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a b s t r a c t

In this paper, we propose a Control Lyapunov-Barrier Function-based model predictive control (CLBF-
MPC) method for solving the problem of stabilization of nonlinear systems with input constraint
satisfaction and guaranteed safety for all times. Specifically, considering the input constraints, a
constrained Control Lyapunov-Barrier Function is initially employed to design an explicit control law
and characterize a set of initial conditions, starting from which the solution of the nonlinear system
is guaranteed to converge to the steady-state without entering a specified unsafe region in the state
space. Then, the CLBF-MPC is proposed and is shown to be recursively feasible, and stabilizing and
to ensure the avoidance of a set of states in state–space associated with unsafe operating conditions
under sample-and-hold control action implementation. Finally, we demonstrate the efficacy of the
proposed CLBF-MPC method through application to a chemical process example.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Safety is an issue of significant importance in the chemical
process industries due to the great impact of unsafe operations
on human life and the environment. In Sanders (2015), it was re-
ported that since the beginning of the twenty-first century, three
major chemical incidents have occurred in the United States,
causing huge capital loss, injuries and deaths. The catastrophic
industrial chemical incidents (Completed Investigations of Chem-
ical Incidents, 2016) and the resulting severe damage remind us
of the need to continue to find methods to improve process oper-
ational safety. One important method for doing this at the process
design stage is developing inherently safer processes, while an-
other that is important at the level of day-to-day operational
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safety is improving the design of process control systems (Crowl
& Louvar, 2011).

MPC is a widely-used advanced control methodology in indus-
trial chemical plants due to its ability to handle multiple-input
multiple-output processes while achieving optimal process per-
formance (Rawlings & Mayne, 2009). Among different MPC for-
mulations, a Lyapunov-based model predictive control (Mhaskar,
El-Farra, & Christofides, 2006; Muñoz de la Peña & Christofides,
2008) is developed to provide stabilizability and feasibility based
on an explicitly-defined estimate of the region of attraction of
the closed-loop system (termed the stability region) via a well-
designed control law (e.g., a Lyapunov-based control law). This
has motivated significant research work on applications of this
control design to nonlinear processes. At this stage, however, the
problem of incorporating safety constraints in Lyapunov-based
model predictive control (LMPC) has not been studied.

Recently, an intriguing control method accounting for both
stability and safety termed Control Lyapunov-Barrier Function
(CLBF)-based control has been developed (Jankovic, 2017; Niu &
Zhao, 2013; Tee, Ge, & Tay, 2009). A CLBF can be designed through
the combination of a Control Lyapunov Function (CLF) and a Con-
trol Barrier Function (CBF) (e.g., weighted average in Romdlony &
Jayawardhana, 2016 or the quadratic programming combination
in Ames, Grizzle, & Tabuada, 2014). Since CBFs can be used to
characterize unsafe state–space regions as open and bounded
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sets in the operating region such that these regions may not
be defined by direct constraints on state variables, the existing
LMPC scheme may not be able to handle safety considerations
expressed in terms of CBFs. Incorporating Control Lyapunov-
Barrier Functions into MPC to allow for generality in defining
unsafe regions and maintaining the closed-loop state only in safe
operating regions is an open issue.

Motivated by the above safety considerations, in this work,
we propose a CLBF-MPC formulation that integrates a Control
Lyapunov-Barrier function with MPC to account for input con-
straints, safety considerations, and stability of the closed-loop
system. The proposed control scheme provides recursive feasi-
bility, guaranteed process safety and stability of the closed-loop
system from an explicitly characterized set of initial conditions
in the presence of input constraints. The design of the CLBF-MPC
uses the universal nonlinear control law (Lin & Sontag, 1991) as
a candidate controller to search for the null controllable region
(i.e., the set of initial conditions starting from which stabilization
at the origin can be achieved) or a subset of it, and to analyze the
stability of the closed-loop system. The CLBF-MPC is shown to be
recursively feasible, and able to drive the closed-loop state to the
origin while avoiding the unsafe region at all times if the state
originates from a well-characterized set of initial conditions.

The rest of the paper is organized as follows: in Section 2, the
class of systems considered, the stabilizability assumptions, and
the concept of the constrained Control Lyapunov-Barrier Function
are given. In Section 3, we introduce the sample-and-hold im-
plementation applied in MPC, and develop a CLBF-based model
predictive controller that guarantees recursive feasibility, safety
and closed-loop stability under sample-and-hold implementa-
tion within an explicitly characterized set of initial conditions.
In Section 4, a nonlinear chemical process example is used to
demonstrate the applicability of the proposed control method.

2. Preliminaries

2.1. Notation

Throughout the paper, the notation |·| is used to denote the
Euclidean norm of a vector, the notation |·|Q denotes a weighted
Euclidean norm of a vector (i.e., |x|Q =

√
xTQx where Q is

a positive definite matrix). xT denotes the transpose of x. R+

denotes the set [0, ∞). The notation Lf V (x) denotes the standard
Lie derivative Lf V (x) :=

∂V (x)
∂x f (x). A scalar continuous function

V : Rn
→ R is proper if the set {x ∈ Rn

| V (x) ≤ k} is compact
for all k ∈ R, or equivalently, V is radially unbounded (Malisoff &
Mazenc, 2009). For given positive real numbers β and ϵ, Bβ (ϵ) :=

{x ∈ Rn
| |x − ϵ| < β} is an open ball around ϵ with radius of β .

Set subtraction is denoted by ‘‘\’’, i.e., A\B := {x ∈ Rn
| x ∈ A, x /∈

B}. A function f (·) is of class C1 if it is continuously differentiable.
Given a set D, the boundary and the closure of D are denoted by
∂D and D, respectively.

2.2. Class of systems

The class of continuous-time nonlinear systems considered is
described by the following state–space form:

ẋ = f (x) + g(x)u + h(x)w, x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input
vector, and w ∈ W is the disturbance vector, where W := {w ∈

Rl
| |w| ≤ θ, θ ≥ 0}. The control action constraint is defined

by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rm, where umin and umax
represent the minimum and the maximum value vectors of inputs
allowed, respectively. f (·), g(·), and h(·) are sufficiently smooth
vector and matrix functions of dimensions n×1, n×m, and n× l,

respectively. Without loss of generality, the initial time t0 is taken
to be zero (t0 = 0), and it is assumed that f (0) = 0, and thus, the
origin is a steady-state of the system of Eq. (1) with w(t) ≡ 0,
(i.e., (x∗

s , u
∗
s ) = (0, 0), where x∗

s and u∗
s denote the steady-state of

Eq. (1)).
Moreover, we assume that there is an open set D in state–

space within which it is unsafe for the system to be operated
(e.g., the temperature or pressure is extremely high). X0 := {x ∈

Rn
\D} where {0} ∈ X0 represents a set from which the set

of initial conditions to be considered will be developed, and ∅

signifies the null set. In the manuscript, we assume that the
measurement of x(t) is available for feedback at each sampling
time.

