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a b s t r a c t 

Control Lyapunov-Barrier functions (CLBF) have been adopted to design model predictive controllers 

(MPC) for input-constrained nonlinear systems to ensure closed-loop stability and process operational 

safety simultaneously. In this work, a CLBF-MPC using an ensemble of recurrent neural network (RNN) 

models is proposed with guaranteed closed-loop stability and process operational safety for two types 

of unsafe regions, i.e., bounded and unbounded sets, for nonlinear processes. The application of the pro- 

posed RNN-based CLBF-MPC method is demonstrated through a chemical process example. 
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. Introduction 

As safety systems and feedback control systems are criti-

al to safe plant operation, they need to act interactively and

e integrated to yield cooperative actions to ensure both oper-

tional safety and economic performance. Unsafe operations in

hemical process industries have resulted in staggering profit

osses ( Sanders, 2015; Incidents, 2016 ), which motivate process en-

ineers to coordinate the actions of process safety and control sys-

ems from both the ethical perspective of saving lives and property,

nd also from an economics standpoint for the chemical process

ndustry. To address simultaneously the tasks of stability, safety,

nd other considerations such as economic optimality, Control Lya-

unov functions (CLF) and Control Barrier functions (CBF) have

een utilized in designing process control systems. Specifically,

rocess operational safety in the sense that the state is bounded

n a safe operating region is guaranteed under the CBFs satisfying

yapunov-like conditions ( Wieland and Allgöwer, 200 7; Tee et al.,

009; Niu and Zhao, 2013 ). CBFs can be naturally unified with CLFs

o formulate a quadratic program, which allows for the satisfaction

f the objectives of stability and safety ( Ames et al., 2014; 2016;

ankovic, 2017 ). Additionally, Control Lyapunov-Barrier functions

ave been proposed by combining CBFs and CLFs via weighted av-
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rage to solve the problem of stabilization of a nonlinear process

ith guaranteed safety ( Romdlony and Jayawardhana, 2016 ). 

To optimize process performance accounting for both closed-

oop stability and process operational safety, CLBF-based

odel predictive control (MPC) has been proposed recently.

n Wu et al. (2019a) and Wu and Christofides (2019) , the CLBF-

ased constraints are incorporated in the MPC design to drive

he state of an input-constrained nonlinear system to its steady-

tate while avoiding bounded and unbounded unsafe regions in

tate-space. In Wu et al. (2018) , a new class of economic MPC

chemes was developed to achieve simultaneous economic op-

imality, closed-loop stability and process operational safety by

aking advantage of CLBF-based constraints. However, the success-

ul implementation of the above CLBF-based predictive control

chemes rely on a hypothesis that an accurate dynamic model for

he nonlinear process is available. 

Modeling large-scale, complex nonlinear processes has been

 major long-standing challenge in process systems engineering.

hile obtaining a first-principles model that captures nonlinear

ehavior of a large-scale process is always valuable to address

ystems-level tasks, data-driven modeling has historically received

ignificant attention ( Van Overschee and De Moor, 1994; Viberg,

995; Billings, 2013; Kosmatopoulos et al., 1995; Trischler and

’Eleuterio, 2016 ). Designing MPC systems that utilize machine

earning modeling techniques to account in real-time for large data

ets is a new frontier in control systems as modeling through

ecurrent neural networks (RNN) has proven to be successful in

https://doi.org/10.1016/j.compchemeng.2019.106706
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
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approximating nonlinear dynamical systems ( Kosmatopoulos et al.,

1995; Trischler and D’Eleuterio, 2016; Ali et al., 2015; Wong et al.,

2018 ). Recent works on machine-learning-based MPC have demon-

strated the effectiveness of machine learning tools in the pro-

cess control field. For example, in Wu et al. (2019b,c) , an RNN-

based MPC was developed to provide rigorous stability analysis

and address practical issues in implementation of machine learning

models for a general class of nonlinear systems. This has demon-

strated promising potential for use of machine learning techniques

in CLBF-based predictive controllers. 

Motivated by the above considerations, in this work, we de-

velop a machine-learning-based CLBF-MPC that incorporates an

ensemble of RNN models for predicting process dynamics to ac-

count for stability and safety considerations in controlling an

input-constrained nonlinear process. The rest of the paper is orga-

nized as follows: in Section 2 , the class of nonlinear systems con-

sidered, the stabilizability assumptions, the recurrent neural net-

work models, and the constrained Control Lyapunov-Barrier func-

tion are discussed. In Section 3 , a CLBF-based model predictive

controller using an ensemble of RNN models for predicting fu-

ture states and optimizing control actions is developed. Sufficient

conditions that account for bounded disturbances and a bounded

modeling error between the RNN model and the actual nonlin-

ear process are provided to achieve closed-loop stability and safety

for the nonlinear process under CLBF-MPC. In Section 4 , a chemi-

cal process example is utilized to demonstrate the efficacy of the

proposed RNN-based CLBF-MPC for both a bounded and an un-

bounded unsafe region. 

2. Preliminaries 

2.1. Notation 

The Euclidean norm of a vector is denoted by the operator | · |

and the weighted Euclidean norm of a vector is denoted by the

operator | · | Q where Q is a positive definite matrix. x T denotes the

transpose of x . R + denotes the set [0, ∞ ). The notation L f V ( x ) de-

notes the standard Lie derivative L f V (x ) := 

∂V (x ) 
∂x 

f (x ) . A scalar con-

tinuous function V : R 

n → R is proper if the set { x ∈ R 

n | V ( x ) ≤ k }

is compact for all k ∈ R , or equivalently, V is radially unbounded

( Malisoff and Mazenc, 2009 ). For given positive real numbers β
and ε, B β (ε) := { x ∈ R 

n | | x − ε| < β} is an open ball around ε
with radius of β . The null set is denoted by ∅ . Set subtraction is

denoted by ”\ ”, i.e., A \ B := { x ∈ R 

n | x ∈ A, x �∈ B }. A function f ( · )

is of class C 1 if it is continuously differentiable. Given a set D, the

boundary and the closure of D are denoted by ∂D and D , respec-

tively. A continuous function α: [0, a ) → [0, ∞ ) is said to belong to

class K if it is strictly increasing and is zero only when evaluated

at zero. 

2.2. Class of systems 

The class of continuous-time nonlinear systems considered is

described by the following state-space form: 

˙ x = F (x, u, w ) := f (x ) + g(x ) u + h (x ) w, x (t 0 ) = x 0 (1)

where x ∈ R 

n is the state vector, u ∈ R 

m is the manipu-

lated input vector, and w ∈ W is the disturbance vector, where

W := { w ∈ R 

l | | w | ≤ θ , θ ≥ 0}. The control action constraint is de-

fined by u ∈ U := { u min ≤ u ≤ u max } ⊂ R 

m , where u min and u max

represent the minimum and the maximum value vectors of inputs

allowed, respectively. f ( · ), g ( · ), and h ( · ) are sufficiently smooth

vector and matrix functions of dimensions n × 1, n × m , and n × l ,

respectively. Without loss of generality, the initial time t 0 is taken

to be zero ( t 0 = 0 ), and it is assumed that f (0) = 0 , and thus, the

origin is a steady-state of the system of Eq. (1) with w ( t ) ≡ 0,
i.e., (x ∗s , u ∗s ) = (0 , 0) , where x ∗s and u ∗s denote the steady-state of

q. (1) ). 

.3. Stabilizability assumptions expressed via lyapunov-based control 

We assume that there exists a positive definite and proper

ontrol Lyapunov function (CLF) V for the nominal system of

q. (1) with w ( t ) ≡ 0 that satisfies the small control property (i.e.,

or every ε > 0, ∃ δ > 0, s.t. ∀ x ∈ B δ (0) , there exists u that satisfies

 u | < ε and L f V (x ) + L g V (x ) u < 0 , ( Sontag, 1989 ) and the following

ondition: 

 f V (x ) < 0 , ∀ x ∈ { z ∈ R 

n \{ 0 } | L g V (z) = 0 } (2)

The CLF assumption implies that there exists a stabilizing feed-

ack control law 	( x ) ∈ U for the nominal system of Eq. (1) (i.e.,

 ( t ) ≡ 0) that renders the origin of the closed-loop system asymp-

otically stable for all x in a neighborhood of the origin in the

ense that Eq. (2) holds for u = 	(x ) ∈ U . An example of a feed-

ack control law can be found in Lin and Sontag (1991) . Based on

he Lyapunov-based control law 	( x ), a region φu where the time-

erivative of V ( x ) is negative under the constrained inputs can be

haracterized as: φu = { x ∈ R 

n | ˙ V < 0 , u = 	(x ) ∈ U} . Additionally,

or any initial state x 0 ∈ �b , where �b := { x ∈ φu | V ( x ) ≤ b , b > 0}

s a level set of V ( x ) inside φu , it is guaranteed that x ( t ) for all t ≥ 0

f the nominal system of Eq. (1) with w ( t ) ≡ 0 under u = 	(x ) ∈ U

emains in the forward invariant set �b . 

