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ABSTRACT: We present a machine learning-based predictive control scheme
that integrates an online update of the recurrent neural network (RNN) models
to capture process nonlinear dynamics in the presence of model uncertainty.
Specifically, an ensemble of the RNN models are initially obtained for the
nominal system, for which Lyapunov-based model predictive control (LMPC) is
utilized to drive the state to the steady-state, and economic Lyapunov-based
MPC (LEMPC) is applied to achieve closed-loop stability and economic
optimality simultaneously. Subsequently, an event-trigger mechanism based on
the decreasing rate of Lyapunov function and an error-trigger mechanism that
relies on prediction errors are developed for an online model update, in which
the most recent process data are utilized to derive a new ensemble of RNN
models with enhanced prediction accuracy. By incorporating the event and
error-triggered online RNN update within real-time machine learning-based
LMPC and LEMPC, process dynamic performance is improved in terms of
guaranteed closed-loop stability, optimality, and smoothness of control actions. The proposed methodology is applied to a
chemical process example with time-varying disturbances under LMPC and LEMPC, respectively, to demonstrate the
effectiveness of an online update of machine learning models in real-time control problems.

■ INTRODUCTION

Modeling large-scale, complex nonlinear processes has been a
long-lasting challenge in process systems engineering. Model
quality depends on many factors, including, but not limited to
parameter estimation, model uncertainty, number of assump-
tions made in model development, dimensionality, model
structure, and computational burden of solving the model in
real-time operations.1,2 Machine learning techniques have been
successfully applied to solve regression/modeling problems
based on data sets from industrial process operation or
numerical simulations in process engineering, when a first-
principles model is difficult to obtain. Among many machine
learning methods, recurrent neural networks (RNN), a class of
artificial neural network consisting of both feed-forward and
feedback connections layers,3 show promising potential for use
in model-based control systems since they are capable of
modeling nonlinear dynamical systems using time-series process
data. In refs 4 and 5 neural networks have been applied in
industrial control problems. In refs 6−8 machine learning
techniques have been applied to control chemical engineering
systems. In ref 9 a comparison between feed-forward neural
networks and recurrent neural networks in nonlinear modeling
and prediction has been discussed. Recently, RNN models have
been incorporated in the design of model predictive control
(MPC) systems to operate the system at its steady-state10,11

while accounting for input and stability constraints. Addition-
ally, based on the economic model predictive control (EMPC)
that has been proposed to address process control problems

accounting for process dynamics (e.g., valve actuator dynamics
and actuator stiction compensation12,13) and dynamic economic
optimization, a new class of EMPC systems that takes advantage
of RNNmodels to predict future states has been developed in ref
14 to dynamically optimize process operating profit and achieve
closed-loop stability. Although pretrained machine learning
models have demonstrated to be good replacements for first-
principles models in model-based controllers, a potential
problem for the real-time implementation of controllers in
practice is model uncertainty, which includes intrinsic and
exogenous uncertaint.15,16

Since in real life, processes models change in time due to
varying process parameters from external (e.g., aging equipment,
disturbance, and new implemented technology in the process)
and internal factors (e.g., fouling in the equipment), the machine
learning model that has been trained using the information from
past normal operations may not be able to correctly predict
process states after disturbances appear. Some efforts have been
made to circumvent model uncertainty using adaptive, robust,
and event-triggered control within classical (first-principles)
modeling and data-driven modeling techniques (e.g., neural
network). For example, in the adaptive control area, a
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methodology was proposed for high-dimensional nonlinear
systems using neural networks under a triangular structure in the
control inputs in which stability is guaranteed17. Similarly, the
stability of an adaptive neural control system for two types of
model uncertainty of multi-input/multi-output nonlinear
systems is proven in block-triangular forms.1 From a robust
control point of view, an H∞ controller was designed using a
recurrent neural network for compensating parameter variations
and external disturbances.18 However, the above methodologies
have limitations. They are only applicable to systems in which
the affected parameter is known a priori and a predefined
structure is needed for the inputs and the states. Additionally, in
refs 19−22 the effects of model uncertainty were discussed, and
data-driven models were developed to account for process
uncertainty.
Considering the need to update process models as time

evolves, online learning of process models using most recent
process data may provide a solution to deal with model
uncertainty. For example, in ref 23, a multistage online learning
process was proposed using a hybrid neural network model for a
real-time control of traffic signals to account for the variation of
traffic volume. In ref 24 the error-triggered model reidentifica-
tion has been utilized to update the process model in EMPC
when the error between predicted states and measured states
exceeds a threshold. It is noted that the event-triggered
mechanism is able to reduce the frequency of the online update
and adjustment of process models and control actions,25,26 and
thus, improve applicability and efficiency of real-time control.
For example, in ref 27 an event-based control was proposed to
update the actuators only when a certain threshold is violated. In
ref 26 an event-triggered mechanism was proposed to stabilize
the system with control actions being updated when a violation
of a stability event is triggered. Additionally, the even-triggered
concept has also been adopted in neural network-based control
to reduce the network source utilization.28,29 At this stage, the
integration of the online update of the RNN models with the
proposed MPC and EMPC using an ensemble of RNN models
in refs 10 and 14 remains an open issue.
Motivated by the above, in this work, we propose real-time

machine learning-based MPC and EMPC schemes that trigger
an online learning of the RNN models when a threshold is
violated due to unknown disturbances. Specifically, an ensemble
of RNN models is initially obtained for the Lyapunov-based
MPC (LMPC) and Lyapunov-based EMPC (LEMPC) to
stabilize the system under normal operation (i.e., without
disturbances). In the presence of time-varying disturbances, an
event-triggered mechanism based on the decreasing rate of
Lyapunov function and an error-triggered mechanism based on
the prediction errors are developed to update RNN models
during the operation using the most recent process data. Closed-
loop stability analysis is performed for both LMPC and LEMPC
with the online RNN model update.
The rest of this paper is organized as follows: in Preliminaries,

the notations, the class of nonlinear systems considered, and the
stabilizability assumptions are given. In the section “Lyapunov-
Based MPC Using Ensemble of RNN Models”, the general
structure of the recurrent neural network and the learning
algorithm are introduced. Then, a brief recap of the Lyapunov-
based MPC and Lyapunov-based economic MPC using an
ensemble of RNN models are provided. In the section “Event-
Triggered On-Line Learning of RNNs”, the event-triggered and
error-triggered online RNN learningmechanisms are developed.
In “Integration of On-Line Update of RNNs with MPC”, the

implementation strategies of online RNN learning mechanisms
within LMPC and LEMPC, respectively, are presented with
guaranteed closed-loop stability for both cases. In the last
section, the proposed LMPC and LEMPC with the online
update of the RNN models are applied to a nonlinear chemical
process example to demonstrate their effectiveness.

■ PRELIMINARIES
Notation. The notation |·| is used to denote the Euclidean

norm of a vector. xT denotes the transpose of x. The notation

LfV(x) denotes the standard Lie derivative ≔ ∂
∂L V x f x( ) ( )f

V x
x
( )

Set subtraction is denoted by “\”, that is, A\B≔ {x∈ Rn | x∈ A,
x ∉ B}. + denotes the set of positive integers. ⌀ signifies the
null set. The function f(·) is of class 1 if it is continuously
differentiable in its domain. A continuous function α: [0, a) →
[0,∞) is said to belong to class if it is strictly increasing and is
zero only when evaluated at zero.

Class of Systems. The class of continuous-time nonlinear
systems considered is described by the following system of first-
order nonlinear ordinary differential equations:

̇ = ≔ + + =x F x u w f x g x u h x w x t x( , , ) ( ) ( ) ( ) , ( )0 0
(1)

where x∈ Rn is the state vector, u∈ Rm is the manipulated input
vector, and w ∈W is the disturbance vector withW≔ {w ∈ Rq|
|w| ≤ wm, wm≥ 0}. The control actions are constrained by u ∈U
≔ {ui

min ≤ ui ≤ ui
max, i = 1, ..., m} ⊂ Rm. f(·), g(·), and h(·) are

sufficiently smooth vector and matrix functions of dimensions n
× 1, n × m, and n × q, respectively. Throughout the manuscript,
we assume that the initial time t0 is zero (t0 = 0), and f(0) = 0
such that the origin is a steady-state of the nominal (i.e., w(t) ≡
0) system of eq 1 (i.e., (xs*, us*) = (0,0), where xs* and us*
represent the steady-state state and input vectors, respectively).