2.3. Stabilizability assumptions expressed via Lyapunov-based con-
trol

We assume that the nominal system of Eq. (1) with w(t) ≡ 0
admits a positive definite and proper Control Lyapunov Function
(CLF) V that satisfies the following condition:

Lf V (x) < 0, ∀x ∈ {z ∈ Rn
\{0} | LgV (z) = 0} (2)

We also assume that V satisfies the small control property (Son-
tag, 1989), i.e., for every ε > 0, ∃ δ > 0, s.t. ∀ x ∈ Bδ(0), there
exists u that satisfies |u| < ε and Lf V (x) + LgV (x)u < 0.

The CLF assumption implies the existence of a stabilizing
feedback control law Φ(x) that renders the origin asymptotically
stable in the sense that Eq. (2) holds for u = Φ(x), where Φ(x) ∈

U . An example of a feedback control law that is continuous for
all x in a neighborhood of the origin and renders the origin
asymptotically stable is the following control law (Lin & Sontag,
1991):

ki(x) =

⎧⎨⎩ −
p +

√
p2 + γ |q|4

|q|2
qi if q ̸= 0

0 if q = 0
(3a)

ΦS,i(x) =

{umin if ki(x) < umin
ki(x) if umin ≤ ki(x) ≤ umax
umax if ki(x) > umax

(3b)

where p denotes Lf V (x), qi denotes LgiV (x), q = [q1 · · · qm]
T ,

f = [f1 · · · fn]T , gi = [gi1 · · · gin]T , (i = 1, 2, . . . ,m) and γ > 0.
ki(x) of Eq. (3a) represents the ith component of the control law
ΦS(x) before considering saturation of the control action at the
input bounds. ΦS,i(x) of Eq. (3) represents the ith component of the
saturated control law ΦS(x) that accounts for the input constraint
u ∈ U . Based on the Lyapunov-based control law Φ(x), a region
φu where the time-derivative of the Control Lyapunov Function
is negative under the constrained inputs can be found, φu = {x ∈

Rn
| V̇ < 0, u = Φ(x) ∈ U}. Also, we define a level set of V (x)

inside φu as Ωb = {x ∈ φu | V (x) ≤ b, b > 0}. Since Ωb is a
forward invariant subset of φu, given any initial states x0 ∈ Ωb, it
is guaranteed that for all t ≥ t0, x(t) of the system of Eq. (1) with
w(t) ≡ 0 under the control law of Eq. (3) remains in Ωb.

2.4. Stabilization and safety via control Lyapunov-Barrier function

In this work, we develop an MPC design that takes advantage
of a Control Lyapunov-Barrier Function (defined in this section)
in its design to maintain the state in a safe operating region at all
times in the following sense:

Definition 1. Consider the nominal system of Eq. (1) with w(t) ≡

0 and input constraints u ∈ U . If there exists a control law
u = Φ(x) ∈ U such that the state trajectories of the system for
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any initial state x(t0) = x0 ∈ X0 satisfy x(t) /∈ D, ∀ t ≥ 0, we
say that the control law Φ(x) maintains the process state within
a safe operating region at all times.

A number of recent works (Prajna & Jadbabaie, 2004; Xu,
Tabuada, Grizzle, & Ames, 2015) have developed control laws
for which they have been able to guarantee that the control
law maintains safe operation of the process at all times from
a set of initial conditions X0 when a Control Barrier Function
(CBF) can be found for the system. The definition of a CBF is as
follows: Wieland and Allgöwer (2007)

Definition 2. Given a set of unsafe points D in state–space, a
C1 function B(x) : Rn

→ R is a CBF if it satisfies the following
properties:

B(x) > 0, ∀ x ∈ D (4a)

Lf B(x) ≤ 0, ∀ x ∈ {z ∈ Rn
\D | LgB(z) = 0} (4b)

XB := {x ∈ Rn
| B(x) ≤ 0} ̸= ∅ (4c)

A modification of a Control Barrier Function to form a Con-
trol Lyapunov-Barrier Function (CLBF) Wc(x) has been employed
in Romdlony and Jayawardhana (2016) to show that when a CLBF
exists for the system of Eq. (1) with w(t) ≡ 0, there exists a con-
troller of the form of Eq. (3) with Wc replacing V , that keeps the
closed-loop state inside a level set of Wc(x), and ensures the state
does not enter D at all times for x0 ∈ X0. Since in Romdlony and
Jayawardhana (2016), the stabilization and safety-related results
were guaranteed only for u ∈ Rm (i.e., no input constraints), for
the case with input constraints, a new CLBF must be developed
to derive similar results. Therefore, based on the definition of
a CLBF in Romdlony and Jayawardhana (2016), we propose a
modified CLBF (termed a constrained CLBF) in this manuscript
that accounts for the presence of input constraints in the system
of Eq. (1). Specifically, the definition of a constrained CLBF is as
follows:

Definition 3. Given a set of unsafe points in state–space D, a
proper, lower-bounded and C1 function Wc(x) : Rn

→ R is a
constrained CLBF if Wc(x) has a minimum at the origin and also
satisfies the following properties:

Wc(x) > ρc, ∀ x ∈ D ⊂ φuc (5a)⏐⏐⏐⏐∂Wc(x)
∂x

⏐⏐⏐⏐ ≤ r(|x|) (5b)

LfWc(x) < 0,

∀ x ∈ {z ∈ φuc\(D ∪ {0} ∪ Xe) | LgWc(z) = 0} (5c)

Uρc := {x ∈ φuc | Wc(x) ≤ ρc} ̸= ∅ (5d)

φuc\(D ∪ Uρc ) ∩ D = ∅ (5e)

where ρc ∈ R, r(·) is a class K function, and Xe := {x ∈ φuc\(D ∪

{0}) | ∂Wc(x)/∂x = 0} is a set of states where LfWc(x) = 0 (for
x ̸= 0) due to ∂Wc(x)/∂x = 0.

Under a stabilizing control law Φ(x) (e.g., the Lyapunov-based
control law of Eq. (3) with Wc(x) replacing V (x)), φuc is defined
to be the union of the origin, Xe and the set where the time-
derivative of Wc(x) is negative with constrained input: φuc = {x ∈

Rn
| Ẇc(x(t), Φ(x)) = LfWc + LgWcu < −α|Wc(x) − Wc(0)|, u =

Φ(x) ∈ U} ∪ {0} ∪ Xe, and α is a positive real number used
to characterize the set φuc . Also, we define the set of initial
conditions by XWc := {x ∈ φuc\D} where ({0} ∪ Xe) ∈ XWc . From
now on, we will denote Ẇc(x(t), u(t)), if not otherwise stated,
simply by Ẇc .

Theorem 1 provides sufficient conditions under which the
existence of a constrained CLBF of Eq. (5) for the nominal system

of Eq. (1) with w(t) ≡ 0 under the control law Φ(x) guarantees
that the solution of the system of Eq. (1) always stays in a safe
operating region.

