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Abstract

This article focuses on the design of model predictive control (MPC) systems for

nonlinear processes that utilize an ensemble of recurrent neural network (RNN)

models to predict nonlinear dynamics. Specifically, RNN models are initially devel-

oped based on a data set generated from extensive open-loop simulations within a

desired process operation region to capture process dynamics with a sufficiently

small modeling error between the RNN model and the actual nonlinear process

model. Subsequently, Lyapunov-based MPC (LMPC) that utilizes RNN models as the

prediction model is developed to achieve closed-loop state boundedness and conver-

gence to the origin. Additionally, machine learning ensemble regression modeling

tools are employed in the formulation of LMPC to improve prediction accuracy of

RNN models and overall closed-loop performance while parallel computing is utilized

to reduce computation time. Computational implementation of the method and appli-

cation to a chemical reactor example is discussed in the second article of this series.
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1 | INTRODUCTION

Machine learning has attracted an increased level of attention in model

identification in recent years. Among many machine learning tech-

niques, recurrent neural networks (RNN) have been widely used for

modeling a general class of nonlinear dynamical systems. Unlike the

one-way connectivity between units in feedforward neural networks,

there exist feedback loops in RNN architectures that introduce the

past information derived from earlier inputs to the current network.

The information preserved in the internal states exhibits the memory

of an RNN and leads to capturing dynamic behavior in a way conceptu-

ally similar to nonlinear state-space ordinary differential equation

models. The history of RNN can be traced back to the 1980s, when

Hopfield networks were first created for pattern recognition.1 Since

then, many learning algorithms (e.g., backpropagation through time and

truncated backpropagation methods) and modern RNN structures

(e.g., long short-term memory (LSTM), gated recurrent unit (GRU) and

bidirectional RNN) have been developed for various applications

including human visual pattern recognition and natural language

processing. With the rapid development of computational resources,

an explosion of data and open-source software libraries such as Ten-

sorflow and Keras, machine learning techniques have become accessi-

ble in classical engineering fields in addition to computer science and

engineering. Specifically, the neural network method has been recently

used to solve classification and regression problems in process control

and operations. For example, in Reference 2 an adaptive fault-tolerant

control method based on neural networks was developed for nonlinear

systems with unknown actuator fault. In Reference 3 a neural

network-based detection system was developed to detect cyber-

attacks in chemical processes. In Reference 4 a convex-based LSTM

neural network was developed for dynamic system identification. The

aforementioned works have demonstrated the potential of neural net-

works in solving fault-tolerant control, cybersecurity, and real-time

control and optimization problems.
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As neural networks are able to approximate any continuous func-

tion according to the universal approximation theorem, neural net-

works can also be utilized to derive a nonlinear prediction model for

model predictive control (MPC). As an advanced control methodology,

MPC has been applied in real-time operation of industrial chemical

plants to optimize process performance accounting for process stabil-

ity, control actuator, and safety/state constraints.5,6 One key require-

ment of MPC is the availability of an accurate process model to

predict states. The prediction model can be derived as a first-

principles model that describes the underlying physiochemical mecha-

nisms or a data-driven model that is developed based on

industrial/simulation data. Considering that in most cases it is difficult

to obtain a first-principles model that captures complex, nonlinear

behavior of a large-scale process, data-driven modeling has historically

received significant attention. In References 7 and 8 the multivariable

output error state-space algorithm (MOESP) and the numerical algo-

rithm for subspace state-space identification (N4SID) were developed

to identify state-space models. In Reference 9 nonlinear auto-

regressive moving average with exogenous input (NARMAX) method

was introduced to identify nonlinear input–output systems. Addition-

ally, modeling through recurrent neural networks has also proven to

be successful in approximating nonlinear dynamical systems.10,11

Extensive research efforts have been made on data-driven modeling,

which also contributes to the development of model-based control

schemes that utilize data-driven models to predict process dynamics.

Recently, a Lyapunov-based economic MPC that utilized a well-

conditioned polynomial nonlinear state-space (PNLSS) model was

developed to obtain optimal economic benefits and closed-loop stabil-

ity.12 Besides polynomial approximation that is generally easy to solve,

neural networks have also been utilized in model-based controller

design13,14 as they may capture better “difficult nonlinearities” via a

richer class of nonlinear functions that can be learned effectively. It

was found in Reference 13 that feedforward neural networks are easy

to implement to approximate static functions, but with slow conver-

gence speed and lack of capturing process dynamics. Neural networks

with similar structure such as shape-tunable neural network (SNN)

and radial basis function neural network (RBNN) were also developed

to approximate nonlinear dynamical systems. For example, in

References 15 and 16 RBNN models were incorporated in the design

of model predictive control to guarantee system stability. However, at

this stage, stability analysis and computation time reduction have not

been addressed for model predictive control using recurrent neural

networks.

Moreover, given that a single data-driven model may not perfectly

represent the process dynamics in the entire operating region, multi-

model approaches were utilized in References 17 and 18 by par-

titioning the region of operation to reduce the reliance on a single

model. For instance, a multimodel approach was used for fault identi-

fication in an industrial system using estimation techniques in Refer-

ence 18. In this case, the region of operation was partitioned around

the operation points and each region of operation was represented by

a single linear dynamic model. Consequently, the performance of the

identified model in each region of operation was limited by the quality

of provided data, which may not represent accurately the studied

region. To address the above issue, ensemble learning has been pro-

posed to combine the results of multiple models for complex systems.

Ensemble learning uses several models that are obtained during a

learning step to approximate particular outputs.19 Compared to a sin-

gle model prediction, ensemble learning has demonstrated benefits in

robustness and accuracy in solving classification or regression prob-

lems.20,21 In Reference 22 ensemble learning-based MPC has proven

to be successful in regulating product yield for an industrial-scale

fixed-bed reactor with a highly exothermic reaction. Additionally, in

References 23 and 24 different ensemble learning methods were

introduced to improve model prediction performance of neural net-

work models for a batch polymerization reactor. However, the

increasing computation time for multiple machine learning models still

remains an important issue for real-time implementation of ensemble

regression models.

Motivated by the above, this work develops a Lyapunov-based

MPC using an ensemble of RNN models to drive the closed-loop state

to its steady state for initial conditions in the closed-loop stability

region. Specifically, an RNN model is initially developed to represent a

general class of nonlinear processes over a broad region of process

operation. Subsequently, the Lyapunov-based MPC using the RNN

model that achieves sufficiently small modeling error during training is

developed to stabilize nonlinear systems at the steady state, for which

sufficient conditions are derived for closed-loop stability. Additionally,

ensemble regression modeling and parallel computing are employed

to improve prediction accuracy of RNN models and computational

efficiency of LMPC optimization problem in real-time implementation.

Part I of this two-article series presents the development of the LMPC

using an ensemble of RNN models with stability analysis. Part II

addresses computational implementation issues, parallel computing,

and the application of LMPC to a chemical process example.

The rest of this article is organized as follows: in preliminaries, the

notations, the class of nonlinear systems considered and the

stabilizability assumptions are given. In section “Recurrent Neural

Network,” the general form of RNNs, the learning algorithm, and the

process of building an RNN and ensemble regression models are intro-

duced. In section “Lyapunov-based MPC using Ensemble RNN

Models,” a Lyapunov-based MPC is developed by incorporating an

RNN model as the prediction model with guaranteed closed-loop sta-

bility and recursive feasibility. Stability analysis is performed account-

ing for the impact of sample-and-hold implementation, bounded

disturbances and the modeling error between RNNs and the actual

nonlinear system.

2 | PRELIMINARIES

2.1 | Notation

The notation |�| is used to denote the Euclidean norm of a vector. xT

denotes the transpose of x. The notation LfV (x) denotes the standard

Lie derivative LfV xð Þ ≔ ∂V xð Þ
∂x f xð Þ. Set subtraction is denoted by “\”, that
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is, A\B:= {x 2 Rn | x 2 A, x=2B}. ; signifies the null set. The function f(�)
is of class C1 if it is continuously differentiable in its domain. A contin-

uous function α: [0,a)! [0,∞) is said to belong to class K if it is strictly

increasing and is zero only when evaluated at zero.