.4. Recurrent neural network 

A recurrent neural network (RNN) model that approximates the

onlinear dynamics of the system of Eq. (1) is developed with the

ollowing form: 

˙ ˆ 
 = F nn ( ̂  x , u ) := A ̂

 x + �T y (3)

here ˆ x ∈ R 

n is the RNN state vector and u ∈ R 

m is

he manipulated input vector. y = [ y 1 , . . . , y n , y n +1 , . . . , y m + n ] =
 σ ( ̂  x 1 ) , . . . , σ ( ̂  x n ) , u 1 , . . . , u m 

] ∈ R 

n + m is a vector of both the net-

ork state ˆ x and the input u , where σ ( · ) is the nonlinear ac-

ivation function (e.g., a sigmoid function σ (x ) = 1 / (1 + e −x ) ). A

s a diagonal coefficient matrix, i.e., A = diag{−a 1 , . . . , −a n } ∈ R 

n ×n ,

nd � = [ θ1 , . . . , θn ] ∈ R 

(m + n ) ×n with θi = b i [ w i 1 , . . . , w i (m + n ) ] , i =
 , . . . , n . a i and b i are constants. w ij is the weight connecting the

 th input to the i th neuron where i = 1 , . . . , n and j = 1 , . . . , (m +
 ) . a i is assumed to be positive such that each state ˆ x i is bounded-

nput bounded-state stable. Throughout the manuscript, we use x

o represent the state of the nonlinear system of Eq. (1) and use x̂

or the state of the RNN model of Eq. (3) . 

Additionally, it is noted that the RNN model of Eq. (3) is an

nput-affine system, and therefore, it can be written in the form

hat is similar to Eq. (1) : 

˙ 
 = 

ˆ f (x ) + 

ˆ g (x ) u (4)

here ˆ f (·) and ˆ g (·) can be derived from the coefficient matrices

 and � in Eq. (3) and are assumed to be sufficiently smooth. In

he case that the RNN is derived as a discrete model, the approx-

mation of ˆ f (·) and ˆ g (·) can be performed via numerical meth-

ds that have been discussed in Wu et al. (2019c) . Furthermore,

o improve generalization performance of an RNN model in terms

f better prediction accuracy and applicability in wider operating

egime, ensemble learning ( Zhang and Ma, 2012; Mendes-Moreira

t al., 2012 ) is used along with neural networks to obtain an en-

emble of RNN models such that the final prediction results are

alculated by combining multiple RNN models together. The devel-

pment of an ensemble of RNN models follows a three-step pro-

edure that has been proposed in Wu et al. (2019b) : data gener-

tion, training process, and ensemble learning. To ensure that the
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NN model of Eq. (3) has the same steady-state as the nonlinear

ystem of Eq. (1) , the modeling error is required to be bounded

n the training process as follows: | ν| = | F (x, u, 0) − F nn (x, u ) | ≤
| x | ≤ νm 

, where νm 

> 0 is the upper bound of modeling error ν
ithin the operating region and γ > 0. Similarly, we assume that

here exists a Control Lyapunov function V and a stabilizing con-

roller u = 	nn (x ) ∈ U that renders the origin of the RNN system

f Eq. (3) asymptotically stable. 

.5. Characterization of unsafe regions 

We assume that there is a set D ⊂ R 

n within which it is unsafe

or the system to be operated, and a safe stability region U such

hat U ∩ D = ∅ and { 0 } ⊂ U , within which simultaneous closed-

oop stability and process operational safety are achieved in the

ollowing sense: 

efinition 1. ( Wu and Christofides (2019) ) Consider the system of

q. (1) and input constraints u ∈ U . If there exists a control law

 = 	(x ) ∈ U such that for any initial state x (t 0 ) = x 0 ∈ U , x ( t ) re-

ains inside U , ∀ t ≥ 0, and the origin of the closed-loop system

f Eq. (1) can be rendered asymptotically stable, we say that the

ontrol law 	( x ) maintains the process state within a safe stability

egion U at all times. 

The unsafe region is characterized based on the safety analysis

f processes either from first-principles models or process opera-

ional data. Specifically, according to Wu and Christofides (2019) ,

here are two types of unsafe regions: 1) bounded sets, which

re generally encountered in motion planning for robots and self-

riving cars, and 2) unbounded sets, which are very common in

hemical processes, for example, an unsafe region within which

he temperature in a reactor is above a threshold that indicates an

nsafe operation. In this work, both bounded unsafe region (de-

oted by D b ) and unbounded unsafe region (denoted by D u ) will

e discussed. A CLBF-based predictive controller based on machine

earning models will be developed to ensure that the closed-loop

tate can be driven to the steady-state and avoid the unsafe region

bounded and unbounded). 

.6. Stabilization and safety via control lyapunov-Barrier 

unction-based control 

In Romdlony and Jayawardhana (2016) , the Control Lyapunov-

arrier function is formulated via the weighted average of a

ontrol Lyapunov function and a Control Barrier function (CBF).

pecifically, given a CLF that satisfies Eq. (2) and the small con-

rol property, closed-loop stability is achieved under the con-

roller u = 	nn (x ) ∈ U for the RNN system of Eq. (3) . Addition-

lly, CBF is proposed in Wieland and Allgöwer (2007) to ensure

rocess operational safety. The definition of a CBF can be found

n Romdlony and Jayawardhana (2016) and Wu et al. (2019a) . Based

n CBFs and CLFs, a constrained CLBF was proposed in Wu and

hristofides (2019) and Wu et al. (2019a) to ensure process safety

nd stability accounting for input constraints. The definition of a

onstrained CLBF is as follows: 

efinition 2. Given a set of unsafe points in state-space D, a

roper, lower-bounded and C 1 function W c ( x ): R 

n → R is a con-

trained CLBF if W c ( x ) has a minimum at the origin and also satis-

es the following properties: 

 c (x ) > ρ, ∀ x ∈ D ⊂ φuc (5a)

L ˆ f 
W c (x ) < 0 , 

∀ x ∈ { z ∈ φuc \ (D ∪ { 0 } ∪ X e ) | L ˆ g W c (z) = 0 } (5b) 
 ρ := { x ∈ φuc | W c (x ) ≤ ρ} � = ∅ (5c)

where ρ ∈ R , and X e := { x ∈ φuc \ (D ∪ { 0 } ) | ∂W c (x ) /∂x = 0 } is

 set of states for the RNN model of Eq. (4) where L ˆ f 
W c (x ) = 0

for x � = 0) due to ∂ W c (x ) /∂ x = 0 . ˆ f and ˆ g are from the RNN model

n the form of Eq. (4) . A feedback control law u = 	nn (x ) ∈ U that

enders the origin exponentially stable within an open neighbor-

ood φuc that includes the origin in its interior is assumed to exist

or the RNN system of Eq. (3) (also in the form of Eq. (4) ) in the

ense that there exists a C 1 constrained Control Lyapunov-Barrier

unction W c ( x ) that has a minimum at the origin and satisfies the

ollowing inequalities ∀ x ∈ φuc : 

ˆ 
 1 | x | 2 ≤ W c (x ) − ρ0 ≤ ˆ c 2 | x | 2 , (6a)

∂W c (x ) 

∂x 
F nn (x, 	nn (x )) ≤ − ˆ c 3 | x | 2 , ∀ x ∈ φuc \B δ(x e ) (6b)

∂W c (x ) 

∂x 

∣∣∣∣ ≤ ˆ c 4 | x | (6c) 

here ˆ c j , j = 1 , 2 , 3 , 4 are positive real numbers, W c (0) = ρ0 

s the global minimum value of W c ( x ) in φuc , and B δ(x e ) is a

mall neighborhood around x e ∈ X e . F nn ( x, u ) is the RNN system

f Eq. (3) . It is noted that Eq. (6b) does not hold for x ∈ B δ (x e )

ince ∂W c (x ) 
∂x 

is close to zero in a neighborhood around the sta-

ionary point x e , where ∂W c (x ) 
∂x 

= 0 . Additionally, by continuity and

he smoothness assumed for f, g and h in the nonlinear system of

q. (1) , there exist positive constants M, L x , L w 

, L 
′ 
x , L 

′ 
w 

such that the

ollowing inequalities hold for all x, x ′ ∈ U ρ, u ∈ U, and w ∈ W : 