Theorem 1. Consider that a constrained CLBF Wc(x) : Rn
→ R,

that has a minimum at the origin, exists for the nominal system of
Eq. (1) (i.e., w(t) ≡ 0) with the input constraints u ∈ U, defined
with respect to a set of unsafe points D in state–space. The feedback
control law Φ(x) guarantees that the closed-loop state stays in XWc
and does not enter D for all times for x(0) = x0 ∈ XWc .

Proof. First, we prove that if x0 ∈ XWc , then the closed-loop state
will never enter D, for all t ≥ 0. Consider the first case that x0 ∈

Uρc . By the definition of φuc , it is guaranteed that Ẇc is negative
everywhere in the set XWc\({0} ∪ Xe). (e.g., if LgWc(x) = 0, it
follows that Ẇc(x) = LfWc(x) < 0; if LgWc(x) ̸= 0, it follows

that Ẇc = −

√
LfW 2

c + γ |LgWc |
4 < 0 using the Lyapunov-based

control law of Eq. (3) with Wc(x) replacing V (x)). Additionally, if
x ∈ Xe, Ẇc(x) = 0 holds. Therefore, it follows that Wc(x(t)) ≤

Wc(x(0)) for all x(t) ∈ Uρc by Ẇc ≤ 0, i.e., x(t) stays in the set Uρc
for all t ≥ 0 if x0 ∈ Uρc .

Also, Uρc is a compact invariant set due to the properness of
Wc and the property Ẇc ≤ 0. Due to the fact that Uρc ∩ D = ∅,
it follows that for any x0 ∈ Uρc , the closed-loop state does not
enter the set of unsafe states at any time (i.e., it is maintained
within the set of safe states at all times). Additionally, since any
subset of Uρc , Uρ := {x ∈ φuc | Wc(x) ≤ ρ ≤ ρc} ⊂ Uρc ,
is also a compact invariant set, we can show that if x0 ∈ Uρ ,
x(t) ∈ Uρ , ∀t ≥ 0. It remains to be shown that for all other
initial states x0 ∈ φuc\(D ∪ Uρc ), x(t) /∈ D, ∀ t ≥ 0. Given an
initial state x0 that belongs to the set φuc\(D ∪ Uρc ), Wc(x0) > ρc
holds because it is not within the set Uρc defined in Eq. (5d).
However, since Eq. (5c) holds within φuc\(D∪{0}), the conclusion
that Ẇc(x) is negative along the trajectory of x(t) holds using
the same steps as performed above when x0 was within Uρc .
Furthermore, since the set φuc\(D ∪ Uρc ) does not intersect with
D, any trajectory starting in φuc\(D∪Uρc ) will reach the boundary
of φuc\(D ∪ Uρc ) before reaching the boundary of D. Because
Eq. (5e) holds (i.e., φuc\(D ∪ Uρc ) ∩ D = ∅), it must hold that
φuc\(D ∪ Uρc )∩Uρc , is a nonempty set. Because Wc(x) > ρc within
φuc\(D∪Uρc ) butWc(x) ≤ ρc within Uρc from Eq. (5d),Wc(x) = ρc ,
∀x ∈ ∂φuc\(D ∪ Uρc ) due to the continuity of Wc , which means
that the trajectory will continue to enter and remain in Uρc after
it reaches the boundary of φuc\(D∪Uρc ). This completes the proof
that for all x0 ∈ XWc , x(t) /∈ D, ∀ t ≥ 0.

Remark 1. In Theorem 1, simultaneous stability (boundedness
of the closed-loop state) and safety are proved for the nominal
system of Eq. (1) with any x0 ∈ XWc under u = Φ(x). Note
that the set of initial condition XWc contains two parts. One is
Uρc of Eq. (5d), where it satisfies Wc(x) ≤ ρc ; the other one is
φuc\(D ∪ Uρc ), which is required to satisfy Eq. (5e). Therefore, if
we restrict the initial conditions to Uρc or any subset of it, the
conditions of a constraint CLBF in Definition (5) can be reduced
to Eqs. (5a)–(5d). Otherwise, if the set φuc\(D ∪ Uρc ) is considered
as a part of initial conditions, all the conditions in Definition
(5) are required to hold for Wc . The additional condition of
Eq. (5e) for the case of x0 ∈ φuc\(D ∪ Uρc ) also implies that
Wc(x) = ρc for all x ∈ ∂D, which can be readily shown by
contradiction.

Remark 2. Since Ẇc(xe) = 0 holds for all xe ∈ Xe, the origin of
the closed-loop nominal system of Eq. (1) with w(t) ≡ 0 cannot
be rendered asymptotically stable with a continuous controller
(e.g., Eq. (3) with Wc(x) replacing V (x)) (Braun & Kellett, 2018).
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Therefore, in order to drive the state to the origin instead of
converging to xe ̸= 0, a CLBF-based MPC will be introduced in
Section 3 to ensure that the closed-loop state converges to a small
neighborhood around the origin.

2.5. Design of constrained CLBF

Based on the constructive methods for an unconstrained CLBF
from Romdlony and Jayawardhana (2016), the methods for con-
structing a constrained CLBF are developed in this subsection.
Specifically, a constrained CLBF can be constructed by combining
a CLF and a CBF that have been separately designed, and we
present a practical method for designing a CLBF that satisfies
the properties in Eq. (5). Proposition 1 provides the guidelines
for choosing the CLF and CBF, and the corresponding weights,
through which the global minimum of Wc(x) is achieved at the
origin.

Proposition 1. Given an open set D of unsafe states for the system
of Eq. (1) with w(t) ≡ 0, assume that there exist a C1 CLF V : Rn

→

R+, and a C1 CBF B : Rn
→ R, such that the following conditions

hold:

c1 |x|2 ≤ V (x) ≤ c2 |x|2 , ∀x ∈ Rn, c2 > c1 > 0 (6)

D ⊂ H ⊂ φuc, 0 /∈ H (7)

B(x) = −η < 0, ∀x ∈ Rn
\H; B(x) ≥ −η, ∀x ∈ H;

B(x) > 0, ∀x ∈ D
(8)

where H is a compact and connected set within φuc . Define Wc(x) to
have the form Wc(x) := V (x) + µB(x) + ν, where:⏐⏐⏐⏐∂Wc(x)

∂x

⏐⏐⏐⏐ ≤ r(|x|) (9)

LfWc(x) < 0,
∀ x ∈ {z ∈ φuc\(D ∪ {0} ∪ Xe) | LgWc(z) = 0}

(10)

µ >
c2c3 − c1c4

η
, (11a)

ν = ρc − c1c4, (11b)

c3 := max
x∈∂H

|x|2, (11c)

c4 := min
x∈∂D

|x|2 (11d)

then for initial states x0 ∈ φuc\DH, where DH := {x ∈ H | Wc(x) >

ρc}, the control law Φ(x) (with Wc(x) replacing V (x)) guarantees
that the closed-loop state is bounded in φuc\DH and does not enter
the unsafe region DH for all times.

