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This work proposes a general framework for linking a state-of-the-art computational fluid

dynamics (CFD) solver, ANSYS Fluent, and other computing platforms using the lock syn-

chronization mechanism in an effort to extend the utilities of CFD solvers from strictly

modeling and design to also control and optimization applications. To demonstrate the

effectiveness of the proposed approach, a challenging control problem in chemical engi-

neering, i.e., maximizing the product yield and suppressing the hot-spot temperature in

a  fixed-bed reactor (FBR) with a highly exothermic reaction, is considered. Specifically,

phthalic anhydride (PA) synthesis is chosen for this investigation because of its industrial

significance and its extreme high exothermicity. Initially, a high-fidelity two-dimensional

axisymmetric heterogeneous CFD model for an industrial-scale FBR is developed in ANSYS

Fluent. Next, the CFD model is used to explore a wide operating regime of the FBR to create a

database, from which recurrent neural network and ensemble learning techniques are used

to  derive a homogeneous ensemble regression model using a state-of-the-art application

program interface (API), i.e., Keras. Then, a model predictive control (MPC) formulation that

is  designed to drive the process output to the desired set-point and suppress the magnitude

of  the hot-spot temperature to avoid catalyst deactivation is developed using the ensem-

ble  regression model. Subsequently, the CFD model, the ensemble regression model and the

MPC  are combined to create a closed-loop system by linking ANSYS Fluent to SciPy (a Python

library used for scientific computing) via a message-passing interface (MPI) with lock syn-

chronization mechanism. Finally, the simulation data generated by the closed-loop system
are  used to demonstrate the robustness and effectiveness of the proposed approach.

©  2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
.  Introduction

odeling, control and optimization of fixed-bed reactors
FBRs) has long been an active research area for both academia
nd industry as FBRs are building blocks of the petrochem-

cal and refining industries. It is found that more  than
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90-95% of gas-solid catalytic reactors in existing production
lines are FBRs. The prevalent application of FBRs in chem-
ical process industries are because of their simplicity in
design and operation compared with other reactor config-
urations, e.g., fluidized-bed reactors. However, despite the
simple appearance, FBRs with highly exothermic reactions
give rise to some of the most challenging control prob-
lems in chemical engineering owing to extreme nonlinearity,

nonlinear spatially-distributed dynamics, moving hot spots,
high risk of thermal runaway, constraints on manipulated
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inputs and state variables, and limited on-line measurements
with high uncertainty and long delays (e.g., Wu and Huang,
2003). A standard framework to address the control aspect
of FBRs to improve the process performance and to sup-
press the magnitude of the hot-spot temperature from a
computational standpoint is well documented in literature.
Specifically, it begins with the development of a detailed first-
principles model for the FBR followed by the development
of a corresponding computationally efficient reduced-order
model, which is used in the development of a model-based
control algorithm (Christofides, 2001). Subsequently, the first-
principles model, the reduced-order model and the control
algorithm are integrated to generate a closed-loop system
based on which the performance of the algorithm is evalu-
ated. For that reason, the first-principles model that accurately
describes the dynamics of the physical FBR is essential to the
development of control algorithms as well as the transition
from a novel idea in academia to a cost-effective implementa-
tion in industry. The need for a computer-aided toolbox that
can be used to expedite the development of high-fidelity first-
principles models has been recognized by many and has led to
the development of powerful computing platforms, i.e., com-
putational fluid dynamic (CFD) solvers, such as ANSYS Fluent
and OpenFoam, which allow process engineering researchers
to overlook the nitty-gritty details of numerical methods for
the solution of the first-principles model and to devote their
complete attention to crafting more  optimal reactor designs
and developing algorithms to identify more  cost-effective
operating conditions. However, ANSYS Fluent and OpenFoam
are developed to be stand-alone computing platforms, which
means that the integration of CFD solvers with other com-
puting platforms is often difficult, and they are yet to be
standardized, as the source codes are often encrypted. Conse-
quently, CFD solvers are often used solely for design purposes
and not for real-time feedback control.

Recently, the community has made several efforts to
expand the utilities of CFD solvers by studying the communi-
cation between CFD solvers and other computing platforms.
For example, in Vaquerizo and Cocero (2018), a CFD solver
was connected with Aspen Plus to obtain physical and chem-
ical properties of compounds that do not exist in the ANSYS
database. Additionally, in our previous works (Lao et al., 2016;
Wu et al., 2017), an in-house optimization subroutine that
solves a specific class of quadratic programming problems
was developed via user-defined functions (UDF) such that
ANSYS Fluent was able to compile the program of model
predictive controller (MPC) and integrated it within the CFD
model to form a closed-loop system. However, recognizing
that MPC  optimization problems may be non-convex and NP-
hard for complex chemical reaction systems, a better solution
is to integrate existing robust optimization solvers for solving
large-scale nonlinear optimization problems with CFD solvers.
For that reason, this work focuses on developing a general
framework for linking a widely-used ANSYS Fluent CFD solver
to various computing platforms using the lock synchroniza-
tion mechanism that enables the development of a realistic
closed-loop system in which a high-fidelity CFD model is used
to represent the physical system.

Additionally, to derive a data-driven model to predict the
nonlinear distributed dynamics of the FBR in MPC, we  use
recurrent neural networks and ensemble regression learn-
ing to derive a reduced-order model in our work due to an

increasing interest in using machine learning methods to
build prediction models across disciplines in academia among
all existing data-driven modeling techniques (e.g., subspace
identification, sparse proper orthogonal decomposition (Sidhu
et al., 2018, 2018b) and machine learning methods). Machine
learning can also be used in conjunction with other non-
linear control methods (e.g., universal Sontag’s control law
and feedback linearization), where a process model is needed
and can be approximated by other data-driven models such
as machine learning-based model. Therefore, in this work,
we demonstrate the value and potential of machine learning
methods in chemical engineering via an industrially-relevant
example. Furthermore, we want to contribute to the com-
mon  effort to expand to utilities of CFD solvers beyond design
purposes by proposing a general integration framework for
MPC and dynamic CFD simulation via message passage inter-
face (MPI) to create closed-loop systems (i.e., MPC  within CFD
dynamic simulations) for the purpose of real-time control.
Specifically, different from the MPI used to facilitate the com-
munication between the host process and many  computing
process units (CPUs) in ANSYS Fluent parallel solver, the MPI
we develop in the present work represents the communica-
tion between ANSYS Fluent CFD solver and stand-alone robust
optimization subroutines that enables the development of
a realistic closed-loop system in which a high-fidelity CFD
model is used to represent the physical system.

