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Abstract

Machine learning is receiving more attention in classical engineering fields, and in

particular, recurrent neural networks (RNNs) coupled with ensemble regression tools

have demonstrated the capability of modeling nonlinear dynamic processes. In Part I

of this two-article series, the Lyapunov-based model predictive control (LMPC)

method using a single RNN model and an ensemble of RNN models, respectively,

was rigorously developed for a general class of nonlinear systems. In the present arti-

cle, computational implementation issues of this new control method ranging from

training of the RNN models, ensemble regression of the RNN models, and parallel

computation for accelerating the real-time model calculations are addressed. Further-

more, a chemical reactor example is used to demonstrate the implementation and

effectiveness of these machine-learning tools in LMPC as well as compare them with

standard state-space model identification tools.
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1 | INTRODUCTION

The last 20 years have witnessed the growth of machine learning and

deep learning with the development of advanced machine-learning

algorithms, innovative neural network structures, powerful computers,

and user-friendly, open-source software libraries. All of the above led

to a variety of successful applications of machine learning involving

social media service, pattern recognition, and virtual assistants via nat-

ural language processing. As one of the most popular machine-

learning techniques, neural networks have been attractive to many

researchers and companies, which have contributed to a lot of

research work on feedforward neural networks, convolutional neural

networks, and recurrent neural networks (RNNs). Recently, RNNs

have been applied to solve model predictive control problems for

nonlinear systems in several research works.1-3 In the first article of

this series, an RNN-based model predictive control (MPC) method has

been developed with both the approximation theory of RNN and

closed-loop stability analysis. However, applications of RNNs to

problems in which real-time calculations are required may be limited

by the high degree of complexity present in neural networks, which

makes them computational expensive to train and calculate.4

To address the computational issue in neural networks, both hard-

ware acceleration and advanced machine-learning algorithms that uti-

lize parallel computing should be developed to reduce computational

time in training and implementation of a neural network. Specifically,

artificial intelligence accelerator that incorporates graphics processing

units or field-programmable gate arrays has been utilized in the design

of a computer system that facilitates deep learning. Additionally, many

works haven been done to improve computation efficiency of training

neural networks. For example, in Reference 5 the training process of a

neural network is distributed to multiple agents, where each agent

solves a local non-convex problem with a portion of training data

while communicating with each other. In References 4,6, the training

process of artificial neural networks was implemented in parallel by

two different approaches: data parallelization and node parallelization.

Specifically, in data parallelization, the training data set is divided into
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disjoint subsets for multiple threads and the weights are synchronized

and distributed periodically, while in node parallelization, the network

layers are divided into disjoint sets of neurons and the results are

combined via synchronization before moving to the next layer.

Besides the parallelization of training algorithms, in Reference 7, a par-

allel computing platform was developed to manage big data involving

large-scale data set storage and parallel loading.

On the other hand, parallel computing is also utilized in training

and implementing multiple neural networks in the context of ensem-

ble learning, which has been demonstrated to achieve better predic-

tive performance than a single neural network. Specifically, ensemble

learning takes advantage of multiple machine-learning algorithms to

solve a particular regression or classification problem, in which bag-

ging, boosting, and stacking are the three most common methods.8

The idea of ensemble learning has been applied in several chemical

engineering problems. For instance, the ensemble Kalman filter has

been proposed as a variation of the well-known Kalman filter in Refer-

ences 9,10. The ensemble Kalman filter has shown benefits in reduc-

ing the error of approximation of the covariance matrix for high-

dimensional models, and in obtaining better error statistics for the

nonlinear case.10 In chemical process control, the constrained ensem-

ble Kalman filter has been proposed for dealing with bounds and has

been tested with a gas-phase reactor and an isothermal batch reac-

tor.11 Similarly, ensemble Kalman filter has been extended for systems

described by differential algebraic equations.12 Despite the great

efforts that have been done in state estimation using ensemble

methods, ensemble learning has not been fully investigated in model

predictive control, in which parallel computing can also be utilized to

reduce computation time.

Motivated by the above considerations, in this work, an ensemble

of RNN models is initially developed via parallel computation, and

then, the Lyapunov-based MPC (LMPC) based on the ensemble of

RNN models is applied to a chemical process example in which predic-

tion is implemented in parallel. The rest of this paper is organized as

follows: in the “Computational implementation issues of RNN models”

section, the implementation of RNN models for longer prediction hori-

zon is introduced. In the “Parallel computing” section, a brief recap of

the formulation of LMPC using RNN models developed in Part I is first

provided. Then, the necessary approximation via numerical methods

and parallel computing is introduced for the real-time implementation

of LMPC. In the last section, closed-loop stability and enhanced com-

putational efficiency of the proposed LMPC using an RNN model, and

an ensemble of RNN models, respectively, are demonstrated through

a continuous stirred tank reactor (CSTR) example. Specifically, the

generation of data set based on extensive open-loop simulations is

first discussed. Then, a linear state-space model obtained from data-

driven modeling is introduced for comparison purposes. Closed-loop

simulations for the CSTR are conducted under the LMPC using the

first-principles nonlinear model, the linear state-space model, a single

RNN model, and an ensemble of RNN models, respectively. Lastly,

computational efficiency of the closed-loop simulation under LMPC is

found to be improved under the parallel operation of an ensemble of

RNN models.

2 | COMPUTATIONAL IMPLEMENTATION
ISSUES OF RNN MODELS

In this section, we address computational implementation issues for

the RNN models obtained following the training algorithm in Part

I. Specifically, the implementation of RNN models for long prediction

horizon is first discussed. Then, numerical methods are employed to

evaluate modeling error and approximate the Lyapunov-based con-

straints in LMPC, respectively.

