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a b s t r a c t 

In this work, physics-based recurrent neural network (RNN) modeling approaches are proposed for a gen- 

eral class of nonlinear dynamic process systems to improve prediction accuracy by incorporating a priori 

process knowledge. Specifically, a hybrid modeling method is first introduced to integrate first-principles 

models and RNN models. Subsequently, a partially-connected RNN modeling method that designs the 

RNN structure based on a priori structural process knowledge, and a weight-constrained RNN modeling 

method that employs weight constraints in the optimization problem of the RNN training process are 

developed. The proposed physics-based RNN models are utilized in model predictive controllers and ap- 

plied to a chemical process network example to demonstrate their improved approximation performance 

compared to the fully-connected RNN model that is developed as a black box model. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Recurrent neural networks (RNN), a class of artificial neural

networks that can represent temporal dynamic behavior through

feedback loops in neurons, have been utilized to model nonlin-

ear dynamic systems and have been incorporated in the design

of model predictive controllers (MPC) that optimize process per-

formance based on RNN prediction results [23,24] . For example,

in Wu et al. [24,25] an ensemble of RNN models were developed

for a continuous stirred tank reactor and utilized in the RNN-based

MPC to operate the system at its steady-state while maintaining

closed-loop state in a stability region. 

However, as neural network modeling is generally treated as

a black-box modeling approach where no physical knowledge is

utilized, interpretability and optimality of neural network model-

ing remain questionable. On the other hand, chemical processes

have been studied for a long time by researchers and engineers,

where first-principles knowledge has been obtained based on their

predefined and well-known structure. For example, a chemical

plant is designed in a sequence of intricate operation units that

perform reactions, separations, among many others operations in

which raw materials are fed in the first unit and products are ob-

tained in the last unit in its simplest structure. Additionally, it is
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lso very common that some processes are highly coupled among

nits through reflux of unreacted material that is recycled to up-

tream units to maximize the production [12,20] . However, at this

tage, the incorporation of first-principles or physical knowledge

f chemical processes into RNN modeling has not been thoroughly

tudied. 

Fully-connected neural networks are developed based on the

ssumption that all the inputs affect all the neural network neu-

ons, followed by all the outputs. However, it is noted that in real-

stic chemical processes, it is common that only a portion of inputs

ffect a portion of outputs, for example, in a multiple unit pro-

ess in which upstream units affect downstream units but not in

he opposite direction. In order to make better use of such a pri-

ri process knowledge, many researchers have started to incorpo-

ate physical knowledge of systems in the neural network formula-

ion (e.g., [1,6,7,10,11,15] ). For example, hybrid models and gray-box

odels have been developed to introduce chemical process knowl-

dge into data-driven modeling in early works [2–5,14,18,19,26,29] .

ecently, a neural network has been specialized by including par-

ial physical knowledge in its structure in Lu et al. [11] . In this pa-

er, the nodes of the first layer represent the variables with phys-

cal meaning and the connection with the inputs are based on the

mpact between them. It was demonstrated that the resulting neu-

al networks were able to improve the performance when com-

ared with a fully-connected network. 

Motivated by the above considerations, in this work, we pro-

ose a hybrid model, a partially-connected RNN model, and a

eight-constrained RNN model to incorporate process physical

https://doi.org/10.1016/j.jprocont.2020.03.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2020.03.013&domain=pdf
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nowledge into RNN modeling and training. Subsequently, the pro-

osed partially-connected RNN model and the weight-constrained

NN model are incorporated in the design of MPC and of economic

PC (EMPC) to provide predictions of future states for the opti-

ization problem of MPC and EMPC that optimize process perfor-

ance in terms of closed-loop stability and economic optimality.

inally, the RNN-MPC and RNN-EMPC are applied to a chemical

rocess example to demonstrate their improved closed-loop per-

ormances in terms of faster convergence to the steady-state un-

er RNN-MPC and enhanced process economic profits under RNN-

MPC than the controllers using a fully-connected RNN model. 

. Preliminaries 

.1. Notation 

The Euclidean norm of a vector is denoted by the operator | · |

nd the weighted Euclidean norm of a vector is denoted by the

perator | · | Q where Q is a positive definite matrix. x T denotes

he transpose of x . The notation L f V ( x ) denotes the standard Lie

erivative L f V (x ) := 

∂V (x ) 
∂x 

f (x ) . Set subtraction is denoted by “\ ”,

.e., A \ B := { x ∈ R 

n | x ∈ A, x �∈ B }. 