The remainder of this manuscript is structured as fol-
lows: Section 2 provides a high-level description of a typical
industrial-scale exothermic FBR used in the phthalic anhy-
dride (PA) synthesis production (Orozco et al., 2010; Sarosh
et al., 2018; Mülheims and Kraushaar-Czarnetzki, 2011), and
Section 3 details the development of the heterogeneous CFD
model for the FBR. Next, Section 4 discusses the model vali-
dation of the heterogeneous CFD model for the FBR and the
study of the open-loop dynamics to map  the sensitivity of the
fluid temperature and composition inside the FBR to the jacket
temperature profile. Section 5 presents the development of a
homogeneous ensemble regression using the state-of-the-art
application program interface (API), i.e., Keras (Chollet et al.,
2015), that describes the nonlinear distributed dynamics of the
FBR at several discrete locations is introduced. Then, Section
6.1 outlines the optimization problem of a model predictive
controller (MPC) designed to drive the process output to the
desired set-point and suppress the magnitude of the hot-spot
temperature to avoid catalyst deactivation, and Section 6.2
proposes a general framework for linking ANSYS Fluent to
SciPy library (Jones et al., 2001) in Python via a message-passing
interface (MPI) embedded in UDF with lock synchronization
mechanism so that the CFD model, the reduced-order model
and the MPC can be integrated to create a closed-loop system.
Finally, Section 7 provides the rigorous validation of the CFD
model for the FBR, the assessment of the ensemble regression
and the performance of the closed-loop system.

2.  Chemical  reactor  description

Phthalic anhydride (PA) synthesis is chosen for this investi-
gation since PA is one of the most important intermediates
for a variety of polymer products such as polyesters,
resins and plasticizers and is a key pharmaceutical ingre-
dient of cellulose acetate phthalate, in addition to the
extreme high exothermicity of its production reaction
making reactor operation challenging. Specifically, PA is

commonly produced by partial oxidation of o-xylene in
great excess of air over V2O5/TiO2 catalysts housed in a
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ulti-fixed-bed reactor, inside which the fixed-bed reactors
FBRs) are submerged in molten salt cooling jacket. The reac-
or design and the operating parameters of the production of
A are optimized to suppress the magnitude of the hot-spot
emperatures to prevent explosion, catalyst deactivation and
hermal runaway. Despite the off-line design efforts, the for-

ation of hot spots in the first section of the FBRs is a known
roblem due to insufficient cooling, and therefore, the need
f high-fidelity models that accurately simulate transient and
teady-state response of the reactor is evident. This investi-
ation outlines the modeling (Sections 3 and 5) and control
Section 6.1 and 6.2) of a FBR inside an industrial-scale fixed-
ed reactor.

In the existing production line of PA, the FBR is typically
 m in length and 2.5 cm in diameter and is packed with

2O5/TiO2 catalyst particles. Additionally, the FBR in this study
s equipped with an outer cooling jacket, which is divided
nto four noninteracting discrete zones along the FBR, each
f which jacket temperature is independently regulated by a
entralized controller as shown in Fig. 1. Specifically, the FBR is
ed with a mixture of air and o-xylene that undergoes a highly
xothermic conversion to produce PA leading to the formation
f hot spots, which are regulated by the centralized controller
o prevent catalyst deactivation and thermal runaway.

Previous studies (Orozco et al., 2010; Sarosh et al., 2018;
ülheims and Kraushaar-Czarnetzki, 2011) have used com-

utational fluid dynamics (CFD) tools and first-principles
odeling to create high-fidelity model for the FBR of this type

o study the sensitivity of the hot-spot temperature and prod-
ct yield to operating parameters such as the concentration of
-xylene in the feed, the feed flow rate and the jacket temper-
ture profile. These studies have found that it is reasonable to
ssume that the FBR is symmetrical in the azimuthal direc-
ion, which allows for the generation of a computationally
ffordable two-dimensional (2D) axisymmetric in space het-
rogeneous CFD model with the same output of meaningful
ata as a computationally expensive 3D model. In remainder
f this section, the development of a 2D axisymmetric het-
rogeneous CFD model of the FBR via ANSYS Fluent will be
utlined.

.  Computational  fluid  dynamics  modeling

.1.  Mesh  generation

he mesh quality plays an important role in CFD model-
ng, where an accurate CFD model with high mesh quality
an significantly save computational resources and obtain

 converged solution with robustness. Due to the axisym-
etric geometry property of the fixed-bed catalytic reactor,

 two-dimensional (2D) axisymmetric structured mesh is

onstructed in ANSYS ICEM software as shown in Fig. 1. Specif-

ig. 1 – Two-dimensional axisymmetric reactor geometry
ith outer cooling jacket (blue) divided into four
oninteracting discrete zones along the tube.
ically, the mesh discretizes the reactor volume into 85211
control volumes, within each of which the first principles
model (as shown in Eq. (14)) of the FBR is numerically solved
via second-order upwind finite volume methods. Additionally,
high mesh density is applied near the boundary of the reac-
tor to capture large spatial gradients in that region.With the
high-quality structured mesh, evaluated based on the mini-
mum orthogonal factor of 1 and maximum ortho skew of 0,
the CFD simulations do not encounter convergence difficulty,
and numerical solutions generated from the CFD model carry
small numerical error (Tran et al., 2018). Additionally, a mesh
independent study demonstrated that further increasing the
mesh size does not improve the simulation results of CFD
models but leads to higher computation time to convergence.