2.2 | Class of systems

The class of continuous-time nonlinear systems considered is

described by the following system of first-order nonlinear ordinary

differential equations:

_x= F x,u,wð Þ ≔ f xð Þ+ g xð Þu+ h xð Þw, x t0ð Þ= x0 ð1Þ

where x 2 Rn is the state vector, u 2 Rm is the manipulated

input vector, and w 2 W is the disturbance vector with W ≔ {w 2 Rq

| | w| ≤wm, wm ≥ 0}. The control action constraint is defined by

u2U≔ umin
i ≤ ui ≤ umax

i , i=1,…,m
� ��Rm. f(�), g(�), and h(�) are suffi-

ciently smooth vector and matrix functions of dimensions n×1, n×m,

and n× q, respectively. Throughout the manuscript, the initial time t0

is taken to be zero (t0 = 0), and it is assumed that f(0) = 0, and thus,

the origin is a steady state of the nominal (i.e., w(t)≡0) system of

Equation (1) (i.e., x*s ,u
*
s

� �
= 0,0ð Þ, where x*s and u*s represent the

steady-state state and input vectors, respectively).

2.3 | Stabilization via control Lyapunov function

We assume that there exists a stabilizing control law u = Φ (x) 2 U

(e.g., the universal Sontag control law25) such that the origin of the nomi-

nal system of Equation (1) (i.e., w(t) ≡ 0) is rendered exponentially stable

in the sense that there exists a C1 Control Lyapunov function V (x) such

that the following inequalities hold for all x in an open neighborhood

D around the origin:

c1 xj j2 ≤V xð Þ≤ c2 xj j2, ð2aÞ

∂V xð Þ
∂x

F x,Φ xð Þ,0ð Þ≤ −c3 xj j2, ð2bÞ

∂V xð Þ
∂x

����
����≤ c4 j x j ð2cÞ

where c1, c2, c3, and c4 are positive constants. F(x,u,w) represents the

nonlinear system of Equation (1). A candidate controller Φ(x) is given

in the following form:

φi xð Þ= −
p+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 + q4

p
qTq

q if q 6¼0

0 if q=0

8<
: ð3aÞ

Φi xð Þ=
umin
i if φi xð Þ< umin

i

φi xð Þ if umin
i ≤φi xð Þ≤ umax

i

umax
i if φi xð Þ> umax

i

8><
>: ð3bÞ

where p denotes LfV (x) and q denotes LgiV (x), f = [f1� � �fn]T, gi = [gi1, …,

gin]
T, (i = 1, 2, …, m). φi(x) of Equation (3a) represents the ith component of

the control law φ(x). Φi(x) of Equation (3) represents the ith component

of the saturated control law Φ(x) that accounts for the input constraint

u 2 U. Based on Equation (2), we can first characterize a region where

the time-derivative of V is rendered negative under the controller Φ(x) 2
U as φu = x2Rn j _V xð Þ= LfV + LgVu< −kV xð Þ,u=Φ xð Þ 2U

n o
[ 0f g,

where k is a positive real number. Then the closed-loop stability

region Ωρ for the nonlinear system of Equation (1) is defined as a level

set of the Lyapunov function, which is inside φu: Ωρ := {x 2 φu |

V (x)≤ ρ}, where ρ>0 and Ωρ�φu. Also, the Lipschitz property of F(x,u,

w) combined with the bounds on u and w implies that there exist posi-

tive constants M, Lx,Lw ,L
0
x,L

0
w such that the following inequalities hold

for all x, x'2 D, u 2 U, and w 2 W:

j F x,u,wð Þ j ≤M ð4aÞ

j F x,u,wð Þ−F x0 ,u,0ð Þ j ≤ Lx j x−x0 j + Lw jw j ð4bÞ

∂V xð Þ
∂x

F x,u,wð Þ− ∂V x0ð Þ
∂x

F x0 ,u,0ð Þ
����

����≤ L0x j x−x0 j + L0w jw j ð4cÞ

3 | RECURRENT NEURAL NETWORK

In this work, we develop an RNN model with the following form:

_̂x= Fnn x̂,uð Þ≔Ax̂+ΘTy ð5Þ

where x̂2Rn is the RNN state vector and u 2 Rm is the manipulated

input vector. y = y1,…, yn, yn+1, …, ym+ n½ �= σ x̂1ð Þ,…, σ x̂nð Þ,u1, …, um½ �
2Rn+m is a vector of both the network state x̂ and the input u, where

σ(�) is the nonlinear activation function (e.g., a sigmoid function σ(x) = 1/

(1 + e-x)). A is a diagonal coefficient matrix, that is, A = diag{−a1,…,

−an}2Rn× n, and Θ = [θ1,…, θn]2R(m+ n)× n with θi = bi[wi1,…,wi(m+ n)],

i = 1,…, n. ai and bi are constants. wij is the weight connecting the jth

input to the ith neuron where i = 1,…, n and j = 1,…, (m+ n). Addition-

ally, ai is assumed to be positive such that each state x̂i is bounded-

input bounded-state stable. Throughout the manuscript, we use x to

represent the state of actual nonlinear system of Equation (1) and use

x̂ for the state of the RNN model Equation (5).

Unlike the one-way connectivity between units in feedforward

neural networks (FNN), RNNs have signals traveling in both directions

by introducing loops in the network. As shown in Figure 1, the states

information derived from earlier inputs are fed back into the network,

which exhibits a dynamic behavior. Consider the problem of approxi-

mating a class of continuous-time nonlinear systems of Equation (1)

by an RNN model of Equation 5. Based on the universal approxima-

tion theorem for FNNs, it is shown in, for example, References 9 and

20 that the RNN model with sufficient number of neurons is able to

approximate any dynamic nonlinear system on compact subsets of

the state-space for finite time. The following proposition demon-

strates the approximation property of the RNN model:
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Proposition 1 26 Consider the nonlinear system of Equation (1) and the

RNN model of Equation (5) with the same initial condition

x 0ð Þ= x̂ 0ð Þ= x0 2Ωρ. For any ε > 0 and T > 0, there exists an optimal

weight matrix Θ* such that the state x̂ of the RNN model of Equation (5)

with Θ = Θ * satisfies the following equation:

sup
t2 0,T½ �

j x tð Þ− x̂ tð Þ j ≤ ϵ ð6Þ

Remark 1 The RNN model of Equation (5) is developed as a

continuous-time network as it is utilized to approximate the input–

output behavior of the continuous-time nonlinear system of Equa-

tion (1). As discussed in Reference 27 continuous-time RNNs have

many advantages, for example, the well-defined derivative of the

internal state with respect to time. However, it should be noted that

the discrete-time RNNs can be equally well applied to model the

nonlinear system of Equation (1), where similar learning procedures

and stability analysis can also be derived. Additionally, in our work,

the RNN model of Equation (5) and the controller are both simulated

in a sample-and-hold fashion with a sufficiently small sampling

period Δ.

3.1 | RNN learning algorithm

In this section, the RNN learning algorithm is developed to obtain

the optimal weight matrix Θ*, under which the error between

the actual state x(t) of the nominal system of Equation (1)

(i.e., w(t) ≡ 0) and the modeled states x̂ tð Þ of the RNN of Equa-

tion (5) is minimized. Although it is demonstrated in Proposition 1 that

RNNs can approximate a broad class of nonlinear systems to any

degree of accuracy, it is acknowledged that RNN modeling may not

be perfect in many cases due to insufficient number of nodes or

layers. Therefore, we assume that there exists a modeling error

ν ≔ F x,u,0ð Þ−Fnn x̂,uð Þ between the nominal system of Equation (1)

and the RNN model of Equation (5) with Θ = Θ*. As we focus on the

system dynamics of Equation (1) in a compact set Ωρ, from which the

origin can be rendered exponentially stable using the controller u =Φ

(x) 2 U, the RNN model is developed to capture the system dynamics

for all x 2 Ωρ and u 2 U. It is noted that the modeling error ν(t) is

bounded (i.e., |ν(t)|≤ νm, νm > 0) as x(t) and u(t) are bounded. Addition-

ally, to avoid the weight drift problem (i.e., the weights go to infinity

during training), the weight vector θi is bounded by |θi|≤ θm,

where θm > 0. Following the methods in References 10 and 28 the

RNN learning algorithm is developed to demonstrate that the state

error j e j = j x̂−x j is bounded in the presence of the modeling error ν.