 F (x, u, w ) | ≤ M (7a)

 F (x, u, w ) − F (x ′ , u, 0) | ≤ L x | x − x ′ | + L w 

| w | (7b)

∂W c (x ) 

∂x 
F (x, u, w ) − ∂W c (x ′ ) 

∂x 
F (x ′ , u, 0) 

∣∣∣∣ ≤ L 
′ 
x | x − x ′ | + | ≤ L 

′ 
w | w m 

| 
(7c) 

An example of the stabilizing control law 	nn ( x ) associated

ith CLBFs can be found in Wu et al. (2018) and Wu and

hristofides (2019) ; Wu et al. (2019a) , in which a Lyapunov-

ased control law with the form of the universal Sontag con-

roller ( Lin and Sontag, 1991 ) is used with W c ( x ) replacing the Lya-

unov function V ( x ). It should be noted that the CLBF of Eq. (5) and

he set φuc are designed based on the RNN model of Eq. (3) (also

n the form of Eq. (4) , i.e., ˙ x = 

ˆ f (x ) + ˆ g (x ) u ) since the nonlinear

ystem of Eq. (1) is assumed to be unknown. A constrained CLBF

hat satisfies all the conditions in Eq. (5) can be developed by first

esigning a CLF and a CBF separately, and then combining them

ogether via the construction method in Romdlony and Jayaward-

ana (2016) and Wu et al. (2019a) Additionally, it is noted that the

onstruction method in Wu et al. (2019a) is not restricted to a two-

imensional system, and therefore, can be applied to the design of

LBFs for large-scale systems. 

Consider the RNN model of Eq. (3) (also in the form of Eq. (4) )

ith a constrained CLBF W c ( x ) of Eq. (5). Simultaneous closed-

oop stability and safety can be derived for both a bounded un-

afe region D b and an unbounded unsafe region D u following the

imilar analysis that has been performed for the nominal system

f Eq. (1) in Wu and Christofides (2019) (see Theorem 1 and 2

n Wu and Christofides (2019) ). Specifically, it is noted that in the

ase of a bounded unsafe set, there exist stationary points (other

han the origin) in state-space (i.e., X e in Eq. (5b) ), and thus, a
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t  
continuous controller cannot render the origin exponentially sta-

ble Braun and Kellett (2018) . This issue can be addressed by de-

signing the stationary points to be saddle points and then imple-

menting discontinuous control actions at saddle points to drive

the state away from them in the direction of decreasing W c ( x )

(( Wu and Christofides, 2019; Wu et al., 2019a )). However, in the

presence of an unbounded unsafe region, the origin is the unique

stationary point in state-space, thereby closed-loop stability and

process operational safety can be readily derived under the con-

troller u = 	nn (x ) ∈ U . The following theorem provides sufficient

conditions under which closed-loop stability and process opera-

tional safety are achieved simultaneously for the RNN system of

Eq. (3) under the control law designed based on a constrained CLBF

of Eq. (5). 

Theorem 1. Consider that a constrained CLBF W c ( x ): R 

n → R that

has a minimum at the origin and meets the conditions of Eq. (5), ex-

ists for the RNN system of Eq. (3) . The controller u = 	nn (x ) ∈ U that

satisfies Eq. (6) guarantees that the closed-loop state stays in U ρ for

all times for any x 0 ∈ U ρ . Additionally, the origin can be rendered ex-

ponentially stable under u = 	nn (x ) ∈ U, for all x 0 ∈ U ρ in the pres-

ence of an unbounded unsafe region D u ; however, discontinuous con-

trol actions u = ū (x ) ∈ U that decrease W c ( x ) are required at saddle

points x e to ensure exponential stability of the origin in the presence

of a bounded unsafe region D b in state-space. 

Proof. To demonstrate that the state is bounded in the safe oper-

ating region U ρ for all times, we need to show that there exists

a controller u = 	nn (x ) ∈ U such that ˙ W c ≤ 0 holds for all x ∈ U ρ .

This has been proven in Wu et al. (2018, 2019a) by showing that

the universal Sontag controller ( Lin and Sontag, 1991 ) with W c ( x )

replacing the Lyapunov function V ( x ) can be utilized as 	nn ( x ). Ad-

ditionally, since U ρ is characterized as a level set of W c ( x ) in φuc 

within which Eq. (6) is satisfied, we can further demonstrate that

the origin can be rendered exponentially stable under u = 	nn (x ) ∈
. The issue of saddle points in the presence of a bounded unsafe

region is handled by discontinuous control actions ū (x ) (i.e., ū (x ) � =
	nn (x ) ). The detailed proofs for both bounded and unbounded un-

safe regions follow closely to those for Theorem 1 and 2 in Wu and

Christofides (2019) , and is omitted here. �

Remark 1. As we assume that the nonlinear system of Eq. (1) is

unknown, the CLBF of Eq. (5) and the safe operating region U ρ are

characterized based on the RNN system of Eq. (3) . Theorem 1 is es-

tablished to demonstrate that closed-loop stability and operational

safety are achieved for the RNN system of Eq. (3) via a stabiliz-

ing controller u = 	nn (x ) ∈ U that is defined with respect to the

CLBF of Eq. (5). In the following section, we will demonstrate that

the CLBF-based controller u = 	nn (x ) ∈ U also guarantees simulta-

neous closed-loop stability and operational safety for the nonlin-

ear system of Eq. (1) provided that the modeling error between

the nonlinear system of Eq. (1) and the RNN system of Eq. (3) is

sufficiently small. 

3. CLBF-Based MPC using an ensemble of RNN models 

This section presents the formulation of the CLBF-based MPC

(CLBF-MPC) that incorporates an ensemble of RNN models for

predicting future states. We first demonstrate that the stability

and safety properties in Theorem 1 hold for the nominal sys-

tem of Eq. (1) (i.e., w ( t ) ≡ 0) under the CLBF-based controller

u = 	nn (x ) ∈ U that is designed to stabilize the RNN system of

Eq. (3) with guaranteed safety. Subsequently, the CLBF-MPC is de-

veloped to drive the state to a small neighborhood around the

origin while optimizing process performance under sample-and-

hold implementation of control actions. To proceed, the following

proposition is first developed to obtain an upper bound for the er-
or between the states predicted by the RNN model of Eq. (3) and

he states of the nonlinear process of Eq. (1) in the presence of

ounded disturbances (i.e., | w ( t )| ≤ w m 

) and a bounded modeling

rror (i.e., | ν| = | F (x, u, 0) − F nn (x, u ) | ≤ γ | x | ≤ νm 

). 

roposition 1. Consider the nonlinear system ˙ x = F (x, u, w ) of Eq.

1) in the presence of bounded disturbances | w ( t )| ≤ w m 

. Assuming

hat the RNN model ˙ ˆ x = F nn ( ̂  x , u ) of Eq. (3) has the same initial con-

ition x 0 = ˆ x 0 ∈ U ρ as the nonlinear system of Eq. (1) , there exists a

lass K function f w 

( · ) and a positive constant κ such that the fol-

owing inequalities hold ∀ x, ̂  x ∈ U ρ and w ( t ) ∈ W: 

 x (t) − ˆ x (t) | ≤ f w 

(t) := 

L w 

w m 

+ νm 

L x 
(e L x t − 1) (8a)

 c (x ) ≤ W c ( ̂  x ) + 

ˆ c 4 
√ 

ρ − ρ0 √ 

ˆ c 1 
| x − ˆ x | + κ| x − ˆ x | 2 (8b)

roof. Let e (t) = x (t) − ˆ x (t) denote the error vector between the

olutions of the system ˙ x = F (x, u, w ) and the RNN model ˙ ˆ x =
 nn ( ̂  x , u ) . The time-derivative of e ( t ) is obtained as follows: 

 ̇

 e | = | F (x, u, w ) − F nn ( ̂  x , u ) | 
≤ | F (x, u, w ) − F ( ̂  x , u, 0) | + | F ( ̂  x , u, 0) − F nn ( ̂  x , u ) | (9)

sing Eq. (7b) , the upper bound for the first term of Eq. (9) is de-

ived by the following inequality for all x, ̂  x ∈ U ρ and w ( t ) ∈ W : 