Stabilization via Control Lyapunov Function. To
guarantee that the closed-loop system can be stabilized, a
stabilizing control law u = Φ(x) ∈ U that renders the origin of
the nominal system of eq 1 (i.e., w(t)≡ 0) exponentially stable is
assumed to exist. Following converse theorems,30 there exists a

1 Control Lyapunov function V(x) such that the following
inequalities hold for all x in an open neighborhoodD around the
origin:

| | ≤ ≤ | |c x V x c x( ) ,1
2

2
2

(2a)

∂
∂

Φ ≤ − | |V x
x

F x x c x
( )

( , ( ), 0) ,3
2

(2b)

∂
∂

≤ | |V x
x

c x
( )

4
(2c)

where c1, c2, c3, and c4 are positive constants. F(x, u,w) represents
the nonlinear system of eq 1. The universal Sontag control law31

is a candidate controller for u = Φ(x).
We first characterize a region where the time-derivative of V is

rendered negative under the controller u =Φ(x)∈U as follows:

ϕ = { ∈ | ̇ = + < − | |

= Φ ∈ } ∪ { }

x V x L V L Vu k x

u x U

R ( ) ,

( ) 0

u
n

f g
2

(3)

where k is a positive real number. Then a level set of the
Lyapunov function inside ϕu is used as the closed-loop stability
regionΩρ for the nonlinear system of eq 1 as follows:Ωρ≔ {x∈
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ϕu | V(x) ≤ ρ}, where ρ > 0 and Ωρ ⊂ ϕu. From the Lipschitz
property of F(x, u, w) and the bounds on u and w, it follows that
there exist positive constants M, Lx, Lw, Lx′, Lw′ such that the
following inequalities hold for all x, x ′ ∈ D, u ∈ U, and w ∈W:

| | ≤F x u w M( , , ) (4a)

| − ′ | ≤ | − ′| + | |F x u w F x u L x x L w( , , ) ( , , 0) x w (4b)

∂
∂

− ∂ ′
∂

′

≤ | − ′| + ′ | |′

V x
x

F x u w
V x

x
F x u

L x x L w

( )
( , , )

( )
( , , 0)

x w (4c)

■ LYAPUNOV-BASED MPC USING ENSEMBLE RNN
MODELS

In this section, the structure of a recurrent neural network
(RNN)model and the formulation of the Lyapunov-basedMPC
(LMPC) and Lyapunov-based economic MPC (LEMPC) using
the RNNmodel ensemble to predict future states are presented.
Specifically, an RNNmodel is first developed to approximate the
nonlinear dynamics of the system of eq 1 in the operating region
Ωρ using data from extensive open-loop simulations. Sub-
sequently, LMPC and LEMPC are developed using an ensemble
of RNN models to derive closed-loop stability for the nonlinear
system of eq 1.
Recurrent Neural Network. The recurrent neural network

model is developed with the following form:

̂ ̇ = ̂ ≔ ̂ + Θx F x u Ax y( , )nn
T

(5)

where x̂ ∈ Rn is the RNN state vector and u ∈ Rm is the
manipulated input vector. y = [y1, ..., yn, yn + 1, ..., ym + n] = [σ(x̂1),
..., σ(x̂n), u1, ..., um]∈Rn +m is a vector of both the network state x̂
and the input u, where σ(·) is the nonlinear activation function
(e.g., a sigmoid function σ(x) = 1/(1 + e−x)). A is a diagonal
coefficient matrix; that is, A = diag{−a1, ..., −an} ∈ Rn × n, ai > 0,
and Θ = [θ1, ..., θn] ∈ R(m + n) × n with θi = bi[wi1, ..., wi(m + n)],
where bi, i = 1, ..., n are constants. wij is the weight connecting the
jth input to the ith neuron where i = 1, ..., n and j = 1, ..., (m + n).
Throughout the manuscript, we use x to represent the state of
the actual nonlinear system of eq 1 and use x̂ for the state of the
RNN model of eq 5.
The RNNmodel is trained following the learning algorithm in

ref 14 to obtain the optimal weight vector θi* by minimizing the
following loss function:

∑θ θ* ≔ | + − |
θ θ| |≤ =

F x u a x yarg min ( , , 0)i
k

N

i k k i k i k
1

T

i m

dl
m
oo
n
oo

|
}
ooo
~
oo (6)

where Nd is the number of data samples used for training. To
further improve the prediction accuracy of the RNN model,
ensemble learning that combines multiple machine learning
models is utilized to obtain the final predicted results.
Specifically, following the method in ref 14, k different RNN
models Fnn, i(x, u), i = 1, ..., k, are trained via a k-fold cross-
validation to approximate the same nonlinear system. The
averaged results are calculated as the final output of the
ensemble of multiple RNN models.
Lyapunov-Based Control Using an Ensemble of RNN

Models. In this work, the RNN model of eq 5 is updated to
capture nonlinear dynamics of the nonlinear system of eq 1
subject to time-varying bounded disturbances (i.e., |w(t)|≤ wm).
Fnn
i (x, u) is used to denote the ith RNN model (i = 1, 2, ..., NT)

that is updated using the real-time data of closed-loop state
trajectories and control actions, where NT is the total number of
RNN models obtained. We assume that a set of stabilizing
feedback controllers u =Φnn

i (x)∈U that can render the origin of
the RNN models Fnn

i (x, u), i = 1,2, ..., NT of eq 5 exponentially
stable in an open neighborhood D̂ around the origin exists.
Therefore, there exists a 1 Control Lyapunov function V̂(x)
such that the following inequalities hold for all x in D̂:

̂ | | ≤ ̂ ≤ ̂ | |c x V x c x( )i i
1

2
2

2
(7a)

∂ ̂
∂

Φ ≤ − ̂ | |V x
x

F x x c x
( )

( , ( ))nn
i

nn
i i

3
2

(7b)

∂ ̂
∂

≤ ̂ | |V x
x

c x
( ) i

4
(7c)

where c1̂
i , c2̂

i , c3̂
i , and c4̂

i are positive constants, i = 1, 2, ..., NT. For
the sake of simplicity, we will use symbols without the
superscript of i for all the RNN models and controllers that
satisfy eq 7 in the following texts. Similar to the characterization
method of the closed-loop stability region Ωρ for the nonlinear
system of eq 1, we first characterize a region

ϕ ̂ = { ∈ | ̂ ̇ < − ̂ | | = Φ ∈ } ∪ { }x V x c x u x UR ( ) , ( ) 0u
n

mn3
2

fromwhich the origin of the RNNmodel of eq 5 can be rendered
exponentially stable under the controller u = Φnn(x) ∈ U.
The closed-loop stability region for the RNNmodel of eq 5 is

defined as a level set of Lyapunov functions inside ϕ̂u:Ωρ̂≔ {x∈
ϕ̂u | V̂(x) ≤ ρ̂}, where ρ̂ > 0. It is noted that Ωρ̂ ⊆ Ωρ since the
data set for developing the RNNmodel of eq 5 is generated from
open-loop simulations for x ∈Ωρ and u ∈U. Additionally, there
exist positive constants Mnn and Lnn such that the following
inequalities hold for all x, x ′ ∈ Ωρ̂ and u ∈ U:

| | ≤F x u M( , )nn nn (8a)

∂ ̂
∂

− ∂ ̂ ′
∂

′ ≤ | − ′|V x
x

F x u
V x

x
F x u L x x

( )
( , )

( )
( , )nn nn nn

(8b)

Consider that there exists a bounded modeling error between
the nominal system of eq 1 and the RNNmodel of eq 5 (i.e., |ν |
= | F(x, u,0)− Fnn(x, u) |≤ νm, νm > 0), the following proposition
demonstrates that the feedback controller u =Φnn(x)∈U is able
to stabilize the nominal system of eq 1 if the modeling error is
sufficiently small.

Proposition 1 (ref 10). Under the assumption that the origin
of the closed-loop RNN system of eq 5 is rendered exponentially
stable under the controller u =Φnn(x)∈U for all x∈Ωρ̂, if there
exists a positive real number γ < c3̂/c4̂ that constrains the
modeling error |ν | = | F(x, u,0)− Fnn(x, u) |≤ γ | x |≤ νm for all x
∈ Ωρ̂ and u ∈ U, then the origin of the nominal closed-loop
system of eq 1 under u =Φnn(x) ∈ U is also exponentially stable
for all x ∈ Ωρ̂.