2.1 | Long prediction horizon

Although the ensemble of RNN models developed in Part I is to pre-

dict future states over t 2 [tk,tk + Pnn] given the states and inputs at

t = tk, where Pnn is an integer multiple of the sampling period Δ, it is

noted that ensemble regression models can be applied to predict

states for longer period of time (i.e., t 2 [tk,tk + NPnn], N > 1) in practi-

cal applications, for example, model predictive control. Specifically,

the obtained RNN models will be utilized successively at every predic-

tion step t = tk + iPnn, i = 0, 1, …, N − 1, to predict all the states within

the entire prediction horizon t 2 [tk,tk + NPnn], in which the prediction

results (i.e., the output vector x(tk + iPnn)) from the previous RNN

models will be used as the initial states for the current prediction to

predict states over [tk + iPnn, tk + (i + 1)Pnn], i = 0, 1, …, N − 1. Addi-

tionally, since the means and the SD for normalizing inputs and

rescaling outputs could be slightly different, intermediate rescaling

and normalizing steps should be performed between two successive

ensemble prediction steps during the entire prediction horizon.

Before we apply the obtained RNN models within LMPC, the test-

ing data set that has not been used in the training process can be uti-

lized to test the prediction performance of RNNs. In this case, the

normalizing and rescaling functions before and after the ensemble of

RNN models should be updated with the statistics of the testing data

set. Specifically, the normalizing and rescaling functions during the

training process are constructed based on the statistics of the training

data set only instead of the entire data set due to the following rea-

sons. First, the training and testing data sets may not be equally repre-

sentative of the operating region considered, and thus, the training

and testing data sets should be normalized separately. Second, data

leakage that introduces information from outside, for example, testing

data set, into RNN model should be prevented during the training pro-

cess to avoid creating an overly optimistic but potentially invalid pre-

dictive model. Therefore, based on the normalizing and rescaling

functions designed for the testing data set, the prediction perfor-

mance of RNN models is evaluated by the mean square error between

the predicted states of the RNN models and the actual states derived

from the nominal nonlinear system _x = f(x) + g(x)u.

Remark 1. When ensemble regression models are utilized to improve

prediction accuracy, the final prediction results are obtained via the stac-

king method in this work. Specifically, the final predicted states are

obtained by averaging k RNN models that are developed from a k-fold
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cross validation. However, it is noted that averaging through the stacking

method is not the only approach that can be applied here. For example,

the bagging method that trains multiple models based on different sub-

sets of the training data set and calculates final predictive results through

averaging or majority voting can be utilized to reduce the variance error.13

The boosting method can also improve final predictive accuracy by adding

more weights to incorrect prediction during the iterative training process.

Additionally, further improvements may be achieved by combining results

of multiple models that are derived using different machine-learning

methods through Bayesian model averaging.14,15

2.2 | Approximation via numerical methods

Since we mainly discuss the continuous RNN model in Part I, while in

practice, the data sets for training RNN models are mostly generated

by a sample-data collection from industrial processes, lab experiments,

or numerical simulation, necessary approximations should be per-

formed to incorporate the RNN model trained on sample data within

LMPC. Specifically, numerical methods are utilized to compute model-

ing error, characterize the closed-loop stability region Ωρ̂ for the RNN

model, and calculate _̂V x tkð Þ,uð Þ in the constraint of Equation (1f) in

the LMPC below, respectively.

Before we present the details of numerical approximation

methods, the formulation of the LMPC using an ensemble of RNN

models developed in Part I is given as follows:

J = min
u2S Δð Þ

ðtk +N
tk

L ~x tð Þ,u tð Þð Þdt ð1aÞ

s:t: _~x tð Þ= 1
Ne

XNe

j=1

Fjnn ~x tð Þ,u tð Þð Þ ð1bÞ

u tð Þ 2U, 8t2 tk ,tk +N½ Þ ð1cÞ

~x tkð Þ= x tkð Þ ð1dÞ

_̂V x tkð Þ,uð Þ≤ _̂Vðx tkð Þ,Φnn x tkð Þð Þ,
if x tkð Þ 2Ωρ̂nΩρnn

ð1eÞ

V̂ ~x tð Þð Þ≤ ρnn , 8t2 tk ,tk +N½ Þ,
if x tkð Þ 2Ωρnn

ð1fÞ

Unlike the LMPC using a single RNN model, the LMPC of

Equation (1) predicts future states by averaging prediction results of

Ne RNN models to improve prediction accuracy. Additionally, Theo-

rem 5 in Part I establishes closed-loop stability for the nonlinear sys-

tem in the presence of sufficiently small bounded disturbances

(i.e., _x = f(x) + g(x)u+ h(x)w,|w|≤wm) in the sense that the closed-loop

state is bounded in the closed-loop stability region Ωρ̂ for all times

and ultimately converges to a small neighborhood around the origin

Ωρmin. In the following subsections, necessary approximation in train-

ing an RNN model, characterization of the closed-loop stability region

for the RNN model, and the incorporation of RNN model for

predicting future states in LMPC are presented.

2.2.1 | Approximation of modeling error

Since the RNN is trained to predict future states over t 2 [tk, tk + Pnn), in

which the RNN output is the state at tk + Pnn and the time interval between

internal states is chosen as the integration time step hc, the modeling error

ν= _x tkð Þ− _̂x tkð Þ at the state x tkð Þ= x̂ tkð Þ is approximated using a for-

ward finite difference method during the training process as follows:

νj j= x tk + hcð Þ−x tkð Þ
hc

−
x̂ tk + hcð Þ− x̂ tkð Þ

hc

����
����

=
x tk + hcð Þ− x̂ tk + hcð Þ

hc

����
����

ð2Þ

where hc is a sufficiently small time interval, x(tk + hc) is obtained via

explicit Euler method with an integration time step hc, and x̂ tk + hcð Þ is
the first internal state of the RNN model. Then, the constraint |ν|≤ γ|x|

is satisfied if the following equation holds:

x tk + hcð Þ− x̂ tk + hcð Þ
x tk + hcð Þ

����
����≤ γhc ð3Þ

According to Equation (3), the mean absolute percentage error

between predicted states x̂ and targeted states x in training data can

be utilized as a metric to indicate the modeling error of RNNs.