.2. Class of systems 

The class of continuous-time nonlinear systems considered is

escribed by the following state-space form: 

˙ 
 = F (x, u, w ) := f (x ) + g(x ) u + h (x ) w, x (t 0 ) = x 0 (1)

here x ∈ R 

n is the state vector, u ∈ R 

m is the manipu-

ated input vector, and w ∈ W is the disturbance vector, where

 := { w ∈ R 

l | | w | ≤ θ , θ ≥ 0}. The control action constraint is de-

ned by u ∈ U := { u min ≤ u ≤ u max } ⊂ R 

m , where u min and u max 

epresent the minimum and the maximum value vectors of in-

uts allowed, respectively. f ( · ), g ( · ), and h ( · ) are sufficiently

mooth vector and matrix functions of dimensions n × 1, n × m ,

nd n × l , respectively. Without loss of generality, the initial time

 0 is taken to be zero ( t 0 = 0 ), and it is assumed that f (0) = 0 ,

nd thus, the origin is a steady-state of the system of Eq. (1) with

 (t) = w (t) ≡ 0 . 

.3. Stabilizability assumptions expressed via lyapunov-based control 

We assume that there exists a positive definite and proper

ontrol Lyapunov function (CLF) V for the nominal system of

q. (1) with w ( t ) ≡ 0 that satisfies the small control property (i.e.,

or every ε > 0, ∃ δ > 0, s.t. ∀ x ∈ B δ (0) , there exists u that satis-

es | u | < ε and L f V (x ) + L g V (x ) u < 0 , Sontag [17] ) and the follow-

ng condition: 

 f V (x ) < 0 , ∀ x ∈ { z ∈ R 

n \{ 0 } | L g V (z) = 0 } (2)

The CLF assumption implies that there exists a stabilizing feed-

ack control law �( x ) ∈ U for the nominal system of Eq. (1) (i.e.,

 ( t ) ≡ 0) that renders the origin of the closed-loop system ex-

onentially stable for all x in a neighborhood of the origin in the

ense that L f V (x ) + L g V (x ) u < 0 holds for u = �(x ) ∈ U . An exam-

le of a feedback control law can be found in Lin and Sontag [9] .

ased on the CLF assumption, we can first characterize a region

here the time-derivative of V is rendered negative definite un-

er the controller �( x ) ∈ U as φu = { x ∈ R 

n | ˙ V (x ) = L f V + L g V u <

kV (x ) , u = �(x ) ∈ U} ∪ { 0 } , where k is a positive real number.

hen, the closed-loop stability region �ρ for the nonlinear system

f Eq. (1) is defined as a level set of the Lyapunov function embed-

ed in φu : �ρ := { x ∈ φu | V ( x ) ≤ ρ} ⊂φu , where ρ > 0. 

emark 1. We consider the nonlinear system with the form of

q. (1) since control-affine nonlinear systems are very common in
he modeling of chemical processes. Additionally, with the form

f Eq. (1) , we can simplify the discussion on the design of a sta-

ilizing controller u = �(x ) by using the Sontag control law [9] .

owever, it should be noted that the proposed RNN modeling

pproaches that account for a priori process knowledge in this

anuscript are not restricted to control-affine nonlinear systems,

nd can be generalized to nonlinear systems in a more general

orm: ˙ x = f (x, u, w ) . 

.4. Recurrent neural network model 

A recurrent neural network (RNN) model that approximates the

onlinear dynamics of the system of Eq. (1) is developed with the

ollowing form: 

˙ ˆ 
 = F nn ( ̂  x , u ) := A ̂

 x + 
T y (3)

here ˆ x ∈ R 

n is the RNN state vector and u ∈ R 

m is

he manipulated input vector. y = [ y 1 , . . . , y n , y n +1 , . . . , y m + n ] =
 σ ( ̂  x 1 ) , . . . , σ ( ̂  x n ) , u 1 , . . . , u m 

] ∈ R 

n + m is a vector of both the net-

ork state ˆ x and the input u , where σ ( · ) is the nonlinear ac-

ivation function (e.g., a sigmoid function σ (x ) = 1 / (1 + e −x ) ). A

s a diagonal coefficient matrix, i.e., A = diag{−a 1 , . . . , −a n } ∈ R 

n ×n ,

nd 
 = [ θ1 , . . . , θn ] ∈ R 

(m + n ) ×n with θi = b i [ w i 1 , . . . , w i (m + n ) ] , i =
 , . . . , n . a i and b i are constants. w ij is the weight connecting the

 th input to the i th neuron where i = 1 , . . . , n and j = 1 , . . . , (m +
 ) . a i is assumed to be positive such that each state ˆ x i is bounded-

nput bounded-state stable. It is noted that to simplify the mathe-

atical expressions of the input vector, and of the weight matrix

n this manuscript, we do not include the bias term in the notation

ince it can always be considered as an additional constant input

i.e., u ∈ R 

m +1 ), and therefore, does not affect the formulation of

he continuous RNN models. 