LMPC Using an Ensemble of RNN Models. The
formulation of the LMPC using an ensemble of RNN models
is given as follows:10

∫= ̃
∈ Δ

+
L x t u t tmin ( ( ), ( )) d

u S t

t

( ) k

k N

(9a)
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∑̃̇ = ̃
=

x t
N

F x t u ts.t. ( )
1

( ( ), ( ))
e j

N

nn j
1

,

e

(9b)

∈ ∀ ∈ [ +u t U t t t( ) , , )k k N (9c)

̃ =x t x t( ) ( )k k (9d)

̂ ̇ ≤ ̂ ̇ Φ ∈ Ω \Ωρ ρ̂V x t u V x t x t x t( ( ), ) ( ( ), ( ( )), if ( )k k nn k k nn

(9e)

ρ̂ ̃ ≤ ∀ ∈ [ ∈ Ωρ+V x t t t t x t( ( )) , , ), if ( )nn k k N k nn (9f)

where x̃ is the predicted state trajectory, S(Δ) is the set of
piecewise constant functions with period Δ, N is the number of
sampling periods in the prediction horizon, andNe is the number

of regression models used for prediction. ̂ ̇V x u( , ) is used to

represent ∂ ̂
∂ F x u( ( , ))V x

x nn
( ) . The optimal input trajectory

computed by the LMPC is denoted by u*(t), which is calculated
over the entire prediction horizon t ∈ [tk, tk + N). The control
action computed for the first sampling period of the prediction
horizon u*(tk) is sent by the LMPC to be applied over the first
sampling period, and the LMPC is resolved at the next sampling
time.
In the optimization problem of eq 9, the objective function of

eq. 9a is the integral of L(x̃(t), u(t)) over the prediction horizon.
The constraint of eq 9b is the ensemble of RNN models of eq 5
(i.e., Fnn, j, j = 1, ..., Ne) that is used to predict the states of the
closed-loop system. eqation 9c defines the input constraints
applied over the entire prediction horizon. eqation 9d defines
the initial condition x̃(tk) of eq 9b, which is the state
measurement at t = tk. The constraint of eq 9e forces the
closed-loop state to move toward the origin if x(tk) ∈ Ωρ̂\Ωρnn.

However, if x(tk) enters Ωρnn, the states predicted by the RNN

model of eq 9b will be maintained in Ωρnn for the entire
prediction horizon.
Based on the LMPC of eq 9, the following theorem is

established to demonstrate that the LMPC optimization
problem can be solved with recursive feasibility, and closed-
loop stability of the nonlinear system of eq 1 is guaranteed under
the sample-and-hold implementation of the optimal control
actions calculated by LMPC.
Theorem 1.Consider the nominal closed-loop system of eq 1

(i.e., w(t) ≡ 0) under the LMPC of eq 9 based on the RNN
model of eq 5 that satisfies γ < c3̂/c4̂ and the controller Φnn(x)
that satisfies eq 7. LetΔ > 0, εw > 0, and ρ̂ > ρmin > ρnn > ρs satisfy
the following inequalities:

ρ ε−
̃
̂

+ ′ Δ ≤ −
c
c

L Ms x w
3

2 (10)

and

ρ ≔ { ̂ ̂ + Δ | ̂ ∈ Ω ∈ }ρV x t x t u Umax ( ( )) ( ) ,nn s (11a)

ρ ρ
ρ

κ≥ +
̂ ̂

̂
Δ + Δ

c
c

f f( ) ( ( ))nn w wmin
4

1

2

(11b)

where c3̃ = −c3̂ + c4̂γ > 0 and ≔ −νf t e( ) ( 1)w L
L tm

x

x . Then, given

any initial state x0∈Ωρ̂, there always exists a feasible solution for
the optimization problem of eq 9. Additionally, it is guaranteed
that under the LMPC of eq 9, x(t) ∈ Ωρ̂, ∀ t ≥ 0, and x(t)

ultimately converges toΩρmin
for the nominal closed-loop system

of eq 1.
Proof. The proof of Theorem 1 can be found in ref 10.
LEMPC Using an Ensemble of RNN Models. The

Lyapunov-based economic MPC (LEMPC) using an ensemble
of RNN models is developed to dynamically optimize process
economic benefits while maintaining the closed-loop state in the
stability region for all times.14 The LEMPC is represented by the
following optimization problem:

∫= ̃
∈ Δ

+
l x t u t tmax ( ( ), ( )) d

u S t

t

e
( ) k

k N

(12a)

∑̃̇ = ̃
=

x t
N

F x t u ts.t. ( )
1

( ( ), ( ))
e j

N

nn j
1

,

e

(12b)

∈ ∀ ∈ [ +u t U t t t( ) , , )k k N (12c)

̃ =x t x t( ) ( )k k (12d)

ρ̂ ̃ ≤ ̂ ∀ ∈ [ ∈ Ωρ+ ̂V x t t t t x t( ( )) , , ), if ( )e k k N k e (12e)

̂ ̇ ≤ ̂ ̇ Φ ∈ Ω \Ωρ ρ̂ ̂V x t u V x t x t x t( ( ), ) ( ( ), ( ( )), if ( )k k nn k k e

(12f)

where the notations of eq 12 follow those of eq 9. The
optimization problem of eq 12 optimizes the time integral of the
stage cost function le(x̃(t), u(t)) of eq 12a over the prediction
horizon. The prediction model of eq 12b and the initial
condition of eq 12d are the same as those in the LMPC of eq 9.
The constraint of eq 12e maintains the predicted closed-loop
states in Ωρ̂e over the prediction horizon if x(tk) is inside Ωρ̂e.

However, if x(tk) entersΩρ̂\Ωρ̂e, the contractive constraint of eq
12f drives the state toward the origin for the next sampling
period such that the state will eventually enter Ωρ̂e within finite
sampling periods.

Theorem 2. Consider the nominal closed-loop system of eq 1
under the LEMPC of eq 12 based on the controller Φnn(x) that
satisfies eq 7. Let Δ > 0, εw > 0, and ρ̂ > ρ̂e > 0 satisfy eq 10 and
the following inequality:

ρ ρ
ρ

κ̂ ≤ ̂ −
̂ ̂

̂
Δ − Δ

c
c

f f( ) ( ( ))e w w
4

1

2

(13)

Then, for any x0 ∈ Ωρ̂, there always exists a feasible solution for
the optimization problem of eq 12, and the closed-loop state
x(t) is bounded in the closed-loop stability region Ωρ̂, ∀t ≥ 0.

Proof. The proof of Theorem 2 can be found in ref 14.
Remark 1. The RNN model is used in this work because it is

able to model a continuous nonlinear dynamical system of eq 1,
while a simpler artificial neural network (i.e., feed-forward neural
network) is typically used to describe a steady-state relationship.
Since LMPC and LEMPC rely on a continuous dynamic process
model to predict future states, the RNN model is preferred in
this study.

Remark 2. In this work, the RNN models are developed to
replace the first-principles models used in MPC. It is noted that
neural networks can also be applied to approximate the entire
MPC.32 The differences between the RNN model that replaces
the first-principle model and the artificial neural network
(ANN) that approximates the entire MPC are as follows: (1)
the data set for RNN models are obtained from extensive open-
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loop simulations that capture process dynamics in the operating
region, while the data set for the ANN that replaces MPC is
developed based on closed-loop simulations under MPC. (2)
Since the RNN model is derived to replace the first-principles
model in the manuscript, the optimization problem of MPC still
needs to be explicitly defined (e.g., objective function and
constraints) and solved online. However, if the ANN is obtained
to replace the entire MPC, the optimization problem of MPC is
replaced by an input−output function described by an ANN.
Additionally, it is noted that the obtained ANN may only work
for the same MPC problem that is used to generate the closed-
loop data set. Any modifications to the objective function or the
constraints may lead to regeneration of the data set and
retraining of neural networks. Therefore, it is more convenient
to develop and incorporate RNN models in MPC due to its
easily accessible open-loop data set and the freedom to make
modifications in MPC formulation. However, if the computa-
tional efficiency is of significant importance, ANNs that replace
the entire MPC can be regarded as a good solution to saving
computation time and computing control actions for the closed-
loop system.

■ EVENT-TRIGGERED ONLINE LEARNING OF RNNS
In this section, the LMPC of eq 9 and the LEMPC of eq 12 are
applied to the nonlinear system of eq 1 subject to bounded
disturbances (i.e., |w(t)|≤ wm). Unlike the stability analysis
performed for sufficiently small bounded disturbances in refs 10
and 14, in this work, we consider the case in which disturbances
cannot be fully eliminated by the sample-and-hold implementa-
tion of LMPC and therefore, may render the closed-loop system
unstable. To mitigate the impact of disturbances, RNN models
are updated via online learning to capture the nonlinear
dynamics of the system of eq 1 accounting for disturbances
w(t). In the following subsections, the triggeringmechanisms for
updating RNN models are introduced.
Event-Triggering Mechanism. In ref 33 event-triggered

and self-triggered control systems were introduced to derive
closed-loop stability for the system under the sample-and-hold
implementation of a controller. Specifically, the event-triggered
control system triggers an update of control actions if a
triggering condition based on state measurements is violated,
while in a self-triggered control system, the next update time can
be obtained via predictions. In our work, an event-triggered
online RNN learning is incorporated in the LMPC of eq 9 and
the LEMPC of eq 12 to improve RNN prediction accuracy using
previously received data of closed-loop states in the presence of
bounded disturbances. The following theorem is established to
demonstrate that if the online update of RNN is triggered by the
violation of eq 14, the minimal interevent time Tk = rk + 1 − rk is
bounded from below, where rk represents the kth violation of eq
14, ∈ +k .
Theorem 3. Consider the nonlinear system ẋ = F(x, u, w) of

eq 1 in the presence of bounded disturbances |w(t)|≤ wm, and
the RNNmodel ẋ̂ = Fnn(x̂, u) of eq 5 that has been updated at t =
tk = rk to approximate the dynamic behavior of the system of eq 1
before t = tkwith a sufficiently small modeling error |ν|≤ γ |x|, γ <
c3̂/c4̂. If the stabilizing controller u =Φnn(x)∈U is implemented
in a sample-and-hold fashion (i.e., u(t) = Φnn(x̂(tk)), ∀t ∈ [tk,
tk + 1), where tk + 1 ≔ tk + Δ and Δ is the sampling period), and
the k + 1th update of the RNN model is triggered at t = rk + 1 by
the violation of the following inequality for all x ∈ Ωρ̂\Ωρs:

ε≤ − − ∈ [ +V x t V x t t t t t t( ( )) ( ( )) ( ), , )k w k k k 1 (14)

where εw > 0 and ρs satisfy eq10 and eq 11 in Theorem 1, then
there exists a positive constant τ* such that the minimal
interevent time Tk = rk + 1 − rk ≥ τ*.