Specifically, the RNN model is identified in the form of Equation (5)

and the nominal system of Equation (1) (i.e., w(t) ≡ 0) can be expressed

by the following equation:

_xi = −aixi + θ
*T
i y + νi , i=1,…,n ð7Þ

The optimal weight vector θ*i is defined as follows:

θ*i ≔arg min
jθi j≤ θm

XNd

k =1

jFi xk ,uk ,0ð Þ+ aixk −θTi ykj
( )

ð8Þ

where Nd is the number of data samples used for training. The state

error is defined as e= x̂−x2Rn. Based on Equations (5) and (7), the

time-derivative of state error is derived as follows:

_ei = _̂xi− _xi = −aiei + ζ
T
i y−νi , i=1,…,n ð9Þ

where ζi = θi−θ
*
i is the error between the current weight vector θi and

the unknown optimal weight vector θ*i . ν is the modeling error given

by ν = F(x,u,0)−Ax−Θ*y. The weight vector θ is updated during the

training process as follows:

_θi = −ηiyei , i=1,…,n ð10Þ

where the learning rate η is a positive definite matrix. Based on the

learning law of Equation (10), the following theorem is established to

demonstrate that the state error e remains bounded and is con-

strained by the modeling error ν.

Theorem 1 Consider the RNN model of Equation (5) of which the

weights are updated according to Equation (10). Then, the state error

ei and the weight error ζi are bounded, and there exist λ 2 R and μ > 0

such that the following inequality holds:

ðt
0
e τð Þj j2dτ ≤ λ+ μ

ðt
0
ν τð Þj j2dτ ð11Þ

Proof We first define a Lyapunov function ~V = 1
2

Pn
i=1 e2i + ζ

T
i η

−1
i ζi

� �
.

Based on Equations (9) and (10) and ζi
:

= _θi , the time-derivative of ~V is

derived as follows:

_~V =
Xn
i=1

ei ei
:
+ η−1i ζi ζi

:� 	

=
Xn
i=1

−aie
2
i −eiνi

� � ð12Þ

It is noted that in the absence of modeling error (i.e., νi = 0), it

holds that _~V ≤ 0. Following the proof in Reference 10 it is shown that

F IGURE 1 A recurrent neural network and its unfolded structure,

where Θ is the weight matrix, x is the state vector, u is the input
vector, and o is the output vector (for the nonlinear system in the
form of Equation (1), the output vector is equal to the state vector)
[Color figure can be viewed at wileyonlinelibrary.com]
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the state error ei and its time-derivative ei
:
are bounded for all times.

Additionally, as ~V is bounded from below and _~V is uniformly continu-

ous implied by the fact that the second order derivative €~V is bounded,

it follows that _~V ! 0 as t ! ∞ according to Barbalat's lemma.29 This

implies that ei ultimately converges to zero if there is no modeling

error term −eiνi in Equation (12). However, in the presence of model-

ing error νi 6¼ 0, _~V ≤ 0 does not hold for all times. Therefore, based on

Equation (12), the following equation is further derived:

_~V =
Xn
i=1

−
ai
2
e2i −

1
2
ζij j2


 �
+

1
2
ζij j2− ai

2
e2i −eiνi


 �

≤ −α~V +
Xn
i=1

1
2
ζij j2− ai

2
e2i + eiνi +

1
2ai

ν2i


 �
+

1
2ai

ν2i


 �

≤ −α~V +
Xn
i=1

1
2
ζij j2 + 1

2ai
ν2i


 �
ð13Þ

where α := min{ai,1/(λm), i = 1,…, n} and λm represents the maximum

eigenvalue of η−1i . As the weight vector is bounded by |θi|≤ θm, it is

derived that 1
2 ζij j2 ≤2θ2m, and it follows that _~V ≤−α~V + β, where

β ≔
Pn

i=1 2θ2m + ν2m=2ai
� �

. Therefore, _~V ≤0 holds for all ~V ≥V0 = β/α,

which implies that ~V is bounded. From the definition of ~V, it is readily

shown that ei and ζi are bounded as well. Moreover, based on the fact

that _~V ≤
Pn

i=1 − ai
2 e

2
i +

1
2ai

ν2i

� 	
derived from Equation (13), we can also

derive ~V(t) as follows:

~V tð Þ≤ ~V 0ð Þ+
Xn
i=1

−
ai
2

ðt
0
ei τð Þ2dτ + 1

2ai

ðt
0
νi τð Þ2dτ


 �

≤ ~V 0ð Þ− amin

2

ðt
0
e τð Þj j2dτ + 1

2amin

ðt
0
ν τð Þj j2dτ

ð14Þ

where amin is the minimum value of ai, i = 1,…,n. Let λ=

2
amin

sup
t ≥0

~V 0ð Þ− ~V tð Þ
� 	

and μ=1=a2min . The relationship between |e| and

|μ| shown in Equation 11 is derived as follows:

ðt
0
e τð Þj j2dτ ≤ 2

amin

~V 0ð Þ− ~V tð Þ
� 	

+
1

a2min

ðt
0
ν τð Þj j2dτ

≤ λ+ μ
ðt
0
ν τð Þj j2dτ

ð15Þ

Therefore, it is guaranteed that the state error |e| is bounded and is

proportional to the modeling error |ν|. Furthermore, it is noted that if

there exists a positive real number C > 0 such that
Ð∞
0 ν tð Þj j2dt=C <∞,

then it follows that
Ð∞
0 e tð Þj j2dt≤ λ+ μC <∞. As e(t) is uniformly contin-

uous (i.e., ė is bounded), it implies that e(t) converges to zero

asymptotically.

Remark 2 As the weights may drift to infinity in the presence of

modeling error, a robust learning algorithm named switching

σ-modification approach was proposed in References 9 and 16 to

adjust the weight such that the assumption that the weight vector θi

is bounded by |θi| ≤ θm holds for all times. The switching

σ-modification approach was then improved to be continuous in the

considered compact set to overcome the problem of existence and

uniqueness of solutions. The interested reader may refer to Refer-

ences 9 and 16 for further information.

3.2 | Development of RNN model

In this section, we discuss how to develop an RNN model from

scratch for a general class of nonlinear system of Equation (1) within

an operating region. Specifically, the development of a neural network

model includes the generation of dataset and the training process.

3.2.1 | Data generation

Open-loop simulations are first conducted to generate the dataset

that captures the system dynamics for x 2 Ωρ and u 2 U as we focus

on the system dynamics of Equation (1) in a compact set Ωρ with the

constrained input vector u 2 U. Given various x0 2 Ωρ, the open-loop

simulations of the nominal system of Equation 1 are repeated under

various inputs u to obtain a large number of trajectories for finite time

to sweep over all the values that (x,u) can take. However, it is noted

that due to the limitation of computational resources, we may have to

discretize the targeted region in state-space and the range of inputs

with sufficiently small intervals in practice as shown in Figure 2. Sub-

sequently, time-series data from open-loop simulations can be sepa-

rated into a large number of time-series samples with a shorter period

Pnn, which represents the prediction period of RNNs. Lastly, the

dataset is partitioned into training, validation, and testing datasets.

Additionally, it should be noted that we simulate the continuous

system of Equation (1) under a sequence of inputs u 2 U in a sample-

and-hold fashion (i.e., the inputs are fed into the system of Equation (1)

as a piecewise constant function, u(t) = u(tk), 8t 2 [tk, tk+1), where tk+1:

= tk + Δ and Δ is the sampling period). Then, the nominal system of

Equation (1) is integrated via explicit Euler method with a sufficiently

small integration time step hc < Δ.

Remark 3 In this study, we utilize the above data generation method

to obtain the dataset consisting of fixed-length, time-series state tra-

jectories within the closed-loop stability region Ωρ for the nonlinear

system of Equation (1). There also exist other data generation

approaches for data-driven modeling, for example, simulations under

pseudo-random binary input signals (PRBS)30 that excite the non-

linearity behavior of system dynamics within the targeted region.