The development of RNN models for the nonlinear system of

q. (1) follows a three-step procedure: (1) a large dataset consist-

ng of state trajectories from various initial conditions and control

ctions in an operating region considered is developed from ex-

ensive open-loop simulations of the nonlinear system of Eq. (1) ,

2) a source platform for machine learning (e.g., Tensorflow, Keras,

affe) is utilized to solve the optimization problem of neural net-

orks to obtain the optimal weights (i.e., the coefficient matrices

 and 
), under which the loss function that indicates the differ-

nce between predicted states and actual states achieves its mini-

um value, and (3) to validate the quality of RNN models, open-

oop predictions will be performed on a test dataset that has not

een utilized in the training process and will be compared with

he actual state trajectories from the nonlinear system of Eq. (1) .

ollowing the above procedure, a well-conditioned RNN model is

btained to represent the nonlinear dynamics of the system of

q. (1) in the operating region, and thus, can be used in closed-

oop simulations by incorporating it in the model-based predictive

ontrollers, e.g., [24,25] . 

Although the universal approximation theorem [8,16] states that

 neural network with a single hidden layer with sufficient number

f neurons can approximate any continuous-time nonlinear func-

ion on compact subsets of R 

n , algorithmic learnability of the opti-

al neural network weights is not guaranteed. In fact, due to the

omplexity of neural network structure, availability of computing

ower, and feasibility of optimization algorithms, it is challeng-

ng to find such an optimal weight for the regression problems

f a large-scale, complex system. Therefore, how to improve the

erformance of neural networks has been a major long-standing

hallenge for researchers in machine learning community over the

ast few decades, where a lot of effort s have been made to opti-

ize neural network structure, develop advanced optimization al-

orithms, improve data-processing systems and so on. 
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Fig. 1. A partially-connected recurrent neural network structure based on process 

structural knowledge, where u = [ u 1 , u 2 ] and x = [ x 1 , x 2 ] . 
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In this work, we will improve the performance of RNN models

in terms of enhanced prediction accuracy by incorporating struc-

tural domain knowledge of the nonlinear system of Eq. (1) (i.e.,

knowledge of the dependence of the state variables) into the de-

velopment of the RNN structure. Specifically, instead of treating

the RNN system of Eq. (3) like a black box and training it using

all the inputs and outputs available (termed the fully-connected

model throughout the manuscript), we modify the RNN structure

according to the structural process knowledge of the nonlinear sys-

tem of Eq. (1) . The details of the proposed new structure are dis-

cussed in the following section. 

Remark 2. It is noted that in Eq. (3) , we use a one-hidden-layer

RNN model with n states in order to simplify the discussion of

the approximation of the nonlinear system of Eq. (1) using an RNN

model. However, the RNN modeling method in this section is not

restricted to a one-hidden layer RNN structure with n states only.

The RNN states ˆ x ∈ R 

n in Eq. (3) can be considered to be the last

hidden layer (if the output of the nonlinear system of Eq. (1) is a

function of states), or the output layer of an RNN (if the state x is

also the output of the nonlinear system of Eq. (1) ). Therefore, be-

fore the last hidden layer/output layer, we can add another hidden

layer or multiple hidden layers with a sufficient number of neu-

rons to approximate the nonlinear system of Eq. (1) . 

3. Physics-based RNNs 

In this section, we introduce three different methods to inte-

grate domain knowledge into neural network modeling and train-

ing. The first method is to develop a hybrid model that integrates

first-principles models with RNN models. The second method is

to develop a partially-connected RNN structure using a priori

knowledge of process input-output relationship. Lastly, a weight-

constrained RNN model is developed by imposing constraints on

the neural network weights based on the input-output relationship

of the nonlinear system of Eq. (1) . 