2.2.2 | Characterization of closed-loop stability
region

The stabilizing controller u = Φnn(x) 2 U (e.g., the universal Sontag con-

trol law16) is initially utilized to characterize the set ϕ̂u and the closed-

loop stability region Ωρ̂ based on the RNN model written in the form

of _̂x= f̂ x̂ð Þ+ ĝ x̂ð Þu. However, since it is difficult to derive the explicit

forms of f̂ �ð Þ and ĝ �ð Þ for an RNN with a complex structure, numerical

methods are utilized to approximate f̂ �ð Þ and ĝ �ð Þ. For example, f̂ �ð Þ
can be approximated by the predicted _̂x with u = 0, where _̂x is

obtained using the forward finite difference method as shown in the

previous section. Then, ĝ �ð Þ is approximated by ĝ x̂ð Þ= _̂x− f̂ x̂ð Þ
� �

=u with

a nonzero u. Since the minimum prediction step in RNNs is the suffi-

ciently small integration time step hc, the approximation results via

numerical methods can be regarded as a good representation of the

actual f̂ �ð Þ and ĝ �ð Þ of an RNN model.

After f̂ �ð Þ and ĝ �ð Þ are obtained, a simulation with a full sweep over

the entire state-space based on the stabilizing controller u = Φnn(x) 2 U

is performed to characterize the region ϕ̂u = x2Rn j _̂V xð Þ< −kV̂
n

xð Þ,u=Φnn xð Þ 2Ug[ 0f g with k>0, in which _̂V xð Þ= ∂V̂ xð Þ
∂x Fnn x,uð Þð Þ is

approximated via forward finite difference method. Subsequently, the

closed-loop stability region Ωρ̂≔ x2 ϕ̂ujV̂ xð Þ≤ ρ̂
n o

is characterized as

the largest level set of V̂ xð Þ in ϕ̂u.
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2.2.3 | Approximation of Lyapunov-based
constraints

Additionally, _̂V x,uð Þ in the Lyapunov-based constraint of Equation (1e) is

approximated via the same numerical method (i.e., forward finite differ-

ence method). It is noted that the approximation of _̂V x,uð Þ does not

affect closed-loop stability of the actual nonlinear system (i.e.,

_x= F x,u,wð Þ≔f xð Þ+ g xð Þu+ h xð Þw) under the constraint of Equation (1e)

since the same numerical method is used to approximate both _̂V x,uð Þ
and _̂V x,Φnn xð Þð Þ. Specifically, it has been shown above that the con-

troller u = Φnn(x) 2 U is able to stabilize the actual nonlinear system at

the origin for all x in the closed-loop stability region Ωρ̂ since

_̂V x,Φnn xð Þð Þ≤ −kV̂ xð Þ is satisfied in Ωρ̂ � ϕ̂u that is characterized via

the numerical computation of _̂V x,Φnn xð Þð Þ. Therefore, the inequality

_̂V x,uð Þ≤ _̂V x,Φnn xð Þð Þ≤ −kV̂ xð Þ holds under the constraint of Equa-

tion (1e) if the same numerical method is utilized, which ensures closed-

loop stability for the nonlinear system under LMPC.

3 | PARALLEL COMPUTING

It was proposed in Part I that an ensemble of RNN models is utilized

in LMPC to provide more accurate predicted states through the aver-

age of the predicted results from multiple RNN models. As a result,

the closed-loop performance could be improved in the sense that the

closed-loop state is closer to that under the LMPC using the first-

principles model, and thus, it converges to the origin quickly. Consid-

ering the significant increase of computation time from multiple RNN

models, parallel computing is employed to reduce real-time

computation time.

Parallel computing is a type of computation in which the exe-

cution of multiple processes is carried out simultaneously.17 Gen-

erally, it takes advantage of multiple compute resources (e.g., a

single computer with multiple processors/cores or many computers

connected by a network) to solve a computationally heavy task, in

which a complex problem can be broken into discrete parts that

can be solved concurrently. Additionally, parallel computing can be

categorized into two types based on whether there exists commu-

nication between processors/networked computers: (a) In parallel

computing without communication, multiple processors execute

multiple tasks simultaneously and generate the results indepen-

dently. (b) In parallel computing with communication (sometimes it

is also called distributed computing), networked computers or mul-

tiple processors communicate and coordinate the work through

message passing interface (MPI) to obtain final results. Based on

the computation tasks for training multiple RNN models and calcu-

lating the average of multiple RNN prediction results in LMPC, the

first type and the second type of parallel computing are applied to

these two tasks, respectively, to enhance computational efficiency

in both cases.

3.1 | Training multiple RNNs in parallel

Multiple RNN models are constructed via a k-fold cross-validation

method discussed in Part I. Specifically, if k RNN models are utilized in

the LMPC of Equation (1), the computation time for training all RNN

models in series is approximately k times larger than that for a single

RNN model. It is noted that the resulting increase of computation

time is unnecessary since the training processes for k RNN models are

independent from each other. Therefore, parallel computing is utilized

to distribute the training processes to multiple processors such that

k RNN models can be trained simultaneously. The training processes

of k RNN models are implemented in parallel with the following steps:

(a) k processors are first reserved with sufficient memory. (b) Based on

k-fold cross validation, the entire data set is partitioned into k folds

with the same size, which are then distributed to all reserved proces-

sors. (c) For the kth processor, the RNN model is trained with k − 1

subsets (i.e., the kth subset is excluded) as the training data set and

the remaining kth subset as the validation data set. (d) A bash script is

created to run all k processors together such that the training pro-

cesses for the k RNN models can be executed concurrently. Since the

stopping criteria might not be satisfied by the k training processes

simultaneously due to different training data sets, the total computa-

tion time is determined by the slowest training process.

Remark 2. It should be mentioned that the aim of parallel computing

in this subsection is to train multiple RNN models simultaneously, not

to speed up the RNN training process itself. Although training phase

parallelism and data parallelization for accelerating RNN training4,6 are

also efficient approaches to reduce overall computation time, they are

not investigated in this work.