Proof. We define a new compact and connected set H, which
satisfies Eq. (7), and an expanded unsafe region DH, such that
all the states with Wc(x) > ρc inside the region H are included in
DH. We prove that the proposed constrained CLBF, Wc(x), meets
all the requirements of Eq. (5) with DH replacing D and has a
global minimum at the origin. Firstly, it is trivial to show that
Eq. (5a) holds by the definition of DH. Additionally, we can use
Eqs. (6), (8), and (11) to show that for all x ∈ D, Wc(x) > ρc also
holds as follows:
Wc(x) = V (x) + µB(x) + ν

> c1 |x|2 + ρc − c1c4

> ρc

(12)

Eqs. (5b) and (5c) are also trivially satisfied by the proposed
CLBF via the required property of Eqs. (9) and (10). To prove
that Eq. (5d) holds, we obtain the following inequalities for all
x ∈ ∂H,

Wc(x) = V (x) + µB(x) + ν

≤ c2 |x|2 − µη + ρc − c1c4
< ρc

(13)

Hence, Eq. (5d) holds due to the fact that Uρc ̸= ∅ obtained from
Eq. (13), which also implies that ∂H ∩ ∂DH = ∅. Following this,
we have DH ⊂ H ⊂ (DH ∪ Uρc ), which implies the boundary
of φuc\(DH ∪ Uρc ) does not intersect with the boundary of DH,
(i.e., Eq. (5e) holds, φuc\(DH ∪ Uρc )∩DH = ∅). Additionally, Wc(x)
has a global minimum at the origin since the minimums of V (x)
and B(x) are both at the origin. Therefore, we can conclude that for
any initial states x0 ∈ φuc\DH, the control law Φ(x) guarantees
that the closed-loop state is bounded in φuc\DH and does not
enter DH for all times.

Remark 3. In Braun and Kellett (2018), it is shown that there
exists a set of points xe ∈ Xe where ∂Wc(xe)/∂xe = 0. This implies
that the closed-loop state may converge to xe instead of the origin
under a continuous controller. Therefore, in order to avoid the
convergence to xe, a different control action has to be applied at xe
such that the state is able to leave xe and move towards a smaller
level set of Wc(x). To that end, Wc(x) needs to be well-designed
such that xe is a saddle point on Rn. Subsequently, in the following
section, a CLBF-based MPC will be designed with a constraint to
find a path that leaves saddle points and moves towards a smaller
level set of Wc(x).

3. CLBF-based model predictive control

3.1. Sample-and-hold implementation of CLBF-based controller

In the proof of Theorem 1, it was noted that when a con-
strained CLBF exists for the nominal system of Eq. (1) with w(t) ≡

0, the controller Φ(x) when continuously implemented, can main-
tain the state in a safe region of operation. Because the CLBF
will be used to design constraints for MPC, for which control
actions are implemented in sample-and-hold, the sample-and-
hold properties of the controller Φ(x) (with a sampling period ∆)
must be investigated in the presence of disturbances. The next
two propositions and their proofs develop these results.

Proposition 2. Consider the nominal system of Eq. (1) with a
constrained CLBF Wc that meets the requirements of Definition 3 and
has a minimum at the origin, and the set of initial conditions Uρc ⊂

XWc . Let u(t) = Φ(x(tk)) for all tk ≤ t < tk+1, x(tk) ∈ Uρc\Bδ(xe)
where δ > 0, xe ∈ Xe and tk represents the time instance t = k∆,
k = 0, 1, 2, . . ., and u(t) = ū(x) ∈ U such that if x(tk) ∈ Bδ(xe), then
Wc(x(tk+1)) < Wc(x(tk)) for any ∆ > 0. Then, given any positive real
number d, there exists a real number ∆∗, such that, if ∆ ∈ (0, ∆∗

]

and x0 ∈ Uρc , then x(t) ∈ Uρc , and limt→∞ |x(t)| ≤ d.

Proof. We need to show that under sample-and-hold implemen-
tation, any states originating in Uρc converge to a level set around
the origin Uρmin := {x ∈ φuc | Wc(x) ≤ ρmin} as t → ∞ where
ρmin < ρc . Following this, it is trivial to show that x(t) ∈ Uρmin
as t → ∞ implies limt→∞ |x(t)| ≤ d by the continuity of Wc(x).
To prove that the state will converge to Uρmin , we first show that
∀ x(tk) ∈ Uρc\(Uρs∪Bδ(xe)), where ρs < ρmin < ρc , Ẇc(x(t), u(t)) <

−ϵ holds in the set Z := {x ∈ φuc\Bδ(xe) | ρs ≤ Wc(x) ≤ ρc} with
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Fig. 1. A schematic representing the sets Uρc , Uρmin and Uρs , where an example
of the closed-loop trajectory that originates from x0 ∈ Uρc (dotted line) is shown
to avoid the unsafe region D, and ultimately enter and remain in Uρmin under
the sample-and-hold implementation of u = Φ(x) ∈ U .

u(t) = u(tk) = Φ(x(tk)), ∀ t ∈ [tk, tk + ∆∗) as below:

Ẇc(x(t), u(t)) =Ẇc(x(tk), u(tk)) + (Ẇc(x(t), u(t))

− Ẇc(x(tk), u(tk)))
=LfWc(x(tk)) + LgWc(x(tk))u(tk)

+ (LfWc(x(t)) − LfWc(x(tk)))
+ (LgWc(x(t)) − LgWc(x(tk)))u(t)

(14)

Due to the smoothness of f (·) and g(·), and the fact that Wc(x)
is a C1 function that satisfies Eq. (5b), there exist positive real
numbers k1 and k2, such that |(LfWc(x(t)) − LfWc(x(tk))| ≤ k1
|x(t) − x(tk)|, |(LgWc(x(t)) − LgWc(x(tk)))u(t))| ≤ k2|x(t) − x(tk)|.
Since f (x) and g(x) are continuous functions, and Z is bounded,
there exists a positive real number k4 and a sampling period ∆′,
such that |x(t) − x(tk)| ≤ k4∆′ for all t ∈ [tk, tk +∆′). Also, by the
definition of φuc , it follows that Ẇc(x(tk)) < −α|Wc(x) − Wc(0)| <

−αρm holds for all x ∈ Z , where ρm := minx∈Z |Wc(x) − Wc(0)|.
Let ∆′ <

αρm−ϵ

k4(k1+k2)
and 0 ≤ ϵ < αρm, where α is used to

characterize φuc , and substitute the above inequalities obtained
from Lipschitz conditions into Eq. (14), then it follows that

Ẇc(x(t), u(t)) ≤ Ẇc(x(tk), u(tk)) + k4(k1 + k2)∆′

< −αρm + k4(k1 + k2)∆′

< −ϵ

(15)

Eq. (15) implies that Wc(x(t)) < Wc(x(tk)) ≤ ρc, ∀ t > tk
and within finite steps, the closed-loop state trajectory x(t) will
enter Uρs . Hence, x(t) is shown to be bounded in Uρc , for all
t ∈ [tk, tk + ∆′).