3.2.  2D  axisymmetric  heterogeneous  CFD  model

In this section, we outline the modeling strategy to customize
ANSYS Fluent to create the 2D axisymmetric heterogeneous
CFD model for the FBR, and we begin with the bed porosity
profile. It has been found in previous experiments (De  Klerk,
2003) that a bed porosity profile exhibits an oscillatory pattern
with a decreasing amplitude as the distance to the reactor wall
increases due to different packing structure induced by the
wall effect; and this pattern is especially pronounced in FBRs
with small tube-to-pellet ratio N < 10. Therefore, in an effort
to obtain an accurate simulation of the flow field profile in the
FBR, the radial variation of the catalytic bed porosity must be
accounted for, and in this CFD model, the bed porosity pro-
file in the radial direction, encoded in a user-defined function
(UDF), is modeled as follows (De Klerk, 2003):

�(r) = 2.14r2 − 2.53r + 1 when r ≤ 0.637 (1)

= �b + 0.29 exp(−0.6r)[cos(2.3�(r − 0.16))] + 0.15 exp(−0.9r)

when r > 0.637 (2)

where �(r) and �b are the bed porosity at a particular position
inside the bed and the bed porosity in the absence of wall
effect, respectively, and r is the dimensionless distance from
the wall and is computed as follows:

r = R − y

dp
(3)

where R (m), y (m)  and dp (m)  represent reactor radius, radial
position relative to the reactor axis, and particle diameter,
respectively. Specifically, at regions close to the reactor wall
(r ≤ 0.637), in which the catalyst packing pattern is more  struc-
tured, the bed porosity profile is modeled by Eq. (1). While
at regions further from the wall (r > 0.637), in which the cat-
alyst packing pattern is more  random, the bed porosity profile
with the oscillatory pattern is modeled by Eq. (2). By encoding
an accurate description of the bed porosity profile in the CFD
model, we have made the first step toward building a model
that can simulate a representative flow field profile in the FBR.

In addition, when the reactants flow into the FBR with a
nonuniformly packed catalytic bed and a low average poros-
ity of 0.4, the flow field profile is expected to deviate from the
plug flow profile and to have a complex pattern due to coupling
effects with other transport phenomena, the flow superficial

velocity is expected to decrease, and the pressure drop across
the catalytic bed is expected to be significant. To address this
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problem, ANSYS Fluent porous zone function is employed,
which automatically generates and adds additional momen-
tum source terms into the Navier–Stokes equation, to simulate
the effects of the catalytic bed on the flow field profile, and
its parameters, i.e., the permeability (˛b) and the inertial loss
coefficient (C2), encoded in a UDF are computed as follows:

˛b = dp

150
(�(r))3

(1 − �(r))2
(4)

C2 = 3.5
dp

1 − �(r)

(�(r))3
, (5)

and the Navier–Stokes equation can be written as shown in
Eq. (14b) below.

In this study, the intrinsic partial oxidation rate of o-xylene
to PA is modeled with a global heterogeneous kinetic model
(Calderbank et al., 1977; Anastasov, 2003), in which the reac-
tion rate expressions can be written as follows:

Kn = K0n exp(
−En
RgTs

) where n = 1, 2, · · ·,  5 (6a)

r1 = K1˛P
s
A (6b)

r2 = K2˛P
s
B (6c)

r3 = K3˛P
s
A (6d)

r4 = K4˛P
s
A (6e)

r5 = K5˛P
s
C (6f)

˛ =
KCP

s
O2

KCP
s
O2

+ (K1 + 6.5K3 + 3K4)PsA + K2P
s
B + K5P

s
C

(6g)

where A, B, C and D represent o-XL, o-tolualdehyde (o-TA),
phthalide (PH), and PA, respectively, En (kJ kmol−1), K0n (kmol
m2 kg−1 s−1 N−1), Kn (kmol m2 kg−1 s−1 N−1) and rn (kmol kg−1

s−1) are the activation energy, the pre-exponentional factor,
the rate constant and the intrinsic reaction rate of the nth
reaction, respectively,  ̨ is the fraction of unoccupied oxidized
sites, Ps

i
(kPa) is the partial pressure of species i on the catalyst

(solid) surface, Ts (K) is the catalyst temperature and KC (kmol
m2 kg−1 s−1 N−1) is the catalyst reoxidation rate constant. In
this kinetic model, r6 is set to zero because within the operat-
ing regime optimized for the yield of PA, the oxidation rate of
PA to COx has been found to be insignificant (Anastasov, 2003).
The choice to integrate this kinetic model into the CFD model
for the FBR is supported by experimental data reported in
previous investigations. Specifically, Anastasov (2003) shows
that when the first-principles model for the FBR with the
same kinetic model is given boundary conditions at a simi-
lar operating regime to that considered in the present study, it
generates simulation data that are in close agreement with the
experimental data. Furthermore, it is important to note that
the partial oxidation of o-xylene does not take place sponta-
neously as the reactants enter the FBR. In fact, the reactants
must be transported from the bulk flow to the catalyst sur-
face, and subsequently, diffuse into the catalyst pores and
bind to catalyst active sites at which the partial oxidation of o-

xylene occurs. Therefore, the effectiveness factor (�) of 0.34 is
introduced to account for the effects of transport resistances
between the free flowing fluid and the catalyst surface, and
the observed reaction rates can be rewritten as follows:

ron = �rn(Pf
i
), n = 1, · · ·,  5. (7)

In addition, it is equally important to recognize that the pro-
duction of PA only occurs in the catalyst particles, and the
reaction rates (Eq. (6)) are expressed in terms of the rate of
change per unit mass of catalyst; therefore, prior to be inte-
grated into the material and energy conservation equations
of the FBR, the reaction rates are converted into the rate of
change per unit volume of the FBR, i.e., kmol m−3 s−1, as fol-
lows:

ron = ��s (1 − �(r)) rn(Pf
i
). (8)

where �s (kg m−3) is the density of the catalyst particles. Sub-
sequently, the kinetic model is used to develop the source term
(SY,i) for the material conservation equation for the species i
as follows:

SY,i = Mi

�(r)

5∑
n=1

ınir
o
n (9)

where Mi (kg kmol−1) is the molecular weight of the species
i and ıni is the stoichiometric coefficient of species i in the
reaction n. It is important to note that when a source term is
introduced a CFD model in which ANSYS Fluent porous func-
tion is utilized, the source term is automatically multiplied by
the bed porosity and is subsequently integrated in the corre-
sponding governing equation as shown in Eqs. (14e, 14c) and
(14d); therefore, a correction factor, 1/�(r), must be used in
the formulation of all source terms developed in this work as
shown in Eq. (9).

To develop the heterogeneous CFD model for the FBR, we
need to explicitly develop the first-principle model for the solid
phase. In this work, we assume that the partial oxidation of o-
xylene is a transport limited process, and the catalyst particles
are isothermal. As a result, the first-principles model for the
solid phase is reduced to the energy conservation equation
shown below:

∂

∂t
((1 − �(r))�sCP,sTs) =

5∑
i=1

roi �Hi + �(1 − �(r))hfs(Tf − Ts) (10)

where CP,s = 836.0 (J kg−1 K−1) and � = 540.0 (m2 m−3) are the
specific constant pressure heat capacity and the external sur-
face per unit volume of catalyst particles, Tf (K) is the bulk
temperature, hfs (W m−2 K−1) is the overall heat transfer coef-
ficient between the bulk flow and the catalyst surface and Hi

(J kmol−1) is the enthalpy of the ith reaction. Specifically, the
right hand side of Eq. (10) accounts for the rate of change in
the solid (catalyst) temperature due to the partial oxidation
of o-xylene and the heat transfer between the free flowing
fluid and the catalyst particles, respectively. Next, to integrate
the energy conservation equation for the solid phase into the
CFD model, the solid temperature is defined as a user-defined
scalar (UDS). Upon this, ANSYS Fluent automatically gener-
ates a generic convective-diffusive transport equation for this
UDS in a porous media of the following form:
∂(��	)
∂t

+ ∇ · (���v	) = ∇ · (�
∇	) + �S	 (11)
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Table 1 – Operating parameters of the FBR reported in
Anastasov (2003), in which Vf,0 (m3 h−1, STP), Tf,0 (K) and
CA,0 (g m−3, STP) are the volumetric flow rate,
temperature and concentration of o-xylene in the feed
and Tji (K) is the jacket temperature profile.

Operating parameters

Vf,0 3.13
Tf,0 640
CA,0 43.1
Tji, i = 1, 2, 3, 4 640

Fig. 2 – Comparison of the fluid temperature predicted by
the 2D axisymmetric heterogeneous CFD model to the
experimental data collected at the same operating
parameters as listed in Table 1 and reported in Anastasov
here 	 is a UDS, 
 is a diffusion coefficient, and S	 is the
ource term, so that our task is to make use of UDFs to trans-
orm Eq. (11) into Eq. (10). Specifically, the convective and
iffusive terms are set to zero, and two additional source terms
ccounting for the two mechanisms that change the solid tem-
erature are formulated as follows:

Ts,1 = 1
�(r)

5∑
i=1

roi �Hi (12)

Ts,2 = �(1 − �(r))hfs(Tf − Ts)

�(r)
, (13)

nd the transient term in Eq. (11) is replaced by that of Eq. (10).
As a result of the above analysis, the 2D heterogeneous

FD model used to describe the behavior of a catalytic pro-
ess taking place in the FBR, i.e., the continuity, momentum,
nergy and species material balances, are given by the follow-
ng equations:

∂

∂t
(��f ) + ∇ · (��f �v) = 0 (14a)

∂

∂t
(��f �v) + ∇ · (��f �v�v) = −�∇P + ∇ · (���) − �

(
��

˛b
�v + �2C2

2
�f |�v|�v

)
(14b)

∂

∂t
(��f CP,f Tf ) + ∇ · (��v(�f CP,f Tf + P))

= ∇ ·
[
�kf∇T −

(∑
i

hi�Ji

)
+ �� · �v

]
− �STs,2 (14c)

∂

∂t
((1 − �)�sCP,sTs) = �STs,1 + �STs,2 (14d)

∂

∂t
(��f Yi) + ∇ · (��f �vYi) = −∇ · (��Ji) + �SY,i (14e)

with

�� = �

[(
∇�v+ ∇�vT

)
− 2

3
∇ · �vI

] (14f)

i = �f Dm,i∇Yi − DT,i
∇T
T

(14g)

u = 2 + 1.1Pr1/3Re0.6 (14h)

fs = kf Nu

dp
(14i)

boundary conditions :

z = 0; Yi = Yi,0, Tf = Tf,0
(14j)

 = 0;
∂��f Yi

∂r
= 0;

∂Tf

∂r
=  0 (14k)

 = R;
∂��f Yi

∂r
= 0; −r

∂Tf

∂r
=  hfj(Tf − Tj) (14l)

here �v (m s−1), P (kPa), �f (kg m−3), CP,f (J kg−1 K−1), kf (W m−1

−1) and � (m2 s−1) are the velocity, static pressure, specific
onstant pressure, density, heat capacity, thermal conduc-
ivity and molecular viscosity of the bulk flow, respectively,(∑

i
hi�Ji

)
represents the effect of enthalpy transport due to

pecies diffusion, Yi, �Ji (kg m−2 s−1), Dm,i (m2 s−1) and DT,i (m2
−1 K−1) are the mass fraction, mass diffusion flux, mass diffu-
ion coefficient and thermal diffusion coefficient, respectively,
(2003).

Tj is the jacket temperature profile, hfj the lumped heat trans-
fer coefficient between the bulk flow and the cooling jacket, ��
and I are the stress tensor and unit tensor, respectively, Re,  Pr
and Nu are the Reynolds number, Prandtl number and Nusselt
number, respectively.

4.  Model  validation  and  open-loop
dynamics

In this section, the 2D axisymmetric heterogeneous CFD
model for the FBR will be validated using experimental data
reported in the literature. This section details the validation of
the 2D axisymmetric heterogeneous CFD model for the FBR, in
which the key process parameters, i.e., the hot-spot tempera-
ture and location, predicted by the CFD model are compared
to those in the literature. To achieve a comprehensive and
transparent analysis, the operating parameters reported in
Anastasov (2003) as shown in Table 1 are used to develop the
boundary conditions for the CFD model. Then, the simulation
data predicted by the CFD model for the FBR are compared to
experimental data reported in Anastasov (2003). Specifically,
Fig. 2 shows that the CFD model predicts the steady-state tem-
perature profile consistent to experimental data. In additional,
the CFD model correctly identifies the hot-spot tempera-
ture and location, which are the two critical parameters that
determine the usefulness of the CFD model in preventing cat-
alyst deactivation and thermal runaway from a computational
standpoint, with an absolute mean error of 0.64 K and 0.018
m, respectively. In addition, Fig. 3 verifies that our proposed

modeling strategy for a heterogeneous CFD model, and espe-
cially the integration of the first-principles model for the solid
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Fig. 3 – Comparison between the fluid temperature and
solid temperature predicted by the 2D axisymmetric
heterogeneous CFD model at the operating parameters as
listed in Table 1.