3.2 | Parallel operation of LMPC using an ensemble
of RNNs

An ensemble of RNN models is utilized in the LMPC of Equation (1),

under which prediction accuracy is improved and closed-loop stability

of the nonlinear system remains valid. Since the optimal solution u*(t) is

now computed based on the states predicted by multiple RNN models,

the computation time for an ensemble of Ne RNN models increases rap-

idly (at least Ne times the original computation time for the LMPC based

on a single RNN model) under serial computation of Equation (1b),

which greatly limits the application of ensemble regression model-based

LMPC in industry. Therefore, in this subsection, parallel computing is

utilized to reduce the computation time of calculating multiple RNN

models of Equation (1b).

Specifically, in the LMPC optimization problem of Equation (1),

the state prediction given by Equation (1b) can be broken apart into

Ne similar sub-tasks that can be processed independently and simulta-

neously. Consider using Ne (Ne ≤ k) RNN models for prediction of

Equation (1b). The calculation of Equation (1b) through parallel com-

puting consists of the following steps: (a) We first reserve Ne + 1

nodes, in which node 0 is the host node and the rest are worker
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nodes. The host node is used to receive and send information while

the worker nodes are mainly used for computation. (b) The optimiza-

tion problem is running on the host node while the computation of

multiple RNN models is assigned to worker nodes. Specifically, when

it comes to state prediction using Equation (1b), the host node is exe-

cuted first to broadcast x(tk) and u(t) to all nodes since ensemble

regression models in Equation (1b) share the same initial condition x

(tk) and the same guess of control actions u(t) at t = tk. (c) Each worker

node is assigned with an RNN model for prediction and the host node

gathers the results from worker nodes and compute the average as

the final result. (d) The optimal control action u*(tk) is sent to the real

system to be applied for the next sampling period by the host node.

The above process is repeated every sampling step (i.e., at the next

sampling time tk + 1, the LMPC of Equation (1) receives the state mea-

surement x(tk + 1) and sends it to the host node. Then, steps 1–4 are

repeated to parallelize the computation of Equation 1b).

Remark 3. Computational efficiency of the LMPC optimization prob-

lem of Equation (1) is significantly improved through the parallel oper-

ation of Ne independent ensemble regression models. However, it is

noted that the computation time may not be reduced exactly by Ne

times under parallel operation due to the communication and waiting

time between the host node and the worker nodes. It is also impor-

tant to mention that the communication between the LMPC and the

process model, and the main program of the optimization problem

itself are running on the host node only. Additionally, synchronization

operation should be employed when the host node combines all the

results from worker nodes to ensure that each task in worker node

blocks until all tasks in the computing group reach the host node.

4 | APPLICATION TO A CHEMICAL
PROCESS EXAMPLE

A chemical process example is used to illustrate the application of LMPC

using RNN models to maintain the closed-loop state within the stability

region. Specifically, a well-mixed, nonisothermal CSTR where an irrevers-

ible second-order exothermic reaction takes place is considered. The reac-

tion transforms a reactant A to a product B (A! B). The inlet

concentration of A, the inlet temperature and feed volumetric flow rate of

the reactor are CA0, T0, and F, respectively. The CSTR is equipped with a

heating jacket that supplies/removes heat at a rate Q. The CSTR dynamic

model is described by the following material and energy balance equations:

dCA

dt
=
F
V

CA0−CAð Þ−k0e−E
RTC2

A ð4aÞ

dT
dt

=
F
V

T0−Tð Þ+ −ΔH
ρLCp

k0e
−E
RTC2

A +
Q

ρLCpV
ð4bÞ

where CA is the concentration of reactant A in the reactor, V is the vol-

ume of the reacting liquid in the reactor, T is the temperature of the

reactor, and Q denotes the heat input rate. The concentration of reac-

tant A in the feed is CA0. The feed temperature and volumetric flow rate

are T0 and F, respectively. The reacting liquid has a constant density of

ρL and a heat capacity of Cp. ΔH, k0, E, and R represent the enthalpy of

reaction, pre-exponential constant, activation energy, and ideal gas con-

stant, respectively. Process parameter values are listed in Table 1.

The CSTR is initially operated at the unstable steady-state (CAs, Ts)

= (1.95 kmol/m3, 402 K), and CA0s Qsð Þ= 4 kmol=m3,0 kJ=hr
� �

. The

manipulated inputs are the inlet concentration of species

A and the heat input rate, which are represented by the devia-

tion variables ΔCA0 = CA0− CA0s, ΔQ = Q−Qs, respectively. The

manipulated inputs are bounded as follows: jΔCA0 j ≤ 3.5 kmol/m3

and |ΔQ| ≤ 5 × 105 kJ/hr. Therefore, the states and the inputs of

the closed-loop system are xT = [CA−CAs T− Ts] and uT = [ΔCA0 ΔQ],

respectively, such that the equilibrium point of the system is at the

origin of the state-space, (i.e., x*s ,u
*
s

� �
= 0,0ð Þ).

The control objective is to operate the CSTR at the unstable equi-

librium point (CAs, Ts) by manipulating the heat input rate ΔQ and the

inlet concentration ΔCA0 under the LMPC using RNN models. The

explicit Euler method with an integration time step of hc = 10−4 hr is

applied to numerically simulate the dynamic model of Equation (4).

The nonlinear optimization problem of the LMPC of Equation (1) is

solved using the python module of the IPOPT software package,18

named PyIpopt with the sampling period Δ = 10−2 hr.

4.1 | Data Generation

To apply the LMPC of Equation (1) to the CSTR of Equation (4), exten-

sive open-loop simulations are first conducted in the closed-loop sta-

bility region Ωρ for the CSTR of Equation (4) to generate the data set

for RNN models, and subsequently, RNN models are developed to

capture the system dynamics in Ωρ with a desired degree of accuracy.