3.1. Hybrid model 

While first-principles modeling has been studied and applied

to chemical processes for over a century and has achieved good

performances, it becomes difficult to obtain a 100% accurate first-

principles model for large-scale systems due to inherent complex-

ity. Therefore, in this work, we first propose a hybrid modeling

method that introduces physical knowledge (e.g., first-principles

knowledge based on physical laws such as mass and energy

balances) into neural network modeling by combining a first-

principles model and an RNN model together. Specifically, the hy-

brid model is developed using an RNN function 

˜ f nn (x, u ) to approx-

imate the gap between the first-principles model and the actual

nonlinear process as follows: 

˙ x = 

˜ f (x ) + 

˜ g (x ) u + 

˜ f nn (x, u ) (4)

where ˙ x = 

˜ f (x ) + ̃  g (x ) u is the first-principles model that is devel-

oped based on general physical laws and assumptions, and there-

fore, may not be able to fully capture the dynamics of the actual

nonlinear processes of Eq. (1) due to mismatch between ˙ x = 

˜ f (x ) +
˜ g (x ) u and ˙ x = f (x ) + g(x ) u . The RNN function 

˜ f nn (x, u ) in Eq. (4) is

utilized to bridge the gap between the first-principles knowledge

and the real process data. It is demonstrated that the hybrid model

of Eq. (4) has the following advantages compared with a fully-

connected RNN model. First, the RNN in the hybrid model is only

used to approximate the residual between first-principles mod-

els and real process data, and therefore, may take less computing

power and training time to learn. Additionally, when it comes to

the operating region with no data available, the hybrid model can
till be considered a reliable model due to its intrinsically physi-

al knowledge, while the pure RNN model may be completely dys-

unctional. For example, in Ba and Kadambi [1] , a hybrid model

hat combines first-principles free-falling equations and a neural

etwork model was developed to improve the estimation of fu-

ure trajectories of a paper ball being tossed, in which the neu-

al network was developed to learn the model mismatch between

he ground truth and the first-principles model-based solution. Ad-

itionally, in Zhang et al. [28] , a hybrid neural network model

as developed for a chemical process where the linear part of

he hybrid model is developed based on first-principles knowledge

nd the nonlinear term of reaction rate is provided by a neural

etwork model using experiment/simulation data. It was demon-

trated in Zhang et al. [28] that the hybrid model achieved desired

pproximation performance and the neural network well approxi-

ated the nonlinear term of reaction rate that depends on multi-

le variables with an unknown reaction mechanism. 

.2. Partially-connected RNN 

In industrial chemical processes, the unit operations in the up-

tream stage of the production process affect those in the down-

tream stage, while the impact is ignorable in the opposite direc-

ion. This connection between upstream and downstream stages is

ften reflected in the first-principles model (if there is any), and

s barely incorporated in the development of a data-driven model

or the entire process due to the difficulty of designing model

tructures. In particular, since it is not clear how to derive opti-

al architectures for process data without any a priori knowledge,

ully-connected RNN networks are often state-of-the-art for large-

cale, complex systems. Specifically, a black box NN model that

akes all available inputs to predict the outputs of interest is pre-

erred in developing a dynamic process model for the integrated

pstream and downstream processes as it is easy to implement us-

ng open-source machine learning software and is able to account

or all possible input-output relationships. As shown in Fig. 1 , the

NN model on the left represents a general structure of a fully-

onnected RNN model with an input layer, a hidden layer consist-

ng of recurrent neurons, and an output layer, for which the train-

ng process follows the discussion of the three-step procedure in

he previous section. 

To account for the structural process knowledge into RNN mod-

ling of the nonlinear system of Eq. (1) , we develop a partially-
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Fig. 2. A weight-constrained recurrent neural network structure, where w 

(1) and 

w 

(2) are the weights before and after the hidden layer, r i , i = 1 , . . . , h is the RNN 

hidden neuron, and the dashed gray lines denote the diminished connections be- 

tween u 2 and x 1 . 
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onnected RNN structure as shown on the right of Fig. 1 . Specif-

cally, we consider the nonlinear system of Eq. (1) under the as-

umption that the state vector x 1 is affected by u 1 only, and x 2 is

ffected by both u 1 and u 2 , where x = [ x 1 , x 2 ] ∈ R 

n and u = [ u 1 ∈
 

m 1 , u 2 ∈ R 

m 2 ] ∈ R 

m , m 1 + m 2 = m . It is shown in Fig. 1 that in the

artially-connected RNN, u 1 only affects x 1 , and both u 1 and u 2 

ave an impact on the output u 2 . By partitioning the RNN mod-

ling problem into two blocks (i.e., the data flows from u 1 to x 1 ,

nd from u 1 , u 2 to x 1 ) that are corresponding to the structural a

riori knowledge of the nonlinear system of Eq. (1) , it is demon-

trated that the hidden layers (i.e., the RNN layers) in the partially-

onnected RNN model are analogous to the unknown nonlinear

unctions of the system of Eq. (1) under the above assumption on

nput-output relationship. 