Additionally, consider x(tk) ∈ Bδ(xe) where xe are designed
to be saddle points. Since we assume that there exists a set of
control actions ū(x) that decreases Wc(x), x(tk+1) is able to move
to a smaller level set of Wc(x) and within finite sampling steps
leaves Bδ(xe). Moreover, x(t) never returns to Bδ(xe) once it leaves
since Eq. (15) (i.e.,Wc(x(t)) < Wc(x(tk)), ∀ t > tk) holds thereafter.

It remains to show that given x(tk) ∈ Uρs , the trajectory of x(t)
will stay in Uρmin , ∀ t ∈ [tk, tk + ∆′′). Consider ∆′′ such that

ρmin = max
∆t∈[0,∆′′)

{Wc(x(tk + ∆t)) | x(tk) ∈ Uρs , u ∈ U}. (16)

Again, there exists a sufficiently small ∆′′ such that Eq. (16) holds.
Therefore, let ∆∗

= min{∆′, ∆′′
}, and now we are able to show

that for any state x(tk) ∈ Uρc , x(t) will remain in Uρc during
one sampling period ∆ ∈ (0, ∆∗

]. An example of the closed-
loop trajectory under the sample-and-hold implementation of
u = Φ(x) and the relationship among the sets Uρc , Uρmin and Uρs
are shown in Fig. 1.

Remark 4. The above proof is based on the assumption that the
system of Eq. (1) is undisturbed, i.e., w(t) ≡ 0. However, when
taking the bounded disturbance |w(t)| ≤ θ into account and the
CLBF-based controller applied in a sample-and-hold fashion, we
can show that Proposition 2 still holds for the system of Eq. (1)
subject to the bounded disturbance. Specifically, we first derive
the similar result for LhWc(x) via the local Lipschitz property of
h(·): ∃ k3 > 0, s.t. |LhWc(x(t)) − LhWc(x(tk))| ≤ k3|x(t) − x(tk)|.
Following that, we obtain similar results for Ẇc(x(t), u(t)) and
ρ ′

min that account for w(t) as follows:

Ẇc(x(t), u(t)) ≤ Ẇc(x(tk), u(tk)) + k4(k1 + k2 + k3θ )∆′

< −αρm + k4(k1 + k2 + k3θ )∆′

< −ϵ

(17)

ρ ′

min = max
∆t∈[0,∆′′)

{Wc(x(tk + ∆t), u, w) | x(tk) ∈ Uρs ,

u ∈ U, |w| ≤ θ}.
(18)

where ∆′ <
αρm−ϵ

k4(k1+k2+k3θ ) and 0 ≤ ϵ < αρm, respectively.
Therefore, by choosing appropriate ∆′ and ϵ for the sufficiently
small bounded disturbance (i.e., θ is sufficiently small), Ẇc still
remains negative during each sampling period in the presence
of disturbance. Additionally, if x(tk) ∈ Bδ(xe), we again assume
that there exists a set of feasible control actions ū(x) that satisfies
Wc(x(tk+1)) < Wc(x(tk)), ∀ |w| ≤ θ . On the other hand, based
on the definition of ρ ′

min of Eq. (18), it is trivial to show that
for any x(tk) ∈ Uρs , the trajectory of x(t) is guaranteed to stay
in Uρ′

min
, ∀ t ∈ [tk, tk + ∆′′). The above proof implies that our

CLBF-MPC is robust to the sufficiently small bounded disturbance.

Remark 5. We assume that there exists a set of feasible solutions
ū(x) ∈ U in Bδ(xe) such that the closed-loop state leaves Bδ(xe)
in the direction of decreasing Wc(x). For example, ū(x) can be
determined as ū(x(tk)) = argminu∈U {Wc(x(tk+1)) | Wc(x(tk+1))
< Wc(x(tk))}. However, in the absence of input constraints, the
fact that xe is a saddle point ensures that there is always a
control action (maybe large) that would make Wc(x) decrease.
Once the state leaves Bδ(xe) in the direction of decreasing Wc(x),
it continues to move towards the origin under u = Φ(x).

3.2. Formulation of CLBF-MPC

The CLBF-MPC design is represented by the following opti-
mization problem:

J = min
u∈S(∆)

∫ tk+PN∆

tk

L(x̃(t), u(t))dt (19a)

s.t ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (19b)

u(t) ∈ U, ∀ t ∈ [tk, tk + PN∆) (19c)

x̃(tk) = x(tk) (19d)

Ẇc(x(tk), u(tk)) ≤ Ẇc(x(tk), Φ(x(tk))),

if Wc(x(tk)) > ρ ′

min and x(tk) /∈ Bδ(xe) (19e)
Wc(x̃(t)) ≤ ρ ′

min, ∀ t ∈ [tk, tk + PN∆),

if Wc(x(tk)) ≤ ρ ′

min (19f)
Wc(x̃(t)) < Wc(x(tk)), ∀ t ∈ (tk, tk + PN∆),

if x(tk) ∈ Bδ(xe) (19g)

where x̃(t) is the predicted state trajectory, S(∆) is the set of
piecewise constant functions with period ∆, and PN is the number
of sampling periods in the prediction horizon. Ẇc(x, u) is used
to represent ∂Wc (x)

∂x (f (x) + g(x)u). The cost function L(x̃(t), u(t))
satisfies L(0, 0) = 0 and L(x̃(t), u(t)) > 0, ∀(x̃(t), u(t)) ̸= (0, 0)
such that the minimum value of the cost function will be attained
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at the equilibrium point of the system of Eq. (1). Let u∗(t) be the
optimal solution of the optimization problem of Eq. (19) over the
prediction horizon PN∆. We assume that the states of the closed-
loop system are measured at each sampling time. Specifically,
the above optimization problem is solved based on the measured
state x(tk) at t = tk. After u∗(t), where t ∈ [tk, tk + PN∆), is
obtained from the CLBF-MPC optimization problem, only the first
control action of u∗(t) is sent to the control actuators to be applied
over the next sampling period. Then, at the next instance of time
tk+1 := tk + ∆, the optimization problem is solved again, and the
horizon will be rolled one sampling period.

