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Introduction

While tracking model predictive control, in which the cost

function has its minimum at the steady-state (typically taken

to be the origin), has been extensively researched and prac-

ticed in industry (see, for example, the review papers1–3) since

the mid-70s, economic model predictive control (EMPC), in

which the cost function does not have in general its minimum

at the steady-state and penalizes directly process economics,
has been a relatively recent development (over the last decade)

and continues to pose challenging control problems.4 Part of

the appeal of EMPC is that it provides a direct way for inte-

grating in a single layer the process economic optimization

layer (responsible for calculating economically optimal oper-

ating steady-states) and the process feedback control layer

(where tracking MPC is typically employed) that are tradition-

ally utilized in industrial chemical process control to optimize

process economics by allowing for dynamic (off steady-state)

feedback control-based operating policies. This allows for the

opportunity to shift chemical manufacturing operations from

steady-state operation to dynamic operation to optimize the
process economic performance and thus, effectively combine

dynamic economic process optimization and feedback control

into one layer. Several control designs have been proposed
within this new EMPC paradigm (e.g., Refs. 5–9).

One important issue that requires further study is the han-

dling of process model uncertainty within EMPC. In Ref. 10, a
multi-stage scenario-based nonlinear model predictive control-

ler was utilized to deal with uncertainties in economic nonlin-

ear MPC. In Ref. 8, the way to address uncertainty is to
assume that the uncertain process variables are bounded, uti-

lize a nominal process model within EMPC, and then establish
robustness of the EMPC with respect to the worst-case values

(typically the bounds) of the uncertain variables such that
the state of the closed-loop system stays within a well-

characterized region of the state-space as long as the uncertain

variables are within their bounds (which must be sufficiently
small). This robustness treatment of the uncertain variables is

particularly useful when no information is provided for the
uncertain variables other than the bounds. However, if the

uncertain process variables are unbounded (or if the bounds
are very conservative such that they are not sufficiently small),

the traditional Lyapunov-based economic model predictive
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control (LEMPC) framework above may be unable to deal
with such disturbances and lead to controller infeasibility, par-
ticularly in the presence of input constraints.

Therefore, an alternative way to handle process model uncer-

tainty within EMPC is to model the disturbances in a probabilis-

tic manner and consider EMPC of stochastic nonlinear systems

with the goal of deriving closed-loop stability results in proba-

bility, taking advantage of the probability distribution of the

uncertain variables and targeting less conservative results for

closed-loop operating regions than the EMPC that treats the dis-

turbances in a deterministic, bounded manner.
In this direction, MPC of stochastic nonlinear systems has

received some attention recently. In Refs. 11 and 12, min-max

and tube-based economic MPC methods were developed for

nonlinear uncertain systems to achieve desired closed-loop

performance and reduced computational time. The works13,14

utilized the Markov-chain Monte Carlo technique to solve

constrained stochastic optimization problems to guarantee the

convergence to a near-optimal solution in a probabilistic

sense. In Ref. 15, a Lyapunov-based model predictive control

(LMPC) method was proposed for stochastic nonlinear sys-

tems, which guaranteed probabilistic stability (in the sense of

driving the state to a steady-state) and feasibility from an

explicitly characterized region of attraction. At this stage,

even though the EMPC problem has attracted considerable

research interest, the EMPC problem for nonlinear stochastic

systems has not been investigated sufficiently. Specifically,

computationally-efficient EMPC designs for handling distur-

bances that are not required to be small are needed with theo-

retical results regarding their ability to maintain the process in

a well-defined region of state-space without being overly con-

servative such that the benefits of EMPC are reduced.
Motivated by these considerations, this work focuses on the

design of stochastic Lyapunov-based economic model predic-

tive control (SLEMPC) designs for a broad class of stochastic

nonlinear systems with input constraints. Under the assump-

tion of stabilizability of the origin of the stochastic nonlinear

system via a stochastic Lyapunov-based control law, an eco-

nomic model predictive control method is proposed that uti-

lizes suitable constraints based on the stochastic Lyapunov-

based controller to ensure economic optimality, feasibility and

stability in probability in a well-characterized region of the

state-space surrounding the origin.
The rest of the manuscript is organized as follows: in Pre-

liminaries, the notations, the class of systems considered, and

the stabilizability assumptions are given. In Main Results, we

first introduce the LEMPC and establish its robustness for non-

linear systems with bounded disturbances. Subsequently, we

develop a SLEMPC for nonlinear systems subject to stochastic

disturbances with unbounded variation, and establish the prob-

abilistic stability and feasibility for the closed-loop system

under the sample-and-hold implementation of the SLEMPC

within an explicitly characterized set of initial conditions.

Finally, a nonlinear chemical process example is used to dem-

onstrate the application of the proposed SLEMPC and also its

advantages through the comparison of its economic benefits

with the LEMPC.

Preliminaries

Notation

Throughout the paper, ðX;F ;PÞ denotes a probability space,
where X is the set of all possible outcomes, F is a r-algebra of

events, and P is the probability measure function of the event.
Consider a stochastic process xðt;wÞ : ½0; 1Þ3X ! Rn on

ðX;F ;PÞ. For each w 2 X; xð�;wÞ is a realization or trajectory
of the stochastic process, and we abbreviate x(t, w) as xwðtÞ.
Given an event A, EðAÞ; PðAÞ; EðA j �Þ, and PðA j �Þ are the
expectation, the probability, the conditional expectation, and the

conditional probability of the occurrence of A, respectively. The
hitting time (or first hit time) sX of a set X is defined as the first

time that the state trajectory hits the boundary of X. Based on this,
we also define sXðtÞ5min fsX; tg and sX;TðtÞ5min fsX; T; tg,
where T is defined as the operation time. The notation j � j is used
to denote the Euclidean norm of a vector, and the notation j � jQ
denotes the weighted Euclidean norm of a vector (i.e., jxjQ5xTQ
x where Q is a positive definite matrix). xT denotes the transpose
of x. R1 denotes the set ½0;1Þ. The notation Lf VðxÞ denotes the
standard Lie derivative Lf VðxÞ : 5 @VðxÞ

@x f ðxÞ. Given a set D, we
denote the boundary of D by @D, the closure of D by D, and the

interior of D by Do. Set subtraction is denoted by “n”, i.e.,
AnB : 5fx 2 Rn j x 2 A; x 62 Bg. A continuous function a : ½0; aÞ
! ½0;1Þ is said to be a class K function if að0Þ50 and it is
strictly increasing. The function f(x) is said to be a class Ck function

if the ith derivative of f exists and is continuous for all
i51; 2; . . . ; k.

Class of systems

Consider a class of continuous-time stochastic nonlinear
systems described by the following stochastic differential

equation (SDE):

dxðtÞ5f ðxðtÞÞdt1gðxðtÞÞuðtÞdt1hðxðtÞÞdwðtÞ (1)

where x 2 Rn is the stochastic state vector and u 2 Rm is the
input vector. The available control action is defined by

U : 5fu 2 Rm j umin � u � umax g � Rm. The disturbance w(t)
is a standard q-dimensional independent Wiener process defined

on the probability space ðX;F ;PÞ. f ð�Þ; gð�Þ; hð�Þ are suffi-
ciently smooth vector and matrix functions of dimensions n31,

n 3 m, n 3 q, respectively. For the sake of brevity, it is
assumed that the steady-state of the nominal system with wðtÞ
� 0 is ðx�s ; u�s Þ5ð0; 0Þ, and the initial time t0 is taken to be zero
(t050). In Eq. 1, f ðxðtÞÞ1gðxðtÞÞuðtÞ is the deterministic drift

and hðxðtÞÞ is the diffusion matrix. We also assume that hð0Þ5
0 so that the disturbance term of Eq. 1 vanishes at the origin.

Definition 1. 16,17 Consider an n-dimensional Itô process
dxðtÞ5f ðxðtÞÞdt1hðxðtÞÞdwðtÞ, where f and h are an n31
vector and n 3 q matrix, respectively. Let Vðt; xðtÞÞ be a C2

map from ½0;1Þ3Rn ! R. Then, the process YðtÞ5Vðt; xðtÞÞ
is also an Itô process which satisfies the following equation:

dYðtÞ5
h @Vðt; xðtÞÞ

@t
1

@Vðt; xðtÞÞ
@x

f ðxðtÞÞ1 1

2
Tr
�
hðxðtÞÞT

3
@2Vðt; xðtÞÞ

@x2
hðxðtÞÞ

�i
dt1

@Vðt; xðtÞÞ
@x

hðxðtÞÞdwðtÞ

(2)

Definition 2. Given a C2 Lyapunov function
V : Rn ! R1, the infinitesimal generator (denoted by the
operator L) of the system of Eq. 1 is defined as follows:

LVðxÞ5 Lf VðxÞ1LgVðxÞu1
1

2
TrfhðxÞT @

2V

@x2
hðxÞg (3)

where f5½f1 � � � fn�T ; g5½g1 � � � gm�, and gi5½gi1 � � � gin�T ;
ði51; 2; � � � ;mÞ. Throughout the work, we assume that
Lf VðxÞ; LgVðxÞ, and hðxÞT @2VðxÞ

@x2 hðxÞ are locally Lipschitz.
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Definition 3. 16 Consider the unforced stochastic nonlin-
ear system of Eq. 1 as follows:

dxðtÞ5f ðxðtÞÞdt1hðxðtÞÞdwðtÞ (4)

Assuming that the equilibrium of the system of Eq. 4 is at
the origin, then the origin is said to be asymptotically stable
in probability, if for any � > 0, the following conditions
hold:

lim
xð0Þ!0

Pðlim
t!1

jxðtÞj50Þ51; lim
xð0Þ!0

Pðsup
t�0

jxðtÞj > �Þ50

(5)

Proposition 1. (Dynkin’s Formula17) Assuming
xð0Þ 2 Z � Rn, T> 0 and the solution x(t) of Eq. 4 exists
for all time, then x(t) satisfies the following condition for
t 2 ½0; sZ;TðtÞ�:

EðVðxðsZ;TðtÞÞÞÞ2Vðxð0ÞÞ5Eð
ðsZ;TðtÞ

0

LVðxðsÞÞdsÞ (6)

Proposition 2. 16 Given the system of Eq. 4, if for all
x 2 D0 � Rn, where D0 is an open neighborhood of the ori-
gin, LV < 0 holds 8t 2 ð0;1Þ, then EðVðxðtÞÞÞ < Vðxð0ÞÞ;
8t 2 ð0;1Þ and the origin of the system of Eq. 4 is asymp-
totically stable in probability.