The control Lyapunov function V(x) = xTPx is designed with the follow-

ing positive definite P matrix:

P=
1060 22

22 0:52

� �
ð5Þ

Then, the closed-loop stability region Ωρ for the CSTR with

ρ = 372 is characterized as a level set of Lyapunov function inside the

region ϕu, from which the origin can be rendered exponentially stable

under the controller u = Φ(x) 2 U. Open-loop simulations are per-

formed with a full sweep through all of the feasible initial conditions

x0 2 Ωρ and inputs u 2 U for finite sampling steps, from which the

state trajectories represented by sampled data points are collected

TABLE 1 Parameter values of the continuous stirred tank
reactor (CSTR)

T0 = 300 K F = 5 m3/hr

V = 1 m3 E = 5 × 104 kJ/kmol

k0 = 8.46 × 106 m3/kmol hr ΔH = −1.15 × 104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3
CA0s =4 kmol=m3

Qs = 0.0 kJ/hr CAs =1:22 kmol=m3

Ts = 438 K
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with a minimum time step as the integration time step hc. Subse-

quently, the RNN is developed based on the data set generated from

open-loop simulations in Ωρ to predict future states over one sampling

period Δ with the minimum prediction period hc using the state-of-

the-art API, Keras. Specifically, the RNN model is designed to have

two hidden recurrent layers consisting of 96 and 64 recurrent units,

respectively, and use the sigmoid function as the activation function.

The stopping criteria for the training process include the modeling

error less than a threshold and early stopping being triggered. Addi-

tionally, a 10-fold cross validation is used to construct homogeneous

ensemble regression models for the LMPC of Equation (1) using multi-

ple RNN models. After the RNN model is obtained, the Lyapunov

function V̂ xð Þ for the RNN model is chosen to be the same as V(x), and

the set ϕ̂u, in which _̂V ≤ −kV̂ holds, is characterized in Figure 1 using

the controller u = Φnn(x) 2 U with the approximation approach dis-

cussed before. The closed-loop stability region Ωρ̂ for the CSTR sys-

tem described by the RNN model is characterized as the largest level

set of V̂ in ϕ̂u and also a subset of Ωρ (i.e., Ωρ̂ �Ωρ) with ρ̂=368. Addi-

tionally, ρnn = 1.6 and ρmin = 2 are determined through extensive simu-

lations for u 2 U. The LMPC cost function of Equation (1a) is designed

to be L x,uð Þ= xj j2Q1
+ uj j2Q2

, where Q1 = [500 0; 0 0.5] and Q2 = [1 0;

0 8×10−11], such that the minimum value of L is achieved at the ori-

gin. It is noted that since the steady-state (CAs, Ts) = (1.95 kmol/m3, 402

K) is an unstable equilibrium point of the system of Equation (4),

open-loop simulations are performed for a few sampling periods only

to guarantee that state trajectories starting from Ωρ do not diverge

quickly and can be bounded in a slightly larger region.

4.2 | Linear state-space model

To illustrate the effectiveness of the proposed LMPC of

Equation (1) using RNN models, we also compare it with the LMPC

using a linear state-space model and the first-principles model of

Equation (4), respectively. The linear state-space model for the CSTR

system of Equation (4) is identified with the following form:

_x=Asx+Bsu ð6Þ

where x and u are the state vector and the manipulated input vector,

As and Bs are coefficient matrices for the state-space model. Following

the system identification method in Reference 19, the numerical algo-

rithms for subspace state-space system identification is utilized to

obtain As and Bs as follows:

As =100×
−0:154 −0:003

5:19 0:138

� �
ð7Þ

Bs =
4:03 0

1:23 0:004

� �
ð8Þ

The eigenvalues of matrix As are calculated to be λ1 = −5 and

λ2 = 3.14, which is consistent with the fact that the steady-state (CAs,

Ts) = (1.95 kmol/m3, 402 K) is an unstable equilibrium point of CSTR.

4.3 | Simulation results

We first carry out simulation results under the LMPC using the RNN

model and the first-principles model of Equation (4), respectively. It

should be noted that the machine-learning approach is used when

only data are available. The first-principles model in the following sim-

ulations substitutes for the role of the experimental/industrial process.

In other words, the MPC using first-principles model only serves as a

benchmark to determine the best performance that any data-driven

modeling method can achieve. In Figure 2, it is demonstrated that

starting from the same initial condition x0 2Ωρ̂ with the same input

sequences, the state trajectories for a fixed finite interval of time

under the RNN model are close to those under the first-principles

model of the nonlinear CSTR of Equation (4). This implies that the

well-trained RNN model can be regarded as a good representation for

the CSTR first-principles model of Equation (4). Next, the RNN model

is incorporated in the LMPC of Equation (1) using a single RNN model,

under which the closed-loop state trajectories, state and manipulated

input profiles of the system of Equation (4) are shown in Figures 3–6.

Figure 3 demonstrates that for initial conditions x0 2Ωρ̂, the closed-

loop state is bounded in the closed-loop stability region Ωρ̂ for all

times and ultimately converges to a small neighborhood around the

origin (Ωρmin) under the LMPC of Equation (1) using a single RNN

model. Additionally, Figure 4 shows the comparison of state trajecto-

ries for the closed-loop system under the LMPC using a single RNN

model, the state-space model of Equation (6) and the first-principles

model of Equation (4), respectively. It is demonstrated that in all cases,

the state of the closed-loop system of Equation (4) is maintained

within Ωρ̂ for all times and driven to Ωρmin under LMPC for an initial

condition x0 = (−1, 63.6). However, through the comparison of state

profiles under the LMPC using three different models in Figures 5, it

is shown that the state trajectory under the RNN model stays closer

to the one under the actual nonlinear model of Equation (4), and thus,

F IGURE 1 The set ϕ̂u represented by the blue region and the
stability region Ωρ̂ (black ellipse) for the closed-loop CSTR under the

controller u = Φnn(x) 2 U. CSTR, continuous stirred tank reactor [Color
figure can be viewed at wileyonlinelibrary.com]
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takes less time to settle to the steady-state compared to the LMPC

using the state-space model. It is also noted that although the LMPC

using the state-space model performs well for some initial conditions

close to the origin, it shows oscillation for initial conditions near the

boundary of the closed-loop stability region Ωρ̂ because the linear

state-space model of Equation (6) is not able to capture the nonlinear-

ities of the CSTR in this region. Therefore, the LMPC using RNN

model outperforms the one using state-space model in terms of faster

convergence speed and improved closed-loop stability. Figure 6

depicts the manipulated input profiles in deviation from the steady-

state values, where the dashed horizontal lines are the upper and

lower bounds for the manipulated inputs. It is shown that the input

constraints are met for all times under the LMPC of Equation (1) using

all three models.