By modifying the RNN structure to explicitly exclude the con-

ection between u 2 and x 1 , a priori knowledge on process struc-

ure is infused into RNN modeling of the nonlinear system of

q. (1) , and therefore, an improved approximation performance can

e derived. For example, due to the superiority of encoding pri-

rs into structure designs, in Remark 5 , it is demonstrated that the

umber of hidden neurons and weight parameters could be signif-

cantly reduced to achieve the desired performance as good as the

ully-connected model. Additionally, the partially-connected RNN

odel may need less training data to obtain a well-conditioned

odel since priors are acting to reveal the correct direction for

NN to converge to an optimal solution. Moreover, the partially-

onnected model may outperform the fully-connected model in

he regime with no training data available since the model struc-

ure is consistent with the actual process state variable relationship

f the nonlinear system of Eq. (1) . 

emark 3. It is noted that the partially-connected RNN model

an achieve better approximation performance not only in regimes

here data are not available, but also in the regime in which train-

ng and validation data are available. While in general the approx-

mation performance of NN model on training dataset will be im-

roved by increasing the number of neurons and parameters, ex-

essive number of neurons may lead to over-fitting, which means

hat the NN model can capture the input-output relationship well

or training dataset but not for the validation/testing datasets. Ad-

itionally, as in this particular example of Fig. 1 , the second in-

ut u 2 does not affect the relationship between u 1 and x 1 (i.e., the

eights between u 2 and x 1 should be zero), the connection be-

ween u 2 and x 1 in a fully-connected RNN model will instead re-

ult in a negative impact on the training process in terms of longer

ime to converge to an optimal solution. 

.3. Weight-constrained RNN 

Under the assumption that a portion of the input vector u 2 in

he nonlinear system of Eq. (1) does not affect the output vector

 

1 , we develop an RNN model structure with constrained weight

arameters representing the dynamic effects of process inputs u

n the outputs x as shown in Fig. 2 . Specifically, the weights con-

ecting u 2 and x 1 (dashed gray lines in Fig. 2 ) are constrained in

he RNN model such that the effects of u 2 on x 1 will be weakened

uring the training process. Based on the RNN model of Eq. (3) , the

utput vector x 1 and the hidden neuron r i , i = 1 , . . . , h are derived

s follows: 

˙ 
 

1 = 

h ∑ 

i =1 

w 

(2) 
i 

˙ r i (5) 

˙ 
 i = −a i r i + θi y (6)

here θi = b i [ w 

(1) 
1 i 

, . . . , w 

(1) 
hi 

, . . . , w 

(1) 
(h + m ) i 

] and y =
 σ (r 1 ) , . . . , σ (r h ) , u 

1 , u 2 ] T . a i , b i are constants, w 

(1) 
ji 

is the
eight connecting the j th input, j = 1 , . . . , h + m to i th neu-

on, i = 1 , . . . , h, and y is the input vector consisting of the hidden

tates r and the manipulated inputs u. w 

(1) , w 

(2) represent the

eight vectors before and after the hidden layer. Similarly, the bias

erm is not included in the notation since it can be considered

s an additional constant input. Based on Eqs. (5) and (6) , the

ollowing equation is derived to demonstrate the contribution of

 

2 to ˙ x 1 : 

˙ 
 

1 = 

h ∑ 

i =1 

w 

(2) 
i 

(−a i r i + θi y ) 

= 

h ∑ 

i =1 

n i (r, w ) + w 

(2) 
i 

b i ([ w 

(1) 
(h +1) i 

, . . . , w 

(1) 
(h + m 1 ) i 

] u 

1 

+ [ w 

(1) 
(h + m 1 +1) i 

, . . . , w 

(1) 
(h + m ) i 

] u 

2 ) (7) 

here n i ( · , · ) is a nonlinear function of the neuron states

 and weights w . Therefore, to reduce the impact of u 2 to ˙ x 1 ,

he weight product �w 

= | w 

(2) 
i 

b i [ w 

(1) 
(h + m 1 +1) i 

, . . . , w 

(1) 
(h + m ) i 

] | should

e constrained by a sufficiently small bound, and this constraint

ill also be incorporated in the training of the RNN model with

he above input-output relationship. It is noted that since the

onstraint is applied on the weight product �w 

for the weight-

onstrained RNN model in Fig. 2 , a zero bound for the weight con-

traint could lead to disconnection of hidden neurons from inputs

nd outputs, and therefore, should be avoided in any case. 