Proof. Since the controller u =Φnn(x) ∈ U is implemented in
a sample-and-hold fashion, given x(tk) = x̂(tk)∈Ωρ̂\Ωρs, we first
derive the time-derivative of V̂(x) for the nonlinear system of eq
1 (i.e., ẋ = F(x, u, w)) in the presence of bounded disturbances
(i.e., |w | ≤ wm) over t ∈ [tk, tk + 1) as follows:
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The first term
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∂
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in the above equation can be further expanded as follows:
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(16)

where c3̃ = − c3̂ + c4̂γ > 0 is a positive real number that has been
defined in Theorem 1. Specifically, the inequalities in eq 16 are
derived from the fact that

∂ ̂
∂

Φ ≤ − ̂ | |V x t
x

F x t x c x t
( ( ))

( ( ), ( )) ( )nn nn 3
2

holds for all x ∈ Ωρ̂\Ωρs, and the RNN model ẋ̂ = Fnn(x̂, u) is
well-trained at t = tk such that the modeling error |ν| = |F(x, u, w)
− Fnn(x̂, u)|, ∀t∈ [0, tk] is constrained by |ν|≤ γ |x|. On the basis
of eq16 and eq 4, the time-derivative of V̂ in eq 15 can be
simplified as follows:
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(17)

Let p(t) = V̂(x(t)) and q(t) = Ṽ(x(t)) = V̂(x(tk))− εw(t− tk). It
is readily shown that p(t) and q(t) are 1 functions and p(tk) =

q(tk) = V̂(x(tk)) holds. It follows that ε̇ = ̃̇ = −q t V x t( ) ( ( ))k k w.
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Additionally, using eq 2 and eq 17, ṗ(tk) is bounded by the
following inequality:

̇ = ̂ ̇
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Therefore, it is derived that ṗ(tk) < q̇(tk) for all x(tk) ∈ Ωρ̂\Ωρs

since εw is chosen to satisfy eq 10 (i.e., ρ ε− + ′ Δ ≤ −̃
̂

L Mc
c s x w

3

2
).

Following the Lemma in ref 26, it is shown that the minimal
interevent time Tk satisfies Tk ≥ τ*, where τ* is the smallest
positive solution to the equation p(t) = q(t), due to the
continuity properties of p, q, ṗ, q̇. This completes the proof of
Theorem 3.
Remark 3. Theorem 3 demonstrates that the existence of a

nonzero minimal interevent time Tk is guaranteed for the
nonlinear system of eq 1 subject to the triggering condition of eq
14. This implies that the above sample-and-hold implementa-
tion of the controller u = Φnn(x) ∈ U with the triggering
condition of eq 14 can be applied in practice in which the update
of RNN models cannot be triggered in a continuous-time
manner.
Remark 4. Since the upper bound of the evolution of V(x)

given in eq 14 guarantees the decrease of V(x) over time, the
closed-loop state can be ultimately driven into a small
neighborhood around the origin (i.e., Ωρs) under the controller
u = Φnn(x) ∈ U provided that the RNN models of eq 5 and
control actions are updated every time the condition of eq 14 is
violated (i.e., at t = rk, k = 1, 2, ...). However, considering the fixed
sampling period Δ in the sample-and-hold implementation of
the LMPC of eq 9 and the LEMPC of eq 12, control actions
based on the updated RNN models will not be calculated
immediately after the violation of eq 14 since the control actions
remain the same during the current sampling period. For
example, if the (k + 1)th RNN update is triggered at t = rk + 1,
where rk + 1 ∈ (tk, tk + 1), the control actions are calculated based
on the new RNN models at the next sampling time t = tk + 1
instead of t = rk + 1. Because of the asynchronization between
updating RNN models and recalculating control actions, eq 14
may not hold for all times, and thus, the closed-loop state is no
longer guaranteed to move toward the origin within each
sampling period. To address the above issue, an additional
constraint is proposed for the sampling period in the following
subsection to ensure that the closed-loop state can still be driven
to a neighborhood around the origin under asynchronous
updates of RNN models and control actions.
Stability Analysis of Event-Triggered Feedback Sys-

tems. Since model uncertainty (i.e., bounded disturbances |w(t)
|≤ wm) is introduced into the nonlinear system of eq 1 under the
sample-and-hold implementation of the controller u =Φnn(x)∈
U that incorporates the event-triggered mechanism of eq 14,
closed-loop stability derived for the nominal system of eq 1 does
not hold for all x in Ωρ̂. In this section, we show that the
controller u = Φnn(x) ∈ U can maintain the state inside the
stability regionΩρ̂ for all times and ultimately drive the state into
a region around the origin for the closed-loop system of eq 1
subject to bounded disturbances.

The following proposition is developed to demonstrate that if
the RNN model update is triggered within a certain sampling
period, yet the control actions remain unchanged till the end of
this sampling period, closed-loop stability is still guaranteed in
the sense that the closed-loop state moves toward the origin
within one sampling period for all x ∈ Ωρ̂\Ωρw, where ρw ≥

maxx ∈ Ωρ̂
{V̂(x) | ̂ ̇V x( ) ≥ − c3̂|x|

2 − 2Lw′wm, u = Φnn(x) ∈ U}.
Additionally, ρw is designed such that if the current state is inside
Ωρw, it will not leave Ωρ̂ within one sampling period.

Proposition 2. Consider the system of eq 1 with bounded
disturbances (i.e., |w(t) | ≤ wm) under the sample-and-hold
implementation of the controller u =Φnn(x)∈U. Let ρ̂ > ρw > 0
and Δ satisfy eq 10 and the following inequality:

ρ
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− ′

′

̃
̂( )L w

L M

2 2c
c w w m

x

3

2

(19)

Then, for any x(tk) ∈ Ωρ̂\Ωρw, it holds that

̂ < ̂ ∀ ∈ ]+V x t V x t t t t( ( )) ( ( )), ( ,k k k 1 (20)

Proof. Assuming x(tk) ∈ Ωρ̂\Ωρw, we prove that within one
sampling period, the value of V̂(x(t)) does not exceed that of
V̂(x(tk)) for all t ∈ [tk, tk + 1] in the case that the RNN model
updated at t = rk < tk does not account for current disturbances
w(t) at all. On the basis of eq 15, the time-derivative of V̂(x) in
the presence of disturbances is derived as follows:
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Using the similar expansion that was performed in eq 16, we
derive the following equation:
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Since the RNN model obtained at t = rk guarantees that the
modeling error between the kth RNN model and the uncertain
nonlinear system of eq 1 subject to disturbances w(t), ∀t ∈
[rk − 1, rk] is sufficiently small (i.e., |F(x,Φnn(x), w(rk)) − Fnn(x,
Φnn(x)) | ≤ γ | x|), the following inequalities can be obtained
using eq 4

γ̂ ̇ ≤ − ̂ | | + ̂ | | + ′| − |
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From the above inequality, it is noted that the disturbance term
|w(t) − w(rk)| could be nonzero for all t ∈ [tk, tk + 1] because the
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last updated RNNmodel (i.e., the kth RNNmodel obtained at t
= rk < tk) does not account for time-varying disturbances over t∈
(rk, tk]. Therefore, we show that eq 20 holds for all x ∈ Ωρ̂\Ωρw

under the worst-case scenario that |w(t)−w(rk) | = 2wm, ∀t∈ [tk,
tk + 1]. Specifically, based on eq 21, eq 22, and the fact that