4.4 | LMPC with RNNs using a lower amount of data

The above simulation results demonstrate that the RNN model

based on the large data set that covers the entire operating region

achieves the desired approximation performance. However, consid-

ering the case of limited data, the following simulations are per-

formed to demonstrate that the RNN model still gives a good

approximation of the best model that can be obtained from the

available data. Specifically, we first investigate the case where data

are only available for a portion of operating region (Figure 7). It is

shown in Figure 8 that starting from initial conditions in the missing

data area (the white region), the closed-loop state is still driven to

the origin under the LMPC with the RNN model that is trained

using the data only in the blue region. This implies that the RNN

model also captures the process dynamics in the missing data area

and is representative within the entire operating region. Addition-

ally, we demonstrate that the RNN model works in the case of a

small data set with much less data points than the large data set

used in the previous simulations (i.e., the data set that covers the

entire operating region Ωρ̂). Specifically, we uniformly pick 100 initial

conditions within the operating region (Figure 9) and run open-loop

simulations to generate the data set. The simulation result in

Figure 10 shows that the closed-loop state can be driven to the origin

under LMPC. However, compared to the simulation results derived

from large data set-based RNNs, the state trajectories show larger

oscillation since the RNN model is not able to fully capture process

dynamics using a small data set. Additionally, by calculating the inte-

gral of LMPC cost function
Ð tp
t=0L x τð Þ,u τð Þð Þdτ over the simulation

period tp = 0.03hr, it is obtained that for the initial condition (1.1,

−65) in Figure 10, L = 18.56 under a small data set-based RNN, and

L = 4.21 under a large data set-based RNN, respectively; for the other

initial condition (−1.1, 60), L = 13.5 and L = 5.7 for the RNN under a

small data set, and a large data set, respectively. Therefore, the

closed-loop performance under a large data set-based RNN outper-

forms the one under a small data set-based RNN in terms of less

energy and faster convergence to the origin for both initial conditions.
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F IGURE 2 The state-space profiles for the open-loop simulation
using the first-principles model of Equation (4) and the RNN model,
respectively, for various sets of inputs and initial conditions (marked
as blue stars) x0 in the closed-loop stability region Ωρ̂. RNN, recurrent

neural network [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 3 The state-space profiles for the closed-loop CSTR
under the LMPC of Equation (1) using RNN models for various initial
conditions (marked as red stars) in the closed-loop stability region Ωρ̂.

CSTR, continuous stirred tank reactor; LMPC, Lyapunov-based model
predictive control; RNN, recurrent neural network [Color figure can
be viewed at wileyonlinelibrary.com]
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F IGURE 4 The state-space profiles for the closed-loop CSTR
under the LMPC using the following models: the first-principles model
(blue trajectory), the RNN model (red trajectory), and the linear state-
space model (yellow trajectory) for an initial condition (−1, 63.6).
CSTR, continuous stirred tank reactor; LMPC, Lyapunov-based model
predictive control; RNN, recurrent neural network [Color figure can
be viewed at wileyonlinelibrary.com]
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4.5 | Parallel computation of ensemble regression
models

So far, we have demonstrated that the LMPC with a single RNN

model is able to drive the closed-loop state to Ωρmin, and compared

the closed-loop performance of the system of Equation (4) under the

LMPC with the RNN models based on a large data set, and a data set

with a lower amount of data, respectively. In this section, we apply

the LMPC using ensemble regression models to the CSTR of

Equation (4) and perform parallel computing to improve computa-

tional efficiency. Since it is common that the RNN model may not per-

form perfectly for some initial conditions due to insufficient data, the
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F IGURE 5 The state profiles
(x1 = CA − CAs and x2 = T − Ts) for the
initial condition (−1, 63.6) under the
LMPC using the following models: the
first-principles model (blue trajectory), the
RNN model (red trajectory), and the linear
state-space model (yellow trajectory).
LMPC, Lyapunov-based model predictive
control; RNN, recurrent neural network
[Color figure can be viewed at
wileyonlinelibrary.com]
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(u1 = ΔCA0 and u2 = ΔQ) for the initial
condition (−1, 63.6) under the LMPC
using the following models: the first-
principles model (blue trajectory), the
RNN model (red trajectory), and the linear
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where the black dotted lines represent
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model predictive control; RNN, recurrent
neural network [Color figure can be
viewed at wileyonlinelibrary.com]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80

T 
−

 T
s (

K
)

Training data

Ωρ̂
Ωρmin

CA − CAs(kmol/m3)

F IGURE 7 The set of initial conditions x0 2Ωρ̂ (marked as blue

points) in which training data are collected for RNNs. RNN, recurrent
neural network [Color figure can be viewed at wileyonlinelibrary.com]

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-50

0

50

T 
−

 T
s (

K
)

LMPC using a single RNN model

Initial conditions

Ωρ̂
Ωρmin

CA − CAs(kmol/m3)

F IGURE 8 State trajectories for the closed-loop simulation using
the RNN model that is obtained using a portion of data (i.e., the blue
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utilization of ensemble regression models may improve the overall

performance of RNN models within the entire operating region.

Figure 11 shows the state trajectories under the LMPC using various

numbers of regression models (i.e., Ne = 1, …, 8). It is observed that

starting from the initial condition (−1, 63.6), the closed-loop system of

Equation (4) does not converge to the origin smoothly using a single

RNN model that is trained poorly around the origin. Additionally, it is

shown that as the number of regression models used in LMPC increases,

the closed-loop performance is improved in terms of less oscillation and

faster convergence. Therefore, in this case, the optimal number of

regression models is determined to be five as no further improvement is

noticed for the increase of regression models being used.