In the optimization problem of Eq. (19), the objective function
of Eq. (19a) that is minimized is the integral of L(x̃(t), u(t)) over
the prediction horizon, where the function L(x, u) is not restricted
to a traditional quadratic function. The constraint of Eq. (19b) is
the nominal system of Eq. (1) (i.e., w(t) ≡ 0) and is used to predict
the evolution of the closed-loop state. Eq. (19c) defines the input
constraints for all the inputs over the entire prediction horizon.
Eq. (19d) defines the initial condition of the nominal process
system of Eq. (19b). The constraint of Eq. (19e) forces Wc(x̃) along
the predicted state trajectories to decrease at least at the rate
under u = Φ(x) when Wc(x(tk)) > ρ ′

min and x(tk) /∈ Bδ(xe), while
the constraint of Eq. (19f) activates if Wc(x(tk)) ≤ ρ ′

min (i.e., x(tk)
enters a small ball around the origin Bd(0) := {x ∈ Rn

| |x| ≤ d})
so that the states of the closed-loop system will remain inside
Bd(0) afterwards. Additionally, if x(tk) ∈ Bδ(xe), the constraint of
Eq. (19g) is activated to decrease Wc(x). Once the state leaves
Bδ(xe), it is guaranteed that the state does not return to Bδ(xe)
because the state will be driven to smaller level sets of Wc(x)
under the constraint of Eq. (19e) thereafter.

Theorem 2 shows that the control actions computed by the
CLBF-MPC of Eq. (19) guarantee that the state of the closed-loop
system of Eq. (1) is always bounded in Uρc , and is ultimately
bounded in a small region around the origin. In addition, the
optimization problems are recursively feasible.

Theorem 2. Consider the system of Eq. (1) with a constrained
CLBF Wc which has a minimum at the origin, and the set of initial
conditions Uρc . Given any initial state x0 ∈ Uρc , it is guaranteed that
the optimization problem is feasible for all times under the CLBF-
MPC scheme of Eq. (19) with sampling period ∆ ∈ (0, ∆∗

], which is
defined in Proposition 1. Additionally, for x0 ∈ Uρc , it is guaranteed
that x(t) ∈ Uρc , ∀ t ≥ 0, and lim supt→∞ |x(t)| ≤ d.

Proof. The proof of this proposition consists of two parts. In the
first part, we show that for all x0 ∈ Uρc , the optimization problem
of Eq. (19) is recursively feasible throughout the entire prediction
horizon. Then, we show that under the CLBF-MPC, the trajectory
of x(t) is always bounded in Uρc , and is ultimately bounded in a
small region around the origin Uρ′

min
.

Part 1 : Assuming that x(tk) ∈ Uρc\Uρ′
min

, tk ≥ 0 where ρ ′

min
is defined in Eq. (18), the sample-and-hold control law u(t) =

Φ(x(tk + i∆)), i = 0, 1, . . . , PN − 1, and u(t) = ū(x) are feasible
solutions to the optimization problem of Eq. (19). Specifically,
when x(tk) ∈ Uρc\(Uρ′

min
∪ Bδ(xe)), u(t) = Φ(x(tk + i∆)) satis-

fies both the input constraint of Eq. (19c) and the constraint of
Eq. (19e) when the controller is applied in the sample-and-hold
fashion. However, if x(tk) ∈ Bδ(xe), u(t) = ū(x) ∈ U is a set of
feasible solutions that satisfies the constraints of Eq. (19c) and of
Eq. (19g). The constraint of Eq. (19f) is not activated in this case.

When x(tk) ∈ Uρ′
min

, u(t) = Φ(x(tk + i∆)), i = 0, 1, . . . , PN −

1 is again a feasible solution that satisfies the constraints of
Eqs. (19c), (19f). Specifically, if x(tk) ∈ Uρs ⊂ Uρ′

min
, it is guaran-

teed that the constraint of Eq. (19f) is satisfied according to the
definition of ρ ′

min of Eq. (18). However, if x(tk) ∈ Uρ′
min

\Uρs , based

on the proof in Proposition 2, it follows that the sample-and-hold
controller u(t) = Φ(x(tk + i∆)) guarantees Ẇc(x) < −ϵ over a
sampling period, which implies that Wc(x(tk+1)) ≤ Wc(x(tk)) ≤

ρ ′

min. Therefore, at every sampling time, if x(tk) ∈ Uρc , a feasible
solution to the optimization problem of Eq. (19) exists.

Part 2 : We now prove that if x0 ∈ Uρc , x(t) ∈ Uρc , ∀ t ≥ 0. Since
the initial condition x0 is in the set Uρc , it follows that under the
constraints of Eqs. (19c)–(19g), x(t) ∈ Uρc , ∀ t ≥ 0 by letting
tk = 0 for the result of Wc(x(t)) < Wc(x(tk)) ≤ ρc, ∀ t > tk
from Proposition 2. Therefore, the assumption that x(tk) ∈ Uρc at
t = tk, tk ≥ 0 in Part 1 is also proved.

Finally, let x0 ∈ Uρc\Uρ′
min

, we will show that x(t) ultimately
enters Uρ′

min
and remains there for all subsequent times. It follows

that Wc(x(t + ∆)) < Wc(x(t)) holds when x(t) ∈ Uρc\(Uρ′
min

∪

Bδ(xe)) and x(t) ∈ Bδ(xe) from the proof in Proposition 2. This
implies that within finite time ts, the trajectory will enter Uρ′

min
.

Also, it has been shown in Part 1 that if x(t) ∈ Uρ′
min

, the
constraint of Eq. (19f) is satisfied according to the definition of
Uρ′

min
, and hence there always exists a set of control actions such

that Wc(x(t)) ≤ ρ ′

min, ∀ t ≥ ts. Note that Wc(·) is a continuous
function of the state, thus given the real number ρ ′

min, one can
find a positive real number d, such that Wc(x(t)) ≤ ρ ′

min implies
lim supt→∞ |x(t)| ≤ d.

Remark 6. We note that Theorem 2 applies to both the nominal
closed-loop system of Eq. (1) with w(t) ≡ 0 and the closed-loop
system of Eq. (1) subject to bounded disturbances (i.e., |w| ≤ θ )
under the sample-and-hold implementation of the CLBF-MPC of
Eq. (19). The case of nominal closed-loop system is straightfor-
ward since the nominal system of Eq. (1) is used as the prediction
process model in the formulation of CLBF-MPC of Eq. (1), which
implies that the real closed-loop states are consistent with the
predicted states under the CLBF-MPC and therefore closed-loop
stability and safety are guaranteed following the above proof.
However, considering the system subject to bounded distur-
bances, it is shown in Proposition 2 that for sufficiently small
disturbances θ and sufficiently small sampling period ∆, Ẇc of
the uncertain closed-loop system of Eq. (1) continues to satisfy
Ẇc < −ϵ for all x ∈ Uρc\(Uρ′

min
∪ Bδ(xe)). Additionally, if x ∈ Uρ′

min

or x ∈ Bδ(xe), the constraints of Eq. (19f) and of Eq. (19g) still hold
since ρ ′

min of Eq. (18) and ū(x) are determined accounting for the
impact of the bounded disturbances. Therefore, all the constraints
of Eq. (19) are still satisfied and Theorem 2 holds for the uncertain
closed-loop system of Eq. (1) with |w| ≤ θ .