Stabilizability assumptions

Consider the nominal system of Eq. 1 with wðtÞ � 0
described by the following differential equation:

_x5f ðxðtÞÞ1gðxðtÞÞuðtÞ (7)

We first assume that there exists a stabilizing feedback control
law u5UnðxÞ 2 U such that the origin of the deterministic sys-
tem of Eq. 7 can be rendered asymptotically stable for all
x 2 D1 � Rn, where D1 is an open neighborhood of the origin
when a small control property is satisfied, in the sense that
there exist a positive definite C1 control Lyapunov function V
and a class K function a0ð�Þ that satisfy the following
inequality:

_V5Lf VðxÞ1LgVðxÞUnðxÞ � 2a0ðjxjÞ (8)

An example of a feedback control law that is continuous for
all x in a neighborhood of the origin and renders the origin
asymptotically stable is the following control law18:

uiðxÞ5
2

p1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21jqj4

q

jqj2
q; if q 6¼ 0

0; if q50

8>><
>>:

(9a)

Un;iðxÞ5
umin
i ; if uiðxÞ < umin

i

uiðxÞ; if umin
i � uiðxÞ � umax

i

umax
i ; if uiðxÞ > umax

i

8>><
>>:

(9b)

where p denotes Lf VðxÞ, q denotes ðLgVðxÞÞT5½Lg1VðxÞ � � �
LgmVðxÞ�

T ; f5½f1 � � � fn�T , and gi5½gi1 � � � gin�T ; i51; 2; � � � ;m.
uiðxÞ of Eq. 9a represents the ith component of the control law
UnðxÞ before considering saturation of the control action at the
input bounds. Un;iðxÞ of Eq. 9b represents the ith component
of the saturated control law UnðxÞ that accounts for the input
constraint u 2 U. Based on the above controller UnðxÞ that sat-
isfies Eq. 8, the set of initial conditions from which the con-
troller UnðxÞ can stabilize the origin of the input-constrained

system of Eq. 7 is characterized as: /n5fx 2 Rn j _V1
jVðxÞ � 0; u5UnðxÞ 2 U; j > 0g. Additionally, we define a
level set of V(x) inside /n as Xq0 : 5fx 2 /n jVðxÞ � q0g,
which represents the stability region in the next LEMPC
subsection.

We also assume that there exists a stochastic stabilizing
feedback control law u5UsðxÞ 2 U such that the origin of the
system of Eq. 1 can be rendered asymptotically stable in prob-
ability for all x 2 D2 � Rn, where D2 is an open neighborhood
of the origin, in the sense that there exists a positive definite
C2 stochastic control Lyapunov function V that satisfies the
following inequalities:

LVðxÞ5Lf VðxÞ1LgVðxÞUsðxÞ1
1

2
TrfhT @

2V

@x2
hg � 2a1ðjxjÞ

(10)

hðxÞT @
2V

@x2
hðxÞ � 0 (11)

where a1ð�Þ is a class K function. One of the candidate control-
lers that can render the origin of the stochastic system of Eq. 1
asymptotically stable in probability is given in the form of
Eq. 919,20 where p denotes Lf VðxÞ1 1

2
TrfhðxÞT @2V

@x2 hðxÞg, q
denotes ðLgVðxÞÞT . Again, the controller UsðxÞ is the saturated
control law that accounts for the input constraints u 2 U.

Similarly, based on the controller UsðxÞ, we define the set of
initial conditions for the stochastic system of Eq. 1 from
which the origin is rendered asymptotically stable in probabil-
ity: /d5fx 2 Rn j LV1jVðxÞ � 0; u5UsðxÞ 2 U; j > 0g. It
should be noted that u5UsðxÞ is not the only controller that can
be used to characterize /d. For example, the controller UnðxÞ
that is designed for the nominal system of Eq. 1 can still be
applied to characterize a set of initial conditions for the stochas-
tic system of Eq. 1. However, the resulting set of initial condi-
tions is more conservative than the set of initial conditions /n

for the nominal system of Eq. 1 due to the positive semi-
definite Hessian term in Eq. 10. It may also be more conserva-
tive than the set of initial conditions /d characterized for the sto-
chastic system of Eq. 1 using the controller UsðxÞ since UnðxÞ of
Eq. 9 does not account for the disturbance in its formulation.
Furthermore, if the diffusion term vanishes, the feedback control
law that satisfies Eqs. 10 and 11 is identical to the one for deter-
ministic problems.

Similarly, we define a level set of V(x) inside /d as
Xq : 5fx 2 /d jVðxÞ � qg. Although the level set Xq0 of V(x)
in /n is an invariant set for the nominal system of Eq. 7 under
UnðxÞ, the level set Xq in /d is not invariant for the stochastic
system of Eq. 1 under UsðxÞ due to the unbounded variation of
w(t). However, based on Proposition 2, the origin of the sys-
tem of Eq. 1 is still rendered asymptotically stable in probabil-
ity within Xq under UsðxÞ.

Main Results

In this section, the optimization problems of Lyapunov-
based EMPC (LEMPC) and stochastic LEMPC (SLEMPC)
are first presented. Then, stability and feasibility in probability
of the closed-loop system of Eq. 1 are investigated under the
sample-and-hold implementation of the SLEMPC.

Lyapunov-based EMPC for nominal systems

LEMPC optimizes an economic cost function Leð�; �Þ and
maintains the closed-loop states of the nominal system of Eq.
7 in a stability region Xq0 , which is characterized as a level set
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2
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Similarly, based on the controller UsðxÞ, we define the set of
initial conditions for the stochastic system of Eq. 1 from
which the origin is rendered asymptotically stable in probabil-
ity: /d5fx 2 Rn j LV1jVðxÞ � 0; u5UsðxÞ 2 U; j > 0g. It
should be noted that u5UsðxÞ is not the only controller that can
be used to characterize /d. For example, the controller UnðxÞ
that is designed for the nominal system of Eq. 1 can still be
applied to characterize a set of initial conditions for the stochas-
tic system of Eq. 1. However, the resulting set of initial condi-
tions is more conservative than the set of initial conditions /n

for the nominal system of Eq. 1 due to the positive semi-
definite Hessian term in Eq. 10. It may also be more conserva-
tive than the set of initial conditions /d characterized for the sto-
chastic system of Eq. 1 using the controller UsðxÞ since UnðxÞ of
Eq. 9 does not account for the disturbance in its formulation.
Furthermore, if the diffusion term vanishes, the feedback control
law that satisfies Eqs. 10 and 11 is identical to the one for deter-
ministic problems.

Similarly, we define a level set of V(x) inside /d as
Xq : 5fx 2 /d jVðxÞ � qg. Although the level set Xq0 of V(x)
in /n is an invariant set for the nominal system of Eq. 7 under
UnðxÞ, the level set Xq in /d is not invariant for the stochastic
system of Eq. 1 under UsðxÞ due to the unbounded variation of
w(t). However, based on Proposition 2, the origin of the sys-
tem of Eq. 1 is still rendered asymptotically stable in probabil-
ity within Xq under UsðxÞ.

Main Results

In this section, the optimization problems of Lyapunov-
based EMPC (LEMPC) and stochastic LEMPC (SLEMPC)
are first presented. Then, stability and feasibility in probability
of the closed-loop system of Eq. 1 are investigated under the
sample-and-hold implementation of the SLEMPC.

Lyapunov-based EMPC for nominal systems

LEMPC optimizes an economic cost function Leð�; �Þ and
maintains the closed-loop states of the nominal system of Eq.
7 in a stability region Xq0 , which is characterized as a level set
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of V inside /n. The LEMPC design8 is given by the following
optimization problem:

max
u2SðDÞ

ðtk1sPD

tk

Leð~xðtÞ; uðtÞÞ dt (12a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ (12b)

~xðtkÞ5xðtkÞ (12c)

uðtÞ 2 U; 8 t 2 ½tk; tk1sPDÞ (12d)

Vð~xðtÞÞ < q0e; 8t 2 ½tk; tk1sPDÞ; if xðtkÞ 2 Xo
q0e

(12e)

_VðxðtkÞ; uðtkÞÞ � _VðxðtkÞ;UnðxðtkÞÞÞ; if xðtkÞ 2 Xq0 nXo
q0e

(12f)

where ~x is the nominal predicted state trajectory, SðDÞ is the
set of piecewise constant functions with period D, sP is
the number of sampling periods of the prediction horizon, and
_VðxðtkÞ; uðtkÞÞ represents @VðxðtkÞÞ

@x ðf ðxðtkÞÞ1gðxðtkÞÞuðtkÞÞ. Xq0e
is a level set of V inside /n: Xq0e : 5fx 2 Rn jVðxÞ � q0eg
where 0 < q0e < q0 such that Xq0e � Xq0 . It is chosen to make
the region Xq0 : 5fx 2 /n jVðxÞ � q0g a forward invariant set
under the LEMPC of Eq. 12.

In the optimization problem of Eq. 12, the objective func-
tion of Eq. 12a is the integral of Leð~xðtÞ; uðtÞÞ over the predic-
tion horizon. The constraint of Eq. 12b is the nominal system
of Eq. 7 that is used to predict the states of the closed-loop sys-
tem. Eq. 12c defines the initial condition ~xðtkÞ of the nominal
system determined from a state measurement xðtkÞ at t5 tk.
Eq. 12d represents the input constraints applied over the entire
prediction horizon. The constraint of Eq. 12e maintains the
predicted states in the interior Xo

q0e
of Xq0e when the current

state xðtkÞ 2 Xo
q0e
. However, if xðtkÞ 2 Xq0 nXo

q0e
, the constraint

of Eq. 12f is activated to decrease V(x) at the first sampling
time in the prediction horizon such that x(t) for the nominal
system of Eq. 7 will move toward the origin. Since V(x) is
required by Eq. 12f to decrease in a sampling period at least at
the worst-case rate that it would decrease under the Lyapunov-
based controller UnðxÞ implemented in a sample-and-hold
fashion, it is guaranteed that within finite sampling steps, x(t)
for the nominal system of Eq. 7 will enter Xo

q0e
again. It is nota-

ble that due to the robustness properties of Un,
8 the LEMPC of

Eq. 12 can maintain the closed-loop state within Xq0 even in
the presence of small bounded disturbances when q0e and D are
sufficiently small.

Lyapunov-based EMPC for uncertain systems

Consider that a bounded disturbance w(t), rather than a
disturbance of Wiener process w(t), is introduced into the
nominal system of Eq. 7 (i.e., the uncertain system can be
written by the following differential equation: _xðtÞ5f ðxðtÞÞ1
gðxðtÞÞuðtÞ1 hðxðtÞÞwðtÞ). Consider that the bound on this dis-
turbance is not necessarily sufficiently small. A straightfor-
ward method to eliminate the impact of the bounded
disturbances is to take the worst case scenario (i.e., the bound
of w(t)) into consideration in the control design. An LEMPC
with a form similar to that in Eq. 12 is therefore developed to
account for the disturbances bounded by jwðtÞj � h, and is
given as follows:

max
u2SðDÞ

ðtk1sPD

tk

Leð~xðtÞ; uðtÞÞ dt (13a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ (13b)

~xðtkÞ5xðtkÞ (13c)

uðtÞ 2 U; 8 t 2 ½tk; tk1sPDÞ (13d)

Vð~xðtÞÞ < ~q0
e; 8t 2 ½tk; tk1sPDÞ; if xðtkÞ 2 Xo

~q0e (13e)

_̂VðxðtkÞ; uðtkÞÞ � _̂VðxðtkÞ;UnðxðtkÞÞÞ; if xðtkÞ 2 X~q 0 nXo
~q0e
(13f)

where the notations and constraints of Eqs. 13a–13f follow the

notations and constraints of Eqs. 12a–12f except that _V in Eq.