∂ ̂

∂
Φ < − ̂ | | − ′V x t
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for all x(tk) ∈ Ωρ̂\Ωρw, it is obtained that
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It follows that x(t) initially moves toward the origin during t ∈
[tk, tk + 1] due to ̂ ̇ <V x t( ( )) 0 at t = tk. Next, we show that
V̂(x(t)) < V̂(x(tk)) holds for all t ∈ (tk, tk + 1] provided that the
sampling period Δ is sufficiently small. From eq 4a and eq 23, it
is obtained that
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Thus, the evolution of V̂(x(t)), t ∈ [tk, tk + 1] is calculated as
follows by letting τ = t − tk:
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Therefore, if the sampling period satisfies eq 19, it is guaranteed
that V̂(x(t)) < V̂(x(tk)) for all t∈ (tk, tk +1], where tk +1≔ tk +Δ.
This implies that for all x(tk) ∈ Ωρ̂\Ωρw, the state is bounded in

Ωρ̂ for all times, and can be ultimately driven intoΩρw under u =
Φnn(x) ∈ U.
Remark 5. Although the controller u = Φnn(x) ∈ U is able to

drive the state toward the origin for all x ∈ Ωρ̂\Ωρw, the rate of
convergence could be slow due to the large model mismatch if
the RNN models are not updated following the event-triggering
mechanism of eq 14. Therefore, to accelerate convergence, it is
necessary for the RNN models to be updated online to improve
approximation performance. For example, the online update of
the k + 1th RNN model is triggered at t = rk + 1 to capture the
dynamics of the nonlinear system of eq1 accounting for time-
varying disturbances since the last update invocation (i.e., t∈ [rk,
rk + 1]). As a result, the new RNN models work compatibly with
the controller to stabilize the nonlinear system of eq 1 until the
model mismatch increases to an undesired level and eventually
leads to the next violation of eq 14.
Remark 6. Suppose that an online update of RNN models is

triggered at some point within one sampling period (e.g., rk∈ (tk,
tk + 1)). Since the control actions remain unchanged till the next
sampling step tk + 1 due to the sample-and-hold implementation
of the controller, Proposition 2 demonstrates that for any x(tk)∈
Ωρ̂\Ωρw, the state x(t), ∀(tk, tk +1] can still move toward a smaller
level set of V̂(x) if the sampling period Δ satisfies eq 19. The
above stability property facilitates and eases the incorporation of
the event-triggered update of RNNmodels into the LMPC of eq
9 and the LEMPC of eq 12 where a fixed sampling period Δ is
used.

Error-Triggered Online RNN Update. The above sections
have demonstrated that the closed-loop state of the system of eq
1 subject to bounded disturbances can be driven intoΩρw under
u = Φnn(x) ∈ U with the online update of the RNN models.

Since ̂ ̇V x t( ( )) is no longer guaranteed to be rendered negative
within one sampling period under the sample-and-hold
implementation of u = Φnn(x) ∈ U, in this section, another
event-triggering mechanism based on errors between predicted
states and measured states is developed to update the RNN
models for all x ∈ Ωρw. To differentiate it with the event-

triggered mechanism developed for x ∈ Ωρ̂\Ωρw in eq 14, it will
be termed the error-triggered online RNN update throughout
the manuscript. Specifically, following the error-triggering
mechanism in ref 24 a moving horizon error metric Ernn(tk) is
proposed to indicate the prediction accuracy of RNNmodels at t
= tk as follows:

∑
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| − |
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− −

−
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x t
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N
p k i k i

k i
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0
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(26)

where Nb is the number of sampling periods before tk that
contribute to the quantification of the prediction error. xp(tk − i),
i = 0, ..., Nb are the predictions of the past states using RNN
models, while x(tk − i) are the past state measurements from the
actual nonlinear system of eq 1 under the same control actions. A
small positive real number δ is added in the denominator of eq
26 to avoid the division by small numbers when x(tk − i)
approaches zero. The RNN models are updated if the following
inequality is satisfied (i.e., the accumulated error Ernn(tk) exceeds
the threshold ET):

>E t E( )k Trnn (27)

where ET is determined via extensive closed-loop simulations.
Specifically, we first choose an appropriate length Nb for the
moving horizon such that it is not too short to frequently trigger
the update of RNN models, nor too long to cause data-storage
burden. Subsequently, on the basis of extensive closed-loop
simulations, the threshold ET is determined off-line to trigger an
RNN model update if the state error has accumulated to an
undesired level. Additionally, common measurement noise
(sufficiently small compared to time-varying disturbances from
model uncertainty) and nonzeromodeling error of RNNmodels
should be accounted for in determining the value of ET such that
they do not trigger an update of RNN models in most times.
Lastly, after the RNNmodel is updated, for example, at t = rk, all
the errors before t = rk are reset to zero.

Remark 7. To ensure that an online update of RNN models
can be accomplished within one sampling period, a new
ensemble of RNN models is obtained based on previous RNN
models and most recent process data. Specifically, instead of
training a new ensemble of RNN models from randomly
initialized weights, the weights in previous RNN models are
imported as the initial weight values for the updated ensemble of
RNN models. Additionally, it should be noted that only the
initial ensemble of RNN models (i.e., pretrained models for the
nominal system of eq 1) is trained based on the entire data set
from extensive open-loop simulations. All the following updated
RNN models (i.e., fine-tuning of RNN models) are developed
using new collected process data.

Remark 8. The online update of RNN models via the fine-
tuning method (i.e., using most recent data set only) has many
advantages. First, since we initialize RNN weights which are
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obtained from previous RNN models, some of the underlying
knowledge obtained from old data sets is transferred to the new
RNN models. Additionally, by training new RNN models with
the most recent data set, the loss function in RNN learning
algorithm is calculated based on the new data that captures
nonlinear dynamics subject to recent disturbances only.
Therefore, the updated RNN models are more capable of
making accurate predictions accounting for recent disturbances.
Moreover, the computation time for updating an RNNmodel is
significantly reduced due to the small size of the newly collected
data set compared to the original training data set. However,
because of insufficient data in the new training data set, the
updated RNN models are not guaranteed to approximate
nonlinear dynamics subject to disturbances in the entire
operating region. Therefore, RNN models will keep adapting
to disturbances via the implementation of event-triggered and
error-triggered mechanisms in this section, until they are
accurate enough for LMPC and LEMPC to achieve closed-
loop stability.

■ INTEGRATIONOFONLINE UPDATE OF RNNSWITH
MPC

In this section, we demonstrate the implementation strategies
for online updating RNN models in LMPC and LEMPC,
respectively, following the event-triggering and error-triggering
mechanisms introduced in the previous section. Subsequently,
closed-loop stability is established for the nonlinear system of eq
1 subject to time-varying bounded disturbances under the
sample-and-hold implementation of the LMPC of eq 9 and the
LEMPC of eq 12, respectively.
Implementation Strategy for Online RNN Learning

Within LMPC. On the basis of the event-triggered and error-
triggered control schemes proposed in the previous sections, the
implementation strategy (Figure 2) of the online RNN learning
is integrated with the LMPC of eq 9 as follows:

1. An initial RNN model ensemble that is utilized in the
LMPC of eq 9 is derived from extensive open-loop
simulations for the nominal system of eq 1 (i.e., w(t)≡ 0)
following the construction method in ref 10.

2. Starting from an initial condition x0 ∈ Ωρ̂\Ωρw, the
nonlinear system of eq 1 is operated under LMPC in a
sample-and-hold fashion with states being continuously
monitored and collected. The update of RNN models is
triggered the moment that eq 14 is violated and the
optimal control actions u*(t) will be calculated by the
LMPC using the new RNN model ensemble at the next
sampling time.

3. Within finite sampling periods, the closed-loop state is
driven intoΩρw under LMPC, after which we switch to the
error-triggering mechanism as discussed in the section
“Error-triggered Online RNN Update”. Specifically, if the
current state stays in Ωρw, the moving horizon error
detector of eq 26 and its threshold ET are utilized to
determine whether an update of RNN models is in
demand. However, if the current state leaves Ωρw due to
disturbances, the event-triggering mechanism in Step 2
will be re-activated to trigger an RNN model update.

4. If the closed-loop state eventually enters a small
neighborhood around the origin (i.e., Ωρmin

defined in eq
11), which is considered to be practically stable for the
nominal system of eq 1, then both the event-triggering
and the error-triggering mechanisms are taken off-line
until the state leaves Ωρmin

again. Figure 1 shows a
trajectory of a Lyapunov function under the LMPC with
the above implementation strategy of on-line update of
RNN models.

The following theorem is established to show that under the
LMPC that incorporates the above implementation strategy of
the event-triggered online update of RNN models, the closed-
loop state of the nonlinear system of eq 1 is bounded in the
stability region Ωρ̂ for all times, and ultimately enters Ωρw.
Additionally, if the disturbances in the nonlinear system of eq 1
remain unchanged after some time, the closed-loop state can be
ultimately bounded in a small neighborhood Ωρmin

around the
origin.