However, regarding handling unstable steady-states, finite-length

open-loop simulations with various initial conditions x0 2 Ωρ out-

perform the PRBS method in that the state trajectories can be

bounded in or stay close to Ωρ within a short period of time, while

states may diverge quickly under continuous PRBS inputs.
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3.2.2 | Training process

Next, the RNN model is developed using a state-of-the-art application

program interface (API), that is, Keras.31 The prediction period of

RNN, Pnn, is chosen to be an integer multiple of the sampling period Δ

such that the RNN model Fnn x̂,uð Þ can be utilized to predict

future states for at least one sampling period by taking state measure-

ment x(tk) and manipulated inputs u(tk) at time t = tk. As shown in

Figure 2, within the RNN prediction period Pnn, the time interval

between two consecutive internal states xt-1 and xt for the unfolded

RNN shown in Figure 1 is chosen to be the integration time step hc

used in open-loop simulations. Therefore, all the states between t = 0

and t = Pnn with a step size of hc are treated as the internal states and

can be predicted by the RNN model. Based on the dataset generated

from open-loop simulations, the RNN model of Equation (5) is trained

to calculate the optimal weight Θ* of Equation (8) by minimizing the

modeling error between F(x,u,0) and Fnn x̂,uð Þ. Furthermore, to guaran-

tee that the RNN model of Equation (5) achieves good performance in

a neighborhood around the origin and has the same equilibrium point

as the nonlinear system of Equation (1), the modeling error is further

required to satisfy |ν|≤ γ|x|≤ νm during the training process.

Specifically, when we train an RNN using open-source neural-

network libraries, for example, Keras, the optimization problem of

minimizing the modeling error ν is solved using adaptive moment esti-

mation method (i.e., Adam in Keras) with the loss function calculated

by the mean squared error or the mean absolute percentage error

between predicted states x̂ and actual states x from training data. The

optimal number of layers and neurons are determined through a grid

search. Additionally, to avoid over-fitting of the RNN model, the train-

ing process is terminated once the modeling error falls below the

desired threshold and the early-stopping condition is satisfied (i.e., the

error on the validation set stops decreasing).

Remark 4 In some cases training datasets may consist of noisy data

or corrupt data, which could affect the training performance of RNNs

in the following manners. On the one hand, noise makes it more chal-

lenging for RNNs to fit data points precisely. On the other hand, it is

shown in Reference 20 that the addition of noise can also improve

generalization performance and robustness of RNNs, and sometimes

even lead to faster learning. Therefore, the neural network training

with noise remains an important issue that needs further investiga-

tion. However, in our work, it should be noted that the open-loop sim-

ulations are performed for the nominal system of Equation (1) (i.e., w

(t) ≡ 0) only. Based on the noise-free dataset, the RNN models are

trained to approximate the dynamics of the nominal system of Equa-

tion (1) within the closed-loop stability region Ωρ̂. Additionally,

although the RNN model is derived for the nominal system of Equa-

tion (1), it will be shown in Section “Sample-and-hold Implementation

of Lyapunov-based Controller” that the obtained RNN models can be

applied with model predictive control to stabilize the nonlinear system

of Equation (1) in the presence of small bounded disturbances

(i.e., |w|≤ wm).

Remark 5 In our study, the operating region considered is chosen as

the closed-loop stability region Ωρ that is characterized for the first-

principles model of Equation (1), in which there exist control actions

u 2 U that render the steady state of Equation (1) exponentially stable

for all x0 2 Ωρ. However, in the case that the closed-loop stability

region Ωρ for the first-principles model of Equation (1) is unknown,

the operating region Ωρ for collecting data can be initially character-

ized as a sufficiently large set around the steady state containing all

the states that the system might move to. This operating region may

be larger than the actual closed-loop stability region Ωρ, and therefore,

it is likely that no control actions u 2 U exist to drive the state toward

the origin for some initial conditions x0 in this operating region. How-

ever, this problem can be overcome through the recharacterization of

the closed-loop stability region Ωρ̂ after the RNN is obtained. Specifi-

cally, based on the dataset generated in this operating region, the

RNN model is derived following the training approach in this section,

and subsequently, the actual operating region (i.e., the closed-loop

stability region Ωρ̂ for the RNN model of Equation (5)) will be charac-

terized to ensure that for any x0 2Ωρ̂, there exist control actions u 2
U that render the steady state of the RNN model of Equation (5)

exponentially stable. Additionally, as shown in Figure 2, the closed-

loop stability region Ωρ̂ for the RNN model of Equation (5) is

F IGURE 2 The schematic of discretization of the operating region
Ωρ and the generation of training data for RNNs with a prediction
period Pnn for all initial conditions x0 2 Ω ρ, where hc is the time
interval between RNN internal states, Ωρ is the closed-loop stability
region for the actual nonlinear system of Equation (1) and Ωρ̂ is the

closed-loop stability region characterized for the obtained RNN model
[Color figure can be viewed at wileyonlinelibrary.com]
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characterized as a subset of Ωρ (Ωρ is a sufficiently large operating

region if the first-principles model of Equation (1) is unknown, or rep-

resents the closed-loop stability region for the actual nonlinear system

of Equation (1) when the first-principles model of Equation (1) is

available).

Remark 6 In Figure 2, it is shown that open-loop simulation data is

collected for all initial condition x0 2 Ωρ, yet the closed-loop stability

region for the obtained RNN model may be characterized as a conser-

vative region Ωρ̂ �Ωρ due to model mismatch. The detailed character-

ization method will be given in Section “Lyapunov-based control using

RNN models,” and it will be shown that for any initial condition

x0 2Ωρ̂, the existence of control actions u 2 U that can render the

steady state the obtained RNN model of Equation (5) exponentially

stable is guaranteed. Furthermore, it will be proven that for any initial

conditions x0 in the closed-loop stability region Ωρ̂ characterized for

the RNN model of Equation (5), the steady state of the actual

nonlinear system of Equation (1) can also be rendered exponentially

stable under u 2 U provided that the modeling error |ν| is sufficiently

small.

3.3 | Ensemble regression modeling

As a single RNN may not perform perfectly over the entire operating

region due to insufficient data and inappropriate ratio between the

training dataset and validation dataset, the ensemble learning method,

which is a machine learning process that combines multiple learning

algorithms to obtain better prediction performance,19 is utilized to

construct homogeneous ensemble regression models based on the

RNN learning algorithm and the k-fold cross validation discussed in

the previous section. Specifically, homogeneous ensemble regression

models are derived from the ensemble learning method if a single

base learning algorithm is used, while heterogeneous models are pro-

duced in the case of multiple learning algorithms. The reasons that

ensemble regression models are able to improve the prediction per-

formance are as follows.19,22 First, a single RNN model that achieves a

desired training accuracy may perform poorly in the region that lacks

sufficient training data, while ensemble methods can reduce the risk

of relying on a single flawed model by aggregating all candidate

models. Second, the RNN learning algorithm is known to be a noncon-

vex, NP-hard problem that can result in locally optimal solutions.

Therefore, by using different starting initial weight matrices, ensemble

learning methods might be able to avoid getting trapped in a local

minimum and obtain a better set of weights for RNN to accurately

predict output sequences. Third, in the case that the single regression

model cannot represent the true target function, the ensemble learn-

ing methods might be able to provide some good approximation.

Therefore, by introducing ensemble learning into the development of

an empirical model for the nonlinear system of Equation (1), the per-

formance of ensemble regression models is expected to outperform

that of a single RNN model in terms of reduced variability and

improved generalization performance.

A rich collection of ensemble-based algorithms, for example, Boo-

sting, Bagging and Stacking, have been developed over the past few

years.21 In our work, the stacking method is used to combine the pre-

dictions of multiple regression models developed based on the RNN

learning algorithm. It is noted that we do not switch RNN models in

the operating region. All the RNN models are developed to approxi-

mate the process dynamics for the same operating region. Specifically,

following the approach of k-fold cross validation, the dataset gener-

ated from open-loop simulations is first split into k parts as shown in

the dotted box in Figure 3. Then, the RNN model with the general

structure shown in Figure 1 is trained using k−1 parts as training

dataset and the remaining one as validation dataset to predict the

nonlinear dynamics of the system of Equation (1). Based on the train-

ing dataset, the detailed RNN structure is shown at the bottom of

Figure 3. In the input layer, the dimension of input nodes is m + n,

where xi, i = 1,…,n represents the real-time state measurements and ui,

i = 1, …, m represents the manipulated inputs at tk. In the output layer,

yi, i = 1, …, n report the estimation of the states after the prediction

period Pnn. The output vector and the internal states can be used as

the predicted states in the optimization problem of MPC in the next

section. Additionally, two hidden layers are used in the RNN model

with the optimal number of neurons determined through a grid

search.