In addition to the weight constraints, penalty components on

eight parameters can be employed in the loss function of the

NN optimization problem to introduce a priori weight knowl-

dge into the training process. In general, regularization techniques

e.g., L1 and L2 regularization) are utilized in the training process

f a neural network model to obtain a less complex model and

void over-fitting in the presence of a large number of features in

atasets. Therefore, to constrain the weight product �w 

in Eq. (7) ,

he following loss function is developed: 

 = 

N d ∑ 

i =1 

(x i − ˆ x i ) 
2 + λ�w 

(8) 
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Fig. 3. A recurrent neural network structure, where the connection between u 2 and 

x 1 is fully removed from the blue neurons, and the connection between u 2 and 

x 2 is rebuilt using the gray neurons in the hidden layer. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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where x i and ˆ x i are the actual and predicted outputs, respectively,

N d is the number of data samples in the dataset, and λ > 0 is

the weight for the regularization term. It is noted that λ needs

to be carefully chosen such that the regularization term can ef-

fectively decrease the values of the weights, but does not domi-

nate the optimization problem of training a neural network model.

Specifically, while a nonzero λ is required to penalize the regu-

larization term, a large λ may render the optimization problem

under-fitting due to the dominance of the regularization term in

the loss function of Eq. (8) . Therefore, we evaluate λ against any

metric (e.g., mean-squared error, among many other criteria) and

select the value of λ that achieves the desired approximation per-

formance on training and validation datasets. 

Alternatively, to fully remove the connection between u 2 and

x 1 , we can design another set of neurons r h +1 , . . . , r 2 h in the hid-

den layer as shown in Fig. 3 . It is demonstrated that u 2 is discon-

nected from the neurons r 1 , . . . , r h that contribute to the output

vector x 1 to eliminate the impact of u 2 on x 1 . As a result, to main-

tain the impact of inputs on the other output vector x 2 , the new

set of neurons r h +1 , . . . , r 2 h are utilized in the hidden layer to con-

nect both the inputs u 1 and u 2 to the output x 2 . It is noted that

compared to a fully-connected RNN model, the number of neurons

and the number of weights in the weight-constrained RNN shown

in Fig. 3 are increased to separate the connections to multiple out-

put vectors. 

Based on the RNN model of Eq. (3) , the output vector x and the

hidden neuron r i , i = 1 , . . . , 2 h in Fig. 3 are derived as follows: 

˙ x 1 = 

h ∑ 

i =1 

w 

(2) 
i 

˙ r i , ˙ x 2 = 

2 h ∑ 

i =1 

w 

(2) 
i 

˙ r i (9)

˙ r i = −a i r i + θi y, i = 1 , . . . , 2 h (10)

where θi = b i [ w 

(1) 
1 i 

, . . . , w 

(1) 
(2 h ) i 

, . . . , w 

(1) 
(2 h + m ) i 

] and y = [ σ (r 1 ) , . . . ,

σ ( r 2 h ), u 1 , u 2 ] T . a i and b i are constants, w 

(1) 
ji 

is the weight con-

necting the j th input, j = 1 , . . . , 2 h + m to i th neuron, i = 1 , . . . , 2 h,

and y is the input vector consisting of the hidden states r and the

manipulated inputs u. w 

(1) , w 

(2) represent the weight vectors be-

fore and after the hidden layer. Specifically, to train the weight-

constrained RNN model with the structure of Fig. 3 , we first de-
elop a fully-connected RNN model and then let the weights be-

ween u 2 and r i , i = 1 , . . . , h, and the weights between r i , i = h +
 , . . . , 2 h and x 1 (denoted by ˜ w ) be zero or be constrained by a suf-

ciently small bound. Unlike the weight-constrained RNN model in

ig. 2 , the weight constraint for the RNN model with the structure

f Fig. 3 can be equipped with a zero bound such that the con-

ections can be fully removed for the network. Additionally, the

bove weight constraints on the RNN weights need to be well-

efined before training. It should be noted that since there exist

hree types of weight matrices in an RNN model: (1) the weight

atrix connecting the input layer and the hidden layer, (2) the

eight matrix feeding the past neuron information into the cur-

ent network (i.e., the feedback loop in r i , i = 1 , . . . , 2 h ), and (3) the

eight matrix connecting the hidden layer to the output layer, the

onstraints need to be implemented in all the three weight matri-

es such that u 2 and x 1 are fully disconnected. 