Theorem 4. Consider the closed-loop system of eq 1 under
the LMPC of eq 9 with the online update of the RNN models.

Figure 1. Evolution of Lyapunov function (blue trajectory) under the LMPCwith the event-triggered condition of eq 14 and error-triggered condition
of eq 27, where the dashed lines with the slope −εw represent the threshold lines in eq 14.
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LetΔ > 0, εw > 0 and ρ̂ > ρmin > ρs satisfy eq 10, eq 11, and eq 19.
Then, given any initial state x0 ∈ Ωρ̂, if the ensemble of RNN
models is updated following the implementation strategy in this
section with the triggering events of eq 14 and eq 27, then it is
guaranteed that under the LMPC of eq 9, x(t)∈Ωρ̂, ∀ t≥ 0, and
x(t) ultimately enters Ωρw. Additionally, if the disturbances w(t)
remain unchanged after t = Ts > 0, it holds that limt → ∞V̂(x(t))
≤ ρmin for the closed-loop system of eq 1.
Proof.We first prove that the state of the closed-loop system

of eq 1 can be driven into Ωρw for any initial condition x0 ∈
Ωρ̂\Ωρw. Since the RNN model is updated online following the
condition in eq 14, the value of V̂(x(t)) decreases at least at the
rate of −εw with respect to time if eq 14 is satisfied. However, in
the case that an update of RNN models is triggered by the
violation of eq 14 and the control actions remain unchanged
until the next sampling step, it is shown in Proposition 2 that the
state can still be driven to a smaller level set of V̂(x) within one
sampling period. Therefore, it is guaranteed that the state
ultimately converges to Ωρw. On the other hand, if x(tk) ∈ Ωρw,
the online update of RNN models is subject to the error-
triggering mechanism of eq 27. It is noted that the closed-loop
state is not guaranteed to remain inside Ωρw for all times in the
presence of bounded disturbances. However, once the state
leavesΩρw, it is shown by the characterizationmethod ofΩρw that
the state will not leave the closed-loop stability regionΩρ̂ within
one sampling period, such that the state can be driven into Ωρw

again under the LMPC of eq 9 with the event-triggering system
of eq 14.
Next, we prove that after the disturbances w(t) remain

unchanged for all t ≥ Ts > 0, the state of the closed-loop system
of eq 1 is ultimately unbounded inΩρmin

. Specifically, sincew(t) =
w(Ts), ∀ t≥Ts, the last updated RNNmodels satisfy |ν| = |F(x, u,
w(Ts)) − Fnn(x, u)|≤ γ|x|. Therefore, based on eq 10, eq 11 and
eq 23, the time-derivative of V̂(x), ∀t ∈ [tk, tk + 1), where tk ≥ Ts,
is bounded for all x(tk) ∈ Ωρ̂\Ωρs as follows:
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(28)

This implies that well-conditioned RNN models are derived to
successfully capture the dynamics of nonlinear system of eq 1 in
the presence of constant disturbances w(t) after t = Ts, and
therefore, the closed-loop state can be ultimately driven intoΩρs.

Following the definitions ofΩρnn,Ωρmin
, and the proof in ref 10, it

is demonstrated that the closed-loop state is maintained in a
small neighborhood Ωρmin

around the origin in the presence of
sufficiently small modeling error |ν|. This completes the proof of
convergence of the state to Ωρw within a finite time, and
boundedness of the state inΩρ̂, ∀t≥ 0 for the closed-loop system
of eq 1 with x0 ∈Ωρ̂ under the LMPC with the online update of
RNN models.
Implementation Strategy for Online RNN Learning

Within LEMPC. The integrated framework (Figure 2) of
implementing online RNN learning within the LEMPC of eq 12
is presented as follows:

Step 1. Similar to the implementation strategy for LMPC, an
initial RNN model ensemble that is utilized in the
LEMPC of eq 9 is derived from extensive open-loop
simulations for the nominal system of eq 1 (i.e., w(t) ≡
0) following the construction method in ref 14.

Step 2. Starting from an initial condition x0 ∈ Ωρ̂, the nonlinear
system of eq 1 is operated under LEMPC in a sample-
and-hold fashion with states being continuously
monitored and collected. Specifically, if x(tk) ∈ Ωρ̂e,
the RNN models are updated following the error-
triggered mechanism of eq 27. However, if x(tk) ∈
Ωρ̂\Ωρ̂e, both the event-triggered mechanism of eq 14
and the error-triggered mechanism of eq 27 are
activated, in which the update of RNN models is
triggered by the one that violates the constraint first.

Step 3. Since the event-triggered mechanism of eq 14 is
activated for all x ∈ Ωρ̂\Ωρ̂e, the closed-loop state is

guaranteed to move intoΩρ̂e within finite sampling steps.
Therefore, under the time-varying operation of LEMPC
with online updating RNNs, optimal process economic
benefits and closed-loop stability are achieved simulta-
neously for the closed-loop system of eq 1.

The following theorem demonstrates that under the LEMPC
with online updating RNN models, the closed-loop state of the
nonlinear system of eq 1 is maintained in the stability regionΩρ̂

for all times.
Theorem 5. Consider the closed-loop system of eq 1 under

the LEMPC of eq 12 with the online update of the RNNmodels
via the above implementation strategy. LetΔ > 0, εw > 0 and ρ̂ >
ρ̂e > ρw > 0 satisfy eq 10, eq 19, and the following inequality:

ρ ρ
ρ

κ̂ ≤ ̂ −
̂ ̂

̂
′ Δ − ′ Δ

c
c

f f( ) ( ( ))e w w
4

1

2

(29)

where

Figure 2. Algorithm of integrating online update of RNN models with
LMPC and LEMPC.
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Then, for any initial condition x0∈Ωρ̂, the closed-loop state x(t)
is bounded in the stability region Ωρ̂, ∀t ≥ 0.
Proof. We prove the boundedness of state in Ωρ̂ for the

following two cases: x(tk)∈Ωρ̂e and x(tk)∈Ωρ̂\Ωρ̂e. Specifically,

we first prove that if x(tk)∈Ωρ̂e, the state of the nonlinear system
of eq 1 subject to bounded disturbances does not leaveΩρ̂within
one sampling period (i.e., ∀t∈ [tk, tk +1)). Following the proof in
refs 34 and 35, the time-derivative of the state error vector e(t) =
x(t) − x̂(t) is obtained ∀x, x̂ ∈ Ωρ̂, u ∈ U, and w(t) ∈ W as
follows:
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where it is assumed that the last updated RNN models are
obtained at t = rk ≤ tk. Because measured states are fed back to
the controller at every sampling step, it follows that x(t) = x̂(t)
(i.e., e(0) = 0). Thus, the upper bound for |e(t)| is derived for all
x(t), x̂(t) ∈ Ωρ̂ and |w(t)| ≤ wm as follows:
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Additionally, using the Taylor series expansion of V̂(x) around x̂
and eq 7, the following inequality is derived ∀x, x̂ ∈ Ωρ:
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where κ > 0. Therefore, from eq 32, it is demonstrated that ifΩρ̂e

is characterized to satisfy eq 29, the closed-loop state x(t), t∈ [tk,
tk +1) is guaranteed to be bounded inΩρ̂ since the predicted state
x̂(t) is maintained inside Ωρ̂e by the constraint of eq 9e.

On the other hand, if x(tk) ∈Ωρ̂\Ωρ̂e, the constraint of eq 12f
is activated such that the control action u decreases the value of
V̂(x̂) based on the states predicted by the RNNmodel of eq 12b
within the next sampling period. Additionally, under the
coimplementation of event-triggered mechanisms of eq 14 and
eq 27, it is ensured that the state of the closed-loop system of eq
1 satisfies V̂(x(t)) < V̂(x(tk)), ∀t ∈ (tk, tk + 1), and therefore, it
never leaves Ωρ̂, and can be eventually driven back to Ωρ̂e. This
completes the proof of boundedness of the closed-loop state in
Ωρ̂ for all x0 ∈ Ωρ̂ under LEMPC.
Remark 9. As shown in Figure 2, the error-triggered and the

event-triggered update of the RNNmodel are employed for both
tracking MPC and economic MPC. Specifically, in tracking
MPC, the event-triggered model update that is based on the
decreasing rate of Lyapunov function value is first implemented
to ensure that the closed-loop state is able to converge to a
neighborhood around the origin under LMPC (i.e., Ωρw). For

the state in Ωρw, the error-triggered model update is activated
such that the state can be ultimately driven to the origin using
the updated RNN models that capture the process dynamics

accounting for disturbances. With regards to the implementa-
tion of the RNN model update in EMPC, the error-triggered
mechanism is activated for any state in Ωρ̂e, while the event-

triggered model update works for the state inΩρ̂\Ωρ̂e. Under the
integration of the error-triggered and the event-triggered model
updates, the desired closed-loop performance is achieved under
EMPC in terms of guaranteed closed-loop stability (i.e.,
boundedness of state in Ωρ̂) and economic optimality.