As shown in Figure 3, the above training process is repeated to pro-

duce multiple RNN models using different k−1 sets as training dataset,

and therefore, a total of k RNN models are developed based on k-fold

cross validation. Subsequently, the final predicted states at t = tk + Pnn

are calculated by a combiner algorithm that takes all the predictions gen-

erated by its constituent RNNs. For the sake of simplicity, in our work,

we calculate the average of all prediction results from multiple RNNs as

the final prediction results. The open-loop performance of the ensemble

measured in terms of the absolute mean error is statistically better than

that of a single RNN and the closed-loop performance of the application

of ensemble regression models is evaluated in the example in the second

article of this series. Additionally, in Figure 3, it is shown that normalizing

and rescaling functions are employed before and after the ensemble of

k RNN models. Specifically, the input vector, consisting of state measure-

ments x(tk) 2 Rn and manipulated inputs u(tk) 2 Rm at t = tk, is first nor-

malized using the input statistics of the training dataset and fed into the

cross-validated committee of RNNs. Subsequently, the output vector,

which is the estimated states at t = tk + Pnn, is generated by rescaling the

average of the normalized predicted states using the output statistics of

the training dataset.

4 | LYAPUNOV-BASED MPC USING
ENSEMBLE RNN MODELS

This section presents the formulation of LMPC that incorporates

the RNN model to predict future states with a stability analysis of

the closed-loop system of Equation (1). Specifically, the stability of
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the nonlinear system of Equation (1) under a Lyapunov-based con-

troller derived from the RNN model of Equation (5) is first devel-

oped. Based on that, the RNN model of Equation (5) is incorporated

into the design of LMPC under sample-and-hold implementation of

control actions to drive the closed-loop state to a small neighbor-

hood around the origin.

4.1 | Lyapunov-based control using RNN models

A stabilizing feedback controller u = Φnn(x) 2 U that can render the ori-

gin of the RNN model of Equation (5) exponentially stable in an open

neighborhood D̂ around the origin is assumed to exist for the RNN

model of Equation (5) in the sense that there exists a C1 Control

Lyapunov function V̂ xð Þ such that the following inequalities hold for

all x in D̂:

ĉ1 xj j2 ≤ V̂ xð Þ≤ ĉ2 xj j2, ð16aÞ

∂V̂ xð Þ
∂x

Fnn x,Φnn xð Þð Þ≤ − ĉ3 xj j2, ð16bÞ

∂V̂ xð Þ
∂x

�����
�����≤ ĉ4 j x j ð16cÞ

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants, and Fnn (x,u) represents the

RNN model of Equation (5). Similar to the characterization method of

the closed-loop stability region Ωρ for the nonlinear system of Equa-

tion (1), we first search the entire state space to characterize a

set of states ϕ̂u where the following inequality holds: _̂V xð Þ=
∂V̂ xð Þ
∂x Fnn x,uð Þ< −kV̂ xð Þ, u = Φnn(x) 2 U, k>0. Starting from ϕ̂u, the origin

of the RNN model of Equation (5) can be rendered exponentially sta-

ble under the controller u = Φnn(x) 2 U. The closed-loop stability region

F IGURE 4 A schematic representing the set ϕ̂u, the closed-loop
stability region Ωρ̂, and the sets Ωρmin

, Ωρnn , Ωρs (going

from outside to inside). Under the LMPC of Equation (36), the
closed-loop state is driven toward the origin and ultimately bounded
in Ωρmin

for any x0 2Ωρ̂ [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 3 The structure of the
ensemble regression models based on
RNN learning algorithm and k-fold
cross validation, where x 2 Rn is the
state vector, u 2 Rm is the input
vector, and H1, H2 are the number of
neurons in hidden layers
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for the RNN model of Equation (5) is defined as a level set of

Lyapunov function inside ϕ̂u: Ωρ̂≔ x2 ϕ̂u j V̂ xð Þ≤ ρ̂
n o

, where ρ̂>0. It is

noted that the above assumption of Equation (16) is the same as the

assumption of Equation (2) for the general class of nonlinear systems

of Equation (1) as the RNN model of Equation (5) can be written in

the form of Equation (1) (i.e., _̂x= f̂ x̂ð Þ+ ĝ x̂ð Þu, where f̂ �ð Þ and ĝ �ð Þ are

obtained from coefficient matrices A and Θ in Equation (5)). The

assumptions of Equations 2 and 16 are essentially the stabilizability

requirements of the first-principles model of Equation (1) and the

RNN model of Equation (5), respectively.

It is noted that Ωρ̂ �Ωρ as the dataset for developing the RNN

model of Equation (5) is generated from open-loop simulations for

x 2Ωρ and u 2 U. Additionally, there exist positive constants Mnn and

Lnn such that the following inequalities hold for all x,x0 2Ωρ̂ and u 2 U:

j Fnn x,uð Þ j ≤Mnn ð17aÞ

∂V̂ xð Þ
∂x

Fnn x,uð Þ− ∂V̂ x0ð Þ
∂x

Fnnðx0,uÞ
�����

�����≤ Lnn j x−x0 j ð17bÞ

Due to the model mismatch between the nominal system of Equa-

tion (1) and the RNN model of Equation (5), the following proposition

is developed to demonstrate that the feedback controller u = Φnn(x) 2
U is able to stabilize the nominal system of Equation (1) if the model-

ing error is sufficiently small.

Proposition 2 Under the assumption that the origin of the closed-loop RNN

system of Equation (5) is rendered exponentially stable under the controller

u =Φnn(x) 2 U for all x2Ωρ̂, if there exists a positive real number γ < ĉ3=ĉ4

that constrains the modeling error |ν| = |F(x,u,0)−Fnn(x,u)|≤ γ|x| for all x2
Ωρ̂ and u 2 U, then the origin of the nominal closed-loop system of Equa-

tion (1) under u = Φnn(x) 2 U is also exponentially stable for all x2Ωρ̂.

Proof To demonstrate that the origin of the nominal system of Equa-

tion (1) can be rendered exponentially stable 8x2Ωρ̂ under the con-

troller for the RNN model of Equation (5), we prove that _̂V for the

nominal system of Equation (1) can still be rendered negative under

u =Φnn(x) 2 U. Based on Equation (16b) and (16c), the time-derivative

of V̂ is derived as follows:

_̂V =
∂V̂ xð Þ
∂x

F x,Φnn xð Þ,0ð Þ

=
∂V̂ xð Þ
∂x

Fnn x,Φnn xð Þð Þ+ F x,Φnn xð Þ,0ð Þ−Fnn x,Φnn xð Þð Þð Þ
≤ − ĉ3 xj j2 + ĉ4 j x j F x,Φnn xð Þ,0ð Þ−Fnn x,Φnn xð Þð Þð Þ

≤ − ĉ3 xj j2 + ĉ4γ xj j2

ð18Þ

If γ is chosen to satisfy γ < ĉ3=ĉ4, then it holds that _̂V ≤ −~c3 xj j2 ≤0
where ~c3 = − ĉ3 + ĉ4γ >0. Therefore, the closed-loop state of the nomi-

nal system of Equation (1) converges to the origin under u =Φnn(x) 2
U for all x0 2Ωρ̂.

Remark 7 It should be noted that the RNNmodel of Equation (5) that is

trained on the dataset within the operating region Ωρ may not be

stabilizable at the origin for all x 2 Ωρ under u = Φnn(x) 2 U due to model

mismatch. Therefore, in this section, a new closed-loop stability regionΩρ̂

is characterized for the RNN model of Equation (5) using the controller

Φnn(x) in the form of Equation (3). Subsequently, it is shown in Proposi-

tion 2 that the controller Φnn(x) also stabilizes the actual nonlinear system

of Equation (1) at the origin for all x2Ωρ̂ provided that the modeling

error is sufficiently small (i.e., j ν j ≤ γ j x j < ĉ3 j x j =ĉ4). As the closed-

loop stability region Ωρ̂ for the RNN model of Equation (5) guarantees

the asymptotic stability of the origin for the nonlinear system of Equa-

tion (1) under u =Φnn(x) 2 U, Ωρ̂ will be taken as the new operating

region for the operation of model predictive control in the following

sections.

4.2 | Sample-and-hold implementation of Lyapunov-
based controller

As the RNN model of Equation (5) will be incorporated in

Lyapunov-based MPC design, for which the control actions are

implemented in sample-and-hold, in this section, we first derive the

following propositions demonstrating the sample-and-hold proper-

ties of the Lyapunov-based controller u = Φnn(x) in the presence of

bounded disturbances (i.e., |w(t)| ≤ wm). Specifically, the next propo-

sition demonstrates that there exists an upper bound for the error

between the state of the actual process of Equation (1) in the pres-

ence of bounded disturbances (i.e., |w(t)| ≤ wm) and the state

predicted by the RNN model of Equation (5).