In this work, we train the above weight-constrained RNN model

n Keras, and implement weight constraints in the constraints.py

ource file. Specifically, the constraints on the weight matrices that

onnect inputs to hidden neurons and hidden neurons to outputs

re activated through the argument kernal_constraint . The

eight matrix feeding the past neuron information to the current

etwork is implemented by invoking recurrent_constraint .
dditionally, to develop an RNN model that obtains the optimal

eights subject to the weight constraints, the RNN optimizer (e.g.,

daptive learning rate optimization algorithm ) needs to be modi-

ed to minimize the loss function while accounting for the weight

onstraints in the optimization problem. Alternatively, the weight

onstraints can be implemented at the end of each training epoch

uch that the weights that meet the constraints remain unchanged

nd those exceeding the constraints will be bounded to the satura-

ion value. The saturated weights will then be utilized as the initial

ondition for the optimization problem for the next training epoch,

nd the above process is repeated until the stopping criteria of the

raining process are satisfied. 

emark 4. In this section, we proposed two approaches for

eight-constrained RNN models. Specifically, the first approach

i.e., Fig. 2 ) is to develop a weight-constrained RNN model with

 regularization term on constrained weights in the training pro-

ess of RNN models to reduce the connection between u 2 and x 1 .

his is typically used for the systems where we know a priori that

he connections between certain inputs and outputs are weakly

onnected (but not fully unconnected). However, the second ap-

roach (i.e., Fig. 3 ) is to develop a weight-constrained RNN model

y adding another set of neurons such that the connections be-

ween u 2 and x 1 are fully removed. Therefore, it will be applied to

he systems where some of the inputs do not affect the outputs at

ll. 

.4. RNN training process 

All the physics-based RNN models are developed using Keras

ibrary, an open-source neural-network library written in Python.

pecifically, the hybrid model is developed following the construc-

ion method for a fully-connected RNN model, where the train-

ng dataset is preprocessed to represent the gap between the first-

rinciples model and real process data, and then separated into

raining, validation and testing datasets. To develop a partially-

onnected RNN model in Fig. 1 , an RNN layer is first developed

o connect u 1 and x 1 . Subsequently, x 1 and u 2 are concatenated

nd followed by a second RNN layer to ultimately obtain x 2 . It

s noted that instead of using the full input and output vectors

 and x , the input vectors u 1 , u 2 and the output vectors x 1 , x 2

eed to be specified and fed into the partially-connected RNN

odel separately. Therefore, the inputs and the outputs to the
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R  
artially-connected RNN model in the training process are defined

s [ u 1 , u 2 ] and [ x 1 , x 2 ], respectively. The development of a weight-

onstrained RNN model in Fig. 2 follows that for a fully-connected

NN model except that the weight constraints need to be added

n the optimization problem of RNN training process beforehand

y updating Keras optimizer source files. However, to develop a

eight-constrained RNN model with the structure of Fig. 3 , we can

ither implement the weight constraints within each epoch of the

ptimization process in Keras optimizer source files, or saturate the

orresponding elements in the weight matrices at the end of each

poch to update the initial guess of weights for the next train-

ng epoch in Keras constraints source files. The training processes

or both weight-constrained RNN models follow that for a fully-

onnected RNN model, where the training and validation datasets

re used to obtain the optimal weight matrices for RNN models,

nd the testing dataset is used to evaluate their prediction perfor-

ances. 

To prevent the weights from drifting to infinity during the

NN training process, the weight vector θ i of the RNN model of

q. (3) is also bounded by | θ i | ≤ θm 

, with θm 

> 0. It is noted that

hile it is possible to obtain a theoretical value for θm 

, this value

ill usually be conservative. Therefore, in the implementation of

he RNN training process, we give θm 

a reasonable value and see

f the RNN can approximate the nonlinear system of Eq. (1) with

he satisfaction of the modeling error constraint. The interested

eader may refer to [8] , where a σ -modification is utilized in the

NN learing algorithm to ensure that the weights are bounded

uring the training process. Additionally, the hybrid model, the

artially-connected RNN model, and the weight-constrained RNN

odel are all trained with a constraint on the modeling error, i.e.,

 ν| = | F (x, u, 0) − F nn (x, u ) | ≤ γ | x | , where γ > 0, such that the ob-

ained RNN models can well represent the actual nonlinear process

f Eq. (1) and can be utilized in a model-based predictive con-

roller that stabilizes the system at its steady-state with guaran-

eed stability. The detailed RNN learning algorithm and the proof

f the boundedness of RNN modeling error can be found in Wu

t al. [24] . 