 F (x, u, w ) − F ( ̂  x , u, 0) | ≤ L x | x (t) − ˆ x (t) | + L w 

| w (t) | 
≤ L x | x (t) − ˆ x (t) | + L w 

w m 

(10)

dditionally, it is noticed that the second term of Eq. (9) rep-

esents the modeling error (i.e., | ν| = | F ( ̂  x , u, 0) − F nn ( ̂  x , u ) | ), and

s bounded by | ν| ≤ νm 

. Therefore, the upper bound for ˙ e (t) in

q. (9) is obtained as follows: 

 ̇

 e ( t ) | ≤ L x | x ( t ) − ˆ x ( t ) | + L w 

w m 

+ νm 

≤ L x | e ( t ) | + L w 

w m 

+ νm 

(11)

iven the zero initial condition (i.e., e (0) = 0 ), the upper bound for

 e ( t )| is derived for all x (t ) , ̂  x (t ) ∈ U ρ and | w ( t )| ≤ w m 

as follows: 

 e (t) | = | x (t) − ˆ x (t) | ≤ f w 

(t) (12)

here 

f w 

(t) := 

L w 

w m 

+ νm 

L x 
(e L x t − 1) 

oreover, since W c ( x ) is continuous and bounded on compact sets,

he following inequality is derived based on the Taylor series ex-

ansion of W c ( x ) around ˆ x , ∀ x, ̂  x ∈ U ρ : 

 c (x ) ≤ W c ( ̂  x ) + 

∂W c ( ̂  x ) 

∂x 
| x − ˆ x | + κ| x − ˆ x | 2 (13)

here κ is a positive real number and the term κ| x − ˆ x | 2 is used

o bound the high order terms of the Taylor series of W c ( x ), ∀ x, ̂  x ∈
 ρ . The following inequality is derived using Eqs. (6a) , (6c) and

12) : 

 c (x ) ≤ W c ( ̂  x ) + 

ˆ c 4 
√ 

ρ − ρ0 √ 

ˆ c 1 
| x − ˆ x | + κ| x − ˆ x | 2 

≤ W c ( ̂  x ) + 

ˆ c 4 
√ 

ρ − ρ0 √ 

ˆ c 1 
f w 

(t) + κ f w 

(t) 2 (14)

his completes the proof of Proposition 1 . �

.1. CLBF-based control using RNN models 

The following propositions are developed to demonstrate that

he controller u = 	nn (x ) ∈ U designed for the RNN model of



Z. Wu and P.D. Christofides / Computers and Chemical Engineering 134 (2020) 106706 5 

E  

E  

e  

b  

f  

U

P  

w  

u  

p  

t  

e

γ  

f

P  

E  

d  

b  

n  

n  

E  

f

W

L  

c  

c  

T  

t  

b  

o  

i

 

c  

p  

o  

i

P  

b  

s  

b  

e  

(

w

W  

w

a  

t  

E  

u

P  

g  

t  

e  

U  

t

t  

g  

r  

E  

o  

d  

m  

l

 

u  

s  

E  

W  

i  

o  

d  

b  

b  

b  

s  

u  

o  

i  

o  

g

W

T  

c  

u  

v  

T  

s  

w  

u

R  

c  

t  

l  

E  

s  

i  

b  

t  

i  

g  

e  

B  

s

3

 

b  

u  

b  

p  

l  

	  

f  
q. (3) is able to maintain the state of the nominal system of

q. (1) within the safe operating region U ρ provided that the mod-

ling error is sufficiently small. We first consider the case of an un-

ounded unsafe region, for which exponential stability is achieved

or the closed-loop nominal system of Eq. (1) under u = 	nn (x ) ∈
. 

roposition 2. Consider the nominal system of Eq. (1) (i.e., w ( t ) ≡ 0 )

ith an unbounded unsafe region D u under the feedback controller

 = 	nn (x ) ∈ U that satisfies Eq. (6) for all x ∈ U ρ . If there exists a

ositive real number γ < ˆ c 3 / ̂ c 4 such that for all x ∈ U ρ and u ∈ U,

he modeling error between the RNN model of Eq. (3) and the nonlin-

ar system of Eq. (1) is constrained by | ν| = | F (x, u, 0) − F nn (x, u ) | ≤
| x | , then the stability and safety properties in Theorem 1 also hold

or the nominal closed-loop system of Eq. (1) under u = 	nn (x ) ∈ U. 

roof. To demonstrate that the origin of the nominal system of

q. (1) (i.e., w ( t ) ≡ 0) can be rendered exponentially stable un-

er u = 	nn (x ) ∈ U, we prove that there exists a positive real num-

er ˜ c 3 such that ∂W c (x ) 
∂x 

F (x, 	nn (x ) , 0) ≤ − ˜ c 3 | x | 2 , ∀ x ∈ U ρ holds. It is

oted that in the presence of an unbounded unsafe region, there is

o saddle point within the safe operation region U ρ, and therefore,

q. (6) holds for all x ∈ U ρ . The time-derivative of W c is derived as

ollows using Eqs. (6b) and (6c) : 

˙ 
 c = 

∂W c (x ) 

∂x 
F (x, 	nn (x ) , 0) 

= 

∂W c (x ) 

∂x 
(F nn (x, 	nn (x )) + F (x, 	nn (x ) , 0) − F nn (x, 	nn (x ))) 

≤ − ˆ c 3 | x | 2 + 

ˆ c 4 | x | (F (x, 	nn (x ) , 0) − F nn (x, 	nn (x ))) 

≤ − ˆ c 3 | x | 2 + 

ˆ c 4 γ | x | 2 (15) 

et ˜ c 3 = − ˆ c 3 + ̂  c 4 γ . It is obtained that ˙ W c ≤ − ˜ c 3 | x | 2 ≤ 0 if γ is

hosen to satisfy γ < ˆ c 3 / ̂ c 4 . Therefore, following the proof of

losed-loop stability and safety for the RNN system of Eq. (3) in

heorem 1 , the controller u = 	nn (x ) ∈ U can drive the state of

he nominal system of Eq. (1) to the origin while avoiding the un-

ounded unsafe region D u for all times. This completes the proof

f simultaneous closed-loop stability and operational safety for any

nitial condition x 0 in the safe operating region U ρ of Eq. (5c) . �

The following proposition is developed to provide sufficient

onditions under which simultaneous closed-loop stability and

rocess operational safety are guaranteed for the nominal system

f Eq. (1) with a bounded unsafe region U b accounting for the ex-

stence of saddle points x e in the safe operating region U ρ . 

roposition 3. Consider the nominal system of Eq. (1) with a

ounded unsafe region D b under the controller u = 	nn (x ) ∈ U that

atisfies Eq. (6) for all x ∈ U ρ . If there exists a positive real num-

er γ < ˆ c 3 / ̂ c 4 such that for all x ∈ U ρ and u ∈ U, the modeling

rror is constrained by | ν| = | F (x, u, 0) − F nn (x, u ) | ≤ γ | x | , and Eq.

16) is satisfied under discontinuous control actions u = ū (x ) ∈ U

hen x (t k ) = ˆ x (t k ) ∈ B δ (x e ) , 

 c ( ̂  x (t)) < W c ( ̂  x (t k )) − f e (t − t k ) , ∀ t > t k (16)

here 

f e (t − t k ) := 

ˆ c 4 
√ 

ρ − ρ0 √ 

ˆ c 1 
f w 

(t − t k ) − κ f w 

(t − t k ) 
2 

nd f w 

( t ) is given in Eq. (12) , then the stability and safety proper-

ies in Theorem 1 also hold for the nominal closed-loop system of

q. (1) with a bounded unsafe region D b under u = 	nn (x ) ∈ U and

 = ū (x ) ∈ U. 

roof. Since there exist saddle points x e in the safe operating re-

ion U ρ in the presence of a bounded unsafe region, the origin of

he nominal system of Eq. (1) (i.e., w ( t ) ≡ 0) cannot be rendered
xponentially stable under the continuous controller u = 	nn (x ) ∈
. To address the issue of saddle points x e , another set of con-

rol actions ū will be applied within a neighborhood around x e 
o drive the state away from saddle points and towards the ori-

in. Specifically, in the presence of a bounded unsafe region, it is

eadily shown that Eq. (15) still holds for all x ∈ U ρ\B δ (x e ) since

q. (6b) is satisfied in U ρ\B δ (x e ) . This implies that in the presence

f a bounded unsafe region, the controller u = 	nn (x ) ∈ U that is

esigned to achieve closed-loop stability and safety for the RNN

odel of Eq. (3) is also able to maintain the state of the closed-

oop system of Eq. (1) within U ρ for all times. 