Proposition 3 Consider the nonlinear system _x = F(x,u,w) of Equation (1)

in the presence of bounded disturbances |w(t)|≤wm and the RNN model

_̂x= Fnn x̂,uð Þ of Equation (5) with the same initial condition x0 = x̂0 2Ωρ̂.

There exists a class K function fw(�) and a positive constant κ such that

the following inequalities hold 8x, x̂2Ωρ̂ and w(t) 2 W:

j x tð Þ− x̂ tð Þ j ≤ fw tð Þ≔Lwwm + νm
Lx

eLxt−1
� � ð19aÞ

V̂ xð Þ≤ V̂ x̂ð Þ+ ĉ4
ffiffiffî
ρ

pffiffiffiffiffi
ĉ1

p j x− x̂ j + κ x− x̂j j2 ð19bÞ

Proof Let e tð Þ= x tð Þ− x̂ tð Þ denote the error vector between the solu-

tions of the system _x = F(x,u,w) and the RNN model _̂x= Fnn x̂,uð Þ. The
time-derivative of e(t) is obtained as follows:

j _e j = j F x,u,wð Þ−Fnn x̂,uð Þ j
≤ j F x,u,wð Þ−F x̂,u,0ð Þ j + j F x̂,u,0ð Þ−Fnn x̂,uð Þ j ð20Þ

Following Equation (4b), for all 8x, x̂2Ωρ̂ and w(t) 2 W, it is

obtained that

j F x,u,wð Þ−F x̂,u,0ð Þ j ≤ Lx j x tð Þ− x̂ tð Þ j + Lw jw tð Þ j
≤ Lx j x tð Þ− x̂ tð Þ j + Lwwm

ð21Þ
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Additionally, the second term j F x̂,u,0ð Þ−Fnn x̂,uð Þ j in Equation (20)

represents the modeling error, which is bounded by |ν|≤ νm for all

x̂2Ωρ̂. Therefore, based on Equation (21) and the fact that

j F x̂,u,0ð Þ−Fnn x̂,uð Þ j ≤ νm, ė(t) is bounded as follows:

j _e tð Þ j ≤ Lx j x tð Þ− x̂ tð Þ j + Lw jwm j + νm
≤ Lx j e tð Þ j + Lw jwm j + νm

ð22Þ

Therefore, given the zero initial condition (i.e., e(0) = 0), the upper

bound for the norm of the error vector is derived for all x tð Þ, x̂ tð Þ 2Ωρ̂

and |w(t)|≤ wm as follows:

j e tð Þ j = j x tð Þ− x̂ tð Þ j ≤ Lwwm + νm
Lx

eLxt−1
� � ð23Þ

Subsequently, 8x, x̂2Ωρ, Equation (19b) is derived based on the

Taylor series expansion of V̂ xð Þ around x̂ as follows:

V̂ xð Þ≤ V̂ x̂ð Þ+ ∂V̂ x̂ð Þ
∂x

j x− x̂ j + κ x− x̂j j2 ð24Þ

where κ is a positive real number. Using Equations (16a) and (16c), it

follows that

V̂ xð Þ≤ V̂ x̂ð Þ+ ĉ4
ffiffiffî
ρ

pffiffiffiffiffi
ĉ1

p j x− x̂ j + κ x− x̂j j2 ð25Þ

This completes the proof of Proposition 3.

Subsequently, the following proposition is developed to demon-

strate that the closed-loop state x(t) of the actual process of Equa-

tion (1) is bounded in Ωρ̂ for all times, and ultimately can be driven to

a small neighborhood Ωρmin
around the origin under the controller

u =Φnn(x) 2 U implemented in a sample-and-hold fashion.

Proposition 4 Consider the system of Equation (1) under the controller

u=Φnn x̂ð Þ 2U that is designed to stabilize the RNN system of Equation

(5) and meets the conditions of Equation (16). The controller is

implemented in a sample-and-hold fashion, that is, u tð Þ=Φnn x̂ tkð Þð Þ,
8t2 tk ,tk +1½ Þ, where tk +1 := tk +Δ. Let εs, εw > 0, Δ> 0 and

ρ̂> ρmin > ρnn > ρs satisfy

−
ĉ3
ĉ2

ρs + LnnMnnΔ≤ −ϵs ð26aÞ

−
~c3
ĉ2

ρs + L
0
xMΔ+ L0wwm ≤ −ϵw ð26bÞ

and

ρnn ≔ max V̂ x̂ t+Δð Þð Þ j x̂ tð Þ 2Ωρs ,u2U
n o

ð27aÞ

ρmin ≥ ρnn +
ĉ4

ffiffiffî
ρ

pffiffiffiffiffi
ĉ1

p fw Δð Þ+ κ fw Δð Þð Þ2 ð27bÞ

Then, for any x tkð Þ 2Ωρ̂nΩρs , the following inequality holds:

V̂ x tð Þð Þ≤ V̂ x tkð Þð Þ, 8t2 tk ,tk +1½ Þ ð28Þ

and the state x(t) of the nonlinear system of Equation (1) is bounded

in Ωρ̂ for all times and ultimately bounded in Ωρmin
.

Proof Part 1: Assuming x tkð Þ= x̂ tkð Þ 2Ωρ̂nΩρs , we first prove that the

value of V̂ x̂ð Þ is decreasing under the controller u(t) = Φnn(x(tk)) 2 U for

t 2 [tk, tk+1), where x(t) and x̂ tð Þ denote the solutions of the nonlinear

system of Equation (1) in the presence of bounded disturbances and

the RNN system of Equation (5), respectively. The time-derivative of

the V̂ x̂ð Þ along the trajectory x̂ tð Þ of the RNN model of Equation (5) in

t 2 [tk, tk+1) is obtained as follows:

_̂V x̂ tð Þð Þ= ∂V̂ x̂ tð Þð Þ
∂x̂

Fnn x̂ tð Þ,Φnn x̂ tkð Þð Þð Þ

=
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tkð Þ,Φnn x̂ tkð Þð Þð Þ+ ∂V̂ x̂ tð Þð Þ

∂x̂
Fnn x̂ tð Þ,Φnn x̂ tkð Þð Þð Þ

−
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tkð Þ,Φnn x̂ tkð Þð Þð Þ

ð29Þ

Using Equations (16a) and (16b), the following inequality is

obtained:

_̂V x̂ tð Þð Þ≤ −
ĉ3
ĉ2

ρs +
∂V̂ x̂ tð Þð Þ

∂x̂
Fnn x̂ tð Þ,Φnn x̂ tkð Þð Þð Þ

−
∂V̂ x̂ tkð Þð Þ

∂x̂
Fnn x̂ tkð Þ,Φnn x̂ tkð Þð Þð Þ

ð30Þ

Based on the Lipschitz condition of Equation (17) and the fact that

x̂2Ωρ̂, u 2 U, the upper bound of _̂V x̂ tð Þð Þ is derived 8t2 [tk, tk+1):

_̂V x̂ tð Þð Þ≤ −
ĉ3
ĉ2

ρs + Lnn j x̂ tð Þ− x̂ tkð Þ j

≤ −
ĉ3
ĉ2

ρs + LnnMnnΔ

ð31Þ

Therefore, if Equation (26a) is satisfied, the following inequality

holds 8x̂ tkð Þ 2Ωρ̂nΩρs and t 2 [tk, tk+1):

_̂V x̂ tð Þð Þ≤ −ϵs ð32Þ

By integrating the above equation over t 2 [tk, tk+1), it is obtained

that V x̂ tk +1ð Þð Þ≤V x̂ tkð Þð Þ−ϵsΔ. So far we have proved that for all

x̂ tkð Þ 2Ωρ̂nΩρs , the state of the closed-loop RNN system of Equa-

tion (5) is bounded in the closed-loop stability region Ωρ̂ for all times

and moves toward the origin under u=Φnn x̂ð Þ 2U implemented in a

sample-and-hold fashion.

However, Equation (32) may not hold when x tkð Þ= x̂ tkð Þ 2Ωρs ,

which implies that the state may leave Ωρs within one sampling period.

Therefore, according to Equation (27a), Ωρnn is designed to ensure that

the closed-loop state x̂ tð Þ of the RNN model does not leave Ωρnn for

all t 2 [tk, tk+1), u 2 U and x̂ tkð Þ 2Ωρs within one sampling period. If the

state x̂ tk +1ð Þ leaves Ωρs , the controller u =Φnn(x(tk+1)) will drive the

state toward Ωρs over the next sampling period as Equation (32) is
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satisfied again at t = tk+1. Therefore, the convergence of the state to

Ωρnn for the closed-loop RNN system of Equation (5) is proved for all

x̂0 2Ωρ̂. It remains to show that the closed-loop state of the actual

nonlinear system of Equation (1) can be bounded in Ωρ̂ for all times

and ultimately bounded in a small neighborhood around the origin

under the sample-and-hold implementation of the controller

u =Φnn(x) 2 U.

Part 2: Following the analysis performed for the RNN system of

Equation (5), we first assume x tkð Þ= x̂ tkð Þ 2Ωρ̂nΩρs and derive the

time-derivative of V̂ xð Þ for the nonlinear system of Equation (1)

(i.e., _x = F(x,u,w)) in the presence of bounded disturbances (i.e., |w|

≤ wm) as follows:

_̂V x tð Þð Þ= ∂V̂ x tð Þð Þ
∂x

F x tð Þ,Φnn x tkð Þð Þ,wð Þ

=
∂V̂ x tkð Þð Þ

∂x
F x tkð Þ,Φnn x tkð Þð Þ,0ð Þ+ ∂V̂ x tð Þð Þ

∂x
F x tð Þ,Φnn x tkð Þð Þ,wð Þ

−
∂V̂ x tkð Þð Þ

∂x
F x tkð Þ,Φnn x tkð Þð Þ,0ð Þ

ð33Þ

From Equation (18), ∂V̂ x tkð Þð Þ
∂x F x tkð Þ,Φnn x tkð Þð Þ,0ð Þ≤ −~c3 x tkð Þj j2 holds

for all x2Ωρ̂nΩρs . Based on Equation (2a) and the Lipschitz condition

in Equation (4), the following inequality is obtained for _̂V x tð Þð Þ for all
t 2 [tk, tk+1) and x tkð Þ 2Ωρ̂nΩρs :

_̂V x tð Þð Þ≤ −
~c3
ĉ2

ρs +
∂V̂ x tð Þð Þ

∂x
F x tð Þ,Φnn x tkð Þð Þ,wð Þ− ∂V̂ x tkð Þð Þ

∂x
F x tkð Þ,Φnn x tkð Þð Þ,0ð Þ

≤ −
~c3
ĉ2

ρs + L
0
x j x tð Þ−x tkð Þ j + L0w jw j

≤ −
~c3
ĉ2

ρs + L
0
xMΔ+ L0wwm

ð34Þ
Therefore, if Equation (26b) is satisfied, the following inequality

holds 8x tkð Þ 2Ωρ̂nΩρs and t 2 [tk, tk+1):

_̂V x tð Þð Þ≤ −ϵw ð35Þ

From Equation (35), it is readily shown that Equation (28) holds

and the state of the closed-loop system of Equation (1) is maintained

in Ωρ̂ for all times. Also, it follows that the controller u =Φnn(x) is still

able to drive the state of the actual nonlinear system of Equation (1)

toward the origin in every sampling period. Additionally, if x(tk) 2 Ωρs ,

it is shown in Part 1 that the state of the RNN model of Equation (5) is

maintained in Ωρnn within one sampling period. Considering the

bounded error between the state of the RNN of Equation (5) model

and the state of the nonlinear system of Equation (1) given by Equa-

tion (19a), there exists a compact set Ωρmin
�Ωρnn that satisfies Equa-

tion (27b) such that the state of the actual nonlinear system of

Equation (1) does not leave Ωρmin
during one sampling period if the

state of the RNN model of Equation (5) is bounded in Ωρnn . If the state

x(t) enters Ωρmin
\Ωρs , we have shown that Equation (35) holds, and

thus, the state will be driven toward the origin again under u =Φnn(x)

during the next sampling period. This completes the proof of

Proposition 4 by showing that for any x0 = x̂0 2Ωρ̂, the closed-loop

state trajectories of the nonlinear system of Equation (1) are

maintained in Ωρ̂, and ultimately bounded in Ωρmin
provided that the

assumptions of Proposition 4 are met.

4.3 | Lyapunov-based MPC using RNN models

The Lyapunov-based model predictive control design is given by the

following optimization problem:

J = min
u2S Δð Þ

ðtk +N
tk

L ~x tð Þ,u tð Þð Þdt ð36aÞ

s:t: _~x tð Þ=Fnn ~x tð Þ,u tð Þð Þ ð36bÞ

u tð Þ 2U,8t2 tk ,tk +N½ Þ ð36cÞ

~x tkð Þ= x tkð Þ ð36dÞ

_̂V x tkð Þ,uð Þ≤ _̂Vðx tkð Þ,Φnn x tkð Þð Þ, if x tkð Þ 2Ωρ̂nΩρnn ð36eÞ

V̂ ~x tð Þð Þ≤ ρnn ,8t2 tk ,tk +N½ Þ, if x tkð Þ 2Ωρnn ð36fÞ

where ~x is the predicted state trajectory, S(Δ) is the set of piecewise

constant functions with period Δ, and N is the number of sampling

periods in the prediction horizon. _̂V x,uð Þ is used to represent

∂V̂ xð Þ
∂x Fnn x,uð Þð Þ. The optimal input trajectory computed by the LMPC is

denoted by u*(t), which is calculated over the entire prediction horizon

t 2 [tk, tk+N). The control action computed for the first sampling period

of the prediction horizon u*(tk) is sent by the LMPC to be applied over

the first sampling period and the LMPC is resolved at the next

sampling time.

In the optimization problem of Equation (36), the objective func-

tion of Equation 36a is the integral of L(~x(t),u(t)) over the prediction

horizon. The constraint of Equation (36b) is the RNN model of Equa-

tion (5) that is used to predict the states of the closed-loop system.

Equation (36c) defines the input constraints applied over the entire

prediction horizon. Equation (36d) defines the initial condition ~x(tk) of

Equation (36b), which is the state measurement at t = tk. The con-

straint of Equation (36e) forces the closed-loop state to move toward

the origin if x tkð Þ 2Ωρ̂nΩρnn . However, if x(tk) enters Ωρnn , the states

predicted by the RNN model of Equation (36b) will be maintained in

Ωρnn for the entire prediction horizon. A schematic of the stability

region and a closed-loop state trajectory under LMPC is shown in

Figure 4.

Based on the LMPC of Equation (36), the following theorem is

established to demonstrate that the LMPC optimization problem can

be solved with recursive feasibility, and closed-loop stability of the

nonlinear system of Equation (1) is guaranteed under the sample-and-

hold implementation of the optimal control actions calculated

by LMPC.
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Theorem 2 Consider the closed-loop system of Equation (1) under

the LMPC of Equation (36) based on the controller Φnn(x) that satisfies

Equation (16). Let Δ > 0, εs > 0 and ρ̂> ρmin > ρnn > ρs satisfy

Equation (26) and (27). Then, given any initial state x0 2Ωρ̂, if the con-

ditions of Propositions 3 and 4 are satisfied, there always exists a fea-

sible solution for the optimization problem of Equation (36).

Additionally, it is guaranteed that under the LMPC of Equation (36),

x tð Þ 2Ωρ̂,8t≥0, and x(t) ultimately converges to Ωρmin
for the closed-

loop system of Equation (1).

Proof We first prove that the optimization problem of Equation (36) is

recursively feasible for all x2Ωρ̂. Specifically, if x tkð Þ 2Ωρ̂nΩρnn at t = tk,

the control action u(t) = Φnn(x(tk)) 2 U, t = [tk, tk+1) calculated based on

the state measurement x(tk) satisfies the input constraint of Equa-

tion (36c) and the Lyapunov-based constraint of Equation (36e). Addi-

tionally, if x(tk) 2Ωρnn , the control actions given by Φnn(x(tk+i)), i = 0,1,…,

N−1 satisfies the input constraint of Equation (36c) and the

Lyapunov-based constraint of Equation (36f) as it is shown in Proposi-

tion 4 that the states predicted by the RNN model of Equation (36b)

remain inside Ωρnn under the controller Φnn(x). Therefore, for all

x0 2Ωρ̂, the LMPC optimization problem of Equation (36) can be

solved with recursive feasibility if x tð Þ 2Ωρ̂ for all times.

