the process operation time τN → ∞).
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4. Application to a Chemical Process Example

A chemical process example is used to illustrate the application of the stochastic Safeness
Index-based LEMPC of Equation (7) to maintain the closed-loop state within a safe operating region in
state-space in probability. Specifically, a well-mixed, non-isothermal continuous stirred tank reactor
(CSTR) where an irreversible second-order exothermic reaction takes place is considered. The reaction
transforms a reactant A to a product B (A→ B). The inlet concentration of A, the inlet temperature
and the feed volumetric flow rate of the reactor are CA0, T0 and F, respectively. The CSTR is equipped
with a heating jacket that supplies/removes heat at a rate Q. The CSTR dynamic model is described
by the following material and energy balance equations:

dCA =
F

VL
(CA0 − CA)dt− k0e−E/RTC2

Adt

+ σ1(CA − CAs)dw1(t) (25a)

dT =
F

VL
(T0 − T)dt− ∆Hk0

ρLCp
e−E/RTC2

Adt +
Q

ρLCpVL
dt

+ σ2(T − Ts)dw2(t) (25b)

where CA is the concentration of reactant A in the reactor, VL is the volume of the reacting liquid in
the reactor, T is the temperature of the reactor and Q denotes the heat input rate. The concentration
of reactant A in the feed is CA0. The feed temperature and the volumetric flow rate are T0 and F,
respectively. The reacting liquid has a constant density of ρL and a heat capacity of Cp. ∆H, k0, E
and R represent the enthalpy of reaction, pre-exponential constant, activation energy and ideal gas
constant, respectively. Process parameter values are given in Table 1. The disturbance terms dw1 and
dw2 in Equation (25) are independent standard Gaussian white noise with the standard deviations
σ1 = 2.5× 10−3 and σ2 = 0.15, respectively. It is noted that the disturbance terms of Equation (25)
vanish at the steady state.

Table 1. Parameter values of the continuous stirred tank reactor (CSTR).

T0 = 300 K F = 5 m3/h

VL = 1 m3 E = 5× 104 kJ/kmol

k0 = 8.46× 106 m3/kmol h ∆H = −1.15× 104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρ = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/h CAs = 1.22 kmol/m3

Ts = 438 K

The initial steady-state of the CSTR is at (CAs, Ts) = (1.22 kmol/m3, 438 K), and (CA0s Qs)

= (4 kmol/m3, 0 kJ/h). The manipulated inputs are the inlet concentration of species A and the heat
input rate, which are represented by the deviation variables u1 = ∆CA0 = CA0 − CA0s and u2 = ∆Q =

Q− Qs, respectively. The manipulated inputs are bounded as follows: |∆CA0| ≤ 3.5 kmol/m3 and
|∆Q| ≤ 5× 105 kJ/h. Therefore, the states and the inputs of the closed-loop system are represented by
xT = [CA − CAs T − Ts] and uT = [∆CA0 ∆Q], respectively.

The control objective of the stochastic Safeness Index-based LEMPC of Equation (7) is to maximize
the production rate of B, while maintaining the closed-loop state trajectories in the safe operating region S
in probability. The objective function of Equation (7a) is the production rate of B: Le(x̃, u) = k0e−E/RTC2

A.
The Lyapunov functions are designed using the standard quadratic form Vi(x) = xT Pix, i = 1, 2, where

the positive definite matrices P1 =

[
1060 22

22 0.52

]
and P2 =

[
1060 10
10 5

]
are chosen to characterize
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the set φd for the stochastic system of Equation (25). The nonlinear feedback controllers in [13,18] are
utilized as Φn(x) and Φs(x), respectively. The level sets of the Lyapunov functions V1(x) and V2(x)
are chosen as ρ = 368 and s = 8100 to create a safe operating region S . The explicit Euler method
with an integration time step of hc = 10−4 h is applied to numerically simulate the dynamic model of
Equation (25). The nonlinear optimization problem of the stochastic Safeness Index-based LEMPC of
Equation (7) is solved using the IPOPT software package [19] with the sampling period ∆ = 10−2 h.
With the fixed sampling period ∆ = 10−2 h, ρ = 368 and s = 8100, we focus on the impact of ρe and se

on probabilistic process operational safety in the following simulations.
It is first shown in Figure 4 that under the Safeness Index-based LEMPC of Equation (6) designed

for the nominal system of Equation (25), the closed-loop state of the nominal system of Equation (25)
stays in the safe operating region S within the entire operation period ts = 1 h. Additionally, the
Safeness Index-based LEMPC of Equation (6) is solved successfully in each iteration to obtain a feasible
control action u(t) that is applied in the next sampling period.

-2 0 2
CA − CAs (kmol/m3)

-50

0

50

T
−
T
s
(K

)

Ωρ

Us

Figure 4. Closed-loop trajectory under the Safeness Index-based LEMPC of Equation (6) for the initial
condition (0, 0) (in deviation variable form) with the additional material constraint: 1

ts

∫ ts
0 u1(τ)dτ =

0 kmol/m3.

It follows that under the stochastic Safeness Index-based LEMPC of Equation (7), the state of
the closed-loop system of Equation (25) stays in S with different probabilities for different ρe and se.
To better understand the relationship between probabilistic process operational safety and the choices
of ρe and se, we derived the experimental probabilities via 500 simulation runs for the same initial
condition (∆CAs, ∆Ts) = (0 kmol/m3, 0 K) and different choices of ρe and se (without the material
constraint applied for the nominal system). Let AV denote the event that the closed-loop state stays in
S over the operation period ts = 1 h. The results are reported in Table 2.

Table 2. Experimental probability for different values of ρe and se.

ρe/ρ se/s P(AV )

0.98 0.99 14.0%
0.95 0.99 63.1%
0.92 0.99 82.0%
0.92 0.97 82.8%
0.92 0.95 83.6%
0.92 0.92 85.8%
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From Table 2, it is observed that with fixed se, P(AV) becomes larger as ρe decreases.
Likewise, with fixed ρe, P(AV) increases as se decreases. It is demonstrated that a higher probability
of closed-loop process operational safety of the system of Equation (25) is achieved when ρe and se

are more conservative. Let ρe = 320 and se = 6800. It is obtained that the probability of the states
of the closed-loop system of Equation (25) remaining in the safe operating region S reaches 97.4%.
Additionally, the averaged total economic benefit (i.e., the time integral of the stage cost Le over the
operation period ts = 1 h) is 24.3 under the Safeness Index-based LEMPC of Equation (7), which has
an improvement of 81% compared to 13.4 under steady-state operation. Therefore, in this example,
the closed-loop system of Equation (25) under the Safeness Index-based LEMPC achieves a relatively
high probability of process safety and a satisfactory process economic performance simultaneously
with ρe = 320 and se = 6800. For an actual process, additional work should likely be performed,
which can use techniques like those demonstrated here, to increase the probability of the states of the
closed-loop system remaining within the safe operating region to higher values considered acceptable
for the process at hand given its design, hazards and the backup measures (alarms/operators, safety
systems, relief systems) in place.

On the other hand, it is observed from Table 2 that decreasing ρe increases the probability
P(AV). By looking at unsafe closed-loop trajectories (i.e., trajectories that leave the safe operating
region S under the Safeness Index-based LEMPC of Equation (7) during the operation period ts) in
500 simulation runs (one of them is shown in Figure 5), it is observed that almost all of the unsafe
trajectories leave S through the boundary of Ωρ (i.e., the right edge of Ωρ in Figure 5). The reason for
this behavior is that the local optimum value of Le is calculated to be at the right edge of Ωρ, which
is shown as the yellow region in Figure 6. Therefore, under the Safeness Index-based LEMPC of
Equation (7), the closed-loop trajectory is optimized to approach this high production rate region and
begin circling back due to the disturbances, which leads to a higher probability of leaving the safe
operating region S from Ωρ. Additionally, it is observed in Figure 6 that the production rate decreases
as the safe operating region shrinks (i.e., the color becomes darker), which is consistent with the fact
that smaller ρe and se lead to safer process operation, at the cost of lower economic performance.

-2 0 2
CA − CAs (kmol/m3)
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Figure 5. An example closed-loop trajectory under the Safeness Index-based LEMPC of Equation (7)
for the initial condition (0, 0) that leaves the safe operating region S , in which ρe = 320 and se = 6800.
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Figure 6. The production rate Le = k0e−E/RTC2
A within the safe operating region S .

5. Conclusions

In this work, a Safeness Index-based LEMPC design was developed for stochastic nonlinear
systems. Under the assumption of stabilizability of the origin of the stochastic nonlinear system via
a stochastic Lyapunov-based control law, an economic model predictive controller was developed
to account for process operational safety by utilizing Lyapunov-based constraints to maintain the
closed-loop state in a safe operating region defined by a Safeness Index function. Under the stochastic
Safeness Index-based LEMPC, economic optimality may be achieved with respect to the objective
function and sampling period. Additionally, recursive feasibility and process operational safety
of the closed-loop stochastic nonlinear system were derived in probability for a well-characterized
safe operating region. A chemical reactor example was used to demonstrate the effectiveness of the
proposed control method.
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