Subsequently, we prove that the discontinuous control actions

 = ū (x ) ∈ U that are designed for the RNN model of Eq. (3) around

addle points can drive the state of the nonlinear system of

q. (1) away from saddle points in the direction of decreasing

 c ( x ). Proposition 1 has established that starting from the same

nitial condition, the error between the states of the RNN system

f Eq. (3) and of the nonlinear system of Eq. (1) is bounded un-

er the same control actions, and therefore, the evolution of W c ( x )

ased on the state of the nominal system of Eq. (1) is also bounded

y Eq. (14) accounting for the modeling error and bounded distur-

ances. Assuming that the state enters a neighborhood around the

addle points at t = t k (i.e., ˆ x (t k ) = x (t k ) ∈ B δ(x e ) ), if the discontin-

ous control actions ū ( ̂  x ) that are determined for the RNN model

f Eq. (3) satisfy Eq. (16) for all x ∈ B δ (x e ) , the following inequal-

ty can be derived from Eqs. (14) and (16) to show that the value

f W c ( x ) based on the state of the nonlinear system of Eq. (1) is

uaranteed to decrease ∀ t > t k : 

 c (x (t)) ≤ W c ( ̂  x (t)) + 

ˆ c 4 
√ 

ρ − ρ0 √ 

ˆ c 1 
f w 

(t − t k ) + κ f w 

(t − t k ) 
2 , 

< W c ( ̂  x (t k )) (17) 

herefore, the state of the nonlinear system of Eq. (1) can es-

ape from saddle points under the discontinuous control actions

 = ū (x ) ∈ U that are designed for the RNN system of Eq. (3) pro-

ided that the decreasing rate of W c ( x ) of Eq. (16) is satisfied.

his implies that for any initial condition x 0 ∈ U ρ, the closed-loop

tate of the nonlinear system of Eq. (1) can be driven to the origin

hile avoiding the bounded unsafe region D b under the controllers

 = 	nn (x ) ∈ U and u = ū (x ) ∈ U . �

emark 2. From Propositions 2 and 3 , it is demonstrated that the

ontroller u = 	nn (x ) ∈ U that is designed to stabilize the RNN sys-

em of Eq. (3) (i.e., ˙ ˆ x = F nn ( ̂  x , u ) ) guarantees simultaneous closed-

oop stability and operational safety for the nominal system of

q. (1) (i.e., w ( t ) ≡ 0). Specifically, in the case of an unbounded un-

afe region, the state of the nominal system of Eq. (1) is bounded

n the safe operating region U ρ for all times and the origin can

e rendered exponentially stable under u = 	nn (x ) ∈ U . However,

o ensure closed-loop stability and operational safety for the nom-

nal system of Eq. (1) in the presence of a bounded unsafe re-

ion, in addition to the controller u = 	nn (x ) ∈ U that is applied

verywhere except the neighborhood around saddle points (i.e.,

 δ (x e ) ), a set of discontinuous control actions u = ū (x ) ∈ U that

atisfy Eq. (16) is required for the state in B δ(x e ) . 

.2. Sample-and-hold implementation of CLBF-based controller 

In this section, we present the stability properties of the CLBF-

ased controllers u = 	nn (x ) ∈ U and u = ū (x ) ∈ U (for a bounded

nsafe region) for the nonlinear system of Eq. (1) accounting for

ounded disturbances (i.e., | w ( t )| ≤ w m 

) and sample-and-hold im-

lementation of the control actions. To proceed, we need the fol-

owing proposition to demonstrate that under the controllers u =
nn (x ) ∈ U and u = ū (x ) ∈ U implemented in a sample-and-hold

ashion, i.e., u (t) = u (t k ) , ∀ t ∈ [ t k , t k +1 ) , where t k +1 := t k + � and
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� is the sampling period, the closed-loop state x ( t ) of the nonlin-

ear system of Eq. (1) is bounded in U ρ for all times, and will be

ultimately driven to a small neighborhood U ρmin 
around the origin.

Proposition 4. Consider the system of Eq. (1) under the sample-and-

hold implementation of the controller u = 	nn (x ) ∈ U that meets the

conditions of Eq. (6). If Eq. (16) is satisfied under the controller u =
ū (x ) ∈ U in a sample-and-hold fashion for x ∈ B δ (x e ) , and there exist

εw 

> 0 , � > 0 and ρ > ρmin > ρnn > ρs that satisfy 

− ˜ c 3 
ˆ c 2 

(ρs − ρ0 ) + L 
′ 
x M� + L 

′ 
w 

w m 

≤ −εw 

(18)

and 

ρnn := max { W c ( ̂  x (t + �)) | ˆ x (t) ∈ U ρs 
, u ∈ U} (19a)

ρmin ≥ ρnn + f e (�) (19b)

where f e ( t ) is given by Eq. 16 , then for any x (t k ) ∈ U ρ\U ρs ,

W c ( x ( t )) based on the state of the nonlinear system of Eq. (1) is guar-

anteed to decrease within every sampling period, and thus, can be

bounded in U ρ for all times and ultimately bounded in U ρmin 
. 

Proof. Assuming x (t k ) = ˆ x (t k ) ∈ U ρ\U ρs , the time-derivative of

W c ( x ) for the nonlinear system of Eq. (1) in the presence of

bounded disturbances (i.e., | w | ≤ w m 

) is derived as follows: 

˙ 
 c (x (t)) = 

∂W c (x (t)) 

∂x 
F (x (t) , 	nn (x (t k )) , w ) 

= 

∂W c (x (t k )) 

∂x 
F (x (t k ) , 	nn (x (t k )) , 0) 

+ 

∂W c (x (t)) 

∂x 
F (x (t) , 	nn (x (t k )) , w ) 

− ∂W c (x (t k )) 

∂x 
F (x (t k ) , 	nn (x (t k )) , 0) (20)

Based on Eqs. (6b) and (15) and the Lipschitz condition in

Eq. (7), the following inequality is obtained for ˙ W c (x (t)) for all

 ∈ [ t k , t k +1 ) and x (t k ) ∈ U ρ\ (U ρs ∪ B δ (x e )) : 

˙ 
 c (x (t)) ≤ − ˜ c 3 

ˆ c 2 
(ρs − ρ0 ) + 

∂W c (x (t)) 

∂x 
F (x (t) , 	nn (x (t k )) , w ) 

− ∂W c (x (t k )) 

∂x 
F (x (t k ) , 	nn (x (t k )) , 0) 

≤ − ˜ c 3 
ˆ c 2 

(ρs − ρ0 ) + L 
′ 
x | x (t) − x (t k ) | + L 

′ 
w 

| w | 

≤ − ˜ c 3 
ˆ c 2 

(ρs − ρ0 ) + L 
′ 
x M� + L 

′ 
w 

w m 

(21)

It is noted that Eq. (21) does not hold for x ∈ B δ (x e ) since

Eqs. (6b) and (15) may not hold in the neighborhood around sad-

dle points where ∂W c (x ) 
∂x 

is close to zero. If Eq. (18) is satisfied,

we can obtain the following inequality based on Eq. (21) for all

x (t k ) ∈ U ρ\U ρs and t ∈ [ t k , t k +1 ) : 

˙ 
 c (x (t)) ≤ −εw 

(22)

From Eq. (22) , the boundedness of the state of the closed-loop sys-

tem of Eq. (1) in the safe operating region U ρ is obtained under the

sample-and-hold implementation of u = 	nn (x ) ∈ U for any initial

condition x 0 ∈ U ρ . 

Additionally, to ensure that the state of the nonlinear sys-

tem of Eq. (1) moves towards the origin and ultimately enters a

small neighborhood U ρs around the origin instead of converging to

saddle points, the controller u = ū (x (t k + i )) ∈ U, ∀ t ∈ [ t k + i , t k + i +1 ) ,

i = 0 , 1 , 2 , . . . is applied to drive the state away from saddle

points when x (t k ) = ˆ x (t k ) ∈ B δ (x e ) . If Eq. (16) is satisfied under

the sample-and-hold implementation of u = ū ( ̂  x ) ∈ U, it is demon-

strated from Eq. (17) in Proposition 3 that W c ( x ( t )) < W c ( x ( t ))
k 
olds for the nonlinear system of Eq. (1) , ∀ t > t k . Therefore, W c ( x )

ill keep decreasing until the state of the nonlinear system of

q. (1) leaves the neighborhood around saddle points. After that,

he controller u = 	nn (x ) ∈ U will be applied again to drive the

tate towards the origin. 