However, as more regression models are utilized in the LMPC of

Equation (1), the computation time under serial operation increases

significantly, which makes it challenging for the controller to be

implemented in practice. Therefore, to address the computational effi-

ciency issue, we run the LMPC of Equation (1) in the parallel mode.

Specifically, a MPI for the Python programming language, named

MPI4Py,20 is incorporated in the program of the LMPC optimization

problem to break the prediction models of Equation (1b) into five

independent computing processes. Additionally, since the main pro-

gram of the LMPC optimization problem is executed on the host node

only, we use a while-loop and synchronization mechanism to ensure

that all worker nodes work with the host node simultaneously

throughout the optimization process. The parallel computing of the

LMPC optimization problem of Equation (1) is solved on the UCLA

Hoffman2 Distributed Cluster.

The averaged computation time for solving the LMPC optimiza-

tion problem per sampling step using the first-principles model of

Equation (4), the linear state-space model of Equation (6), a single

RNN model, five ensemble regression models in serial mode, and five

ensemble regression models in parallel mode are reported in Table 2.

In Table 2, it is shown that the LMPC optimization problem using

state-space model is solved with the shortest computation time. The

optimization problem of LMPC using RNN models is time consuming

compared to the state-space model or the first-principles model due

to the large number of internal states, the essential normalization and

data reshaping steps, and the communication between host and

worker nodes. However, it is shown that under parallel operation, the

computation time for solving the LMPC optimization problem using

five ensemble regression models at each sampling step is around 11 s,

which is significantly reduced (approximately five times less than the

serial computing), and becomes less than the sampling period
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F IGURE 9 The set of initial conditions x0 2Ωρ̂ (marked as blue

points) in which training data are collected for RNNs. RNN, recurrent
neural network [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Computation time for solving the LMPC using different
models

Models Computation time (s)

First-principles model <1

Linear state-space model <0.1

Single RNN model ~8

Ensemble regression models in serial mode >50

Ensemble regression models in parallel mode ~11

Abbreviations: LMPC, Lyapunov-based model predictive control; RNN,

recurrent neural network.
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(i.e., Δ = 0.01 hr = 36 s). This implies that the LMPC using an ensem-

ble of RNN models can be implemented in real time if parallel comput-

ing is employed. Additionally, the computation time for solving LMPC

under RNN models may be further reduced if TensorFlow is

employed, which is more computationally efficient than Keras.

4.6 | RNN model performance evaluation

To illustrate the advantages of the ensemble of RNN models, in this sec-

tion, we characterize the region of initial conditions x0 2Ωρ̂ for which

the performance of the LMPC using the data-driven model (i.e., the

state-space model of Equation 6 and the ensemble of RNN models,

respectively) is close to that of the LMPC using the first-principles

model of Equation (4). Specifically, extensive closed-loop simulations

that sweep over all the initial conditions x0 in the closed-loop stability

region Ωρ̂ are conducted under the LMPC of Equation (1) using the

following models: the first-principles model of Equation (4), the

ensemble of RNN models and the state-space model of Equation (6).

It should be mentioned that methods that may improve the perfor-

mance of linear state-space model, for example, the ensemble of lin-

ear state-space models and multiple linear state-space models for

different portions of the closed-loop stability region Ωρ̂,
21 are not

investigated in this work since the aim of this study is to develop a

computationally efficient LMPC scheme using an ensemble of RNN

models.

All the closed-loop simulations are run with a fixed time duration

that is sufficiently long for the closed-loop state to converge to Ωρmin

for any initial condition x0 2Ωρ̂. Extensive closed-loop simulations

demonstrate that the LMPC using the ensemble of RNN models and

the LMPC using the state-space model of Equation (6) both drive the

closed-loop state to Ωρmin for any initial condition x0 2Ωρ̂. Therefore,

to compare the performance of closed-loop system under different

data-driven models, a performance index S is introduced to calculate

the relative error between the closed-loop states under the data-

driven model and the first-principles model as follows:

S=

PL
i=1 j V̂ xdi

� �
− V̂ xfi

� � jPL
i=1V̂ xfi

� � ð9Þ

where L is number of sampling steps in simulation, xfi represents the

ith closed-loop state for the first-principles model of Equation (4), and

xdi represents the ith closed-loop state for the data-driven models,

which are the ensemble of RNN models and the linear state-space

model of Equation (6), respectively. Since the value of V̂ xð Þ decreases
as the state moves towards the origin under LMPC, the performance

index S of Equation (9) indicates the closeness of the convergence

speed of closed-loop states between the LMPC using the data-driven

model and the LMPC using the first-principles model.

By setting the threshold STH of the performance index to be 0.65,

the region of initial conditions for which the performance of the

ensemble of RNN models is close to that of the first-principles model

(i.e., S ≤ STH) covers the entire closed-loop stability region, while the

corresponding region for the linear state-space model is characterized

as the blue region in Figure 12. It is shown in Figure 12 that the

closed-loop performance of the CSTR of Equation (4) under the LMPC

using the state-space model of Equation (6) is undesired in the top

and bottom of the closed-loop stability region due to poor approxima-

tion of nonlinearities in these regions. Therefore, based on the perfor-

mance index of Equation (9), the overall closed-loop performance of

the ensemble of RNN models within the closed-loop stability region

Ωρ̂ outperforms that of the state-space model in terms of the rate of

convergence to the origin and the closeness to the closed-loop perfor-

mance under the LMPC using the first-principles model.