Remark 7. It should be noted that the problem of convergence to
xe instead of the origin can be solved by taking advantage of the
CLBF-MPC of Eq. (19). The constraint of Eq. (19g) requires Wc(x)
to decrease if x(tk) ∈ Bδ(xe), which drives the state out of Bδ(xe) in
the direction of decreasing Wc(x). Additionally, since in general,
the objective function of the CLBF-MPC of Eq. (19a) penalizes the
distances between states and the origin and also control actions,
the objective function value becomes large if the state converges
to any points other than the origin (e.g., xe). Therefore, CLBF-MPC
will try to avoid converging to xe by optimizing control actions
in a sample-and-hold fashion (i.e., discontinuous control actions)
and taking future cost values into account.

Remark 8. The control law of MPC is discontinuous in x due to
the two modes of operation of CLBF-MPC. However, continuity
of MPC control law is not required to achieve closed-loop sta-
bility in the sense that the closed-loop state can be driven to
a neighborhood around the origin Uρ′

min
for any initial condition

x(0) ∈ Uρc instead of asymptotically stability under continuous
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Table 1
Parameter values of the CSTR.
T0 = 310 K F = 100 × 10−3 m3/min
VL = 0.1 m3 E = 8.314 × 104 kJ/kmol
k0 = 72 × 109 min−1 ∆H = −4.78 × 104 kJ/kmol
Cp = 0.239 kJ/(kg K) R = 8.314 kJ/(kmol K)
ρL = 1000 kg/m3 CA0s = 1.0 kmol/m3

Qs = 0.0 kJ/min CAs = 0.57 kmol/m3

Ts = 395.3 K

Lyapunov-based control law of Eq. (3). We note that the closed-
loop system ẋ = f (x) + g(x)u(t) has a right hand side which is
sufficiently smooth in x and piecewise continuous in t , therefore
it has a solution which is unique and via the fact that it stays in
a level set of V this solution exists for all times.

4. Application to a chemical process example

In this section, we utilize a chemical process example to illus-
trate the application of the proposed CLBF-MPC method. Consider
a well-mixed, non-isothermal continuous stirred tank reactor
(CSTR) where an irreversible first-order exothermic reaction takes
place. The reaction converts the reactant A to the product B via
the chemical reaction A → B. A heating jacket that supplies or
removes heat from the reactor is used. The CSTR dynamic model
derived from material and energy balances is given below:
dCA

dt
=

F
VL

(CA0 − CA) − k0e−E/RTCA (20a)

dT
dt

=
F
VL

(T0 − T ) −
∆Hk0
ρLCp

e−E/RTCA +
Q

ρLCpVL
(20b)

where CA is the concentration of reactant A in the reactor, T is the
temperature of the reactor, Q denotes the heat supply/removal
rate, and VL is the volume of the reacting liquid in the reactor.
The feed to the reactor contains the reactant A at a concentration
CA0, temperature T0, and volumetric flow rate F . The liquid has
a constant density of ρL and a heat capacity of Cp. k0, E and ∆H
are the reaction pre-exponential factor, activation energy and the
enthalpy of the reaction, respectively. Process parameter values
are listed in Table 1. The control objective is to operate the CSTR
at the equilibrium point (CAs, Ts) = (0.57 kmol/m3, 395.3 K) and
maintain the state in a safe region of state–space by manipulating
the heat input rate ∆Q = Q − Qs, and the inlet concentration
of species A, ∆CA0 = CA0 − CA0s . The input constraints for ∆Q
and ∆CA0 are |∆Q | ≤ 0.0167 kJ/min and |∆CA0| ≤ 1 kmol/m3,
respectively.

To place Eq. (20) in the form of nonlinear systems of Eq. (1),
deviation variables are used in this example, such that the equi-
librium point of the system is at the origin of the state–space.
xT = [CA − CAs T − Ts] represents the state vector in deviation
variable form, uT

= [∆CA0 ∆Q ] represents the manipulated
input vector in deviation variable form, and wT

= [w1 w2] is
the bounded disturbance vector of Gaussian distribution with
zero mean and variance σ1 = 1.0 kmol/m3, σ2 = 3.5 K. The
upper bound for disturbances |w1| ≤ 1.0 kmol/m3 and |w2| ≤

3.17 K are approximated via simulation runs under various sizes
of disturbances.

We construct a Control Lyapunov Function using the standard

quadratic form V (x) = xTPx with P =

[
9.35 0.41
0.41 0.02

]
. In order to

show the effectiveness of the proposed CLBF-MPC control scheme
to maintain closed-loop stability and safety, we define the unsafe
region as a region located in the middle of the set φuc , such
that it is possible for the trajectory of the closed-loop system to
encounter the unsafe region when converging to the origin. The

unsafe region is defined as an ellipse: D := {x ∈ R2
| F (x) =

(x1+0.22)2

1 +
(x2−4.6)2

1×104
< 2 × 10−4

}. H is defined as H := {x ∈

R2
| F (x) < 4 × 10−4

} such that it satisfies D ⊂ H ⊂ φuc
in Proposition 1. The Control Barrier Function B(x) is defined as
follows.

B(x) =

{
e

aF2(x)
F (x)−4×10−4

− e−2a×10−4
, if x ∈ H

− e−2a×10−4
, if x /∈ H

(21)

where a is a parameter that can be adjusted in characterizing the
set φuc . From Eq. (21), it is guaranteed that B(x) is positive in
the unsafe region D. Then, the Control Lyapunov-Barrier Function
Wc(x) = V (x) + µB(x) + ν is constructed following the rules in
Proposition 1, where the parameters are determined as follows,
a = 0.001, ρc = 0, c1 = 0.001, c2 = 10, c3 = maxx∈∂H |x|2 =

34.8, c4 = minx∈∂D |x|2 = 16.85, and ν = ρc − c1c4 = −1.685 ×

10−2. Hence, µ is chosen to be 5000 to satisfy Eq. (13). Based on
the above Wc(x), xe is calculated to be a saddle point (−0.235,
4.83) in state–space.

The objective function of the CLBF-MPC in this example is
formulated to seek to drive the system to its equilibrium point
while minimizing the heat supply and removal rate, and the feed
reactant concentration as well, and is given as follows,

L(x̃, u) = |x̃(t)|2QL
+ |u(t)|2RL (22)

where the weighting matrices for the states and inputs are chosen

to be QL =

[
1000 0
0 10

]
and RL =

[
1 0
0 100

]
, respectively,

such that the term related to the states and the term related
to the inputs are on the same order of magnitude in Eq. (22)
to penalize both state and input deviations from the steady-
state significantly. In the simulations below, the process model
of Eq. (20) was integrated numerically using the explicit Euler
method with an integration time step of hc = 10−5 min. The MPC
sampling period and the prediction horizon were chosen to be
∆ = 2× 10−3 min and PN = 10, under which the desired closed-
loop performance is achieved with high computational efficiency
(i.e., the control action calculation is done within the sampling
period). The constrained nonlinear optimization problem was
solved using the IPOPT software package (Wächter & Biegler,
2006) with a 4-core CPU desktop.