It remains to show that once the state enters U ρs (i.e., x (t k ) =
ˆ  (t k ) ∈ U ρs ), it is bounded in U ρmin 

for the remaining time t ≥ t k .

ccording to the definition of U ρnn in Eq. (19a) , it is shown that

 ρnn is the largest level set of W c ( ̂  x ) that the state of the RNN

ystem of Eq. (3) can reach within one sampling period if start-

ng from U ρs . Additionally, U ρmin 
of Eq. (19b) is the corresponding

argest level set of W c ( x ) based on the state of the nonlinear sys-

em of Eq. (1) when the RNN state ˆ x is bounded in U ρnn . 

Since ˙ W c ≤ −εw 

may not hold for the state in U ρs under the

ample-and-hold implementation of u = 	nn (x ) ∈ U, the sets U ρnn 

nd U ρmin 
are characterized to guarantee that the states of the

NN system of Eq. (3) and of the nonlinear system of Eq. (1) are

ounded in the neighborhoods around the origin that are slightly

arger than U ρs . Additionally, U ρnn can be characterized from exten-

ive open-loop simulations for all u ∈ U and x ∈ U ρs . Subsequently,

 ρmin 
of Eq. (19b) is characterized based on U ρnn to account for the

mpact of modeling error and bounded disturbances within one

ampling period. 

This completes the proof of Proposition 4 by showing that the

tate of the nonlinear system of Eq. (1) with bounded disturbances

i.e., | w ( t )| ≤ w m 

) can be maintained in the safe operating re-

ion U ρ for all times, and ultimately be bounded in U ρmin 
un-

er the sample-and-hold implementation of u = 	nn (x ) ∈ U and

 = ū (x ) ∈ U . �

.3. Formulation of CLBF-MPC 

The CLBF-MPC design is represented by the following optimiza-

ion problem: 

 = min 

u ∈ S(�) 

∫ t k + N 

t k 

L ( ̃  x (t) , u (t)) dt (23a)

.t. ˙ ˜ x (t) = 

1 

N e 

N e ∑ 

j=1 

F j 
nn ( ̃  x (t) , u (t)) (23b)

˜ 
 (t k ) = x (t k ) (23c)

 (t) ∈ U, ∀ t ∈ [ t k , t k + N ) (23d)

˙ W c (x (t k ) , u (t k )) ≤ ˙ W c (x (t k ) , 	nn (t k )) 

if W c (x (t k )) > ρnn and x (t k ) / ∈ B δ(x e ) (23e)

W c ( ̃  x (t)) ≤ ρnn , ∀ t ∈ [ t k , t k + N ) , 

if W c (x (t k )) ≤ ρnn (23f)

W c ( ̃  x (t)) < W c (x (t k )) − f e (t − t k ) , ∀ t ∈ (t k , t k + N ) , 

if x (t k ) ∈ B δ(x e ) (23g)

here ˜ x (t) is the predicted state trajectory, S ( �) is the set of

iecewise constant functions with period �, and N is the num-

er of sampling periods in the prediction horizon. The cost func-

ion L ( ̃  x (t) , u (t)) is generally in a quadratic form that has the min-

mum value at the equilibrium of the system of Eq. (1) : | ̃ x (t) | 2 
Q L 

+
 u (t) | 2 R L 

, where Q L and R L are positive definite matrices. The pre-

icted states ˜ x (t) , t ∈ [ t k , t k + N ) are calculated by taking the aver-

ge of an ensemble of RNN models F 
j 

nn , j = 1 , . . . , N e in Eq. (23b) ,
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here N e is the number of RNN models in the ensemble. The ob-

ective function of Eq. (23a) is the time integral of L ( ̃  x (t) , u (t))

ver the prediction horizon. The input constraints of Eq. (23d) are

pplied over the entire prediction horizon. The state measure-

ent of Eq. (23c) at t = t k is taken as the initial condition for the

NN models of Eq. (23b) . The constraints of Eqs. (23e)–(23g) in

he CLBF-MPC optimization problem are utilized to ensure closed-

oop stability and process operational safety. Specifically, the con-

traint of Eq. (23e) forces W c ( ̃  x ) along the predicted state trajec-

ories to decrease at least at the rate under the CLBF-based con-

roller u = 	nn (x ) ∈ U when W c ( x ( t k )) > ρnn and x (t k ) / ∈ B δ(x e ) . If

 c ( x ( t k )) ≤ ρnn , the constraint of Eq. (23f) is activated to maintain

he predicted state of the RNN system within U ρnn such that the

losed-loop state of the nonlinear system of Eq. (1) is bounded in

 ρmin 
. Additionally, if x (t k ) ∈ B δ (x e ) , the constraint of Eq. (23g) de-

reases W c ( x ) over the prediction horizon such that the state can

scape from saddle points x e within finite sampling steps. The state

easurements of the closed-loop system of Eq. (1) are assumed to

e available at each sampling time. After the CLBF-MPC optimiza-

ion problem of Eq. (23) solves the optimal solution u ∗( t ), only the

rst control action of u ∗( t ) is sent to the control actuators to be

pplied over the next sampling period. Then, the horizon will be

olled forward one sampling time, and at the next instance of time

 k +1 := t k + �, the optimization problem is solved again. Addition-

lly, since the CLBF-MPC optimization problem of Eq. (23) is based

n the state of the RNN model of Eq. (3) only, we use x instead of x̂

o represent the RNN state in CLBF-MPC to simplify the notations. 

The theorem below is established to demonstrate that under

he CLBF-MPC of Eq. (23), closed-loop stability and process opera-

ional safety are achieved simultaneously for the nonlinear system

f Eq. (1) in the sense that the closed-loop state is bounded in the

afe operating region U ρ for all times, and is ultimately bounded

n U ρmin 
. 

heorem 2. Consider the system of Eq. (1) with a constrained CLBF

 c that satisfies Eq. (5) and has a minimum at the origin. Given any

nitial state x 0 ∈ U ρ, it is guaranteed that the CLBF-MPC optimiza-

ion problem of Eq. (23) can be solved with recursive feasibility for

ll times. Additionally, under the sample-and-hold implementation of

LBF-MPC based on an ensemble of RNN models that satisfy | ν| =
 F (x, u, 0) − F nn (x, u ) | ≤ γ | x | ≤ νm 

and the conditions in Proposition

 , it is guaranteed that for any x 0 ∈ U ρ, the state is bounded in U ρ,

 t ≥ 0, and ultimately converges to U ρmin 
as t → ∞ . 

roof. The proof consists of two parts. The first part presents the

roof of recursive feasibility of the CLBF-MPC optimization prob-

em of Eq. (23) for all states x (t) ∈ U ρ . The second part includes the

roof of simultaneous closed-loop stability and process operational

afety of the nonlinear system of Eq. (1) under the CLBF-MPC that

ses an ensemble of RNN models of Eq. (3) for prediction. 

Part 1: A feasible solution to the CLBF-MPC optimization prob-

em of Eq. (23) exists for all times since it has been demon-

trated in Propositions 2–4 that the controllers u = 	nn (x ) ∈ U,

 x ∈ U ρ\B δ (x e ) and u = ū (x ) ∈ U, ∀ x ∈ B δ (x e ) in a sample-and-

old fashion satisfy the CLBF-MPC constraints of Eqs. (23d)–(23g) .

pecifically, the input constraint of Eq. (23d) is satisfied over the

rediction horizon since both u = 	nn (x ) and u = ū (x ) are con-

trained by u ∈ U . The satisfaction of Eq. (23e) is readily shown

y letting u (t k ) = 	nn (x (t k )) when x (t k ) ∈ U ρ\ (B δ (x e ) ∪ U ρnn ) .

dditionally, the input trajectories u (t) = 	nn (x (t k + i )) ∈ U, ∀ t ∈
 t k + i , t k + i +1 ) with i = 0 , . . . , N − 1 is a set of feasible control ac-

ions that meet the constraint of Eq. (23f) . In Proposition 4 , it

s shown that once the state is driven into U ρs under the con-

roller u = 	nn (x ) ∈ U, it will not leave U ρnn within one sampling

eriod for any u ∈ U . Therefore, the constraint of Eq. (23f) is sat-

sfied under the sample-and-hold implementation of u = 	nn (x ) ∈
. Lastly, if x (t k ) ∈ B δ(x e ) , u (t) = ū (x (t k + i )) ∈ U, ∀ t ∈ [ t k + i , t k + i +1 )
ith i = 0 , . . . , N − 1 is a set of control actions that meet the con-

traint of Eq. (23g) as the controller u = ū (x ) ∈ U is designed to

atisfy Eq. (16) to drive the state away from saddle points. This

ompletes the proof of recursive feasibility for the CLBF-MPC opti-

ization problem of Eq. (23). 