5 | CONCLUSION

This work presented the computational implementation of the LMPC

using an ensemble of RNN models to a chemical process. Specifically,

computational implementation issues of RNN models involving long

prediction horizon and approximation of continuous RNN models via

numerical methods were first discussed. Subsequently, parallel com-

puting was employed to reduce the computation time in both training

multiple RNN models and predicting future results via an ensemble of

RNN models in LMPC. Simulation results of the application of the pro-

posed LMPC using an ensemble of RNN models to a chemical process

example demonstrated that closed-loop stability was achieved for the

nonlinear system, and the overall closed-loop performance of RNN

models outperformed that of a linear state-space model. Additionally,

computational efficiency was significantly enhanced under parallel

computation of the ensemble of RNN models in LMPC.

ACKNOWLEDGMENT

The authors gratefully acknowledged the financial support from the

National Science Foundation and the Department of Energy.

ORCID

Panagiotis D. Christofides https://orcid.org/0000-0002-8772-4348

-2 -1 0 1 2

-50

0

50

T 
−

 T
s (

K
)

Ωρ̂
Ωρmin

CA − CAs(kmol/m3)

F IGURE 12 The set of initial conditions x0 2Ωρ̂ (marked as blue

points) in which the closed-loop CSTR under the LMPC using the
linear state-space of Equation (6) behaves similarly to the LMPC using
the first-principles model of Equation (4) (i.e., S≤ STH in the blue region
and S> STH in the white regions). CSTR, continuous stirred tank
reactor; LMPC, Lyapunov-based model predictive control [Color
figure can be viewed at wileyonlinelibrary.com]

10 of 11 WU ET AL.

https://orcid.org/0000-0002-8772-4348
https://orcid.org/0000-0002-8772-4348
http://wileyonlinelibrary.com


REFERENCES

1. Pan Y, Wang J. Nonlinear model predictive control using a recurrent

neural network. Paper presented at: Proceedings of the IEEE Interna-

tional Joint Conference on Neural Networks; Hong Kong, China;

2008:2296-2301.

2. Pan Y, Wang J. Model predictive control of unknown nonlinear

dynamical systems based on recurrent neural networks. IEEE Trans Ind

Electr. 2011;59:3089-3101.

3. Xu J, Li C, He X, Huang T. Recurrent neural network for solving model

predictive control problem in application of four-tank benchmark.

Neurocomputing. 2016;190:172-178.

4. Pethick M, Liddle M, Werstein P, Huang Z. Parallelization of a bac-

kpropagation neural network on a cluster computer. Paper presented at:

Proceedings of the International Conference on Parallel and Distributed

Computing and Systems; Marina del Rey, California; 2003:574-582.

5. Scardapane S, Di Lorenzo P. A framework for parallel and distributed

training of neural networks. Neural Netw. 2017;91:42-54.

6. Vesel K, Burget L, Grézl F. Parallel training of neural networks for

speech recognition. Paper presented at: Proceedings of the Interna-

tional Conference on Text, Speech and Dialogue; Brno, Czech Repub-

lic; 2010:439-446.

7. Gu R, Shen F, Huang Y. A parallel computing platform for training

large scale neural networks. Paper presented at: Proceedings of the

IEEE International Conference on Big Data; Santa Clara, California;

2013:376-384.

8. Sewell M. Ensemble learning. Technical report, UCL, London; 2010.

9. Evensen G. The ensemble Kalman filter: theoretical formulation

and practical implementation. Ocean Dynam. 2003;53:343-367.

10. Evensen G. The ensemble Kalman filter for combined state and

parameter estimation. IEEE Control Syst Mag. 2009;29:83-104.

11. Prakash J, Patwardhan SC, Shah SL. Constrained nonlinear state estimation

using ensemble Kalman filters. Ind Eng Chem Res. 2010;49:2242-2253.

12. Puranik Y, Bavdekar VA, Patwardhan SC, Shah SL. An ensemble

Kalman filter for systems governed by differential algebraic equations

(DAEs). IFAC Proc. 2012;45:531-536.

13. Zhang C, Ma Y. Ensemble Machine Learning: Methods and Applications.

New York: Springer; 2012.

14. Bishop CM. Pattern Recognition and Machine Learning. New York:

Springer; 2006.

15. Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model

averaging: a tutorial. Stat Sci. 1999;14:382-401.

16. Lin Y, Sontag ED. A universal formula for stabilization with bounded

controls. Syst Control Lett. 1991;16:393-397.

17. Almasi GS, Gottlieb A. Highly Parallel Computing. New York:

Benjamin/Cummings; 1988.

18. Wächter A, Biegler LT. On the implementation of an interior-point fil-

ter line-search algorithm for large-scale nonlinear programming. Math

Program. 2006;106:25-57.

19. Kheradmandi M, Mhaskar P. Data driven economic model predictive

control. Mathematics. 2018;6:51.

20. Dalcin LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing

using python. Adv Water Resour. 2011;34:1124-1139.

21. Alanqar A, Ellis M, Christofides PD. Economic model predictive con-

trol of nonlinear process systems using empirical models. AIChE J.

2015;61:816-830.

How to cite this article: Wu Z, Tran A, Rincon D,

Christofides PD. Machine-learning-based predictive control of

nonlinear processes. Part II: Computational implementation.

AIChE J. 2019;65:e16734. https://doi.org/10.1002/aic.16734

WU ET AL. 11 of 11

https://doi.org/10.1002/aic.16734

	Machine-learning-based predictive control of nonlinear processes. Part II: Computational implementation
	1  INTRODUCTION
	2  COMPUTATIONAL IMPLEMENTATION ISSUES OF RNN MODELS
	2.1  Long prediction horizon
	2.2  Approximation via numerical methods
	2.2.1  Approximation of modeling error
	2.2.2  Characterization of closed-loop stability region
	2.2.3  Approximation of Lyapunov-based constraints


	3  PARALLEL COMPUTING
	3.1  Training multiple RNNs in parallel
	3.2  Parallel operation of LMPC using an ensemble of RNNs

	4  APPLICATION TO A CHEMICAL PROCESS EXAMPLE
	4.1  Data Generation
	4.2  Linear state-space model
	4.3  Simulation results
	4.4  LMPC with RNNs using a lower amount of data
	4.5  Parallel computation of ensemble regression models
	4.6  RNN model performance evaluation

	5  CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES


