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a b s t r a c t

This work focuses on the design of a new class of economic model predictive control (EMPC) systems
for nonlinear systems that address simultaneously the tasks of economic optimality, safety and closed-
loop stability. This is accomplished by incorporating in the EMPC an economics-based cost function and
Control Lyapunov-Barrier Function (CLBF)-based constraints that ensure that the closed-loop state does
not enter unsafe sets and remainswithin awell-characterized set in the system state-space. The new class
of CLBF-EMPC systems is demonstrated using a nonlinear chemical process example.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since operational efficiency and increasing energy consump-
tion are becoming crucially important issues in the chemical and
petrochemical industry, a model-based feedback control strategy,
economic model predictive control (EMPC), has been proposed as
an efficientmethod to address process control problems integrated
with dynamic economic optimization of the process (e.g., [1–4]).
EMPC allows the chemical process to be operated in a time-varying
fashion (off steady-state) to dynamically optimize process eco-
nomic performance, and incorporates constraints that guarantee
closed-loop stability and feasibility within an explicitly-defined
estimate of the closed-loop stability region under an appropriate
control law (e.g., a Lyapunov-based feedback control law).

On the other hand, process operational safety is of significant
importance in the chemical process industries due to the disas-
trous consequences unsafe operation has for both lives and prop-
erty [5,6]. Despite the widely-used safety protection instruments
applied in industry (e.g., alarm systems, emergency shut-down
systems, and safety relief devices), the potential for unsafe pro-
cess operation caused bymulti-variable interactionsmotivates the
development of improved process design and process operational
safetymethods. Several recentworks have proposed amethod that
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combines control and safety within a systems framework using
a function termed the Safeness Index that indicates the relative
safeness of the process states (e.g., [7]). It has been shown that
under the EMPC integrated with Safeness Index function-based
constraints, closed-loop stability and operational safety of non-
linear chemical process systems can be achieved. At this stage,
however, the problem of incorporating safety region constraints
in EMPC to deal with process operational safety and ensuring the
feasibility of the resulting EMPC a priori has not been studied.

Recently, a control method termed Control Lyapunov-Barrier
Function (CLBF)-based control (e.g., [8,9]) has been proposed for
the control system design that accounts for both closed-loop sta-
bility and safety. Typically, CLBFs can be formulated through the
weighted average of a Control Lyapunov Function (CLF) and a
Control Barrier Function (CBF), and therefore they possess similar
stabilizability and safety properties to those associated with the
CLF and CBF fromwhich they can be derived. In a recent work [10],
a CLBF was combined with tracking MPC to drive the state of a
closed-loop nonlinear system to its set point while avoiding the
unsafe region in state-space. At this stage, however, it remains an
open issue to incorporate a CLBF into EMPCdesign to obtain closed-
loop stability, process operational safety, and optimal economic
benefits simultaneously.

These safety and stability considerations motivate the devel-
opment of CLBF-based EMPC that integrates a Control Lyapunov-
Barrier Functionwith EMPC to account for input constraints, safety
considerations, and the stability of the closed-loop system. The
proposed methodology is applied to a nonlinear chemical process
example to demonstrate the ability of the CLBF-EMPC to operate
the process in an economically optimal manner while avoiding an
unsafe region in the state-space.
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2. Preliminaries

2.1. Notation

The notation |·| is used to denote the Euclidean norm of a
vector. xT denotes the transpose of x. The notation Lf V (x) denotes
the standard Lie derivative Lf V (x) :=

∂V (x)
∂x f (x). Set subtraction is

denoted by ‘‘\’’, i.e., A \ B := {x ∈ Rn
| x ∈ A, x ̸∈ B}. ∅ signifies the

null set. Given a set D ⊂ Rn, we denote the boundary of D by ∂D,
and the closure ofD byD.Bβ (ϵ) := {x ∈ Rn

| |x−ϵ| < β} is an open
ball around ϵ with radius of β . The function f (·) is of class C1 if it
is continuously differentiable in its domain. A continuous function
α : [0, a) → [0, ∞) is a class K function if it is strictly increasing
and is zero onlywhen evaluated at zero. A scalar function V : Rn

→

R is proper if the set {x ∈ Rn
| V (x) ≤ k} is compact ∀ k ∈ R, or

equivalently, V is radially unbounded [11].

2.2. Class of systems

The class of continuous-time nonlinear systems considered is
described by the following systemof first-order nonlinear ordinary
differential equations:

ẋ = f (x) + g(x)u + h(x)w, x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input
vector, and w ∈ W is the disturbance vector, where W := {w ∈

Rq
| |w| ≤ θ, θ ≥ 0}. The control action constraint is defined by

u ∈ U := {umin
i ≤ ui ≤ umax

i , i = 1, . . . ,m}. f (·), g(·), and h(·)
are sufficiently smooth vector and matrix functions of dimensions
n × 1, n × m, and n × q, respectively. Throughout the manuscript,
the initial time t0 is taken to be zero (t0 = 0), and it is assumed
that f (0) = 0, and thus, the origin is a steady-state of the nominal
(i.e.,w(t) ≡ 0) system of Eq. (1) (i.e., (x∗

s , u
∗
s ) = (0, 0), where x∗

s and
u∗
s represent the steady-state state and input vectors, respectively).

2.3. Control Lyapunov-Barrier Function (CLBF)

In this work, we develop an economic model predictive control
design that utilizes a Control Lyapunov-Barrier Function [12] in
designing the constraints tomaintain the closed-loop state in a safe
operating region at all times in the following sense:

Definition 1. Consider the system of Eq. (1) with input constraints
u ∈ U , and an open set D in state-space within which it is unsafe
for the system to be operated. If there exists a control law u ∈ U
such that the state trajectories of the system for any initial state
x(0) = x0 ∈ U ⊂ Rn satisfy x(t) ∈ U , ∀ t ≥ 0, where U ∩D = ∅, we
say that process operational safety is achieved in the sense that the
control law u maintains the process state within a safe operating
region U at all times.