Fig. 4 – The trajectory of the radially-averaged PA
concentration (denoted by xoutletD ) at the reactor outlet for
open-loop control with a desired set-point for PA
concentration at the outlet xsetD = 7.420 × 10−3 and
pre-determined jacket temperatures Tj1 = 620 K, Tj2 = 620 K,
T = 620 K and T = 620 K.

Fig. 5 – The trajectory of the radially-averaged fluid
temperature (Tf) at a few selected tracking locations for
open-loop control with xsetD = 7.420 × 10−3 and
pre-determined jacket temperatures Tj1 = 620 K, Tj2 = 620 K,
Tj3 = 620 K and Tj4 = 620 K.

Table 2 – Tracking locations along the FBR such that at
each tracking location, the fluid radially-averaged
composition and temperature are recorded at the end of
every CFD iteration time step.

Index Distance from the reactor inlet (m)

1 0.1
2 0.2
3 0.4
4 0.7
5 1.0
6 2.0
7 3.0
8 4.0
j3 j4

phase into the CFD model via UDS, is appropriate because
the CFD model correctly simulates the exothermicity and het-
erogeneous reaction characteristics of the partial oxidation of
o-xylene to PA inside the FBR. The above analysis indicates
that the CFD model can be considered as a realistic representa-
tion for the FBR, and hence, it will be used to explore the space
of operating parameters to identify a more  cost-effective and
safe operating regime. Specifically, the jacket temperatures of
the four discrete noninteracting zones (which are chosen as
the manipulated inputs of the centralized controller discussed
in Section 6) are systematically adjusted independently within
the range of ±20 K and a step change of 5 K from the nominal
value of 640 K to sweep the space of the operating parame-
ters. Once a new jacket temperature profile is proposed, it is
applied to the CFD model that is originally at the steady-state
corresponding to the operating parameters listed in Table 1
as a new boundary condition in a step-change input fashion.
Then, the CFD model with the updated jacket temperature
profile is integrated forward in time with the integration time
step of 0.1 s until reaching the corresponding steady-state as
shown in Figs. 4 and 5 . In this investigation, more  than 4000
open-loop simulations are used to map  the sensitivity of the

fluid temperature and composition inside the FBR to the jacket
temperature profile, and the simulation data are used to build
the database for the purpose of training a reduced-order model
that describes the nonlinear distributed dynamics of the FBR
as a function of the jacket temperature profile. In detail, we
setup eight tracking locations along the FBR as shown in
Table 2 such that at each tracking location, information about
the fluid radially-averaged composition and temperature is
recorded at the end of every five CFD iteration time steps. It
is noted that the first five are strategically placed in the first
meter of the FBR from the reactor inlet to maximize our chance
to capture the exact hot-spot temperature and location. Subse-
quently, the time-series database from open-loop simulations
are used to create a large number of sequences, each of which
contains descriptions about the distributed dynamics of the
FBR over 50 CFD integration time steps, via a sliding win-
dow method. Additionally, data preprocessing is employed to
remove data samples with repeated or similar dynamic behav-
ior to avoid over-fitting those data during the training process.

5.  Ensemble  regression  modeling

In this study, a recurrent neural network (RNN) learning algo-
rithm (Lipton et al., 2015), an ensemble learning technique
and a 10-fold cross validation are used to construct a homo-
geneous ensemble regression that uses the feed operating
parameters, the jacket temperature profile and the real-time
state measurements (i.e., the fluid temperature and compo-
sition) at eight discrete locations to predict the nonlinear
distributed dynamics of the FBR. The motivation for using
the ensemble regression is four-fold. First, the RNN learn-

ing algorithm, which is also known as the backpropagation
through time (BPTT) algorithm, can easily derive RNNs that
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FBR over a finite time interval in the future. Specifically, the
sub-ensemble i normalizes the input signals, i.e., the feed
Fig. 6 – The schematic of ense

emorize the training data well, however, without the gen-
ralization capability, and therefore, by exposing the learning
lgorithm to different subsets of the training data, generated
y 10-fold cross validation, effectively prevents it from over-
tting the RNNs. Second, the learning algorithm is known
o be non-convex and is an infamous example of an NP-
ard problem, and hence, by using different starting initial
eight matrices, the learning algorithm might be able to avoid

etting trapped in a local minimum, and arrive at the set
f weights that allows the RNN to accurately approximate
he latent function that transforms input sequences to cor-
esponding output sequences. Third, an ensemble regression
s known to often outperform its individual constituents and
imultaneously accounts for uncertainty in model selection
Mendes-Moreira et al., 2012). Fourth, the proposed approach
reates a unique opportunity for us to demonstrate our
eneral framework for linking ANSYS Fluent to several pow-
rful API toolboxes that are typically incompatible. For those
easons, the ensemble regression is structured to consist
f eight sub-ensembles corresponding to 8 tracking loca-
ions as shown in Table 2, and each of which is a 10 fold
ross-validated committee of RNNs derived to predict the
onlinear distributed dynamics of the FBR as depicted in
ig. 6.

In this study, each sub-ensemble of the ensemble regres-
ion is designed to predict the trajectories of the state variables
t a fixed location over a time interval equal to the sampling
ate of the centralized controller, which can be an integer mul-
iple of the CFD integration time step (in this work it is set
o be 50 CFD integration time steps, which corresponds to a
equence of 10 consecutive state measurements). Specifically,
s shown in Fig. 6, the sub-ensemble i uses the on-line mea-
urements of the state variables at the designated location
long the FBR (denoted by Xi

k
, k = 1, . . . , 6), the estimated tra-

ectories of the state variables at an upstream location over the
lapsed time (denoted by Xi

k
, k = 7, . . . , 12) and the jacket tem-

erature profile (denoted by Xi
k
, k = 13, . . . , 16) to calculate its

redictions, which are the average trajectories of those gener-
ted by its constituent RNNs. With this proposed design of the
nput, output and ensemble integration strategy of the sub-
e learning with RNN models.

ensembles, the mathematical formula of a sub-ensemble i can
be expressed as follows:

f ij

(
Xik

)
: R10×6 × R10×6 × R10×4 → R10×6 (15)

f i(Xik) = 1
Ni

Ni∑
j=1

f ij (X
i
k) (16)

where f i
j
(Xi
k
) represents a j RNN in the sub-ensemble i. This

ensemble integration strategy appears to be rudimentary;
nonetheless, the performance of the sub-ensemble measured
in terms of the absolute mean error is statistically better than
that of its constituent RNNs.