12f is replaced by _̂V in Eq. 13f which includes the disturbance

term jLhVðxÞhj to account for the worst case of the bounded

disturbances: _̂V5Lf VðxÞ1LgVðxÞu1jLhVðxÞhj. Similarly, we

can characterize the set of initial conditions from which the

controller UnðxÞ can stabilize the origin of the input-

constrained uncertain system of Eq. 7 with jwðtÞj � h as: /0
d5

fx 2 Rn j _̂V1jVðxÞ5Lf VðxÞ1 LgVðxÞu1jLhVðxÞhj1 jVðxÞ �
0; u5UnðxÞ 2 U; j > 0g. The regions X~q 0 and X~q 0

e
are level

sets of V within /0
d. Though a controller Un is required that

meets this condition to guarantee that a control law exists for

the system in the presence of bounded disturbances that can

asymptotically stabilize the origin of the closed-loop system,

if h is very big, since u is bounded, it is not guaranteed that

there is any u that can cause _̂V1jVðxÞ � 0. Therefore, obtain-

ing deterministic results for control of systems with

unbounded disturbances may be difficult, even if LhV and h
are known. In other words, the set of initial conditions /0

d

becomes more conservative than /n, or may not even exist in

the presence of large bounded disturbances.

Stochastic Lyapunov-based EMPC (SLEMPC)

Inspired by the LEMPC design, the SLEMPC design is

given by the following optimization problem:

max
u2SðDÞ

ðtk1sPD

tk

Leð~xðtÞ; uðtÞÞ dt (14a)

s:t: _~xðtÞ5f ð~xðtÞÞ1gð~xðtÞÞuðtÞ (14b)

~xðtkÞ5xðtkÞ (14c)

uðtÞ 2 U; 8 t 2 ½tk; tk1sPDÞ (14d)

Vð~xðtÞÞ < qe; 8t 2 ½tk; tk1sPDÞ; if xðtkÞ 2 Xo
qe

(14e)

LVðxðtkÞ; uðtkÞÞ � LVðxðtkÞ;UsðxðtkÞÞÞ; if xðtkÞ 2 XqnXo
qe

(14f)

where the notations and constraints of Eqs. 14a–14f follow the

notations and constraints of Eqs. 12a–12f except that we use

q, qe, UsðxÞ and LV to replace q0; q0e; UnðxÞ and _V respec-

tively to indicate that UsðxÞ is used in developing Eq. 14 rather

than Un. Xqe is a level set inside /d: Xqe : 5fx 2 Rn jVðxÞ
� qeg where 0 < qe < q such that Xqe � Xq. The optimal

input trajectory determined by the optimization problem of the

SLEMPC is denoted by u�ðtÞ, which is calculated over the

entire prediction horizon t 2 ½tk; tk1sPDÞ. The control action

computed for the first sampling period of the prediction hori-

zon u�ðtkÞ is sent to the actuators to be applied over the sam-

pling period and the SLEMPC is re-solved at the next

sampling time.
In the optimization problem of Eq. 14, the constraints of

Eqs. 14a–14d, like the constraints of Eqs. 12a–12d, define the

objective function, the prediction model, the initial condition

of the prediction model, and the input constraints of the
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optimization problem, respectively. If the current state xðtkÞ
belongs to Xo

qe
, the constraint of Eq. 14e maintains the pre-

dicted states in Xo
qe
. However, if xðtkÞ 2 XqnXo

qe
, the constraint

of Eq. 14f is activated to decrease V(x) at the first sampling

time at least at the rate that it would decrease under the sto-

chastic Lyapunov-based controller UsðxÞ such that x(t) will
move toward the origin within this sampling period in proba-

bility. Therefore, if the constraint of Eq. 14f is applied recur-
sively, x(t) will enter Xo

qe
within finite sampling steps in

probability, which will be proved later.
Remark 1. There exist differences between the feedback

control law UnðxÞ applied in the LEMPC of Eq. 12 and UsðxÞ
applied in the SLEMPC of Eq. 14. Specifically, UnðxÞ satis-
fies Eq. 8 and forces the states of the closed-loop nominal

system of Eq. 7 to converge to the origin. However, under the
control law UsðxÞ that satisfies Eq. 10, the origin of the sys-

tem of Eq. 1 subject to stochastic disturbances is rendered

asymptotically stable in probability. In our previous work,8 it
is shown that if the constraint of Eq. 12f is recursively applied

in a sample-and-hold fashion, the states of the closed-loop
nominal system of Eq. 7 are guaranteed to be bounded in a

small region around the origin ultimately. Similarly, it will be
shown in subsequent sections that if the constraint of Eq. 14f

is recursively applied in a sample-and-hold fashion for any
xð0Þ 2 Xq, the states of the closed-loop stochastic system of

Eq. 1 still converge to a small region around the origin, but in
probability.

Remark 2. All the controllers of Eqs. 12–14 use the nom-
inal system model of Eq. 7 in Eqs. 12b, 13b, and 14b which

allows the state predictions of the LEMPCs of Eqs. 12 and
13, and the SLEMPC of Eq. 14 to be deterministic. One of

the advantages of applying the deterministic prediction
model is that it can offer significant savings in computation

time compared to existing methods for calculating the propa-
gation of stochastic uncertainties through the dynamics of

the nonlinear system of Eq. 1.21 Also, based on the
SLEMPC of Eq. 14 with a deterministic model and appropri-

ate constraints, we are still able to obtain probabilistic results
for a process that accounts for the distributional information

of the stochastic disturbances (i.e., the diffusion term of the

system of Eq. 1), which will be proved in the next sections.

Sample-and-hold implementation

Since the control actions are implemented in a sample-and-

hold fashion in the SLEMPC, in this subsection, we investi-
gate the impact of the sample-and-hold implementation on the

stability of the closed-loop system of Eq. 1 following similar
arguments to those in Refs. 15 and 22. The results given in

Theorem 1 will then be used in the next subsection “Stability
in Probability” to derive the probabilities of closed-loop stabil-

ity of the system of Eq. 1 under the SLEMPC of Eq. 14. Spe-

cifically, the probability of the set Xq remaining invariant
under the sample-and-hold implementation of the SLEMPC of

Eq. 14 with a sampling period D is given as follows.
Theorem 1. Consider the system of Eq. 1 under the

SLEMPC of Eq. 14 applied in a sample-and-hold fashion

(i.e., uðtÞ5uðiDÞ; 8 iD � t < ði11ÞD; i50; 1; 2; . . .). Let
tk5iD; i � 0, then given any probability k 2 ð0; 1�, there

exists qs < qmin < qe < q where Xqs : 5fx 2 Rn jVðxÞ � qsg
is a small level set around the origin where LV is not guaran-

teed to remain negative for the nominal system of Eq. 7 under
the sample-and-hold implementation of u(t), and a sampling

period D� : 5D�ðkÞ such that if D 2 ð0;D��, then

Pð sup
t2½tk ;tk1DÞ

VðxðtÞÞ < qÞ � 12k; 8xðtkÞ 2 Xo
qe

(15)

Pð sup
t2½tk ;tk1DÞ

VðxðtÞÞ < qminÞ � 12k; 8xðtkÞ 2 Xo
qs

(16)

Pð sup
t2½tk ;tk1DÞ

LVðxðtÞÞ < 2� < 0Þ � 12k; 8xðtkÞ 2 XqnXo
qs

(17)

Proof. Let AB : 5fw 2 Rq j sup t2½tk ;tk1D�Þ jwðtÞj � Bg.
Using the results for standard Brownian motion,23 given any
probability k 2 ð0; 1�, there exists a sufficiently small B,
such that PðABÞ512k. Also, because x is almost surely local
H€older-continuous16 with exponent r< 1=2, for each realiza-
tion xwðtÞ with xðtkÞ 2 Xq and w 2 AB, there almost surely

exists a positive real number k1, such that sup t2½tk ;tk1D�Þ
jxwðtÞ2xðtkÞj � k1ðD�Þr , where r< 1=2. Therefore, for
all w 2 Rq, the probability of the event AW : 5fsup t2½tk ;tk1D�Þ
jxðtÞ2xðtkÞj � k1ðD�Þrg is: PðAWÞ � 12k. Based on the
sample-and-hold implementation of the control actions under

the SLEMPC of Eq. 14, i.e., uðtÞ5uðtkÞ; 8t 2 ½tk; tk1D�Þ, we
first prove the probability of Eq. 15. Since V(x) satisfies the
local Lipschitz condition, there exists a positive real number
k2, such that jVðxðtÞÞ2VðxðtkÞÞj � k2jxðtÞ2 xðtkÞj; 8x 2 /d.

Therefore, for any w that satisfies AW, if D
� < D15 ðq2qe

k2k1
Þð

1
rÞ,

it follows that jVðxðtÞÞ2VðxðtkÞÞj < q2qe; 8t 2 ½tk; tk1D�Þ.
Furthermore, 8xðtkÞ 2 Xo

qe
, it is obtained that VðxðtÞÞ < q;

8t 2 ½tk; tk1D�Þ since 2ðq2qeÞ < VðxðtÞÞ2VðxðtkÞÞ < q2qe
and sup xðtkÞ2Xo

qe
VðxðtkÞÞ5qe. Therefore, 8w 2 Rq, if

xðtkÞ 2 Xo
qe
, the probability of x(t) staying inside Xq within

one sampling period is Pðsup t2½tk ;tk1D�Þ VðxðtÞÞ < qÞ � 12k.

Similarly, if D� < D25ðqmin2qs
k2k1

Þð
1
rÞ, for any xðtkÞ 2 Xo

qs
, the

probability of Eq. 16 that x(t) stays inside Xqmin
within one

sampling period is Pðsup t2½tk ;tk1D�Þ VðxðtÞÞ < qminÞ � 12k.
Next, we prove the probability of Eq. 17 by first deriving
the following equation for all t 2 ½tk; tk1D�Þ:

LVðxðtÞÞ5LVðxðtkÞÞ1ðLVðxðtÞÞ2LVðxðtkÞÞÞ

5LVðxðtkÞÞ1ðLf VðxðtÞÞ2Lf VðxðtkÞÞÞ1ðLgVðxðtÞÞ

2LgVðxðtkÞÞÞuðtkÞ1
1

2
TrfhðxðtÞÞT @

2VðxðtÞÞ
@x2

hðxðtÞÞg

2
1

2
TrfhðxðtkÞÞT

@2VðxðtkÞÞ
@x2

hðxðtkÞÞg

(18)

For any xðtkÞ 2 XqnXo
qs
, it holds that VðxðtkÞÞ � qs, which

implies LVðxðtkÞÞ � 2jVðxðtkÞÞ � 2jqs by the definition of

/d. Since Lf VðxÞ; LgVðxÞ, and hðxðtÞÞT @2VðxÞ
@x2 hðxðtÞÞ are locally

Lipschitz, there exist positive real numbers k3, k4, k5, such
that jLf VðxðtÞÞ2Lf VðxðtkÞÞj � k3jxðtÞ2xðtkÞj; jLgVðxðtÞÞuðtkÞ
2LgVðxðtkÞÞuðtkÞj � k4jxðtÞ2xðtkÞj, and j 1

2
TrfhðxðtÞÞT @2VðxðtÞÞ

@x2

hðxðtÞÞg2 1
2
TrfhðxðtkÞÞT @2VðxðtkÞÞ

@x2 hðxðtkÞÞgj � k5jxðtÞ2
xðtkÞj; 8x 2 /d . Let 0 < � < jqs and D� < D35

ð jqs2�
k1ðk31k41k5ÞÞ

ð1rÞ. It follows from these conditions and Eq. 18 that

8w 2 AW ; LVðxðtÞÞ < 2� < 0, 8t 2 ½tk; tk1D�Þ holds. There-

fore, by choosing the sampling period D 2 ð0;D��, given any ini-
tial condition xðtkÞ 2 XqnXo

qs
, the probability that

LVðxðtÞÞ < 2� is as follows: Pðsup t2½tk ;tk1D�Þ LVðxðtÞÞ < 2�Þ
� 1 2k. Finally, let D� � min fD1;D2;D3g, then the probabili-

ties of Eqs. 15–17 are all satisfied for D 2 ð0;D��. �
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optimization problem, respectively. If the current state xðtkÞ
belongs to Xo

qe
, the constraint of Eq. 14e maintains the pre-

dicted states in Xo
qe
. However, if xðtkÞ 2 XqnXo

qe
, the constraint

of Eq. 14f is activated to decrease V(x) at the first sampling

time at least at the rate that it would decrease under the sto-

chastic Lyapunov-based controller UsðxÞ such that x(t) will
move toward the origin within this sampling period in proba-

bility. Therefore, if the constraint of Eq. 14f is applied recur-
sively, x(t) will enter Xo

qe
within finite sampling steps in

probability, which will be proved later.
Remark 1. There exist differences between the feedback

control law UnðxÞ applied in the LEMPC of Eq. 12 and UsðxÞ
applied in the SLEMPC of Eq. 14. Specifically, UnðxÞ satis-
fies Eq. 8 and forces the states of the closed-loop nominal

system of Eq. 7 to converge to the origin. However, under the
control law UsðxÞ that satisfies Eq. 10, the origin of the sys-

tem of Eq. 1 subject to stochastic disturbances is rendered

asymptotically stable in probability. In our previous work,8 it
is shown that if the constraint of Eq. 12f is recursively applied

in a sample-and-hold fashion, the states of the closed-loop
nominal system of Eq. 7 are guaranteed to be bounded in a

small region around the origin ultimately. Similarly, it will be
shown in subsequent sections that if the constraint of Eq. 14f

is recursively applied in a sample-and-hold fashion for any
xð0Þ 2 Xq, the states of the closed-loop stochastic system of

Eq. 1 still converge to a small region around the origin, but in
probability.

Remark 2. All the controllers of Eqs. 12–14 use the nom-
inal system model of Eq. 7 in Eqs. 12b, 13b, and 14b which

allows the state predictions of the LEMPCs of Eqs. 12 and
13, and the SLEMPC of Eq. 14 to be deterministic. One of

the advantages of applying the deterministic prediction
model is that it can offer significant savings in computation

time compared to existing methods for calculating the propa-
gation of stochastic uncertainties through the dynamics of

the nonlinear system of Eq. 1.21 Also, based on the
SLEMPC of Eq. 14 with a deterministic model and appropri-

ate constraints, we are still able to obtain probabilistic results
for a process that accounts for the distributional information

of the stochastic disturbances (i.e., the diffusion term of the

system of Eq. 1), which will be proved in the next sections.

Sample-and-hold implementation

Since the control actions are implemented in a sample-and-

hold fashion in the SLEMPC, in this subsection, we investi-
gate the impact of the sample-and-hold implementation on the

stability of the closed-loop system of Eq. 1 following similar
arguments to those in Refs. 15 and 22. The results given in

Theorem 1 will then be used in the next subsection “Stability
in Probability” to derive the probabilities of closed-loop stabil-

ity of the system of Eq. 1 under the SLEMPC of Eq. 14. Spe-

cifically, the probability of the set Xq remaining invariant
under the sample-and-hold implementation of the SLEMPC of

Eq. 14 with a sampling period D is given as follows.
Theorem 1. Consider the system of Eq. 1 under the

SLEMPC of Eq. 14 applied in a sample-and-hold fashion

(i.e., uðtÞ5uðiDÞ; 8 iD � t < ði11ÞD; i50; 1; 2; . . .). Let
tk5iD; i � 0, then given any probability k 2 ð0; 1�, there

exists qs < qmin < qe < q where Xqs : 5fx 2 Rn jVðxÞ � qsg
is a small level set around the origin where LV is not guaran-

teed to remain negative for the nominal system of Eq. 7 under
the sample-and-hold implementation of u(t), and a sampling

period D� : 5D�ðkÞ such that if D 2 ð0;D��, then

Pð sup
t2½tk ;tk1DÞ

VðxðtÞÞ < qÞ � 12k; 8xðtkÞ 2 Xo
qe

(15)

Pð sup
t2½tk ;tk1DÞ

VðxðtÞÞ < qminÞ � 12k; 8xðtkÞ 2 Xo
qs

(16)

Pð sup
t2½tk ;tk1DÞ

LVðxðtÞÞ < 2� < 0Þ � 12k; 8xðtkÞ 2 XqnXo
qs

(17)

Proof. Let AB : 5fw 2 Rq j sup t2½tk ;tk1D�Þ jwðtÞj � Bg.
Using the results for standard Brownian motion,23 given any
probability k 2 ð0; 1�, there exists a sufficiently small B,
such that PðABÞ512k. Also, because x is almost surely local
H€older-continuous16 with exponent r< 1=2, for each realiza-
tion xwðtÞ with xðtkÞ 2 Xq and w 2 AB, there almost surely

exists a positive real number k1, such that sup t2½tk ;tk1D�Þ
jxwðtÞ2xðtkÞj � k1ðD�Þr , where r< 1=2. Therefore, for
all w 2 Rq, the probability of the event AW : 5fsup t2½tk ;tk1D�Þ
jxðtÞ2xðtkÞj � k1ðD�Þrg is: PðAWÞ � 12k. Based on the
sample-and-hold implementation of the control actions under

the SLEMPC of Eq. 14, i.e., uðtÞ5uðtkÞ; 8t 2 ½tk; tk1D�Þ, we
first prove the probability of Eq. 15. Since V(x) satisfies the
local Lipschitz condition, there exists a positive real number
k2, such that jVðxðtÞÞ2VðxðtkÞÞj � k2jxðtÞ2 xðtkÞj; 8x 2 /d.

Therefore, for any w that satisfies AW, if D
� < D15 ðq2qe

k2k1
Þð

1
rÞ,

it follows that jVðxðtÞÞ2VðxðtkÞÞj < q2qe; 8t 2 ½tk; tk1D�Þ.
Furthermore, 8xðtkÞ 2 Xo

qe
, it is obtained that VðxðtÞÞ < q;

8t 2 ½tk; tk1D�Þ since 2ðq2qeÞ < VðxðtÞÞ2VðxðtkÞÞ < q2qe
and sup xðtkÞ2Xo

qe
VðxðtkÞÞ5qe. Therefore, 8w 2 Rq, if

xðtkÞ 2 Xo
qe
, the probability of x(t) staying inside Xq within

one sampling period is Pðsup t2½tk ;tk1D�Þ VðxðtÞÞ < qÞ � 12k.

Similarly, if D� < D25ðqmin2qs
k2k1

Þð
1
rÞ, for any xðtkÞ 2 Xo

qs
, the

probability of Eq. 16 that x(t) stays inside Xqmin
within one

sampling period is Pðsup t2½tk ;tk1D�Þ VðxðtÞÞ < qminÞ � 12k.
Next, we prove the probability of Eq. 17 by first deriving
the following equation for all t 2 ½tk; tk1D�Þ:

LVðxðtÞÞ5LVðxðtkÞÞ1ðLVðxðtÞÞ2LVðxðtkÞÞÞ

5LVðxðtkÞÞ1ðLf VðxðtÞÞ2Lf VðxðtkÞÞÞ1ðLgVðxðtÞÞ

2LgVðxðtkÞÞÞuðtkÞ1
1

2
TrfhðxðtÞÞT @

2VðxðtÞÞ
@x2

hðxðtÞÞg

2
1

2
TrfhðxðtkÞÞT

@2VðxðtkÞÞ
@x2

hðxðtkÞÞg

(18)

For any xðtkÞ 2 XqnXo
qs
, it holds that VðxðtkÞÞ � qs, which

implies LVðxðtkÞÞ � 2jVðxðtkÞÞ � 2jqs by the definition of

/d. Since Lf VðxÞ; LgVðxÞ, and hðxðtÞÞT @2VðxÞ
@x2 hðxðtÞÞ are locally

Lipschitz, there exist positive real numbers k3, k4, k5, such
that jLf VðxðtÞÞ2Lf VðxðtkÞÞj � k3jxðtÞ2xðtkÞj; jLgVðxðtÞÞuðtkÞ
2LgVðxðtkÞÞuðtkÞj � k4jxðtÞ2xðtkÞj, and j 1

2
TrfhðxðtÞÞT @2VðxðtÞÞ

@x2

hðxðtÞÞg2 1
2
TrfhðxðtkÞÞT @2VðxðtkÞÞ

@x2 hðxðtkÞÞgj � k5jxðtÞ2
xðtkÞj; 8x 2 /d . Let 0 < � < jqs and D� < D35

ð jqs2�
k1ðk31k41k5ÞÞ

ð1rÞ. It follows from these conditions and Eq. 18 that

8w 2 AW ; LVðxðtÞÞ < 2� < 0, 8t 2 ½tk; tk1D�Þ holds. There-

fore, by choosing the sampling period D 2 ð0;D��, given any ini-
tial condition xðtkÞ 2 XqnXo

qs
, the probability that

LVðxðtÞÞ < 2� is as follows: Pðsup t2½tk ;tk1D�Þ LVðxðtÞÞ < 2�Þ
� 1 2k. Finally, let D� � min fD1;D2;D3g, then the probabili-

ties of Eqs. 15–17 are all satisfied for D 2 ð0;D��. �
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Remark 3. Theorem 1 gives the conditions under which
the closed-loop state under the SLEMPC of Eq. 14 does not

leave Xq in probability within a sampling period when the
initial condition is within Xo

qe
, and also gives the conditions

under which, under repeated application of the constraint of

Eq. 14f at subsequent sampling periods regardless of the
location of the state measurement at tk, the closed-loop state

moves toward a neighborhood of the origin in a sampling
period or once it enters it, does not leave that neighborhood

in a sampling period, in probability. The conditions developed
require that the sampling period be sufficiently small for the
probability desired for the results, and also that the level sets

of the Lyapunov function bounded by qs, qmin, qe, and q be
sized sufficiently with respect to one another and D so that

the results hold. For example, a critical step in the proof
requires that jVðxðtÞÞ2VðxðtkÞÞj < k2k1D

r , where D is a direct
function of upper bounds on level sets of V. Consider D1, for

example. If q2qe is larger (i.e., Xqe is more conservative),
then there is a larger difference between VðxðtÞÞ and q for

t 2 ½tk; tk1D�Þ, which gives greater conservatism to the
probabilistic results. This concept of creating a larger gap

between qe and q to reduce the likelihood that the closed-
loop state will exit the stability region during a sampling
period will be demonstrated in the section “Application to

a Chemical Process Example.” Furthermore, to achieve a
certain probability of staying inside either Xq or Xqmin

, D
has to be small enough. Since D is dependent on the differ-
ence between the upper bounds on two level sets of V in
the proof of Theorem 1, there is a tradeoff between making

D smaller and making the smaller level set (Xqe or Xqs )
less conservative compared to the larger region (Xq or

Xqmin
) while achieving the same probability of maintaining

the closed-loop state within this larger region. This indi-

cates that there are parallels at a theoretical level between
the conditions required in Ref. 8 for guaranteed closed-
loop stability in the presence of sufficiently small bounded

disturbances (i.e., the disturbances, sampling period, and
upper bounds on level sets of the Lyapunov function must

be sufficiently small) and the conditions which have been
derived in Theorem 1 (where to achieve certain probabili-
ties of closed-loop stability, the bounds on the disturban-

ces, sampling period, and upper bounds on level sets of the
Lyapunov function are all again required to be sufficiently

small, as defined with respect to one another, to achieve
the theoretical results).

Stability in probability

In this subsection, the probabilistic stability of the SLEMPC
of Eq. 14 applied in a sample-and-hold fashion is established
through three aspects, which are the probability of the closed-

loop states x(t) staying in Xq when initialized within Xqe , the
probability of x(t) moving to Xqe when it is outside that region,

and the probability of x(t) converging to a small ball around
the origin Xqmin

if at some point it is required to operate the

system of Eq. 1 at the steady-state by applying the constraint
of Eq. 14f all the time. Theorem 2 below provides the proba-
bilities with respect to the above three events. Example trajec-

tories exemplifying each of these events are also shown as the
realizations starting from x1, x2 and x3, respectively in Figure

1. In the following theorem, we will make use of Eq. 6.
Though x(0) in that equation represents a general initial condi-
tion and could therefore conceptually be replaced with tk, for
ease of presentation in the following, we refer to xðtkÞ as x(0),

and therefore represent the time within each prediction hori-
zon as extending from 0 to D.

Theorem 2. Consider the system of Eq. 1 under the
SLEMPC of Eq. 14 applied in a sample-and-hold fashion,
i.e., uðtÞ5uð0Þ; 8t 2 ½0;DÞ. Then, given the initial condition
xð0Þ 2 Xq, positive real numbers q > qe > qmin > qs and qc
2 ½qe; q� and probability k 2 ð0; 1�, there exist a sampling
period D 2 ð0;D�ðkÞ� and probabilities b; b0; c; c0 2 ½0; 1�
such that

Pð sup
t2½0;DÞ

VðxðtÞÞ < qÞ � ð12bÞð12kÞ; 8xð0Þ 2 Xqe (19)

PðsRnnXo
qe
ðDÞ � sXqðDÞÞ � ð12c0Þð12kÞ; 8xð0Þ 2 XqcnX

o
qe

(20)

Pð sup
t2½0;DÞ

VðxðtÞÞ < q; sRnnXo
qs
< 1;

sup t2½0;DÞ Vðxðt1sRnnXo
qs
ÞÞ < qminÞ

� ð12b0Þð12cÞð12kÞ2; 8xð0Þ 2 XqenX
o
qs

(21)

where

sup x2@Xqe
VðxÞ

inf x2RnnXq
VðxÞ � b (22a)

sup
x2XqenX

o
qs

VðxÞ
q

� c (22b)

sup
x2XqcnX

o
qe

VðxÞ
q

� c0 (22c)

sup x2@Xqs
VðxÞ

inf x2RnnXqmin
VðxÞ � b0 (22d)

Proof. The proof consists of four parts. In the first part,
we show that under the SLEMPC of Eq. 14, any state tra-
jectory initiated from xð0Þ 2 Xqe has the probability defined
by Eq. 19 of staying in Xq throughout a sampling period.
However, if xð0Þ 2 XqcnX

o
qe
, where qc 2 ½qe; q�, we prove

that under the SLEMPC of Eq. 14, there exists the proba-
bility of Eq. 20 for the state of the closed-loop system to
move back into Xqe before it leaves Xq in a sampling
period. Additionally, we show that under the SLEMPC of
Eq. 14, if the contractive constraint of Eq. 14f is applied all
the time to operate the system of Eq. 1 at its steady-state,
the state of the closed-loop system will ultimately enter a
small ball Xqmin

around the origin while always remaining
in Xq with the probability of Eq. 21. Lastly, we show that
the above results that are derived for one sampling period
can be generalized to overall probabilities over the entire
operating period. For the sake of simplicity, we denote the
probabilities and expectations conditional on the event of
AW as P�ð�Þ and E�ð�Þ.

Part 1 : Because ð12kÞ � ð12bÞð12kÞ, for b; k 2 ð0; 1�,
the result of Eq. 15 causes Eq. 19 to hold for xð0Þ 2 Xo

qe
.

Therefore, to show that Eq. 19 holds for all xð0Þ 2 Xqe , it is
necessary to show that the extreme case xð0Þ 2 @Xqe
satisfies Eq. 19. Assuming xð0Þ 2 @Xqe , under the con-
straint of Eq. 14f, the optimization problem of Eq. 14 is
solved such that LV is forced to be negative at t5 0,
which implies that Eq. 17 holds with the probability of
the event AW.
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Using Eq. 6, the following equation can be derived with Z5
XqnXo

qe
; t 2 ½0;DÞ and T51:

E�ðVðxðsT;XqnXo
qe
ðtÞÞÞÞ5Vðxð0ÞÞ1E�ð

ðsT;XqnXoqe ðtÞ
0

LVðxðsÞÞdsÞ

(23)

We can also derive the following probability as in Ref. 24,
for all xð0Þ 2 @Xqe :

E�ðVðxðsT;XqnXo
qe
ðtÞÞÞÞ5

ð

V�~k
VðxðsT;XqnXo

qe
ðtÞÞÞdP�

1

ð

V<~k
VðxðsT;XqnXo

qe
ðtÞÞÞdP� � ~kP�ðVðxðsT;XqnXo

qe
ðtÞÞÞ � ~kÞ

(24)

Using Eq. 23 and setting ~k5 inf x2RnnXq
VðxÞ, the following

inequality is derived 8xð0Þ 2 @Xqe :

P�ðVðxðtÞÞ � q; for some t 2 ½0;DÞÞ

�
Vðxð0ÞÞ1E�ð

ðsT;XqnXoqe ðtÞ
0

LVðxðsÞÞdsÞ

inf x2RnnXq
VðxÞ � Vðxð0ÞÞ

inf x2RnnXq
VðxÞ
(25)

where the last inequality follows from Eq. 23 and the fact that
the value of LV is negative, conditioned on AW. Bounding
Eq. 25 with Eq. 22a and taking the complementary events, the
following probability is obtained: inf xð0Þ2@Xqe

P�ðVðxðtÞÞ <
q; 8t 2 ½0;DÞÞ � ð12bÞ, from which the probability of Eq. 19
is obtained via the definition of conditional probability.

Part 2 : If xð0Þ 2 XqnXo
qe
, we consider the event that the

closed-loop realization of the system of Eq. 1 moves back to
Xqe before reaching the boundary of Xq in a sampling
period, of which the probability is obtained in this part.
Consider that these hitting times occur within a sampling
period. Assuming xð0Þ 2 @Xqc , where Xqc : 5fx 2 /d jVðxÞ
� qc; qc 2 ½qe; q�g, we can show that P�ðsXqnXo

qe
< 1Þ51

using similar arguments as in Ref. 24. Then, consider the
event AT5fsRnnXo

qe
> sXqg, which implies that the state of

the closed-loop system of Eq. 1 reaches the boundary of Xq

before it reaches the boundary of Xqe . The probability of AT

is determined via Eq. 24 and the fact that the event fsRnnXo
qe

> sXqg belongs to the event
n VðxðsXqnXoqe ÞÞ

q � 1
o
, which is

shown as follows:

P�ðsRnnXo
qe
> sXqÞ � P�

�
VðxðsXqnXo

qe
ÞÞ

q
� 1

�
� Vðxð0ÞÞ

q
(26)

Bounding Eq. 26 by Eq. 22c, it follows that

sup xð0Þ2Xqc nX
o
qe
P�ðsRnnXo

qe
> sXqÞ � c0. Therefore, taking the

complementary event of AT and using the definition of con-

ditional probability, the probability of Eq. 20 is obtained. If

we consider that neither hitting time sRnnXo
qe

nor sXq occurs

within the sampling period, then sRnnXo
qe
ðDÞ5sXqðDÞ5D,

which is always a true statement, and therefore the inequal-

ity of Eq. 20 is again obtained.
Part 3 : Next, we consider the scenario where the contrac-

tive constraint of Eq. 14f is implemented recursively to drive

the state of the system of Eq. 1 to its equilibrium, rather

than causing it to remain in Xq only, and calculate the prob-

ability of the closed-loop trajectory entering Xqmin
in finite

time. Since we assume that the constraint of Eq. 14f is

applied for all xð0Þ 2 XqnXo
qs
; LV < 2� holds from Eq. 17

with the probability of AW. As a result, the following equa-

tions can be derived using the same steps for Eqs. 23 and 26

when LV < 2� holds 8xð0Þ 2 XqnXo
qs
:

E�ðVðxðsT;XqnXo
qs
ðtÞÞÞÞ � Vðxð0ÞÞ (27a)

P�ðsRnnXo
qs
> sXqÞ � P�ð

VðxðsXqnXo
qs
ÞÞ

q
� 1Þ � Vðxð0ÞÞ

q
(27b)

Due to the fact that P�ðsRnnXo
qs
5sXqÞ50, the following prob-

ability is obtained by bounding Eq. 27b with Eq. 22b and

taking the complementary events:

inf
xð0Þ2XqenX

o
qs

P�ðsRnnXo
qs
< sXqÞ � 12c (28)

It remains to show that for all xð0Þ 2 Xqs , there exists a

characterizable probability that the states of the closed-loop

system will stay in Xqmin
. The results of Eq. 16 cover the

case that xð0Þ 2 Xo
qs

and will be used in the proof of Eq. 21

below. First, however, we will cover the proof of Eq. 21

when xð0Þ 2 @Xqsand obtain the following probability using

the same steps as performed in Eq. 25:

P�ðVðxðtÞÞ � qmin; for some t 2 ½0;DÞÞ � Vðxð0ÞÞ
inf x2RnnXqmin

VðxÞ
(29)

Using Eq. 22d, and taking the complementary event, we can

derive the following probability:

inf
xð0Þ2@Xqs

P�ðVðxðtÞÞ < qmin; 8t 2 ½0;DÞÞ � ð12b0Þ (30)

Therefore, the probability of Eq. 21 is obtained from Eqs. 28

and 30, the strong Markov property and the definition of

conditional probability. When xð0Þ 2 Xo
qs
, Eq. 16 holds.

Because ð12kÞ � ð12kÞð12b0Þ, we again have that Eq. 21

holds even if xð0Þ 2 Xo
qs
.

Part 4 : The probabilities of Eqs. 19–21 are derived to

quantify the probabilistic closed-loop stability of the system

of Eq. 1 under the SLEMPC of Eq. 14 during one sampling

period. Moreover, we can further calculate the probabilities

Figure 1. A schematic representing the characterized
set of initial conditions /d, the level sets
Xq; Xqe ; Xqmin

, and Xqs , together with three
example realizations starting from x1, x2, and
x3, which correspond to the events listed in
Theorem 2.

AIChE Journal 2018 Vol. 00, No. 00 Published on behalf of the AIChE DOI 10.1002/aic 73318 DOI 10.1002/aic Published on behalf of the AIChE September 2018 Vol. 64, No. 9 AIChE Journal



Using Eq. 6, the following equation can be derived with Z5
XqnXo

qe
; t 2 ½0;DÞ and T51:

E�ðVðxðsT;XqnXo
qe
ðtÞÞÞÞ5Vðxð0ÞÞ1E�ð

ðsT;XqnXoqe ðtÞ
0

LVðxðsÞÞdsÞ

(23)

We can also derive the following probability as in Ref. 24,
for all xð0Þ 2 @Xqe :

E�ðVðxðsT;XqnXo
qe
ðtÞÞÞÞ5

ð

V�~k
VðxðsT;XqnXo

qe
ðtÞÞÞdP�

1

ð

V<~k
VðxðsT;XqnXo

qe
ðtÞÞÞdP� � ~kP�ðVðxðsT;XqnXo

qe
ðtÞÞÞ � ~kÞ

(24)

Using Eq. 23 and setting ~k5 inf x2RnnXq
VðxÞ, the following

inequality is derived 8xð0Þ 2 @Xqe :

P�ðVðxðtÞÞ � q; for some t 2 ½0;DÞÞ

�
Vðxð0ÞÞ1E�ð

ðsT;XqnXoqe ðtÞ
0

LVðxðsÞÞdsÞ

inf x2RnnXq
VðxÞ � Vðxð0ÞÞ

inf x2RnnXq
VðxÞ
(25)

where the last inequality follows from Eq. 23 and the fact that
the value of LV is negative, conditioned on AW. Bounding
Eq. 25 with Eq. 22a and taking the complementary events, the
following probability is obtained: inf xð0Þ2@Xqe

P�ðVðxðtÞÞ <
q; 8t 2 ½0;DÞÞ � ð12bÞ, from which the probability of Eq. 19
is obtained via the definition of conditional probability.

Part 2 : If xð0Þ 2 XqnXo
qe
, we consider the event that the

closed-loop realization of the system of Eq. 1 moves back to
Xqe before reaching the boundary of Xq in a sampling
period, of which the probability is obtained in this part.
Consider that these hitting times occur within a sampling
period. Assuming xð0Þ 2 @Xqc , where Xqc : 5fx 2 /d jVðxÞ
� qc; qc 2 ½qe; q�g, we can show that P�ðsXqnXo

qe
< 1Þ51

using similar arguments as in Ref. 24. Then, consider the
event AT5fsRnnXo

qe
> sXqg, which implies that the state of

the closed-loop system of Eq. 1 reaches the boundary of Xq

before it reaches the boundary of Xqe . The probability of AT

is determined via Eq. 24 and the fact that the event fsRnnXo
qe

> sXqg belongs to the event
n VðxðsXqnXoqe ÞÞ

q � 1
o
, which is

shown as follows:

P�ðsRnnXo
qe
> sXqÞ � P�

�
VðxðsXqnXo

qe
ÞÞ

q
� 1

�
� Vðxð0ÞÞ

q
(26)

Bounding Eq. 26 by Eq. 22c, it follows that

sup xð0Þ2Xqc nX
o
qe
P�ðsRnnXo

qe
> sXqÞ � c0. Therefore, taking the

complementary event of AT and using the definition of con-

ditional probability, the probability of Eq. 20 is obtained. If

we consider that neither hitting time sRnnXo
qe

nor sXq occurs

within the sampling period, then sRnnXo
qe
ðDÞ5sXqðDÞ5D,

which is always a true statement, and therefore the inequal-

ity of Eq. 20 is again obtained.
Part 3 : Next, we consider the scenario where the contrac-

tive constraint of Eq. 14f is implemented recursively to drive

the state of the system of Eq. 1 to its equilibrium, rather

than causing it to remain in Xq only, and calculate the prob-

ability of the closed-loop trajectory entering Xqmin
in finite

time. Since we assume that the constraint of Eq. 14f is

applied for all xð0Þ 2 XqnXo
qs
; LV < 2� holds from Eq. 17

with the probability of AW. As a result, the following equa-

tions can be derived using the same steps for Eqs. 23 and 26

when LV < 2� holds 8xð0Þ 2 XqnXo
qs
:

E�ðVðxðsT;XqnXo
qs
ðtÞÞÞÞ � Vðxð0ÞÞ (27a)

P�ðsRnnXo
qs
> sXqÞ � P�ð

VðxðsXqnXo
qs
ÞÞ

q
� 1Þ � Vðxð0ÞÞ

q
(27b)

Due to the fact that P�ðsRnnXo
qs
5sXqÞ50, the following prob-

ability is obtained by bounding Eq. 27b with Eq. 22b and

taking the complementary events:

inf
xð0Þ2XqenX

o
qs

P�ðsRnnXo
qs
< sXqÞ � 12c (28)

It remains to show that for all xð0Þ 2 Xqs , there exists a

characterizable probability that the states of the closed-loop

system will stay in Xqmin
. The results of Eq. 16 cover the

case that xð0Þ 2 Xo
qs

and will be used in the proof of Eq. 21

below. First, however, we will cover the proof of Eq. 21

when xð0Þ 2 @Xqsand obtain the following probability using

the same steps as performed in Eq. 25:

P�ðVðxðtÞÞ � qmin; for some t 2 ½0;DÞÞ � Vðxð0ÞÞ
inf x2RnnXqmin

VðxÞ
(29)

Using Eq. 22d, and taking the complementary event, we can

derive the following probability:

inf
xð0Þ2@Xqs

P�ðVðxðtÞÞ < qmin; 8t 2 ½0;DÞÞ � ð12b0Þ (30)

Therefore, the probability of Eq. 21 is obtained from Eqs. 28

and 30, the strong Markov property and the definition of

conditional probability. When xð0Þ 2 Xo
qs
, Eq. 16 holds.

Because ð12kÞ � ð12kÞð12b0Þ, we again have that Eq. 21

holds even if xð0Þ 2 Xo
qs
.

Part 4 : The probabilities of Eqs. 19–21 are derived to

quantify the probabilistic closed-loop stability of the system

of Eq. 1 under the SLEMPC of Eq. 14 during one sampling

period. Moreover, we can further calculate the probabilities

Figure 1. A schematic representing the characterized
set of initial conditions /d, the level sets
Xq; Xqe ; Xqmin

, and Xqs , together with three
example realizations starting from x1, x2, and
x3, which correspond to the events listed in
Theorem 2.

AIChE Journal 2018 Vol. 00, No. 00 Published on behalf of the AIChE DOI 10.1002/aic 7

of Eqs. 19–21 over the entire operation period ½0; sNDÞ for

the SLEMPC of Eq. 14. For example, assuming the initial

condition xð0Þ 2 Xqe , the probability that the states of the

closed-loop system stay within Xq with t 2 ½0; sNDÞ is the

product of each probability within one sampling period

because the events corresponding to the state of the closed-

loop system of Eq. 1 remaining inside Xq during each sam-

pling period starting from different given initial conditions

are independent. Specifically, 8xð0Þ 2 Xqe , let Vðxðt1iDÞÞ5
qi < q; i50; 1; . . . ; sN21, and let AS5fsup t2½0;sNDÞ VðxðtÞÞ
< qg represent the event that under the SLEMPC of Eq. 14,

the stability region Xq remains invariant over the operation

period t 2 ½0; sNDÞ. Then the probability of AS extended

from Eq. 19 can be calculated as follows:

PðASÞ � ð12kÞsN
Y

i50;1;...;sN21

ð12biÞ (31)

where bi follows a similar definition of b to that of Eq. 22a

sup x2@Xqi
VðxÞ

inf x2RnnXq
VðxÞ � b0i; bi5max fb; b0ig (32)

From Eq. 32, bi takes the maximum value of b and b0i for
the reason that if xðtÞ 2 Xqi � Xqe , the probability is already

given in Eq. 19, while the probability for the case that xðtÞ
2 Xqi � Xqe is, however, dependent on the value of qi (i.e.,
Eq. 32 should be used to recover Eq. 22c). �

Remark 4. The sampling period ½tk; tk1DÞ is used in The-

orem 1 to obtain the general results of sample-and-hold

implementation. In Theorem 2, the sampling period ½0;DÞ is

used to obtain the probability of closed-loop stability under

the SLEMPC. However, it should be noted that without loss

of generality, ½0;DÞ can be replaced with the general form ½
tk; tk1DÞ in Theorem 2 because the result of Theorem 2

does not depend on t5 0 or t5 tk.
Remark 5. It should be noted that the prediction horizon

length sP will affect the control action u(t). However, since
all the u(t) have to satisfy the constraint of the SLEMPC of

Eq. 14, the corresponding probability has to be greater than

the lower bound (i.e., Eqs. 19–21). But the probability itself

may be different. Additionally, from Eq. 31, it is observed

that as the operation time sN ! 1, the lower bound of the

probability that the trajectory is contained in Xq tends to

zero. It should be noted that while the length of the predic-

tion horizon influences the probability of closed-loop stabil-

ity (but not the lower bound of the probability of closed-

loop stability), this dependence is not unique to the MPC,

but to all control designs that try to keep the process state

within a specific region in state-space when it is influenced

by disturbances of unbounded variation (i.e., the probability

to keep the process state within Xq goes to zero as the pro-

cess operation time sN ! 1). In the practical application of

SLEMPC, the operation time sN is considered as a finite

number. Based on this practical consideration, the probabili-

ties derived in this work can still provide the probability that

the trajectory is contained in Xq within finite operation time.
Remark 6. Under repeated application of the constraint of

Eq. 14f, the same result (i.e., the probability of Eq. 21) as in

the stochastic LMPC work,15 where the closed-loop state is

driven, in probability, to a neighborhood of the origin under

the Lyapunov-based controller, is achieved. However, under

the regular operation of the SLEMPC of Eq. 14, where the

system of Eq. 1 is operated in a bounded region of state-

space that is not necessarily a neighborhood of the origin,

the other two probabilities of Eqs. 19 and 20 are established

to derive the probabilistic closed-loop stability. Note that the

closed-loop stability under the SLEMPC of Eq. 14 is con-

ceptually different from the one in Ref. 15 (i.e., it allows for

time-varying operation to maximize profit in a predefined

region around the steady-state, rather than enforcing steady-

state operation). Therefore, the contribution of the SLEMPC

of Eq. 14 lies in its potential to be economically beneficial

while still providing probabilistic closed-loop stability in the

sense of maintaining (with probability) the closed-loop states

in a well-characterized stability region.
Remark 7. As for Eqs. 15–17, the proof of Eqs. 19–21

reveals that the probabilities of the closed-loop stability

results in these equations holding are impacted by the

desired value of k, the sampling period, qe, q, qs, and qmin.

First, because the results of Eqs. 15–17 are used in deriving

the results in Eqs. 19–21, the principles for selecting k, D,
qe, q, qs, and qmin described in Remark 3 hold in this case.

In addition, to manipulate the probabilities in Eqs. 19–21

further, qe, q, qs, and qmin can be adjusted to manipulate the

values of b, c, c0, and b0 in Eq. 22.
Remark 8. In Theorem 2, it is established that under the

proposed SLEMPC of Eq. 14, the probabilistic closed-loop

stability results for the stochastic nonlinear system of Eq. 1

can be achieved via the known distributional information of

the stochastic disturbances. Also, based on the previous

work on LEMPC,8 it has been established that closed-loop

stability for the system of Eq. 1 with sufficiently small dis-

turbances can be guaranteed under the LEMPC of Eq. 12. If

we compare the SLEMPC of Eq. 14 with the LEMPC of

Eq. 12, the advantage of the SLEMPC is its ability to cope

with stochastic disturbances of which the variation is

unbounded, which is a more general case in practice com-

pared to the LEMPC applied to the system with bounded

disturbances. However, it should be noted that because of

stochastic disturbances with unbounded variation, there is no

way to stabilize the steady-state with certainty for both

SLEMPC and LEMPC, and therefore backup controllers and

safety systems of Eq. 14 should be designed that are able to

handle the process state exiting the stability region.
Remark 9. It is noted that the probability of maintaining

the closed-loop state within the stability region throughout the

prediction horizon changes at each sampling period as meas-

urements occur. For example, at t0, the probability of the

closed-loop state remaining within the stability region through-

out the remainder of the prediction horizon may be as in Eq.

31. However, if at t1, the closed-loop state is still within the

stability region, then there is certainty that at t1 the state was

within this region. Therefore, the probability that the closed-

loop state remains within the stability region becomes Eq. 31,

but with sN replaced by sN21. Therefore, though the probabil-

ity of maintaining the closed-loop state within the prediction

horizon throughout the entire period of operation may look

low at t0, this is not the probability that will continue to hold

at each sampling period, but it will become higher at each

sampling period as the closed-loop state does not exit Xq.

Feasibility in probability

Due to the consideration of stochastic disturbances with

unbounded variation, no guarantee can be made that the opti-

mization problem of Eq. 14 is recursively feasible. Therefore,
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Theorem 3 below provides the probability that the SLEMPC

of Eq. 14 is recursively feasible for time t 2 ½0; sNDÞ.
Theorem 3. Consider the system of Eq. 1 under the

SLEMPC of Eq. 14 applied in a sample-and-hold fashion

with UsðxÞ meeting Eq. 10. Then, if xð0Þ 2 Xq, the probabil-

ity of the event AF which represents that the SLEMPC of

Eq. 14 is solved with satisfaction of recursive feasibility for

time t 2 ½0; sNDÞ is as follows:

PðAFÞ � ð12kÞsN
Y

i50;1;...;sN21

ð12biÞ (33)

Proof. To calculate the probability of AF, we first show

that PðAF jASÞ51. Based on the probability of the event AS

associated with the operation period ½0; sNDÞ of Eq. 31, we

can develop the following proof for probabilistic recursive

feasibility. If xðtkÞ 2 Xo
qe

at time t5tk5kD where k 2 ½0; sN �,
then the constraints of Eqs. 14d and 14e over the prediction

horizon are guaranteed to be satisfied by uðtÞ5Usð~xðtqÞÞ 2 U;
8t 2 ½tq; tq11Þ; q5k; . . . ; k1sP21 since Usð~xðtqÞÞ 2 U by def-

inition can force Vð~xðtqÞÞ � VðxðtkÞÞ < qe; q5k; . . . ; k1sP2
1 if using the deterministic prediction model of Eq. 14b.8

Additionally, if xðtkÞ 2 XqnXo
qe
, again let

uðtkÞ5UsðxðtkÞÞ 2 U, and this again satisfies Eq. 14d and it

trivially satisfies the constraint of Eq. 14f. Therefore, as long

as xðtkÞ 2 Xq; 8t 2 ½0; sNDÞ, according to the above two sce-

narios, the optimization problem of Eq. 14 can be solved

recursively while satisfying all the constraints, which implies

the probability of recursive feasibility is equal to the probabil-

ity of closed-loop stability (i.e., PðAF jASÞ51). Combined

with Eq. 31, PðAFÞ is obtained via the definition of condi-

tional probability. �

Remark 10. The SLEMPC of Eq. 14 cannot guarantee

closed-loop stability or recursive feasibility with certainty

(only in probability). As a result, it is possible that the state

may leave the stability region when the process of Eq. 1 is

operated under the SLEMPC of Eq. 14. Once the state of the

closed-loop system of Eq. 1 leaves the stability region Xq,

there is no systematic way to design a control law to drive

the state back into Xq. A potential approach that could be

tried is to find a new control law UsðxÞ, under which a larger

set of initial conditions (i.e., /d) can be characterized, and

thus, the state may be driven back toward the origin for

states outside the current Xq. However, the problem caused

by stochastic disturbances with unbounded variation is essen-

tially a trade-off between the higher economic benefits and

the closed-loop stability in larger probability. Specifically, if

we want to add more conservatism to the SLEMPC design

of Eq. 14 (i.e., choosing a smaller qe), then we should be

sacrificing economic performance. Therefore, in order to

achieve a balanced solution for both process economics and

closed-loop stability, it is suggested to conduct numerical

simulations to determine the optimal controller parameters.

Application to a Chemical Process Example

In this section, a chemical process example is used to illus-

trate the application of the proposed SLEMPC and how the

performance of a nonlinear process under this controller com-

pares with that of the process under LEMPC. Specifically, a

nonisothermal continuous stirred tank reactor (CSTR) where

an irreversible second-order exothermic reaction takes place is

considered. In the reactor, the reactant A is converted to the

product B via the chemical reaction A ! B. The CSTR is

coated with a heating jacket that supplies or removes heat

from the reactor. Based on material and energy balances, the

CSTR dynamic model is of the following form:

dCA5
F

V
ðCA02CAÞdt2k0e

2E=RTC2
Adt1r1ðCA2CAsÞdw1ðtÞ

(34a)

dT5
F

V
ðT02TÞdt2DHk0

qCp
e2E=RTC2

Adt

1
Q

qCpV
dt1r2ðT2TsÞdw2ðtÞ

(34b)

where CA is the concentration of reactant A in the reactor, V is

the volume of the reacting liquid in the reactor, T is the tem-

perature of the reactor and Q denotes the heat input rate. The

concentration of reactant A in the feed is CA0. The feed tem-

perature and the volumetric flow rate are T0 and F, respec-
tively. The liquid has a constant density of q and a heat

capacity of Cp. k0, E, and DH are the reaction preexponential

factor, activation energy and the enthalpy of the reaction,

respectively. Process parameter values are listed in Table 1.
The CSTR is initially operated at the steady-state xs5ðCAs; TsÞ

5ð1:22 kmol=m3; 438 KÞ and us5ðCA0s QsÞ5ð4 kmol=m3;
0 kJ=hrÞ. The manipulated inputs are the inlet concentration of

species A and the heat input rate, which are represented by the

deviation variables DCA05CA02CA0s ; DQ5Q2Qs, respectively.

The manipulated inputs are bounded by: jDCA0j � 3:5 kmol=m3

and jDQj � 53105 kJ=hr. Therefore, the states and the inputs in

deviation variable form for the closed-loop system are xT5½CA2
CAs T2Ts� and uT5½DCA0 DQ�, respectively, such that the equi-

librium point of the system is at the origin of the state-space. The

disturbance terms dw1 and dw2 in Eq. 34 are independent standard

Gaussian white noise with the standard deviations r152:531023

and r250:15, respectively. It is noted that the disturbance terms

of Eq. 34 vanish at the steady-state. Also, the disturbances

become larger as the closed-loop states of Eq. 34 deviate from the

steady-state (normal operating conditions), which is consistent

with the fact that it is more likely to introduce the noise into the

system under off steady-state operating conditions.
The control objective of the SLEMPC of Eq. 14 is to maxi-

mize the economic cost of the CSTR process of Eq. 34 while

keeping the closed-loop state trajectories in the stability region

Xq. Thus, the objective function of Eq. 14a that is maximized

is the production rate of B: Leð~x; uÞ5k0e
2E=RTC2

A. The

Lyapunov function is designed using the standard quadratic

form VðxÞ5xTPx, where the positive definite matrix P5
1060 22

22 0:52

" #
is chosen to characterize the set of initial con-

ditions /d for the stochastic system of Eq. 34. The stability

region Xq is a level set inside /d , which is chosen as q5 368.

Additionally, the explicit Euler method with an integration

time step of hc51024 hr is applied to numerically simulate

the dynamic model of Eq. 34. The nonlinear optimization

Table 1. Parameter Values of the CSTR

T05300 K F55 m3=hr
V51 m3 E553104 kJ=kmol
k058:463106 m3=kmol hr DH521:153104 kJ=kmol
Cp50:231 kJ=kg K R58:314 kJ=kmol K
q51000 kg=m3 CA0s54 kmol=m3

Qs50:0 kJ=hr CAs
51:22 kmol=m3

Ts5438 K
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Theorem 3 below provides the probability that the SLEMPC

of Eq. 14 is recursively feasible for time t 2 ½0; sNDÞ.
Theorem 3. Consider the system of Eq. 1 under the

SLEMPC of Eq. 14 applied in a sample-and-hold fashion

with UsðxÞ meeting Eq. 10. Then, if xð0Þ 2 Xq, the probabil-

ity of the event AF which represents that the SLEMPC of

Eq. 14 is solved with satisfaction of recursive feasibility for

time t 2 ½0; sNDÞ is as follows:

PðAFÞ � ð12kÞsN
Y

i50;1;...;sN21

ð12biÞ (33)

Proof. To calculate the probability of AF, we first show

that PðAF jASÞ51. Based on the probability of the event AS

associated with the operation period ½0; sNDÞ of Eq. 31, we

can develop the following proof for probabilistic recursive

feasibility. If xðtkÞ 2 Xo
qe

at time t5tk5kD where k 2 ½0; sN �,
then the constraints of Eqs. 14d and 14e over the prediction

horizon are guaranteed to be satisfied by uðtÞ5Usð~xðtqÞÞ 2 U;
8t 2 ½tq; tq11Þ; q5k; . . . ; k1sP21 since Usð~xðtqÞÞ 2 U by def-

inition can force Vð~xðtqÞÞ � VðxðtkÞÞ < qe; q5k; . . . ; k1sP2
1 if using the deterministic prediction model of Eq. 14b.8

Additionally, if xðtkÞ 2 XqnXo
qe
, again let

uðtkÞ5UsðxðtkÞÞ 2 U, and this again satisfies Eq. 14d and it

trivially satisfies the constraint of Eq. 14f. Therefore, as long

as xðtkÞ 2 Xq; 8t 2 ½0; sNDÞ, according to the above two sce-

narios, the optimization problem of Eq. 14 can be solved

recursively while satisfying all the constraints, which implies

the probability of recursive feasibility is equal to the probabil-

ity of closed-loop stability (i.e., PðAF jASÞ51). Combined

with Eq. 31, PðAFÞ is obtained via the definition of condi-

tional probability. �

Remark 10. The SLEMPC of Eq. 14 cannot guarantee

closed-loop stability or recursive feasibility with certainty

(only in probability). As a result, it is possible that the state

may leave the stability region when the process of Eq. 1 is

operated under the SLEMPC of Eq. 14. Once the state of the

closed-loop system of Eq. 1 leaves the stability region Xq,

there is no systematic way to design a control law to drive

the state back into Xq. A potential approach that could be

tried is to find a new control law UsðxÞ, under which a larger

set of initial conditions (i.e., /d) can be characterized, and

thus, the state may be driven back toward the origin for

states outside the current Xq. However, the problem caused

by stochastic disturbances with unbounded variation is essen-

tially a trade-off between the higher economic benefits and

the closed-loop stability in larger probability. Specifically, if

we want to add more conservatism to the SLEMPC design

of Eq. 14 (i.e., choosing a smaller qe), then we should be

sacrificing economic performance. Therefore, in order to

achieve a balanced solution for both process economics and

closed-loop stability, it is suggested to conduct numerical

simulations to determine the optimal controller parameters.

Application to a Chemical Process Example

In this section, a chemical process example is used to illus-

trate the application of the proposed SLEMPC and how the

performance of a nonlinear process under this controller com-

pares with that of the process under LEMPC. Specifically, a

nonisothermal continuous stirred tank reactor (CSTR) where

an irreversible second-order exothermic reaction takes place is

considered. In the reactor, the reactant A is converted to the

product B via the chemical reaction A ! B. The CSTR is

coated with a heating jacket that supplies or removes heat

from the reactor. Based on material and energy balances, the

CSTR dynamic model is of the following form:

dCA5
F

V
ðCA02CAÞdt2k0e

2E=RTC2
Adt1r1ðCA2CAsÞdw1ðtÞ

(34a)

dT5
F

V
ðT02TÞdt2DHk0

qCp
e2E=RTC2

Adt

1
Q

qCpV
dt1r2ðT2TsÞdw2ðtÞ

(34b)

where CA is the concentration of reactant A in the reactor, V is

the volume of the reacting liquid in the reactor, T is the tem-

perature of the reactor and Q denotes the heat input rate. The

concentration of reactant A in the feed is CA0. The feed tem-

perature and the volumetric flow rate are T0 and F, respec-
tively. The liquid has a constant density of q and a heat

capacity of Cp. k0, E, and DH are the reaction preexponential

factor, activation energy and the enthalpy of the reaction,

respectively. Process parameter values are listed in Table 1.
The CSTR is initially operated at the steady-state xs5ðCAs; TsÞ

5ð1:22 kmol=m3; 438 KÞ and us5ðCA0s QsÞ5ð4 kmol=m3;
0 kJ=hrÞ. The manipulated inputs are the inlet concentration of

species A and the heat input rate, which are represented by the

deviation variables DCA05CA02CA0s ; DQ5Q2Qs, respectively.

The manipulated inputs are bounded by: jDCA0j � 3:5 kmol=m3

and jDQj � 53105 kJ=hr. Therefore, the states and the inputs in

deviation variable form for the closed-loop system are xT5½CA2
CAs T2Ts� and uT5½DCA0 DQ�, respectively, such that the equi-

librium point of the system is at the origin of the state-space. The

disturbance terms dw1 and dw2 in Eq. 34 are independent standard

Gaussian white noise with the standard deviations r152:531023

and r250:15, respectively. It is noted that the disturbance terms

of Eq. 34 vanish at the steady-state. Also, the disturbances

become larger as the closed-loop states of Eq. 34 deviate from the

steady-state (normal operating conditions), which is consistent

with the fact that it is more likely to introduce the noise into the

system under off steady-state operating conditions.
The control objective of the SLEMPC of Eq. 14 is to maxi-

mize the economic cost of the CSTR process of Eq. 34 while

keeping the closed-loop state trajectories in the stability region

Xq. Thus, the objective function of Eq. 14a that is maximized

is the production rate of B: Leð~x; uÞ5k0e
2E=RTC2

A. The

Lyapunov function is designed using the standard quadratic

form VðxÞ5xTPx, where the positive definite matrix P5
1060 22

22 0:52

" #
is chosen to characterize the set of initial con-

ditions /d for the stochastic system of Eq. 34. The stability

region Xq is a level set inside /d , which is chosen as q5 368.

Additionally, the explicit Euler method with an integration

time step of hc51024 hr is applied to numerically simulate

the dynamic model of Eq. 34. The nonlinear optimization

Table 1. Parameter Values of the CSTR

T05300 K F55 m3=hr
V51 m3 E553104 kJ=kmol
k058:463106 m3=kmol hr DH521:153104 kJ=kmol
Cp50:231 kJ=kg K R58:314 kJ=kmol K
q51000 kg=m3 CA0s54 kmol=m3

Qs50:0 kJ=hr CAs
51:22 kmol=m3

Ts5438 K
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problem of the SLEMPC of Eq. 14 is solved using the IPOPT

software package25 with the sampling period D51022 hr.

Based on the results in the “Sample-and-hold Implementation”

section, we can obtain a larger probability of closed-loop sta-

bility for the system of Eq. 34 as the sampling period D
becomes smaller. However, considering the practical applica-

tion of MPC, and the time scale of the dynamics of the CSTR

process, we choose D51022 hr and mainly focus on the

impact of qe on the probabilistic closed-loop stability in the

simulations below.
We first demonstrate that the choice of the difference

between qe and q, for a fixed D, impacts the likelihood that the

closed-loop state is maintained within Xq throughout a sam-

pling period, as implied by the theoretically derived probabil-

ity bounds of Theorems 1 and 2. We derived the experimental

probabilities via 500 simulation runs. Let AV denote the event

that the maximum value of V(x) in each realization is less than

q with the operating time ts51 hr and the initial condition

xT5½0 0�. The results are reported in Table 2. Also, the plots

of the maximum value of V(x) in each realization with respect

to the number of simulation runs are shown in Figure 2 for qe
50:99q (the top one) and qe50:87q (the bottom one), respec-

tively. From Table 2, it is observed that PðAVÞ increases in an

approximately linear fashion as qe decreases, and the probabil-

ity that the states of the closed-loop system of Eq. 34 remain

in Xq reaches 97:2% as qe decreases to qe5320. Therefore,

letting qe5320, it is observed from the top plot of Figure 2

that almost all the points fall below q, which implies that the

closed-loop system under the SLEMPC can be regarded as a

system with the closed-loop states bounded within Xq with rel-

atively high probability in this case.

Next, we will show the application of the LEMPC of Eq. 13

to the uncertain system of Eq. 34 subject to stochastic distur-

bances. In general, LEMPC is designed using the nominal sys-

tem model and applied to the uncertain system with bounded

disturbances. However, because unbounded variations in w are

included in the process model of Eq. 34, we do not have a case

with bounded disturbances, but we can approximate a reason-

able bound so that most of the disturbances are included

within the bounds such that the LEMPC of Eq. 13 can be

designed. For example, since the disturbances dw(t) are of

standard normal distributions, let the disturbances be bounded

by h152:2r1 and h252:2r2, respectively; this implies that

97:2% of the disturbance values will fall within the above

interval. Under the LEMPC of Eq. 13, the set of initial condi-

tions /0
d and the level set inside /0

d can be characterized

appropriately. Figure 3 displays the level sets Xq and Xq0

inside the sets /d and /0
d, respectively. It is observed from

Figure 3 that /0
d is more conservative than /d to achieve

robustness of the LEMPC to the disturbances within the 2:2r
intervals. As a result, a larger level set of V is chosen as the

stability region under the stochastic Lyapunov-based control-

ler UsðxÞ than the standard Lyapunov-based controller UnðxÞ.
Specifically, Xq0 � /0

d with q0546 and Xq � /d with q5 368

are chosen as the stability regions for the LEMPC of Eq. 13

and the SLEMPC of Eq. 14, respectively. Furthermore, we let

q0e540, such that for all jwðtÞj � h, the closed-loop trajectory

of the system of Eq. 34 does not reach the boundary of Xq0

within one sampling period for any x(0) originating on the

boundary of Xq0e under any control action.
Again, through 500 simulation runs, the stability region Xq0

remained invariant under the LEMPC of Eq. 13. Additionally,

the average of the total economic cost LE5
Ð ts
0
Leðx; uÞdt under

the SLEMPC of Eq. 14 with Xq and the LEMPC of Eq. 13

with Xq0 are calculated via 500 simulations runs with the same

initial condition xT5½0 0�. The averaged total economic cost

over the operation time ts51 hr is LE527:2 under the

SLEMPC, which represents an improvement of approximately

63% compared to LE516:7 under the LEMPC of Eq. 13, and

103% compared to LE513:4 under steady-state operation.

Table 2. Experimental Probability for Different Values of qe

qe=q PðAVÞ
0.99 48:6%
0.95 67:2%
0.92 77:8%
0.90 87:5%
0.87 97:2%

Figure 2. The maximum value of VðxðtÞÞ in each realiza-
tion originating from (0, 0) for 500 simulation
runs, in which q5 368 and qe5364:3 (top), and
q5 368 and qe5320 (bottom).

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. The stability region Xq for the closed-loop
CSTR under the stochastic Lyapunov-based
controller UsðxÞ (top), and the stability region
Xq0 for the closed-loop CSTR under the
Lyapunov-based controller UnðxÞ (bottom).
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Therefore, under the SLEMPC of Eq. 14, the stability region Xq

that accounts for the distributional information h(x) of the uncer-
tainty term leads to higher economic benefits for the closed-loop
system of Eq. 34 than the LEMPC with a conservative stability
region Xq0 , and steady-state operation. In addition, it has been
shown through 500 simulation runs that by choosing qe5320,
the closed-loop states of the system of Eq. 34 can be bounded in
Xq under the SLEMPC of Eq. 14 with the same probability of
97:2% as the one under the LEMPC of Eq. 13. Therefore, it is
concluded that the closed-loop system of Eq. 34 under the
SLEMPC with q5368 and qe5320 may achieve an
acceptable probability of closed-loop stability and a satisfactory
process economic performance simultaneously.

Conclusion

In this work, a stochastic Lyapunov-based EMPC method
was developed for stochastic nonlinear systems with input con-
straints. We first characterized a closed-loop stability region for
which the probability that the closed-loop state trajectory would
remain within could be quantified. We then reviewed a
Lyapunov-based EMPC method for nonlinear systems subject
to bounded disturbances, and presented the optimization-based
control strategy of the SLEMPC and the probabilities that the
SLEMPC would remain feasible at each sampling time and
would maintain the closed-loop state within the stability region.
The application of the proposed SLEMPC method was demon-
strated through a chemical process example, from which it was
demonstrated that under the SLEMPC, the system operating in
the stability region in probability outperformed the one under
the LEMPC in terms of economic benefits.
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