Remark 10. The proposed online update of RNN models for
MPC is not limited to processes/input spaces of low dimension.
Given a nonlinear system with state dimension of n, and input
dimension of m, the input to the RNN model is of dimension m
+ n, and the output is of dimension n. The computational
complexity of training an RNNmodel is approximately linear to
the size of input space, and the size of each hidden layer. The
computation time is not an issue for the initial RNNmodel since
it is trained off-line based on the entire data set. Additionally,
when updating RNNmodels online, we only use themost recent
data to update the RNN model instead of training a new RNN
from the beginning. Therefore, the computation time is
significantly reduced compared to that for the initial RNN
model, and is less than one sampling period in our case.
Moreover, parallel computing and hardware acceleration can be
employed to further improve computational efficiency of
training RNN models for large-scale systems.

■ APPLICATION TO A CHEMICAL PROCESS
EXAMPLE

A chemical process example is used to illustrate the application
of an online update of RNN models for LMPC and LEMPC,
respectively. Specifically, a well-mixed, nonisothermal continu-
ous stirred tank reactor (CSTR) in which an irreversible second-
order exothermic reaction takes place is considered. The
reaction transforms a reactant A to a product B (A → B). The
inlet concentration of A, the inlet temperature, and the feed
volumetric flow rate of the reactor are CA0, T0, and F,
respectively. The CSTR is equipped with a heating jacket that
supplies/removes heat at a rateQ. The CSTR dynamic model is
described by the following material and energy balance
equations:

= − − −C
t

F
V

C C k C
d
d

( ) eA
A A

E RT
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/ 2
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(33b)

where CA is the concentration of reactant A in the reactor, V is
the volume of the reacting liquid in the reactor, T is the
temperature of the reactor, and Q denotes the heat input rate.
The concentration of reactant A in the feed is CA0. The feed
temperature and volumetric flow rate are T0 and F, respectively.
The reacting liquid has a constant density of ρL and a heat
capacity of Cp. ΔH, k0, E, and R represent the enthalpy of
reaction, pre-exponential constant, activation energy, and ideal
gas constant, respectively. Process parameter values are listed in
Table 1.
We study the operation of the CSTR under LMPC and

LEMPC with the same unstable steady-state (CAs, Ts) = (1.95
kmol/m3,402 K), and (CA0s Qs) = (4 kmol/m3,0 kJ/h). The
manipulated inputs are the inlet concentration of species A and
the heat input rate, which are represented by the deviation
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variables ΔCA0 = CA0 − CA0s, ΔQ = Q − Qs, respectively. The
manipulated inputs are bounded as follows: |ΔCA0 |≤ 3.5 kmol/
m3 and |ΔQ |≤ 5× 105 kJ/h. Therefore, the states and the inputs
of the closed-loop system are xT = [CA − CAsT − Ts] and uT =
[ΔCA0 ΔQ], respectively, such that the equilibrium point of the
system is at the origin of the state-space, (i.e., (xs*, us*) = (0,0)).
In this work, we consider the model variations caused by the
following disturbances. (1) The feed flow rate F is varying due to
an upstream disturbance that F becomes time-varying with the
constraint: 0≤ F≤ 12m3/h. (2) Additionally, catalyst activation
is accounted for during the operation of the CSTR of eq 33,
which leads to a reduction in the reaction pre-exponential factor
k0 with the constraint: 0 < k0 < 8.46 × 106 m3/kmol h.
The control Lyapunov function V(x) = xTPx is designed with

the following positive definite P matrix:

=P
1060 22
22 0.52

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ (34)

Then, the closed-loop stability region Ωρ for the CSTR is
characterized as a level set of the Lyapunov function with ρ̂ =
368 inside the region ϕu, from which the origin can be rendered
exponentially stable under the controller u = Φ(x) ∈ U.
The explicit Euler method with an integration time step of hc =

10−4 h is used to numerically simulate the dynamic model of eq
33. The nonlinear optimization problem of the LMPC of eq 9 is
solved using the python module of the IPOPT software
package,36 named PyIpopt with the sampling period Δ = 10−2

h. The initial ensemble of RNN models is generated following
the data generation and RNN learning algorithm in refs 10 and
14. Parallel computing is employed to carry out the calculations
of multiple RNN predictions concurrently using a Message
Passing Interface (MPI) for the Python programming language,
named MPI4Py.37

In this work, we assume that there is no noise in real-time data.
However, in the case where the state measurements are noisy,
the proposed online update of RNN models can still be applied
via a data preprocessing step to smooth the measurement data.
For example, Savitzky-Golay filter, a generalized moving average
based on the least-squares fitting, can be applied to smooth noisy
sampled data without distorting the data tendency before
feeding real-time data into the RNN model.38,39

Remark 11. The matrix P in the Lyapunov function is
derived via trial and error with an attempt to maximize the
stability region (i.e., the largest level set Ωρ within the set of
states in which V̇ is rendered negative under the stabilizing
controller u = Φ(x) ∈ U). Different values of P will generate
different set of states where V̇ < 0, and therefore, affect the size
and the shape of the stability region.
Closed-Loop Simulation under LMPC. The control

objective of LMPC is to operate the CSTR at the unstable
equilibrium point (CAs, Ts) by manipulating the heat input rate
ΔQ and the inlet concentration ΔCA0 under the LMPC using

RNN models. The closed-loop simulation results for the
nominal system of eq 33 under LMPC are shown in ref 10,
where it is demonstrated that the state converges to a small
neighborhoodΩρmin

around the origin ultimately. The simulation
results for the uncertain system of eq 33 under LMPC with an
online update of the RNNmodel ensemble are shown in Figures
3−9. Specifically, the feed flow rate F is increased to 12 m3/h at t

= 0.05 h, and k0 is gradually decreased to 0.8k0, 0.6k0, and 0.4k0 at
t = 0.1, 0.2, and 0.4 h, respectively, and remains unchanged
afterward. In Figure 3, it is shown that the closed-loop state
trajectory under LMPC without the online update of the RNN
model ensemble (i.e., using the initial RNNmodel ensemble for
all times) oscillates around the origin due to disturbances, while
the LMPC with the online update of the RNN model ensemble
successfully drives the closed-loop state into a small neighbor-
hood around the origin. Additionally, in Figure 4 and Figure 5, it
is shown that the closed-loop states under the LMPC with the
online RNN update are stabilized at their steady-states after t =
0.2 h, while those under the LMPC without the online RNN
update show considerable oscillation since the initial RNN
model ensemble is not able to capture the dynamic behavior of
the system of eq 33 in the presence of disturbances. Therefore,
the dynamic performance of the closed-loop system of eq 33
under the LMPC is significantly improved through the online
update of the RNN model ensemble.
Figure 6 shows the evolution of the moving horizon error

detector Ernn(t) for the closed-loop system of eq 33 under the
LMPC of eq 9 with the error-triggered online update of the
RNN models. Specifically, since it takes only one sampling step
for the closed-loop state to enter Ωρw, the event-triggering
condition of eq 14 is never triggered in this case. Additionally, in
Figure 6, it is shown that the update of the RNN models is
triggered two times with the threshold ET = 15. After the closed-
loop state enters a small neighborhood around the origin (i.e.,
Ωρmin

), the error-triggering system is off-line according to the
implementation strategy (i.e., Step 4) for LMPC.
Figure 7 depicts the evolution of the Lyapunov function value,

V̂(x), of the closed-loop state, under the LMPC with and
without the online update of the RNN models, respectively. In
Figure 7, the closed-loop state under the online update enters
Ωρmin

after t = 0.1 h in the presence of disturbances, while it

oscillates heavily and never enters Ωρmin
under the LMPC

without online model update. Finally, in Figure 8 and Figure 9,
the manipulated input profiles for u1 = ΔCA0 and u2 = ΔQ are

Table 1. Parameter Values of the CSTR

T0 = 300 K F = 5 m3/h
V = 1 m3 E = 5 × 104 kJ/kmol
k0 = 8.46 × 106 m3/kmol h ΔH = − 1.15 × 104 kJ/kmol
Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K
ρL = 1000 kg/m3 CA0s = 4 kmol/m3

Qs = 0.0 kJ/h CAs
= 1.22 kmol/m3

Ts = 438 K

Figure 3. State-space profiles for the closed-loop CSTR under the
LMPC of eq 9 with and without the online update of the RNN model
ensemble for the initial condition (−1.5, 70).
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presented for both LMPCs. Specifically, when the RNN models
are updated online, u1 in Figure 8 settles to its steady-state value
after t = 0.12 h. However, without the online update of the RNN
models, u1 shows sustained oscillation between the maximum
and minimum saturated points, which might significantly
shorten the lifespan of the actuators. Similarly, in Figure 9, the

LMPC with the online update of the RNN models shows
smoother control actions u2 compared to that without the online
model update.

Closed-Loop Simulation under LEMPC. The control
objective of LEMPC is to maximize the profit of the CSTR
process of eq 33 by manipulating the inlet concentration ΔCA0

Figure 4. State profiles (x1 = CA − CAs) for the initial condition (−1.5, 70) under the LMPC of eq 9 with and without the online update of the RNN
model ensemble, respectively.

Figure 5. State profiles (x2 =T−Ts) for the initial condition (−1.5, 70) under the LMPCof eq 9 with and without the online update of the RNNmodel
ensemble, respectively.

Figure 6.Value of Ernn(t) of eq 26 at each sampling time for the closed-loop system of eq 33 under the LMPCof eq 9 with error-triggered online update
of RNN models.
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and the heat input rateΔQ, and meanwhile maintain the closed-
loop state trajectories in the stability region Ωρ̂ for all times
under LEMPC. The objective function of the LEMPC optimizes
the production rate of B as follows:

̃ = −l x u k C( , ) ee
E RT

A0
/ 2

(35)

Additionally, the following material constraint is utilized in the
LEMPC of eq 12 to make the averaged reactant material
available within the operating period tp to be its steady-state

value, CA0s (i.e., the averaged reactant material in deviation form,
u1, is equal to 0).

∫ τ τ =
t

u
1

( ) d 0 kmol/m
p

t

0
1

3p

(36)

In ref 14 it has been demonstrated that the closed-loop state of
the nominal system of eq 33 is bounded inΩρ̂ for all times under
LEMPC. In this work, we consider the same disturbances that
we have performed for the closed-loop system of eq 33 under
LMPC. Additionally, the CSTR system of eq 33 is operated
under LEMPC for five consecutive operation periods with tp =
0.2 h for each operation period. The simulations results for the
closed-loop system of eq 33 in the presence of disturbances are
shown in Figures 10−16. Specifically, in Figure 10, it is shown

that the closed-loop state circles inside the stability region Ωρ̂

due to the time-varying operation under LEMPC. Additionally,
it is demonstrated that the closed-loop state is bounded inΩρ̂ for
all times under the LEMPC of eq 12 with the online update of
the RNN models. From Figure 11, it is shown that the moving
horizon error detector Ernn exceeds the threshold twice under
the LEMPC with the online update of the RNNmodels (i.e., the
RNN update is triggered twice), and ultimately remains at a low
value (below the threshold) after a more accurate ensemble of
RNN models are derived to account for process disturbances.
However, it is observed that the error detector Ernn under the
LEMPC without the online update of the RNN models
maintains at a high level (close to the threshold) for all times,

Figure 7. Evolution of V̂(x) for the closed-loop system of eq 33 under the LMPC of eq 9 with and without the error-triggered online update of RNN
models.

Figure 8. Manipulated input profiles (u1 = ΔCA0) for the initial
condition (−1.5, 70) under the LMPC of eq 9 with and without the
online update of the RNN model ensemble, respectively, where the
black dotted lines represent the upper and lower bound for u1.

Figure 9.Manipulated input profiles (u2 =ΔQ) for the initial condition
(−1.5, 70) under the LMPC of eq 9 with and without the online update
of the RNNmodel ensemble, respectively, where the black dotted lines
represent the upper and lower bound for u2.

Figure 10. State trajectories for the closed-loop CSTR under the
LEMPC of eq 12 with and without the online update of the RNNmodel
ensemble for the initial condition (0, 0).

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.9b03055
Ind. Eng. Chem. Res. 2020, 59, 2275−2290

2287

http://dx.doi.org/10.1021/acs.iecr.9b03055


which implies that the deviation between the predicted state and
the actual states is considerable, and may lead to undesired
closed-loop performance. Moreover, it is observed in Figure 14
that the event-triggered mechanism of eq 14 is never activated in
this case since V̂(x) decreases rapidly for all states outside Ωρ̂e,
and thus, satisfies V̂(x(t))≤ V̂(x(tk))− εw(t− tk), t∈ [tk, tk + 1).
On the basis of the state profiles shown in Figure 12 and

Figure 13, the evolution of the value of V̂(x) for the closed-loop
system of eq 33 is compared between the LEMPC with and
without the online update of the RNN models in Figure 14.
Specifically, it is shown that V̂(x) under LEMPC with the online
update of the RNNmodels remains below 368 (i.e., the value of
ρ̂ for the closed-loop stability region Ωρ̂) for all times, while it
exceeds 368 under the LEMPC without the online update of the
RNN models around t = 0.2 h and t = 0.6 h. Additionally, since
the accuracy of the RNN prediction for nonlinear dynamics of
eq 33 subject to disturbances is improved via the online update
using real-time process data, V̂(x) is smoothly maintained below
ρ̂e during the last 0.4 h. However, V̂(x) based on the states under
the LEMPC without the online update of the RNN models
shows sustained oscillation around ρ̂e due to significant model
mismatch as indicated in Figure 11.
Manipulated input profiles for the closed-loop system of eq 33

are given in Figure 15 and Figure 16, in which it is shown that the
input constraints on ΔCA0 and ΔQ are satisfied for all times.

Additionally, it is observed in Figure 15 that the closed-loop
system initially consumes the maximum allowable ΔCA0 (i.e.,
ΔCA0 = 3.5kmol/m3) within each operation period (tp = 0.2 h)
to maximize the production rate of B, and therefore, has to lower
the reactant consumption near the end of each operation period
to meet the material constraint of eq 36 for all times.
Lastly, the total economic benefits achieved within five

operation periods are calculated for the LEMPC with the online

Figure 11.Value of Ernn(t) of eq 26 at each sampling time for the closed-loop system of eq 33 under the LEMPC of eq 12 with the error-triggered online
update of the RNN models.

Figure 12. State profiles (x1 = CA − CAs) for the initial condition (0, 0) under the LEMPC of eq 12 with and without the online update of the RNN
model ensemble, respectively.

Figure 13. State profiles (x2 = T − Ts) for the initial condition (0, 0)
under the LEMPC of eq 12 with and without the online update of the
RNN model ensemble, respectively.
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update of the RNN models and the steady-state operation (i.e.,
the system of eq 33 is operated at (CAs, Ts) for all times) using
the following equation

∫=L l x u t( , ) dE

t

e
0

5 p

It is shown that LE = 16.74 for the closed-loop system under
LEMPC and LE = 10.23 for the steady-state operation within 1 h.
Therefore, it is concluded that time-varying operation of the
system of eq 33 under the LEMPC of eq 12 with the online
updating RNN models achieves higher economic benefits
compared to the steady-state operation, and outperforms that

without the online update of RNNmodels in terms of smoother
operation and stronger properties of robustness.

Remark 12. The averaged computation time for solving the
LMPC optimization problem without the online update of the
RNN models at each sampling step is around 11 s, which is less
than one sampling period (i.e., Δ = 0.01 h = 36 s), while the
averaged computation time for solving the LEMPC optimiza-
tion problem without the online model update is less than 8 s.
Additionally, the computation time for online training/updating
an RNN model within LMPC/LEMPC is around 15 s.

Remark 13. The quasi-periodicity of closed-loop state and
input profiles is due to the reactant material constraint that is
incorporated in LEMPC. Since it is required that the averaged
reactant material used within each operating period is equal to
its steady-state value (i.e., reactant material constraint), LEMPC
consumes the maximum allowable reactants and energy at the
early stage of each operating period (owing to the second-order
reaction rate to maximize reaction rate), and lowers the reactant
consumption near the end of the period to meet the material
constraint. In the simulation, the CSTR system is operated
under LEMPC for five operating periods, and therefore, the state
and input profiles exhibit quasi-periodic behavior.

■ CONCLUSION
This work focused on the real-time implementation of machine
learning-based MPC and EMPC to nonlinear processes subject
to time-varying disturbances. On the basis of the ensemble of
RNNmodels that were obtained from extensive simulation data,
Lyapunov-based MPC was developed to drive the state of the
nominal closed-loop system to the steady-state, and Lyapunov-
based EMPC was developed to maintain the state in the closed-
loop stability region, respectively. Subsequently, event-triggered
and error-triggered mechanisms were incorporated in LMPC
and LEMPC to update the RNN models online using the most
recent process data that account for nonlinear dynamics in the
presence of disturbances. The application of the proposed
methodology to a chemical process example demonstrated that
the closed-loop state converged to the origin under LMPC, and
remained bounded in the closed-loop stability region under
LEMPC with improved dynamic performance compared to
those without the online update of the RNN models.
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