The constituent RNNs of individual sub-ensembles are
known as the 10-fold cross-validated committee; this is
because that 10-fold cross validation is used to generate 10
different subsets of the training data, and each of which
is subsequently used to train an RNN. Although the state-
of-the-art API, Keras, can be readily used to create the
10-fold cross-validated committee, training RNNs remains
a nontrivial task because the learning algorithm is known
to suffer from the vanishing and exploding gradient prob-
lems. For that reason, the RNNs is designed to have two
hidden recurrent layers consisting of 64 recurrent units
that use the rectified linear unit function as the activa-
tion function (i.e., ReLu function, g(x) = max  {0, x}) and are
initialized as proposed in Le et al. (2015). Specifically, Le
et al. (2015) demonstrates that this initialization in which
the recurrent and bias weight matrices are set to the iden-
tity matrix and zero, respectively, coupled with the use of
the ReLu function allows the trained RNNs to have the con-
sistently comparable performance with the standard long
short term memory  (LSTM) networks in various applica-
tions.

As a last note of this Section, we would like to detail
the procedure encoded in the ensemble regression which is
used to predict the nonlinear distributed dynamics of the
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operating parameters, the real-time state measurements at
the first location and the jacket temperature profile, using the
statistics of the first training set and, subsequently, transmits
the normalized input signals to its cross-validated committee
of RNNs. It is critical to note that all input and output signals of
individual RNNs are normalized based solely on the statistics
of its training set to prevent data leakage from its test set. Next,
the constituent RNNs simultaneously compute the trajecto-
ries of the normalized state variables over a finite time interval
in the future, which are pooled to compute the respective
average trajectories. Then, the first sub-ensemble generates
its output signals by rescaling the average trajectories of the
normalized state variables using the corresponding statistics.
The output signals of the first sub-ensemble are used to infer
the dynamics of the FBR at the corresponding location and
as input signals to the second sub-ensemble in addition to
the real-time state measurements at the second location and
the jacket temperature profile as depicted in Fig. 6. All down-
stream sub-ensembles execute the same procedure, and the
outputs of the sub-ensembles are used to estimate the nonlin-
ear distributed dynamics of the FBR. As a result, the output of
the ensemble regression model has a dimension of 8 × 10 × 6,
which corresponds to eight constituent sub-ensembles each
of which predicts the trajectories of six state variables over a
time interval of 10 sampling points.

6.  Feedback  control  design

6.1.  Model  predictive  controller  using  ensemble
regression  model

In this section, the ensemble regression model, derived to esti-
mate the nonlinear distributed dynamics of the FBR over a
time interval equal to 50 CFD integration time steps based on
the real-time measurements of the state variables, the feed
operating parameters and the cooling jacket temperature pro-
file, is used to develop a model predictive controller (MPC).
Specifically, the MPC  with a sampling period equal to the
prediction period of the ensemble regression model is formu-
lated as an optimization problem to drive the concentration
of PA at the reactor outlet to a desired set-point and to main-
tain the fluid temperature below a predetermined maximum
allowable value at all times to prevent catalyst deactivation
by changing the jacket temperature profile accounting for the
constraints on it. For the purpose of ease and clarity in this
discussion, we  define the following notations: �X represents
the real-time measurements of the state variables at eight
locations at the start of each MPC  sampling period, xoutletD rep-
resents the radially-averaged mole fraction of PA at the reactor
outlet at the end of each MPC  sampling period, xT represents
the maximum fluid temperature along the FBR over each MPC
sampling period, and ui where i=1, 2, 3 and 4 represents the
jacket temperature profile over each MPC  sampling period.
We note the corresponding estimated state variables can be
obtained from the output of the ensemble regression model
as follows:

fX : R8×10×6 → R8×6 |fX(Ỹ(tk)) = X̃(tk) (17)

fD : R8×10×6 → R |fD(Ỹ(tk)) = x̃outletD (tk) (18)
fT : R8×10×6 → R |fT(Ỹ(tk)) = x̃T(tk) (19)
where Ỹ (tk) is the estimated trajectory of the state variables
along the FBR from tk−1 to tk predicted by the ensemble regres-
sion model to describe the distributed dynamics of the FBR.
Additionally, the maximum fluid temperature and jacket tem-
peratures are bounded by xboundT := {0 < xT ≤ xmax

T } ∈ R and
Ubound := {umin

i
≤ ui ≤ umax

i
} ∈ R4 (i = 1, 2, 3, 4), respectively to

avoid hot-spot formation. The optimization problem of the
MPC is of the following form:

J = min
u ∈ S(�)

tk+N∑
tk

|x̃outletD (t) − xsetD |2 (20a)

s.t. Ỹ(tk+i+1) = fR(X̃(tk+i), u(tk+i)), i = 0, 1, ..., N − 1 (20b)

X̃ (tk+i) = �X(tk), i = 0 (20c)

= fX
(
Ỹ (tk+i)

)
, i = 1, ..., N − 1

x̃outletD (tk+i) = fD
(
Ỹ (tk+i)

)
, i = 1, ..., N − 1 (20d)

x̃T (tk+i) = fT
(
Ỹ (tk+i)

)
, i = 1, ..., N − 1 (20e)

u(tk+i) ∈ Ubound, i = 0, 1, ..., N − 1 (20f)

x̃T(tk+i) ∈ xboundT , i = 0, 1, ..., N − 1 (20g)