Part 2: We first consider the case of an unbounded unsafe re-

ion D u for the nonlinear system of Eq. (1) . As there is no sad-

le point in the presence of D u (i.e., X e = ∅ ), the last constraint of

q. (23g) in the CLBF-MPC optimization problem is never activated.

herefore, for any initial condition x 0 ∈ U ρ\U ρnn , the constraint of

q. (23e) forces the state to move towards the origin and drives

he state into U ρnn within finite sampling steps. After the state en-

ers U ρnn , the constraint of Eq. (23e) ensures the boundedness of

he state in U ρnn for the remaining time. As a result, the nonlin-

ar system of Eq. (1) is considered practically stable because it has

een shown in Proposition 4 that the state of the nonlinear system

f Eq. (1) is ultimately bounded in U ρmin 
(a small neighborhood

round the origin). Additionally, it should be noted that since the

tate is also bounded in the safe operating region U ρ for all times,

hich does not intersect with the unbounded unsafe region D u in

tate-space, process operational safety for the system of Eq. (1) is

uaranteed under CLBF-MPC. 

Following the above analysis, the proof of closed-loop stability

nd process operational safety for a bounded unsafe region D b is

resented by showing that the state can be ultimately bounded in

 ρnn instead of converging to saddle points. Starting from an initial

ondition x 0 ∈ U ρ\U ρnn , the constraint of Eq. (23e) drives the state

owards the origin. However, the state may settle in saddle points

local minima of the CLBF) along its trajectory towards the origin

f no further action is taken around the saddle points. To address

his, the constraint of Eq. (23g) is activated when x (t k ) ∈ B δ (x e ) to

ove the state away from the saddle points in a direction of de-

reasing the value of W c ( x ) such that the state can escape from

addle points and ultimately converge to the origin. Once the state

eaves the neighborhood B δ (x e ) around the saddle points, closed-

oop stability and process operation safety are still guaranteed un-

er the constraints of Eqs. (23e)–(23f) in the sense that the state

f the nonlinear system of Eq. (1) stays in the safe operating re-

ion U ρ for all times, and is ultimately maintained in U ρnn . This

ompletes the proof of simultaneous closed-loop stability and pro-

ess operation safety for both an unbounded unsafe region and a

ounded unsafe region. �

emark 3. The training dataset for the RNN models used in MPC is

enerated from extensive open-loop simulations using various con-

rol actions u ∈ U and different initial conditions x 0 in the opera-

ion region. To ensure that the RNN models are sufficiently accu-

ate for the controller design, the training process of RNN models

s terminated only if the modeling error is rendered below a pre-

etermined threshold (i.e., the modeling error is sufficiently small).

herefore, the modeling error constraint guarantees that the ob-

ained RNN models can well represent the nonlinear dynamics in

he operating region, and is also a sufficient condition for the proof

f closed-loop stability and safety for the MPC using RNN models. 

. Application to a chemical process example 

In this section, a chemical process example is utilized to illus-

rate the application of the proposed CLBF-MPC scheme that in-

orporates an ensemble of RNN models for prediction. We con-

ider a well-mixed, non-isothermal continuous stirred tank reac-

or (CSTR) where an irreversible second-order exothermic reaction

akes place. The reaction converts the reactant A to the product B

ia the chemical reaction A → B . A heating jacket that supplies or

emoves heat from the reactor is used. The CSTR dynamic model
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Table 1 

Parameter values of the CSTR. 

T 0 = 300 K F = 5 m 

3 /hr

V = 1 m 

3 E = 5 × 10 4 kJ/kmol

k 0 = 8 . 46 × 10 6 m 

3 /kmol hr �H = −1 . 15 × 10 4 kJ/kmol

C p = 0 . 231 kJ/kg K R = 8 . 314 kJ/kmol K

ρL = 10 0 0 kg/m 

3 C A 0 s = 4 kmol/m 

3 

Q s = 0 . 0 kJ/hr
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derived from material and energy balances is given below: 

dC A 
dt 

= 

F 

V 

(C A 0 − C A ) − k 0 e 
−E 
RT C 2 A (24a)

dT 

dt 
= 

F 

V 

(T 0 − T ) + 

−�H 

ρL C p 
k 0 e 

−E 
RT C 2 A + 

Q 

ρL C p V 

(24b)

where C A is the concentration of reactant A in the reactor, V is the

volume of the reacting liquid in the reactor, T is the temperature of

the reactor and Q denotes the heat input rate. The concentration of

reactant A in the feed is C A 0 . The feed temperature and volumet-

ric flow rate are T 0 and F , respectively. The reacting liquid has a

constant density of ρL and a heat capacity of C p . �H, k 0 , E , and R

represent the enthalpy of reaction, pre-exponential constant, acti-

vation energy, and ideal gas constant, respectively. Process param-

eter values are listed in Table 1 . 

The CSTR is initially operated at the unstable steady-

state (C As , T s ) = (1 . 95 kmol/m 

3 , 402 K) , and (C A 0 s Q s ) =
(4 kmol/m 

3 , 0 kJ/hr) . The manipulated inputs are the inlet con-

centration of species A and the heat input rate, which are rep-

resented by the deviation variables �C A 0 = C A 0 − C A 0 s , and �Q =
Q − Q s , respectively. The manipulated inputs are bounded as fol-

lows: | �C A 0 | ≤ 3.5 kmol / m 

3 and | �Q | ≤ 5 × 10 5 kJ / hr . The states

and the inputs of the closed-loop system are x T = [ C A − C As T − T s ]

and u T = [�C A 0 �Q] , respectively, such that the equilibrium point

of the system is at the origin of the state-space, (i.e., (x ∗s , u ∗s ) =
(0 , 0) ). 

The explicit Euler method with an integration time step of h c =
2 × 10 −5 hr is applied to numerically simulate the dynamic model

of Eq. (24). The nonlinear optimization problem of the CLBF-MPC

of Eq. (23) is solved using the python module of the IPOPT soft-

ware package ( Wächter and Biegler, 2006 ), named PyIpopt with

the sampling period � = 2 × 10 −3 hr. 

4.1. Development of RNN models 

To develop an ensemble of RNN models that will be used in

CLBF-MPC, extensive open-loop simulations are performed within

the operating region for the CSTR of Eq. (24) to generate the

dataset. Specifically, we run open-loop simulations with various

initial states in state-space and inputs u ∈ U for finite sampling

steps such that the dataset is sufficiently large to be representative

in the operating region. The sampled data points including states

x and inputs u are saved with a minimum time step as the in-

tegration time step h c . The RNN model is constructed with one

input layer, two hidden layers consisting of 96 and 64 recurrent

units, respectively, and one output layer. The inputs to the RNN

model of Eq. (3) are the states x ( t k ) and the control actions u ( t k )

at t = t k , k = 0 , 1 , . . . , and the outputs are the predicted state tra-

jectory over one sampling period (i.e., t ∈ [ t k , t k +1 ] ), where the data

points with the time interval of h c (i.e., the integration time step

for the explicit Euler method) are treated as the internal states for

RNN models. The sigmoid function is used as the activation func-

tion for RNN models, and early stopping is employed to avoid over-

fitting. Additionally, we utilize a 10-fold cross validation to derive

an ensemble of 10 RNN models for the CLBF-MPC of Eq. (23). The
ptimal number of recurrent neural network models in the ensem-

le generally depends on the complexity of process dynamics and

he size of datasets. In our CSTR example, the optimal number is

etermined by closed-loop simulations. Specifically, to determine

he optimal number of neural network models, we first derive k

NN models based on a k -fold cross-validation. Subsequently, we

tart with a single RNN model and keep increasing the number of

odels used in MPC. The optimal number is determined to be the

ne when no further improvement of closed-loop performance is

oticed for the increase of RNN models being used. The details

f developing RNN models for this CSTR example can be found

n Wu et al. (2019c) . 

.2. Simulation results 

The control objective is to operate the CSTR at the unstable

quilibrium point ( C As , T s ) and avoid the unsafe operating region

bounded and unbounded) in state-space by manipulating the heat

nput rate �Q and the inlet concentration �C A 0 under the RNN-

ased CLBF-MPC. 