Based on the original Control Lyapunov-Barrier Function
(CLBF) [12] that was developed for the nominal system of Eq. (1)
with w(t) ≡ 0, in this manuscript, we propose a constrained CLBF
that accounts for the input constraints u ∈ U in the system of
Eq. (1), and is stabilizing even in the presence of small bounded
disturbancesw(t). Specifically, the definition of a constrained CLBF
is as follows:

Definition 2. Given a set of unsafe points in state-spaceD (i.e., the
unsafe region), a proper, lower-bounded and C1 functionWc(x): Rn

→ R is a constrained CLBF if it has a minimum at the origin and

satisfies the following properties:

Wc(x) > ρc, ∀ x ∈ D ⊂ φuc (2a)
LfWc(x) < 0,
∀ x ∈ {z ∈ φuc \ (D ∪ {0} ∪ Xe) | LgWc(z) = 0} (2b)
Uρc := {x ∈ φuc | Wc(x) ≤ ρc} ̸= ∅ (2c)

φuc \ (D ∪ Uρc ) ∩ D = ∅ (2d)

where ρc ∈ R and Xe := {x ∈ φuc \ (D ∪ {0}) | ∂Wc(x)/∂x = 0}
is a set of states where LfWc(x) = 0 due to ∂Wc(x)/∂x = 0. φuc is
defined to be the union of the origin, Xe and the set where the time-
derivative of Wc(x) is negative with constrained input: φuc = {x ∈

Rn
| Ẇc(x(t), u(t)) = LfWc +LgWcu < 0, u = Φ(x) ∈ U}∪{0}∪Xe.

Φ(x) is a nonlinear feedback control law, which will be discussed
in detail in the next subsection.

2.4. Stabilization and safety via CLBF

We assume that there exists a feedback control law u = Φ(x) ∈

U (e.g., the universal Sontag control law [13]) such that the state of
the closed-loop nominal system of Eq. (1) is bounded in a level set
of Wc(x) embedded in an open neighborhood D that includes the
origin in its interior in the sense that there exists a C1 constrained
Control Lyapunov-Barrier function Wc(x) that has a minimum at
the origin and where the following inequalities hold for all x ∈ D:

α1(|x|) ≤ Wc(x) − ρ0 ≤ α2(|x|), (3a)

∂Wc(x)
∂x

F (x, Φ(x), 0) ≤ 0, (3b)

⏐⏐⏐⏐∂Wc(x)
∂x

⏐⏐⏐⏐ ≤ α4(|x|) (3c)

whereαj(·), j = 1, 2, 4 are classK functions, andWc(0) = ρ0 is the
global minimum value ofWc(x) in D. F (x, u, w) is used to represent
the system of Eq. (1) (i.e., F (x, u, w) = f (x) + g(x)u + h(x)w).
By continuity and the smoothness assumed for f , g and h, there
exists a positive constant M such that |F (x, u, w)| ≤ M holds
for all x ∈ Uρc , u ∈ U and w ∈ W . Also, there exist positive
constants Lx, Lw, L′

x, L
′
w such that the following inequalities hold for

all x, x′
∈ Uρc , u ∈ U , and w ∈ W :

|F (x, u, w) − F (x′, u, 0)| ≤ Lx|x − x′
| + Lw|w| (4a)⏐⏐⏐⏐∂Wc(x)

∂x
F (x, u, w) −

∂Wc(x′)
∂x

F (x′, u, 0)
⏐⏐⏐⏐

≤ L′

x|x − x′
| + L′

w|w| (4b)

The following theorem provides sufficient conditions under which
the existence of a constrained CLBF of Eq. (2) for the system of
Eq. (1) under the control law u = Φ(x) ∈ U guarantees that the
solution of the system of Eq. (1) always stays in a safe operating
region.

Theorem 1. Consider that a constrained CLBF Wc(x) : Rn
→ R that

has a minimum at the origin andmeets the conditions of Eq. (2), exists
for the nominal system of Eq. (1) with w(t) ≡ 0 subject to input
constraints, defined with respect to a set of unsafe points D in state-
space. The feedback control law u = Φ(x) ∈ U guarantees that the
closed-loop state stays in Uρc for all times for x(0) = x0 ∈ Uρc , and
does not enter D for x0 ∈ φuc\D .

Proof. We first prove that if x0 ∈ Uρc , the closed-loop state x(t) is
always bounded in Uρc and never enters D, for all t ≥ 0. Based on
the definition of φuc , it is trivial to show that Ẇc remains negative
within the set Uρc\(Xe ∪ {0}) using the controller u = Φ(x) ∈ U .
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It follows that Wc(x(t)) < Wc(x0) for all x0 ∈ Uρc\(Xe ∪ {0}).
Additionally, since there exists the set of states xe ∈ Xe where
∂Wc(x)/∂x = 0, the closed-loop state may converge to xe instead
of the origin under u = Φ(x) (e.g., xe is a saddle point or a local
minimum on Rn). Therefore, the state is always bounded in the
set Uρc . Additionally, since Wc is a proper function and Ẇc ≤ 0
holds under the controller Φ(x), it follows that the level set Uρc of
Wc(x) is a compact invariant set, which is a nice property similar to
properties which can be obtained from a Lyapunov function. Due
to the fact that Uρc ∩ D = ∅, it is apparent that for all x0 ∈ Uρc ,
the closed-loop state x(t), ∀t > 0 does not enter the unsafe region
D any time. Since any subset of Uρc , Uρ := {x ∈ φuc | Wc(x) ≤

ρ ≤ ρc} ⊂ Uρc , is also a compact invariant set, we can show that if
x0 ∈ Uρ , x(t) ∈ Uρ , ∀t ≥ 0.

In addition, it remains to show that for the other initial states
x0 ∈ φuc \ (D ∪ Uρc ), x(t) ̸∈ D, ∀t ≥ 0 also holds. Given an
initial state x0 ∈ φuc \ (D ∪ Uρc ), Wc(x0) > ρc holds. Based on the
definition of φuc , it is trivial to show that Ẇc(x) is still nonpositive
(Ẇc(x) = 0 at the origin and xe) along the trajectory of x(t) under
the controller u = Φ(x). Also, from the condition of Eq. (2d) that
the set φuc \ (D ∪ Uρc ) does not intersect withD, we can show that
any trajectory starting in φuc \ (D∪Uρc ) will reach the boundary of
φuc \ (D ∪ Uρc ) before it reaches the boundary of D. Additionally,
due to the fact that φuc \ (D ∪ Uρc ) ∩ D = ∅, it must hold that
φuc \ (D ∪ Uρc ) ∩ Uρc ̸= ∅. Therefore, the trajectory will first reach
the boundary of φuc \ (D∪Uρc ) and enter and stay in Uρc thereafter.

2.5. Lyapunov-based EMPC

The LEMPC scheme is given as follows:

max
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ ), u(τ )) dτ (5a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (5b)
u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (5c)
x̃(tk) = x(tk) (5d)
V (x̃(t)) ≤ ρe, if x(tk) ∈ Ωρe ,

∀t ∈ [tk, tk+N ) (5e)

V̇ (x(tk), u(tk)) ≤ V̇ (x(tk), Φ(x(tk))),
if x(tk) ∈ Ωρ \ Ωρe (5f)

where x̃ is the predicted state trajectory, S(∆) is the set of piecewise
constant functionswith period∆, andN is the number of sampling
periods in the prediction horizon. V̇ (x, u) is used to represent
∂V (x)
∂x (f (x) + g(x)u). Ωρ is a level set of V (x) inside φu: Ωρ := {x ∈

φu | V (x) ≤ ρ}, where φu is characterized as the set φu := {x ∈

Rn
| u = Φ(x) ∈ U, V̇ + γV (x) ≤ 0, γ > 0} such that the

origin is rendered asymptotically stable if x0 ∈ Ωρ . Additionally,
Ωρe := {x ∈ φu | V (x) ≤ ρe, ρe < ρ} is also designed to make Ωρ

a forward invariant set. The optimal input trajectory computed by
the LEMPC is denoted by u∗(t), which is calculated over the entire
prediction horizon t ∈ [tk, tk+N ). The control action computed for
the first sampling period of the prediction horizon is sent by the
LEMPC to be applied over the first sampling period and the LEMPC
is resolved at the next sampling time.

Remark 1. Under the LEMPC of Eq. (5) applied in a sample-and-
hold fashion, the closed-loop stability of the system of Eq. (1) is
guaranteed in the sense that the state x(t), t ≥ 0 of the closed-
loop system of Eq. (1) is always bounded in Ωρ if x0 ∈ Ωρ . The
detailed proof can be found in [1]. However, it should be pointed

out that under the LEMPC of Eq. (5), process operational safety is
not ensured because there is no constraint that prevents the state
from entering the unsafe region D. Although there exist methods
(e.g., adding a safety-based constraint in LEMPC such that the
predicted closed-loop state is restricted to the safe region [7]), it
could lead to the problem of infeasibility.

3. Main results

3.1. Design of constrained CLBF

Based on the methods for constructing an unconstrained CLBF
from [12], in this subsection, the constructive methods for a con-
strained CLBF are developed. Specifically, a CLF and a CBF are first
designed separately for x ∈ Rn, following which a constrained
CLBF can be constructed by combining them through a practical
method that satisfies the properties in Eq. (2) and Eq. (3). The
resulting CLBF Wc(x) can then be utilized to characterize φuc and
Uρc . Proposition 2 provides the guidelines for choosing the CLF
and CBF, and the corresponding weights to design the appropriate
CLBF, through which the global minimum ofWc(x) is at the origin.

Proposition 2. Given an open set D of unsafe states for the nominal
system of Eq. (1) with w(t) ≡ 0, assume that there exists a C1 CLF
V : Rn

→ R+, and a C1 CBF B : Rn
→ R, such that the following

conditions hold:

c1|x|2 ≤ V (x) ≤ c2|x|2, ∀x ∈ Rn, c2 > c1 > 0 (6)

D ⊂ H ⊂ φuc, 0 ̸∈ H (7)

B(x) = −η < 0, ∀x ∈ Rn
\ H (8)

B(x) ≥ −η, ∀x ∈ H; B(x) > 0, ∀x ∈ D (9)

whereH is a compact and connected setwithinφuc . Define CLBF Wc(x)
to have the form Wc(x) := V (x) + µB(x) + ν, where:

LfWc(x) < 0,
∀ x ∈ {z ∈ φuc \ (D ∪ {0} ∪ Xe) | LgWc(z) = 0} (10a)⏐⏐⏐⏐∂Wc(x)

∂x

⏐⏐⏐⏐ ≤ α4(|x|) (10b)

µ >
c2c3 − c1c4

η
, ν = ρc − c1c4, (11a)

c3 := max
x∈∂H

|x|2, c4 := min
x∈∂D

|x|2 (11b)

then for initial states x0 ∈ φuc \DH, whereDH := {x ∈ H | Wc(x) >

ρc} ⊃ D, the control law Φ(x) guarantees that the closed-loop state
does not enter the unsafe region DH for all times, and the closed loop
state is always bounded in Uρc for initial states x0 ∈ Uρc .

Proof. We define a new compact and connected set H, which
satisfies Eq. (7), and an expanded unsafe region DH, such that all
the states withWc(x) > ρc inside the regionH are included inDH.
We prove that the proposed constrained CLBF,Wc(x), meets all the
requirements of Eq. (2) and Eq. (3)withDH replacingD and that its
minimum is at the origin. If the resultingWc(x) satisfies Eq. (2) and
has aminimumat the originwithDH replacingD, fromTheorem1,
it is guaranteed that the closed-loop state does not enter the unsafe
region DH for x0 ∈ φuc \ DH under the controller u = Φ(x) ∈ U
with the above CLBF Wc(x). As a result, it is also guaranteed that
the trajectory of the closed-loop system of Eq. (1) avoids D due to
the fact that D ⊂ DH.
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Fig. 1. A schematic representing the relationship between the sets φuc , D, DH and
H, where the invariant set Uρc is shown as an ellipse subtracting DH .

Firstly, the assumption that Wc(x) has a minimum at the origin
is satisfied since the minimum values of V (x) and B(x) are both
achieved at the origin of state-space, respectively and Wc(x) is
formulated through the weighted average of V (x) and B(x). Addi-
tionally, we need to prove that the resulting Wc(x) satisfies the
definition of the CLBF of Eq. (2)withD replaced byDH. It is trivial to
show that Eq. (2a) holdswithD replaced byDH by the definition of
DH. Eq. (2b) is also trivially satisfied by the proposed CLBF Wc(x)
with DH replacing D via the required property of Eq. (10a) since
D is a subset of DH. To prove that Eq. (2c) holds, we obtain the
following inequalities for all x ∈ ∂H,

Wc(x) = V (x) + µB(x) + ν

≤ c2|x|2 − µη + ρc − c1c4
< ρc

(12)

Hence, Eq. (12) implies that Uρc ̸= ∅, from which the condition
of Eq. (2c) is also satisfied. Since Wc(x) = ρc, ∀x ∈ ∂DH and
Wc(x) < ρc, ∀x ∈ ∂H, it implies that DH is in the interior ofH and
that ∂H ∩ ∂DH = ∅. Additionally, the relationship among DH, H
and (DH ∪Uρc ) is obtained as follows:D ⊂ DH ⊂ H ⊂ (DH ∪Uρc ),
from which it is obvious that the boundary of φuc \ (DH ∪ Uρc )
does not intersect with the boundary of DH (i.e., Eq. (2d) holds
with D replaced by DH, φuc \ (DH ∪ Uρc ) ∩ DH = ∅). A schematic
describing the above relationship among different sets is shown in
Fig. 1. Therefore, it is proved that the above constructing method
ofWc(x) satisfies all the requirements of Eq. (2) withD replaced by
DH.

Next, we prove that the resulting Wc(x) also satisfies the as-
sumptions of the CLBF of Eq. (3), which is required in the formu-
lation of CLBF-EMPC and will be used in its proofs later. From Eqs.
(6), (8) and (9), the minimums of V (x) and B(x) are V (0) = 0 and
B(x) = −η, ∀x ∈ Rn

\ H ⊃ {0} (note that this implies that the
minimum value of B(x), which is −η according to Eqs. (8) and (9),
occurs at the origin of the state-space). It follows that the global
minimum of Wc(x) is Wc(0) = ρ0 = ν − µη, and it holds that
Wc(x) − ρ0 > 0, ∀x ∈ Rn

\ {0}. Hence, there exist two class K
functions α1(|x|) and α2(|x|) that satisfy Eq. (3a). Additionally, Eq.
(3b) and Eq. (3c) are also trivially satisfied ∀x ∈ φuc\D by the
proposed CLBF via the controller u = Φ(x) ∈ U and the required
property of Eq. (10b), respectively.

Remark 2. If the unsafe regionD is characterized as a set that is not
entirely inside the stability region, the above constructive method
of a CLBF can still be applied via choosing a subset of Uρc as the
operating region or defining a smaller unsafe regionwhich is inside
the stability region as the new D.

3.2. CLBF-based EMPC formulation

The CLBF-EMPC design is represented by the following opti-
mization problem:

max
u(t)∈S(∆)

∫ tk+N

tk

Le(x̃(τ ), u(τ )) dτ (13a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (13b)
x̃(tk) = x(tk) (13c)
u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (13d)
Wc(x̃) ≤ ρe, if x(tk) ∈ Uρe ,

∀ t ∈ [tk, tk+N ) (13e)

Ẇc(x(tk), u(tk)) ≤ Ẇc(x(tk), Φ(x(tk))),
if x(tk) ∈ Uρ \ Uρe (13f)

where the notation follows that in Eq. (5). The optimization prob-
lemof Eq. (13) optimizes the time integral of the stage cost function
Le(x(t), u(t)) of Eq. (13a) subject to the nominal process model of
Eq. (13b). Eq. (13c) defines the initial condition for the optimization
problem of Eq. (13) using the measurement of the process state
at the current time tk. Eq. (13d) defines the input constraints
applied over the prediction horizon. If x(tk) is insideUρe , theMode 1
constraint of Eq. (13e) is applied to maintain the predicted closed-
loop state within the set Uρe ⊂ Uρ , which is designed to make the
safe operating region Uρ a forward invariant set and also include
the states xe ∈ Xe inside (i.e., Bδ(xe) ⊂ Uρe where δ is a suffi-
ciently small positive real number). Under the Mode 2 constraint
of Eq. (13f), the contractive constraint is activated only for the first
sampling step to decrease the value ofWc(x), such that the closed-
loop state will move back into Uρe within finite sampling steps. The
CLBF-EMPC is implemented in a sample-and-hold fashion, andonly
the first step of the optimized input trajectory will be applied over
the next sampling period.

Before we demonstrate closed-loop stability and safety under
CLBF-EMPC (Theorem 5), we first establish the following useful
propositions. Specifically, Proposition 3 gives the upper bound on
the difference between the evolutions of the trajectories of the
nominal system (i.e., w(t) ≡ 0) and the disturbed system of Eq.
(1). Proposition 4 establishes the relationship of the disturbance
bound, Lipschitz constants, and the sampling period that is re-
quired tomaintain Ẇc negative during one sampling period, which
will be utilized in the proof of closed-loop stability and safety of the
CLBF-EMPC in Theorem5. Also, it should be pointed out that for the
CLBF-EMPC of Eq. (13), we omit the case where x0 ∈ φuc \ (D∪Uρc )
and only consider the initial condition x0 ∈ Uρ ⊂ Uρc since closed-
loop stability under CLBF-EMPC represents the boundedness of the
state x(t) within an invariant set Uρ .

Proposition 3. Consider the system ẋ = F (x, u, w) of Eq. (1) and
the nominal system ˙̂x = F (x̂, u, 0) (i.e., w(t) ≡ 0) with initial
conditions x0 = x̂0 ∈ Uρ ⊂ Uρc . There exists a class K function
fw(·) and a positive constant β such that the following inequalities
hold ∀x, x̂ ∈ Uρ and w(t) ∈ W:

|x(t) − x̂(t)| ≤ fw(t) :=
Lwθ

Lx
(eLxt − 1) (14a)

Wc(x) ≤ Wc(x̂) + α4(α−1
1 (ρ − ρ0))|x − x̂| + β|x − x̂|2 (14b)

Proof. Let the error vector e(t) = x(t)− x̂(t). The derivative of e(t)
can be obtained as follows:

|ė(t)| = |F (x(t), u(t), w(t)) − F (x̂(t), u(t), 0)| (15)

Following Eq. (4a), it is obtained that

|ė(t)| ≤ Lx|x(t) − x̂(t)| + Lw|w(t)| ≤ Lx|e(t)| + Lw|θ | (16)
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Therefore, for all x(t), x̂(t) ∈ Uρ, |w(t)| ≤ θ and zero initial
condition (i.e., e(0) = 0), we can derive the upper bound of the
norm of the error vector as follows:

|e(t)| = |x(t) − x̂(t)| ≤
Lwθ

Lx
(eLxt − 1) (17)

Subsequently, we prove Eq. (14b) holds for all x, x̂ ∈ Uρ by using
the Taylor series expansion ofWc(x) around x̂ as follows:

Wc(x) ≤ Wc(x̂) +
∂Wc(x̂)

∂x
|x − x̂| + β|x − x̂|2 (18)

Substituting Eq. (3a) and Eq. (3c) into Eq. (18), it follows that

Wc(x) ≤ Wc(x̂) + α4(α−1
1 (ρ − ρ0))|x − x̂| + β|x − x̂|2 (19)

Proposition 4. Consider the system of Eq. (1) under the controller
u = Φ(x) ∈ U, designed based on Wc with its minimum at the origin
and meeting Eq. (2) and Eq. (3), implemented in sample-and-hold. Let
ϵw > 0, ∆∗ > 0, ρ > ρe satisfy

− α3(α−1
2 (ρe − ρ0)) + L′

xM∆∗
+ L′

wθ ≤ −ϵw/∆∗ (20)

where α3(·) is a class K function such that ∂Wc (x)
∂x F (x, Φ(x), 0) ≤

−α3(|x|) holds for x ∈ Uρ\Uρe . Then, for any x(tk) ∈ Uρ \ Uρe , the
following inequality holds:

Wc(x(t)) ≤ Wc(x(tk)), ∀t ∈ [tk, tk+1) (21)

Proof. Assuming x(tk) ∈ Uρ \ Uρe , we prove that within one sam-
pling period, the value of Wc(x) is decreasing under the controller
u(t) = Φ(x(tk)) ∈ U . The time derivative of the CLBF Wc(x) along
the trajectory x(t) of the nominal system of Eq. (1) in t ∈ [tk, tk+1)
is given by

Ẇc(x(t)) =
∂Wc(x(t))

∂x
F (x(t), Φ(x(tk)), w(t)) (22)

Adding ∂Wc (x(tk))
∂x F (x(tk), Φ(x(tk)), 0) to both sides andusing Eq. (3b),

the following inequality is obtained:

Ẇc(x(t)) ≤ − α3(|x(tk)|)

+
∂Wc(x(t))

∂x
F (x(t), Φ(x(tk)), w(t))

−
∂Wc(x(tk))

∂x
F (x(tk), Φ(x(tk)), 0)

(23)

Based on the inequalities of Eq. (3a), Eq. (4b) and the fact that
|F (x, u, w)| ≤ M, ∀x ∈ Uρ , for a constant M > 0, due to the
compactness of Uρ , U , and W , the upper bound of Ẇc(x(t)) is
derived:

Ẇc(x(t)) ≤ − α3(α−1
2 (ρe − ρ0)) + L′

x|x(t) − x(tk)| + L′

wθ

≤ − α3(α−1
2 (ρe − ρ0)) + L′

xM∆∗
+ L′

wθ
(24)

Therefore, if Eq. (20) is satisfied, Ẇc(x(t)) ≤ −ϵw/∆∗ holds for all
x(tk) ∈ Uρ \ Uρe , t ∈ [tk, tk+1). Through the integral of the above
equation, we obtain that Wc(x(tk+1)) ≤ Wc(x(tk)) − ϵw , and also
the conclusion shown in Eq. (21).

Based on the CLBF-EMPC of Eq. (13), the following theorem
establishes that under the sample-and-hold implementation of the
solution of the CLBF-EMPC of Eq. (13), the controller maintains
closed-loop stability and safety and the optimization problem is
recursively feasible.

Theorem 5. Consider the system of Eq. (1) with a constrained CLBF
Wc(x): Rn

→ R that has its minimum at the origin and meets Eqs. (2)

and (3). Let ∆ ≤ ∆∗, ρ > ρe satisfy Eq. (20) and ρe be determined as
follows:

ρe ≤ ρ − α4(α−1
1 (ρ − ρ0))fw(∆) − β(fw(∆))2 (25)

Given any initial state x0 ∈ Uρ , it is guaranteed under the CLBF-EMPC
of Eq. (13), x(t) ∈ Uρ, ∀t ≥ 0 for the closed-loop system of Eq. (1),
where Uρ ⊂ Uρc and Uρ ∩ D = ∅.

Proof. To prove closed-loop stability and safety of the system of
Eq. (1) subject to small bounded disturbances (i.e., |w(t)| ≤ θ )
under the CLBF-EMPC, we first prove that under the Mode 1 con-
straint of Eq. (13e) of CLBF-EMPC, the closed-loop state is always
bounded in the stability and safety region Uρ (stability comes from
the invariance of the level set of Wc(x) while safety is due to the
fact that Uρ ∩D = ∅). We then prove that if the system operates in
the second operation mode (i.e., the Mode 2 constraint of Eq. (13f)
is activated when x(tk) ∈ Uρ \Uρe ), the closed-loop state will move
towards the origin, and enter Uρe in finite sampling steps. Finally,
we prove that the CLBF-EMPC of Eq. (13) is solved with recursive
feasibility for all states x(t) ∈ Uρ .

Part 1: We prove that if x(tk) ∈ Uρe , tk ≥ 0, the closed-loop
state x(t) ∈ Uρ, ∀t ∈ [tk, tk+1] holds. Since the state x(tk) at
t = tk is assumed to be in the set Uρe , the CLBF-EMPC of Eq. (13)
operates in the first operation mode (i.e., the Mode 1 constraint
of Eq. (13e) is applied and the Mode 2 constraint of Eq. (13f) is
inactivated). Initially, we consider the case where the CLBF-EMPC
of Eq. (13) is designed using the nominal system, and also applied
to the nominal system of Eq. (1). Since the prediction model and
the real model are both the nominal system with w(t) ≡ 0, from
the constraint of Eq. (13e), it is trivial to show that Wc(x̂(tk+1)) ≤

ρe ≤ ρ for the nominal system of Eq. (1) where again, x̂ denotes
the state of the nominal system. However, if the CLBF-EMPC is
designed using the nominal system, but applied to the system of
Eq. (1) subject to small bounded disturbances |w(t)| ≤ θ , from
the constraint of Eq. (13e), the predicted state is still within Uρe
(i.e., Wc(x̂(tk+1)) ≤ ρe). By Propositions 3 and 4 and Eq. (25), it
follows that
Wc(x(tk+1)) ≤ α4(α−1

1 (ρ − ρ0))|x(tk+1) − x̂(tk+1)|

+ β|x(tk+1) − x̂(tk+1)|
2
+ Wc(x̂(tk+1))

≤ α4(α−1
1 (ρ − ρ0))fw(∆) + β(fw(∆))2 + ρe

≤ ρ

(26)

Therefore, if x(tk) ∈ Uρe , x(tk+1) is always bounded in Uρ for both
the nominal system of Eq. (1) and the system of Eq. (1) subject to
bounded disturbances. Additionally, it is trivial to show that the
above inequality holds for any t ∈ [tk, tk+1) if we plug in a smaller
sampling period into themonotonically increasing function fw(·) in
Eq. (26).

Part 2: In this part, we prove that if x(tk) ∈ Uρ \Uρe , the closed-loop
state x(t) will move towards the origin within the next sampling
period (i.e.,Wc(x(t)) ≤ Wc(x(tk)), ∀t ∈ [tk, tk+1)), andwill enter Uρe
within finite sampling steps. Since it is assumed that x(tk) ∈ Uρ \

Uρe , the Mode 2 constraint of Eq. (13f) is activated in this case and
the Mode 1 constraint of Eq. (13e) remains inactive. Similarly, we
first consider the scenario that both the prediction model and the
real model are the nominal system of Eq. (1) with w(t) ≡ 0. From
the constraint of Eq. (13f) and Eq. (3b), the following inequality is
obtained:

Ẇc(x(tk), u(tk)) =
∂Wc(x(tk))

∂x
F (x(tk), u(tk), 0)

≤
∂Wc(x(tk))

∂x
F (x(tk), Φ(x(tk)), 0)

≤ −α3(|x(tk)|)

(27)
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where u(tk) is the optimal input derived by the CLBF-EMPC at t =

tk, and applied at the next sampling period (i.e., ∀t ∈ [tk, tk+1)).
Under the sample-and-hold implementation of the CLBF-EMPC of
Eq. (13), Ẇc(x(t)), ∀t ∈ [tk, tk+1) is derived using results similar to
Eq. (23) and Eq. (24) by letting w(t) = 0:

Ẇc(x(t), u(tk)) =
∂Wc(x(t))

∂x
F (x(t), u(tk), 0)

≤ −α3(|x(tk)|) + L′

xM∆ + L′

w|0|
(28)

Correspondingly, we can also derive the upper bound for
Ẇc(x(t), u(tk)) for the case that the CLBF-EMPC is designed using
the nominal system of Eq. (1) but applied to the system of Eq. (1)
subject to bounded disturbances. The results are shown as follows:

Ẇc(x(t), u(tk)) =
∂Wc(x(t))

∂x
F (x(t), u(tk), w(t))

≤ −α3(|x(tk)|) + L′

xM∆ + L′

wθ

(29)

Since Eq. (20) in Proposition 4 is satisfied, it implies that for both
the nominal system of Eq. (1) and the system of Eq. (1) subject to
bounded disturbances, Ẇc(x(t)) ≤ −ϵw/∆, ∀t ∈ [tk, tk+1) holds,
from which we can conclude that Wc(x(t)) ≤ Wc(x(tk)), ∀t ∈

[tk, tk+1) and Wc(x(tk+1)) ≤ Wc(x(tk)) − ϵw through the integral
of Ẇc(x(t)). Therefore, it follows that within finite sampling steps,
Wc(x(t)) will be less than ρe, which implies that the closed-loop
state x(t) moves back into Uρe .

So far, we have proved that under the CLBF-EMPC of Eq. (13),
whether x(tk) ∈ Uρe or x(tk) ∈ Uρ \ Uρe , the state at the next
sampling time x(tk+1) is guaranteed to be bounded in Uρ . By rolling
the horizon, it is trivial to show that x(t), t ≥ tk ≥ 0 is always
bounded in the stability and safety region Uρ , which implies that
given any initial condition x0 ∈ Uρ , closed-loop stability and
process operational safety are guaranteed under the CLBF-EMPC
of Eq. (13).

Part 3: Lastly, we prove that there exists a feasible solution (i.e., the
explicit stabilizing controller Φ(x) designed based on Wc with its
minimum at the origin and meeting Eqs. (2) and (3) implemented
in sample-and-hold) for the optimization problem of the CLBF-
EMPC of Eq. (13) all the time. First, assuming that x(tk) ∈ Uρe , the
sample-and-hold CLBF-based control law u(t) = Φ(x(tk + i∆)), i =

0, 1, . . . ,N − 1 is a feasible solution to the optimization problem
of Eq. (13). Specifically, it satisfies both the input constraint of
Eq. (13d) and the constraint of Eq. (13e) (because the state moves
towards the origin or the states xe ∈ Uρe under Φ(x) and thus the
predicted states x̃(tk + i∆), i = 0, 1, . . . ,N − 1 are bounded in
Uρe ). On the other hand, if x(tk) ∈ Uρ \ Uρe , the explicit stabilizing
controller u(t) = Φ(x(tk)) is also a feasible solution that meets the
input constraint of Eq. (13d) and the constraint of Eq. (13f).

After the optimal solution derived from the CLBF-EMPC of
Eq. (2) is applied to the next sampling period of the systemof Eq. (1)
(i.e., the rolling horizon), there still exists a feasible control action
for x(tk+1) at t = tk+1 since x(tk+1) ∈ Uρ is guaranteed. Again,
the solution depends on whether x(tk+1) ∈ Uρe or x(tk+1) ∈ Uρ \

Uρe , which follows the same two scenarios in the last paragraph.
Therefore, the optimization problem of the CLBF-EMPC of Eq. (13)
is feasible for all x(t) ∈ Uρ if x0 ∈ Uρ .

Remark 3. It should be noted that although the CLBF-EMPC of
Eq. (13) can be applied to the system of Eq. (1) subject to bounded
disturbances, there exists a limit to the bound of disturbancesw(t).
Typically, the disturbances have to be sufficiently small to satisfy
Eq. (20). From Eq. (20), it is easily observed that the terms L′

xM∆

and L′
wθ , which contain the sampling period ∆ and the bound on

the disturbance θ , respectively, are both positive, and therefore

Table 1
Parameter values of the CSTR.

T0 = 300 K F = 5 m3/hr
V = 1 m3 E = 5 × 104 kJ/kmol
k0 = 8.46 × 106 m3/kmol hr ∆H = −1.15 × 104 kJ/kmol
Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K
ρL = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/hr CAs = 1.22 kmol/m3

Ts = 438 K

have to be sufficiently small such that there exists a positive ϵw

that satisfies Eq. (20).

Remark 4. In the formulation of the CLBF-EMPC of Eq. (13), ρe is
determined by Eq. (25) to make Uρ a forward invariant set in the
presence of small bounded disturbances. Additionally, Uρe should
be designed to include xe where ∂Wc(xe)/∂x = 0. Since when
x(tk) ∈ Uρe , CLBF-EMPC optimizes the control actions to maximize
the stage cost function of Eq. (13a) instead of driving the state
to the origin or xe, the problem of convergence to xe is not an
issue for the closed-loop system of Eq. (1) under the CLBF-EMPC of
Eq. (13). However, if the system is required to be operated at the
origin under a trackingMPC,Wc(x) needs to be well-designed such
that xe is a saddle point, and an additional constraint needs to be
designed in the MPC layer to drive the state away from xe in case
the state gets trapped in xe.

Remark 5. Since the economic benefits of CLBF-EMPC depend
strongly on the size of the operating region (i.e., Uρ) and in general,
a larger Uρ leads to higher stage costs of Eq. (13a), it is beneficial
to expand the operating region over which the CLBF-EMPC is
operated (e.g., via a null controllable region (NCR) for nonlinear
systems [14]).

4. Application to a chemical process example

A chemical process example is used to illustrate the applica-
tion of CLBF-EMPC to maintain the closed-loop state within the
stability/safety region in state-space. Specifically, a well-mixed,
non-isothermal continuous stirred tank reactor (CSTR) where an
irreversible second-order exothermic reaction takes place is con-
sidered. The reaction transforms a reactant A to a product B (A →

B). The inlet concentration of A, the inlet temperature and feed
volumetric flow rate of the reactor are CA0, T0 and F , respectively.
The CSTR is equipped with a heating jacket that supplies/removes
heat at a rate Q . The CSTR dynamic model is described by the
following material and energy balance equations:
dCA

dt
=

F
V
(CA0 − CA) − k0e

−E
RT C2

A (30a)

dT
dt

=
F
V
(T0 − T ) +

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV
(30b)

where CA is the concentration of A in the reactor, V is the volume
of the reacting liquid in the reactor, T is the temperature of the
reactor and Q is the heat input rate. The concentration of A in the
feed is CA0. The feed temperature and volumetric flow rate are T0
and F , respectively. The reacting liquid has a constant density of ρL
and a heat capacity of Cp. ∆H , k0, E, and R represent the enthalpy
of reaction, pre-exponential constant, activation energy, and ideal
gas constant, respectively. Process parameter values are listed in
Table 1.

The CSTR is initially operated at the steady-state (CAs, Ts) =

(1.22 kmol/m3, 438 K), and (CA0s Qs) = (4 kmol/m3, 0 kJ/hr). The
manipulated inputs are the inlet concentration of species A and the
heat input rate, which are represented by the deviation variables
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Fig. 2. The state-space profiles for the closed-loop CSTR under LEMPC and under
the CLBF-EMPC of Eq. (2) for an initial condition (0, 0).

∆CA0 = CA0 − CA0s , ∆Q = Q − Qs, respectively. The manipulated
inputs are bounded as follows: |∆CA0| ≤ 3.5 kmol/m3 and |∆Q | ≤

5×105 kJ/hr. Therefore, the states and the inputs of the closed-loop
systemare xT = [CA−CAs T−Ts] and uT

= [∆CA0 ∆Q ], respectively.
The control objective is to maximize the profit of the CSTR

process of Eq. (30) while keeping the closed-loop state trajectories
in the stability and safety region Uρ using a CLBF-EMPC scheme.
The objective function of the CLBF-EMPC optimizes the production
rate of B: Le(x̃, u) = k0e−E/RTC2

A . The unsafe region D is defined as
an open set inside the stability region (i.e., the level set of V (x))
where the temperature in D is relatively high, for this example, an
ellipse described byD := {x ∈ R2

| F (x) = (x1+0.92)2+ (x2−42)2

500 <

0.06}. In general, the unsafe region can be designed based on a real
scenario, for example, by using a Safeness Index function proposed
by [7] which indicates the relative safeness of each process state
based on past process data, first-principles models and traditional
safety analysis tools. H is defined as H := {x ∈ R2

| F (x) ≤

0.07}, and therefore, the Control Barrier Function B(x) is designed
as follows:

B(x) =

{
e

F (x)
F (x)−0.07 − e−6, if x ∈ H

− e−6, if x ̸∈ H
(31)

A Control Lyapunov Function V (x) = xTPx is constructed
with P =

[
1060 22
22 0.52

]
. Therefore, the Control Lyapunov-Barrier

Function Wc(x) = V (x) + µB(x) + ν is constructed following the
procedure in Proposition 2, where the parameters are determined
as follows: ρc = 0, c1 = 0.1, c2 = 1061, c3 = maxx∈∂H|x|2 = 2295,
c4 = minx∈∂D|x|2 = 1370, ν = ρc − c1c4 = −160. Hence, µ is
chosen to be 1×109 to satisfy Eq. (11) andUρ withρ = −2.47×106

is the stability and safety region in the simulation. Based on the
above Wc(x), xe is calculated to be a saddle point (−1.00, 47.5) in
state-space. Additionally, a material constraint 1

tp

∫ tp
0 u1(τ )dτ =

0 kmol/m3 is introduced to make the averaged reactant material
available over a given operating period tp = 1.0 hr to be 0 (in
deviation from the steady-state value, CA0s). The explicit Euler
method with an integration time step of hc = 10−4 hr is applied to
numerically simulate the dynamicmodel of Eq. (30). The nonlinear
optimization problem of the CLBF-EMPC of Eq. (13) is solved using
the IPOPT software package [15] with the sampling period ∆ =

10−2 hr. The closed-loop state and manipulated input profiles of
the system of Eq. (30) under the CLBF-EMPC of Eq. (13) are shown
in Figs. 2 and 3, respectively, where the dashed horizontal lines in
Fig. 3 are the upper and lower bounds for the manipulated inputs.

In Fig. 2, it is demonstrated that the CLBF-EMPC can maintain
the state of the closed-loop system of Eq. (30) within the stability
and safety region (i.e., Uρ), while under the standard LEMPC of
Eq. (5), the closed-loop states are only guaranteed to be bounded

Fig. 3. Manipulated input profiles (u1 = ∆CA0 , u2 = ∆Q ) for the initial condition
(0,0) under the CLBF-EMPC of Eq. (13), and under the LEMPC of Eq. (5).

in the stability region (i.e., Uρ ∪ D), but not within the safe region
(i.e., it is possible for the trajectory to cross the red unsafe region
in Fig. 2). In Fig. 3, it is demonstrated that the optimized control
actions satisfy the input constraints and the material constraint.
Specifically, under CLBF-EMPC, the control system consumes ap-
proximately the maximum allowable reactant ∆CA0 during the
first 0.5 hr, and therefore has to lower the consumption at the
second half hour to meet the material constraint. From t = 0.5 hr,
the control actions also show oscillation when the closed-loop
state approaches the boundary of the unsafe region D because the
closed-loop systemdynamics attempt to drive the states across the
unsafe region, yet the CLBF constraint prevents this undesirable
behavior. Additionally, it is calculated that the economic benefits
LE =

∫ tp
0 Le(x, u)dt within the entire operation period tp = 1 hr

under steady-state operation and under the CLBF-EMPC are 13.9
and 16.2, respectively, fromwhich it is shown that the CLBF-EMPC
economically outperforms steady-state operation and ensures pro-
cess operational safety.

5. Conclusion

In this work, we proposed a new class of economic model
predictive controllers (EMPC) for nonlinear systems that account
for process operational safety and economic optimality simulta-
neously. Specifically, we first developed the constrained Control
Lyapunov-Barrier Function. Based on that, the CLBF-EMPC was
formulated to achieve economic optimality, safety and closed-loop
stability by incorporating CLBF-based constraints in the design
of the EMPC. The application of the proposed CLBF-EMPC was
demonstrated using a nonlinear chemical process example.
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