where fR(·) represents the ensemble regression model, S(�) is
the set of piecewise constant functions with period � and N is
the number of sampling periods in the prediction horizon. In
the optimization problem of Eq. (20), the objective function of
Eq. (20a) is the sum of |x̃outletD (t) − xsetD |2 over the prediction hori-
zon. Eq. (20b) is the ensemble regression model fR(·), which is
used to predict the nonlinear distributed dynamics of the FBR
(denoted by Ỹ)  based on the on-line measurements of the state
variables, the feed operating parameters and the jacket tem-
perature profile. It is noted that because the feed operating
parameters are assumed to be constant in this investigation,
they are omitted from Eq. (20b) for clarity. Eq. (20c) identi-
fies the on-line measurements of the state variables, which
are either the state measurements at t = tk from the CFD sim-
ulation (denoted by �X(tk)) in the first prediction step, which
corresponds to i=0, or the estimated state measurements
derived from the outputs of the ensemble regression model
(denoted by fX(Ỹ(tk+i))) in all subsequent prediction steps. Eq.
(20f) defines the input constraints over the entire MPC predic-
tion horizon. Eq. (20g) defines state constraints over the MPC
prediction horizon. Additionally, we assume that the states of
the closed-loop system are measured at each MPC  sampling
time. After the optimal solution u*(t) of the optimization prob-
lem of Eq. (20) is obtained, only the first control action of u*(t) is
sent to the control actuators to be applied over the next sam-
pling period. Then, at the next instance of time tk+1 : = tk + �,
the optimization problem is solved again, and the horizon
is rolled forward one sampling time. Under the MPC  of Eq.
(20), the closed-loop state xoutletD can be ultimately driven to
its desired set-point xsetD in the absence of model mismatch
or operational disturbances (e.g., reactor feed disturbances)
if there is sufficient control action to satisfy the constraints
of Eq. (20f) and Eq. (20g). To account for model mismatch

between the heterogeneous CFD model and the ensemble
regression model and to eliminate the offset between the final
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Fig. 7 – The algorithm of integrating MPC  with an ensemble
regression model where N is the length of prediction
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Fig. 8 – Basic structure of the proposed integrated MPC and
CFD dynamic simulation via a lock synchronization
orizon and i is the index of RNN models.

teady-state value of xoutletD and xsetD , an additional deviation
erm e(tk−1) = X̃(tk−1) − �X(tk−1) which represents the deviation
etween the actual state and the predicted state in the last
tep t = tk−1 is applied in the predictive models of Eq. (20b) such
hat the model mismatch is accounted for in the predictive

odels (i.e., X̃(tk+1) = fX(fR(X̃(tk), u(tk))) + e(tk−1)). Alternatively,
ffset can also be eliminated by integrating an integral feed-
ack control scheme with MPC  such that the overall control
ction can be obtained as: uMPC+I(tk) = uMPC(tk) + uI(tk) (Wu et al.,
017).

In our work, the MPC  is developed with the ensemble
egression model via the optimization package SciPy in Python.
he integration of the optimization problem of MPC  and the
nsemble regression model is demonstrated by the algorithm
hown in Fig. 7. Specifically, at t = tk the ensemble regression
odel and the state measurements are imported to MPC. Sub-

equently, the MPC  control actions are calculated by solving
he optimization problem of Eq. (20). It is noted that in Eq. (20b),
he ensemble regression model is used to predict the non-
inear distributed dynamics of the FBR (i.e., state trajectories
t eight locations along the FBR over the prediction horizon

 = [tk, tk+N)) by taking on-line state measurements X(tk) and
ontrol actions u(t), t = [tk, tk+N) as the inputs. In Fig. 7, it is
urther demonstrated that in the ensemble regression model
shown in Fig. 6), in addition to state measurements and con-
rol actions, each sub-ensemble also takes the predicted states
(tk+1) from the upstream sub-ensemble (denoted by f i−1

R ( · )
hich corresponds to an (i − 1)th location) as the inputs to
redict the system dynamics at an ith location.

.2.  Integrating  MPC  and  dynamic  CFD  simulation

n this section, an integrated framework of MPC and dynamic
FD simulation is developed via message passage interface

MPI) to implement MPC  within CFD dynamic simulations.
ince UDF supports C language only, the co-compilation of
DF and MPC  solver depends on the specific programming lan-
uage used. For example, if the optimization problem of MPC
s solved in Python environment, then the MPC solver and UDF

re compiled in Python and C environments, respectively, and

 communication bridge between the MPC  and ANSYS Fluent
mechanism.

UDF needs to be developed through a lock synchronization
function embedded in the UDF.

To accomplish the aforementioned data exchange, we
present two methods as follows:

Method 1:
In Wu et al. (2017), a built-in MPC solver via a C subroutine

was proposed to solve the constrained quadratic programming
(QP) problem of MPC  using an active-set method. Specifically,
the optimization problem of Eq. (20) is first represented in the
standard form of a QP problem, and the optimal solutions
are calculated by iteratively solving equality-constrained QP
subproblems. The advantage of this method is that the MPC
solver is built in the same C environment within UDF,  which
facilitates the compilation and reduces computation time in
exchanging data. However, the drawback of this method is
that the algorithms of the MPC solver become complicated
when the optimization problems of MPC are formulated to be
non-convex and NP-hard for complex, large-scale chemical
reaction systems. The development of a built-in MPC  solver
on a case-by-case basis becomes time-consuming and lacks
robustness. Therefore, a second method that bridges a com-
munication pathway between a robust existing algorithm for
solving large-scale nonlinear optimization problems and CFD
dynamic simulations is proposed.

Method 2:
The second method is to integrate MPC with dynamic CFD

simulation by taking advantage of existing MPC  solvers. As
shown in Fig. 8, the lock synchronization mechanism is uti-
lized to exchange data between the CFD simulation and the
MPC  solver. Specifically, at the end of each sampling period
of CFD dynamic simulation, the measurements of process
states are first obtained via UDF (e.g., functions C T, F YI are
utilized to derive fluid temperature and PA concentration in
ANSYS Fluent via user-defined functions (UDF)) and then sent
to the MPC  solver. Meanwhile, the CFD simulation is forced
to wait for the control actions from the MPC  solver. Then,
the MPC  solver is invoked to solve the optimization problem
to derive control actions u(t), for the next sampling period
t ∈ [tk, tk+1) based on received process state measurements
at t = tk. Finally, the CFD simulation receives u(tk) and contin-
ues dynamic simulation until the next sampling time step.
The above procedure is repeated with new measurements at

the end of eachsampling period. Therefore, under the integra-
tion of MPC and dynamic CFD simulation, jacket temperatures
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Fig. 9 – The trajectories of the product concentration at the
reactor outlet (Fig. 9a) and the fluid temperature profile
(Fig. 9b) of the closed-loop system under MPC  with
set −3
xD = 7.606 × 10 .

(i.e., manipulated inputs calculated by MPC) can be adjusted
at each sampling step such that xoutletD can be ultimately driven
to its set-point in the absence of model mismatch or distur-
bances. Additionally, it should be noted that actual process
states are measured in CFD simulations while normalized
process states are utilized in RNN models and MPC  solvers.
Therefore, data processing function is also embedded in the
MPC  solver to convert it to normal value before sending back
to CFD simulator.

Remark 1. The sampling period of MPC  is set as the same
sampling period in CFD dynamic simulation in our work such
that control actions can be adjusted to better drive xoutletD to
xsetD . However, it should be noted that the sampling period of
MPC can be different from the sampling period used in CFD
dynamic simulations, i.e., CFD simulation is running in a sam-
pling period �CFD and MPC  is activated each �MPC sampling
period, where �MPC is an integer multiple of �CFD. In this case,

the CFD simulation still measures process states every �CFD

period, but will only send them to the MPC  solver every �MPC

Fig. 10 – The jacket temperature profiles of the closed-
period. Then, the first control action of the optimal solutions
u*(t) obtained in MPC will be sent back to the CFD simulation
to be applied for the next �MPC period. It is demonstrated that
in general, an MPC with a short sampling period �MPC can
improve the performance of the closed-loop system by reduc-
ing oscillations. However, as a result, a long prediction horizon
should be equipped with a short �MPC to involve the dynamic
behavior for a sufficient long period of time in predictive mod-
els, which will lead to longer computation time. Therefore,
�MPC and �CFD need to be carefully determined to achieve a
balanced trade-off between smooth dynamic responses and
computational efficiency.

7.  Closed-loop  simulation  results

In this section, the closed-loop performance of a fixed-bed cat-
alytic reactor used in the phthalic anhydride synthesis under
MPC is investigated. All simulation settings of the closed-loop
simulations are the same as those used in the previously stud-
ied open-loop system with �CFD = 0.1 s. We demonstrate the
case of set-point tracking under a disturbance-free environ-
ment. The initial steady-state is at xoutletD = 7.550 × 10−3, and
the jacket temperatures are Tj1 = 640 K, Tj2 = 640 K, Tj3 = 640
K and Tj4 = 640 K, respectively. Since the ensemble regres-
sion model is developed based on the database generated
from open-loop simulations in which the jacket temperatures
of the four discrete noninteracting zones are systematically
adjusted independently within the range of ±20 K and a step
change of 5 K from the nominal value of 640 K, the set-point
of the MPC is chosen to be the highest achievable value (i.e.,
xsetD = 7.606 × 10−3) within the range observed in the database
to guarantee a good performance of the closed-loop system.

It is demonstrated in Fig. 9a that radially-averaged con-
centration of PA at the outlet xoutletD is successfully driven to
xsetD = 7.606 × 10−3 under MPC, and it takes around 170 s for
xoutletD to reach its final value. The dynamic performance of the
closed-loop system under MPC improves significantly com-
pared to an open-loop control as it takes around 300 s for
the system to settle to xsetD = 7.606 × 10−3. The correspond-
ing manipulated input profiles are given in Fig. 10, where
it is demonstrated that the jacket temperatures of the four
zones stay at a high temperature (around 685 K) for the first
20 s to increase xoutletD quickly, and then the jacket temper-
atures decrease to their steady-state values such that xoutletD

can approach its desired set-point xsetD and ultimately settle

down to xsetD . Additionally, it is demonstrated in Fig. 9b that
the fluid temperature profile is maintained below the maxi-

loop system under MPC  with xsetD = 7.606 × 10−3.



Chemical Engineering Research and Design 1 4 5 ( 2 0 1 9 ) 173–183 183

m
E
d

b
s
I
i
e
t
f
c
s
n
a
o
w
t
a
s
t
c

8

I
A
s
u
t
fi
u
a
w
l
t
a
t
a
w
u
u
q
r
t
t
d
M
A
p
F
r

A

F
t

R

A

Proceedings of the American Control Conference, in press,
Philadelphia, Pennsylvania.
um allowable temperature 773 K under the constraints of
q. (20g), which avoids the formation of hot-spots that could
eactivate the catalyst.

Additionally, in our previous work Wu  et al. (2019), an MPC
ased on a data-driven linear state-space model using the
ame dataset generated from CFD simulations was developed.
t was demonstrated that in closed-loop simulation of track-
ng a certain set-point of PA concentration at outlet, there
xist offsets for some of the set-points within the range of
raining dataset due to process/model mismatch, and there-
ore, an integral control term was added to the control action
alculated by MPC  to eliminate the offset. However, exten-
ive closed-loop simulation results revealed that the neural
etwork model-based MPC  without additional integral or devi-
tion control term is able to track the PA concentration at the
utlet to any set-point within the range of training dataset
ith no offset due to the advantages of neural network model

o capture nonlinearity of the system in a wide range of oper-
ting conditions and reduce process/model mismatch. Due to
pace limitations, in the present manuscript, we only included
he closed-loop simulation results for the largest set-point
hange within the range included in the database.

.  Conclusion

n this work, a general framework for linking a CFD solver,
NSYS Fluent and other computing platforms using the lock
ynchronization mechanism was proposed to extend the
tilities of CFD solvers from strictly modeling and design
o also control and optimization applications. Specifically, a
xed-bed reactor (FBR) with a highly exothermic process was
tilized to demonstrate the effectiveness of the proposed
pproach, under which the product yield can be maximized
hile suppressing the hot-spot temperature to avoid cata-

yst deactivation and thermal runaway. Initially, a high-fidelity
wo-dimensional axisymmetric heterogeneous CFD model for
n industrial-scale FBR was developed in ANSYS Fluent. Then,
he open-loop simulation of CFD model was conducted to cre-
te a database for a wide operating regime of the FBR, from
hich recurrent neural network and ensemble learning were
sed to derive a homogeneous ensemble regression model
sing the application program interface (API) Keras. Subse-
uently, based on the RNN models derived from ensemble
egression, an MPC  control scheme was developed to drive
he process outputs to the desired set-points and suppress
he magnitude of the hot-spot temperature to avoid catalyst
eactivation. The CFD model, the ensemble regression and the
PC  were integrated to create a closed-loop system by linking
NSYS Fluent to MPC  optimizer in Python via a message-
assing interface (MPI) with lock synchronization mechanism.
inally, the closed-loop simulation results demonstrated the
obustness and effectiveness of the proposed approach.
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