Next, we prove that given any x0 2Ωρ̂, the state of the closed-loop

system of Equation (1) is bounded in Ωρ̂ for all times and ultimately

converges to a small neighborhood around the origin Ωρmin
defined by

Equation (27b) under the LMPC of Equation (36). Consider x tkð Þ 2
Ωρ̂nΩρnn at t = tk. The constraint of Equation (36e) is activated such

that the control action u is calculated to decrease the value of V̂ x̂ð Þ
based on the states predicted by the RNN model of Equation (36b)

over the next sampling period. Additionally, it is shown in Equa-

tion (35) that if the constraint of Equation (36e) is satisfied, _̂V xð Þ≤ −ϵw

holds for t 2 [tk, tk+1) after the control action u*(tk) is applied to the

nonlinear system of Equation (1). Therefore, the value of V̂ xð Þ based
on the state of the actual nonlinear system of Equation (1) decreases

within the next sampling period, which implies that the closed-loop

state can be driven into Ωρnn within finite sampling steps. After the

state enters Ωρnn, the constraint of Equation (36f) is activated to main-

tain the predicted states of the RNN model of Equation (36b) in Ωρnn

over the entire prediction horizon. As there exists mismatch between

the RNN system of Equation (36b) and the nonlinear system of Equa-

tion (1), the state of the nonlinear system of Equation (1) may leave

Ωρnn under the constraint of Equation (36f). However, if we character-

ize a region Ωρmin
that satisfies Equation (27b), it is shown in Proposi-

tion 4 that the state x(t) of the nonlinear system of Equation (1), 8t2
[tk, tk+1) is guaranteed to be bounded in Ωρmin

if the predicted state by

the RNN model of Equation (36b) remains in Ωρnn . Therefore, at the

next sampling step t = tk+1, if the state x(tk+1) is still bounded in Ωρnn,

the constraint of Equation (36f) maintains the predicted state x̂ of the

RNN model of Equation (36b) in Ωρnn such that the actual state x of

the nonlinear system of Equation (1) stays inside Ωρmin
. However, if

x(tk+1) 2 Ωρmin
\Ωρnn, following the proof we have shown for the case

that x tkð Þ 2Ωρ̂nΩρnn, the constraint of Equation (36e) will be activated

instead to drive it toward the origin. This completes the proof of

boundedness of the states of the closed-loop system of

Equation (1) in Ωρ̂ and convergence to Ωρmin
for any x0 2Ωρ̂.

Remark 8 Theorem 2 shows that closed-loop stability of the nonlinear

system of Equation (1) is achieved under the LMPC of Equation (36) that

is designed based on the RNN model of Equation (5) and RNN-based

constraints. It is noted that the closed-loop state of the nonlinear system

of Equation (1) can be driven to a small neighborhood around the origin

because the constraints of the LMPC of Equation (36) guarantee the

decrease of V̂ in each sampling period accounting for the effect of

model mismatch including the modeling error ν between the system

of Equation (1) and the RNN model of Equation (5), the sample-and-

hold implementation of control actions, and the bounded disturbances

w(t) in Equation (1). In other words, closed-loop stability can

be maintained under the LMPC of Equation (36) if the modeling error

ν, the sampling period Δ and the bound of disturbances wm are suffi-

ciently small such that Propositions 3 and 4 are satisfied.

Remark 9 The performance of the closed-loop system of Equation (1)

under the LMPC of Equation (36) depends heavily on the accuracy of

the RNN model. Specifically, as the closed-loop stability region Ωρ̂ is

characterized under the RNN model of Equation (5), a well-fitting

RNN model leads to a large operating region. Ideally, if the RNN

model of Equation (5) fits the system of Equation (1) perfectly, the

closed-loop stability region Ωρ̂ for the RNN model of Equation (5)

remains the same as Ωρ for the actual nonlinear process of Equa-

tion (1). Additionally, the small neighborhood around the origin Ωρmin

that the state of the closed-loop system of Equation (1) ultimately

converges to is also characterized accounting for the modeling error

between the RNN model of Equation (5) and the nonlinear process of

Equation (1). Therefore, the state of the nonlinear process of

Equation (1) will be bounded in a small region closer to the origin pro-

vided that a reliable RNN model is obtained. Moreover, the speed of

convergence of the LMPC optimization problem can be affected by

the performance of the RNN model. Specifically, the optimization

problem of LMPC of Equation (36) is solved by calculating the optimal

solution u*(t) that satisfies the constraints of Equation (36c)–(36f) and

minimizes the objective function of Equation (36a) simultaneously.

However, in the case that the RNN model of Equation (5) is not accu-

rate enough, it is possible that the LMPC optimization problem oscil-

lates back and forth and becomes time-consuming due to the

opposite gradient descent directions driven by the constraints and the

objective function.

4.4 | LMPC using an ensemble of RNN models

As the RNN model accuracy plays an important role in the optimiza-

tion problem of LMPC of Equation (36), ensemble regression models
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introduced in previous section are employed to improve the perfor-

mance of the closed-loop system of Equation (1) under LMPC. Based

on the formulation of LMPC given by Equation (36), the LMPC that

incorporates ensemble regression models is developed as follows:

J = min
u2S Δð Þ

ðtk +N
tk

L ~x tð Þ,u tð Þð Þdt ð37aÞ

s:t: _~x tð Þ= 1
Ne

XNe

j = 1

Fjnn ~x tð Þ,u tð Þð Þ ð37bÞ

u tð Þ 2U,8t2 tk ,tk +N½ Þ ð37cÞ

~x tkð Þ= x tkð Þ ð37dÞ

_̂V x tkð Þ,uð Þ≤ _̂Vðx tkð Þ,Φnn x tkð Þð Þ, if x tkð Þ 2Ωρ̂nΩρnn ð37eÞ

V̂ ~x tð Þð Þ≤ ρnn,8t2 tk ,tk +N½ Þ, if x tkð Þ 2Ωρnn ð37fÞ

where the notation follows that in Equation (36) and Ne is the number

of regression models used for prediction. Ne is the number of all avail-

able RNN models, and can be determined off-line through trial-and-

error to account for computational efficiency. It is shown in Equa-

tion (37b) that the states ~x(t), t 2 [tk, tk+N) are now predicted by taking

the average of RNN models Fjnn , j = 1,…,Ne. As the objective function

of Equation (37a) and the Lyapunov-based constraints of Equa-

tion (37e-37f) are computed based on predicted states from Equa-

tion (37b), the application of ensemble regression models in

Equation (37b) significantly improves the solution of the optimization

problem and thus leads to a better closed-loop performance. Addi-

tionally, it is readily shown that closed-loop stability established in

Theorem 2 is still guaranteed for the LMPC of Equation (37) because

each regression model Fjnn , j = 1, …, Ne is trained to satisfy all the con-

ditions and assumptions in Theorem 2.

The LMPC based on ensemble regression models is implemented

in the same way as the LMPC of Equation (36), that is, the optimal

input trajectory u*(t) is calculated over the entire prediction horizon

t 2 [tk, tk+N) but only the first control action u*(tk) is applied to the sys-

tem of Equation (1) over the first sampling period. However, as the

optimization problem of the LMPC of Equation (37) is now based on

prediction results from multiple RNN models, the computation time

for training multiple RNN models and solving the LMPC of

Equation (37) both increase as the number of RNN models being used

increases, which suggests the further investigation on computational

efficiency for the real-time implementation of LMPC using an ensem-

ble regression models.

5 | CONCLUSION

In this work, we developed a Lyapunov-based model predictive con-

troller for nonlinear systems that uses an ensemble of recurrent neural

network models to predict the process dynamics. Specifically, an RNN

model was first trained using extensive open-loop simulation data to

capture process dynamics in a certain operating region such that the

modeling error between the recurrent neural network model and the

actual nonlinear process model was sufficiently small. Then, the well-

fitting RNN model was incorporated in the formulation of LMPC to

predict process dynamics. The stability analysis of the closed-loop sys-

tem under the LMPC using RNN models established the boundedness

of closed-loop state in the stability region and ultimate convergence

to a small neighborhood around the origin. Additionally, to further

improve prediction accuracy of the RNN model, ensemble regression

models were utilized in LMPC and parallel computing was introduced

to reduce computation time.
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