We first demonstrate the implementation of the CLBF-MPC for
the case that the trajectory of the closed-loop system does not
reach the border of the unsafe region when converging to the
origin. To this end, we first chose the subset Uρ ⊂ Uρc as the safe
operating region and set an initial condition that is far away from
the setD. Starting from the initial condition (x1, x2) = (0.2, −5), it
is demonstrated that the stabilization of the closed-loop system
can be achieved (the green trajectory in Fig. 2), and the states
always remain in Uρ . Additionally, another three initial conditions
(−0.19, 5.5), (−0.35, 7) and (−0.235, 6.5) are chosen to start the
system from where the state encounters the unsafe region D on
its way to the origin under the CLBF-MPC as shown in Fig. 2. All
three demonstrate that the states avoid the unsafe region D and
ultimately converge to the origin.

We now study the case where the trajectory that the state
takes from the initial condition (−0.235, 6.5) under the CLBF-
MPC reaches the border of D, and also compare it with the same
initial condition under a non-Lyapunov-based MPC with a state
constraint to avoid D and a terminal constraint to guarantee
closed-loop stability. It is demonstrated in Fig. 3 that under the
CLBF-MPC (black solid line), the state will first reach the bound-
ary of H, then avoid entering the unsafe region D by passing
around it, and finally, the state trajectory is moving towards the
origin. However, under MPC with state constraints, it is demon-
strated that the optimization problem becomes infeasible when
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Fig. 2. Closed-loop state trajectories under the CLBF-MPC for four different
initial conditions (0.2, −5) (green), (−0.19, 5.5) (red), (−0.35, 7) (black) and
(−0.235, 6.5) (blue). The set of unsafe states D is shaded in solid black area
and the set Uρ is the region between the level set of the Lyapunov function
(the largest ellipse) and the set H. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Closed-loop state profiles under the CLBF-MPC of Eq. (19) (solid line) and
under the MPC with state constraints (dashed line), where the unsafe region D is
an obstacle for the closed-loop state trajectory starting from the initial condition
(−0.235, 6.5).

Fig. 4. Closed-loop state profile for the initial condition (−0.235, 6.5) under the
CLBF-MPC of Eq. (19) (solid line) subject to bounded disturbance.

the trajectory gets close to the boundary of the unsafe region.
In this case, we deactivate the state constraint and apply the
feasible solution of the optimization problem of MPC with ter-
minal constraint only such that the trajectory crosses the unsafe
region but can still move towards the origin. Therefore, CLBF-
MPC outperforms the standard MPC with state constraints since
it reconciles the tasks of safety and closed-loop stability with
guaranteed recursive feasibility.

Additionally, when the bounded disturbance is added into the
process model, it is demonstrated in Fig. 4 that the CLBF-MPC can
still guarantee safety and closed-loop stability. The corresponding
input profiles are also shown in Fig. 5, in which it is seen that
the control actions oscillate around the steady state due to the
disturbance.

To demonstrate the advantages of the proposed CLBF-MPC
control scheme compared to the case of using explicit CLBF-based
control law of Eq. (3) all the time, the simulation results of the

Fig. 5. Manipulated input profiles (u1 = ∆CA0 and u2 = ∆Q ) for the initial
condition (−0.235, 6.5) under the CLBF-MPC of Eq. (19) subject to bounded
disturbance.

Fig. 6. Closed-loop state profiles for the initial condition (−0.235, 6.5) under
the CLBF-MPC of Eq. (19) (solid line) and under the CLBF-based controller of
Eq. (3) (dashed line).

Fig. 7. Manipulated input profiles (u1 = ∆CA0 and u2 = ∆Q ) for the initial
condition (−0.235, 6.5) under the CLBF-MPC of Eq. (19) (solid line) and under
the CLBF-based controller of Eq. (3) (dashed line).

closed-loop state and inputs profiles for the same initial condition
(−0.235, 6.5) are shown in Figs. 6 and 7, respectively. In Fig. 7,
it is observed that under the CLBF-based control law of Eq. (3),
the inlet concentration of the reactant and the heat input rate
start oscillating heavily from t = 0.003 min to t = 0.2 min,
and correspondingly, the oscillation arises in the state trajectory
near the boundary of H. The reason for the oscillation is that the
intrinsic dynamics of the closed-loop system force the states to
go towards and cross the unsafe region, yet the constraints of
CLBF-MPC prevent this undesirable behavior due to the dramatic
increase in the values of Wc inside the unsafe region (barrier
function dominates). By balancing these two opposite effects, the
control action becomes oscillating when the state moves around
the boundary of H. Additionally, under the proposed CLBF-MPC
control scheme, the dynamic performance was improved since
MPC has the ability to anticipate future state behavior and can
take control actions accordingly.

Also, from the simulation results, it is shown that under the
CLBF-MPC, the total consumptions of reactant ∆CA0 and of energy
∆Q within the operating time ts = 3 min are 0.268 kmol/m3
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and 0.006 kJ, respectively, which represent improvements of 13%
and 25%, respectively, compared to 0.308 kmol/m3 and 0.008 kJ
under the explicit CLBF-based controller. Therefore, in this case,
the CLBF-MPC of Eq. (19) outperforms the explicit CLBF-based
controller of Eq. (3) due to the smoother control actions and
reduced control energy consumptions.

Remark 9. It is noted that the chosen region D is an illustra-
tive case of a bounded unsafe set embedded fully within the
closed-loop system stability region. Such an unsafe set poses both
theoretical as well as implementation challenges for CLBF-MPC
(and other CLBF-based controller designs) as the controller has
to drive the state around the unsafe region and to the steady-
state. Furthermore, safeness of a point/region of the state space is
a function of multiple process states (e.g., combination of temper-
ature and concentration of reactants that determine magnitude
of reaction rates) and not only a function of the process temper-
ature, and as a result, the states to the left of the bounded unsafe
set that is of higher temperature but lower reactant concentration
may be safer than the states in the unsafe set. Finally, in the
case of an unsafe region which is characterized by an upper
bound on the reactor temperature (i.e., all states with temper-
ature above a certain value are considered as unsafe, resulting in
an unbounded unsafe set), the proposed CLBF-MPC can be readily
implemented to drive the state to the steady-state and avoid the
unsafe region.

5. Conclusion

In this work, we considered the problem of simultaneous
stabilization of nonlinear systems subject to input constraints and
meeting the safety task of avoiding an unsafe region in state–
space. We proposed a CLBF-based model predictive control design
that can guarantee stability and safety simultaneously from a
well-characterized set of initial conditions. The constrained CLBF
was first used to characterize the set of initial conditions starting
from which both closed-loop stability and safety can be achieved
under the CLBF control law. Then, the CLBF-based control law
was used as a candidate control law to design constraints for the
CLBF-MPC and establish simultaneous closed-loop stability and
safety with guaranteed recursive feasibility under CLBF-MPC. The
application of the CLBF-MPC design was demonstrated through a
chemical process example.
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