We first demonstrate the application of the proposed CLBF-

PC control scheme to an unbounded unsafe region D u in state-

pace. The unsafe region is characterized as an unbounded set

ith high temperature and concentration for the CSTR of Eq. (24):

 u := { x ∈ R 

2 | F (x ) = x 1 + x 2 > 47 } . It is noted that with the form

f F (x ) = x 1 + x 2 , the temperature in the reactor is considered the

ominant factor in characterizing the unsafe region D u , while the

eactant concentration is also accounted for because of its im-

act on the reaction rate r = k 0 e 
−E/RT C 2 

A 
. Following the construc-

ion method of a CLBF in Wu et al. (2018, 2019a) , we first de-

ign a Control Lyapunov function with the standard quadratic form

 (x ) = x T P x, where P is a positive definite matrix as follows: 

 = 

[
1060 22 

22 0 . 52 

]
(25)

hen, we characterize a set H that contains D u : H := { x ∈
 

2 | F (x ) > 45 } , and design the Control Barrier function B ( x ) as

ollows: 

 (x ) = 

{
e F (x ) −47 − 2 × e −2 , if x ∈ H 

−e −2 , if x / ∈ H 

(26)

The Control Lyapunov-Barrier function W c (x ) = V (x ) + μB (x ) +
is constructed with the following parameters: ρ = 0 , c 1 = 0 . 1 ,

 2 = 1061 , c 3 = 5808 , c 4 = 2259 , ν = ρ − c 1 c 4 = −225 . 9 , and μ =
 . 6 × 10 7 . The definitions of the above parameters can be found

n Wu et al. (2018, 2019a) . It is demonstrated in Fig. 1 that un-

er the CLBF-MPC of Eq. (23), all the trajectories starting from ini-

ial states in U ˆ ρ (a subset of the safe operating region U ρ in state-

pace) avoid the unbounded unsafe region D u on the top and con-

erge to U ρmin 
. 

The second example is used to demonstrate that the state of

he closed-loop system of Eq. (24) can avoid a bounded unsafe re-

ion D b in state-space under the CLBF-MPC of Eq. (23) and con-

erge to a small neighborhood around the origin. To demonstrate

hat the state is able to pass around the unsafe region along the

rajectory towards the origin, we design a bounded unsafe region

 b embedded within the safe operating region as shown in the

bove example. Specifically, the unsafe region is defined as an el-

ipse: D b := { x ∈ R 

2 | F (x ) = 

(x 1 +0 . 92) 2 

1 + 

(x 2 −42) 2 

500 < 0 . 06 } . H is de-

ned as H := { x ∈ R 

2 | F (x ) < 0 . 07 } . The Control Barrier function

 ( x ) is defined as follows: 

 (x ) = 

{
e 

F (x ) 
F (x ) −0 . 07 − e −6 , if x ∈ H 

−e −6 , if x / ∈ H 

(27)

sing the same Control Lyapunov function V ( x ) as in the first

xample, the Control Lyapunov-Barrier function W c (x ) = V (x ) +
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Fig. 1. Closed-loop state trajectories for the system of Eq. (24) under the CLBF-MPC using an ensemble of RNN models. The initial conditions are marked by circles, and the 

set of unbounded unsafe states D u is the gray area on the top. 

Fig. 2. Closed-loop state trajectories for the system of Eq. (24) under the CLBF-MPC using an ensemble of RNN models. The initial conditions are marked by circles, and the 

set of bounded unsafe states D b is the gray area embedded within U ˆ ρ . 
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B (x ) + ν is constructed following the rules in Proposition 1

n Wu et al. (2018) , where the values of parameters c 1 , c 2 , c 3 , c 4 ,

, and μ can be found in Wu et al. (2018) . Additionally, we calcu-

ate the stationary point of W c ( x ) (other than the origin) in state-

pace by letting ∂W c (x ) 
∂x 

= 0 . It is obtained that the stationary point

s x e = (−1 . 004 , 47 . 48) and it turns out to be a saddle point from

 second partial derivative test (i.e., x e is a saddle point if the de-

erminant of the Hessian matrix of W c ( x ) at x e is negative). 

In Fig. 2 , it is demonstrated that for all initial states x 0 in U ˆ ρ
marked by circles), the closed-loop trajectories avoid the bounded

nsafe region D b that is embedded within U ˆ ρ (a subset of the safe

perating region U ρ ), and ultimately converges to U ρmin 
under the

LBF-MPC of Eq. (23). Additionally, to demonstrate the merits of

he machine-learning-based CLBF-MPC in terms of desired predic-

ion accuracy and guaranteed process operational safety, a linear

tate-space model is derived using the same dataset for the RNN

odels to approximate the nonlinear dynamics in the operating

egion for comparison. Specifically, the linear state-space model for

he CSTR system of Eq. (24) is developed with the following form:

˙ 
 = A s x + B s u (28)

here x and u are the state vector and the manipulated in-

ut vector, and A s and B s are coefficient matrices for the

tate-space model. Following the system identification method

n Kheradmandi and Mhaskar (2018) , the numerical algorithms for

ubspace state space system identification is utilized to obtain A s 
nd B s as follows: 

 s = 100 ×
[
−0 . 154 −0 . 003 

5 . 19 0 . 138 

]
(29) 

 s = 

[
4 . 03 0 

1 . 23 0 . 004 

]
(30) 

It is shown in Fig. 3 that for some initial conditions in U ˆ ρ,

he closed-loop state trajectories are able to avoid the unsafe re-

ion and converge to the steady-state under the MPC using a lin-

ar model. However, in Fig. 4 , it is demonstrated that for some

ther initial conditions, the state trajectories (with dashed line) en-

er the unsafe region due to a considerable model mismatch of

he linear state-space model. It is noted that the model predic-

ive controller using a simple linear state-space model is generally

ble to stabilize the nonlinear system in a neighborhood around

he steady-state provided that the model mismatch between the

inear model and the nonlinear system is small in the neighbor-

ood. However, the MPC using a linear state-space model does not

ork in this example because in addition to closed-loop stability,

e are addressing process operational safety that requires a suffi-

iently small model mismatch for which feedback control without

n accurate process model cannot guarantee that the process state

voids the unsafe region for all times. In fact, in the presence of a

arge model mismatch, feedback control cannot prevent the state

rom entering the unsafe region since the state predicted by the
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Fig. 3. Closed-loop state trajectories for the CSTR system under the CLBF-MPC using a linear state-space model. The initial conditions are marked by circles, and the set of 

bounded unsafe states D b is the gray ellipse in state-space. 

Fig. 4. Comparison of the closed-loop state trajectories under the CLBF-MPC using a linear state-space model (dashed lines) and an ensemble of RNN models (solid lines), 

respectively. The initial conditions are marked by circles, and the set of bounded unsafe states D b is the gray ellipse in state-space. 
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linear model may be outside of the unsafe region while the true

state actually enters it within one sampling period. Therefore, it

motivates us to use an ensemble of RNN models with a sufficiently

small model mismatch to approximate nonlinear dynamics in the

operating region and provide sufficiently accurate predictions for

MPC. 

The above two case studies demonstrate that the RNN mod-

els that are developed from extensive open-loop simulations to

replace the CSTR process of Eq. (24) in CLBF-MPC achieve a de-

sired approximation performance. Subsequently, the CLBF-MPC of

Eq. (23) based on an ensemble of RNN models guarantees that for

any initial condition in the safe operating region, the state of the

closed-loop system of Eq. (24) is maintained within the safe oper-

ating region for all times, and is able to converge to a small neigh-

borhood U ρmin 
around the origin ultimately while avoiding the un-

safe region (bounded and unbounded) in state-space. 

5. Conclusion 

In this work, a CLBF-MPC method formulated with machine

learning models was developed for nonlinear process systems. Un-

der the assumption that the modeling error between the RNN

model and the nonlinear process is sufficiently small, sufficient

conditions such that simultaneous closed-loop stability and pro-

cess operational safety in the sense of boundedness of the closed-

loop state in the safe operating region, convergence to the origin,

and avoidance of the unsafe region are guaranteed for the nonlin-

ear process under the RNN-based CLBF-MPC were derived. Specif-
cally, it was demonstrated that in the presence of a bounded un-

afe region, discontinuous control actions were applied in a neigh-

orhood around the saddle point to help the state escape from

addle points and move towards the origin. A chemical process ex-

mple demonstrated the application of the proposed method to

oth bounded and unbounded unsafe regions. From the simula-

ion results, it was demonstrated that the RNN-based CLBF-MPC

chieved desired prediction results, and thus, the state was suc-

essfully driven to the origin while avoiding the unsafe region in

tate-space. 
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