emark 5. Consider the nonlinear system of Eq. (1) with x =
 x 1 , x 2 ] ∈ R 

n and u = [ u 1 , u 2 ] ∈ R 

n , where x 1 and x 2 , u 1 and u 2 are

f the same dimension, respectively (i.e., x 1 , x 2 ∈ R 

n 
2 , u 1 , u 2 ∈ R 

m 
2 ).

nder the assumption of the input-output relationship in this sec-

ion, the total number of weights for a partially-connected RNN

odel with two hidden layers, where each hidden layer has h neu-

ons, is calculated to be 3 
2 nh + mh + 2 h 2 , while the total number

f weights for a fully-connected RNN model with the same two

idden layers is mh + 3 h 2 + nh (the bias term is ignored in the

omparison as it can be considered a constant input node). Since

n most cases, the number of neurons is much greater than the

umber of inputs and states to achieve a desired approximation

erformance, the number of weights for a decoupled RNN model

s significantly reduced due to the incorporation of process struc-

ural knowledge ( 3 2 nh + mh + 2 h 2 << nh + mh + 3 h 2 when h > ≥ m,

 ). However, it is noted that the number of weights in a weight-

onstrained model with the structure of Fig. 3 is increased com-

ared to the fully-connected RNN model due to the new set of

idden neurons that are used to rebuild the connection between

 

2 and x 2 . 

emark 6. In addition to the weight constraints as discussed

bove, regularization can be utilized to penalize the weights that

eed to be constrained in the loss function of Eq. (8) . The im-

lementation of regularization using Keras is as follows. First, the

ernel_regularizer command is invoked to activate the reg-

larization term in the loss function in each layer with the desired

egularization technique (i.e., L1 or L2 regularization). With this, all

he elements in the weight matrices that connect the inputs to the
idden neurons and connect the hidden neurons to the outputs

re penalized in the loss function with a regularization parame-

er λ as introduced in Eq. (8) . Subsequently, to ensure that only

he weights that need to be constrained are penalized in the loss

unction, the regularizers.py source file is adapted in which the cor-

esponding weights for the undesired connections are included. Fi-

ally, the weight matrix feeding the past neuron information into

he current network is penalized following the same strategy as

iscussed above for the implementation of weight constraints. 

emark 7. It is noted that all the RNN models in this section are

eveloped for the nominal system of Eq. (1) without disturbances.

owever, in the presence of time-varying disturbances, the RNN

odel that is trained for the nominal system may be dysfunctional

n a model-based predictive controller due to a considerable model

ismatch. To that end, online update of RNN models can be em-

loyed to capture the nonlinear dynamics subject to disturbances

sing the most recent process measurement data. The interested

eaders may refer to [23] for the details of implementation of on-

ine RNN update. 

emark 8. In the case that a single RNN model is not able to well

epresent the dynamics of the nonlinear process of Eq. (1) in the

ntire operating region, multiple RNN models can be developed to

mprove the overall prediction accuracy in the context of ensemble

earning [13,27] . The development of multiple RNN models via en-

emble learning can be found in [25] , where k different RNN mod-

ls were developed for the same nonlinear process based on a k -

old cross-validation and were utilized to derive a final prediction

esult that was significantly improved compared to a single RNN

odel. Additionally, in Wu et al. [25] , to improve computational

fficiency of ensemble learning and multiple RNN predictions in

he real-time implementation of machine-learning-based predic-

ive controllers, parallel computing can be employed to speed up

he computation of RNN predictions using multiple compute cores

n a distributed computing cluster. It was also demonstrated in Wu

t al. [25] that the computation time of calculating multiple RNN

rediction results in an RNN-based predictive controller was sig-

ificantly reduced under parallel computation of the ensemble of

NN models. 

emark 9. To extend the proposed RNN modeling methods to

igh-dimensional systems, it is necessary to find the relationships

etween the inputs and outputs. For example, we can introduce

parsity regularization that is similar to Eq. (8) but with relatively

arge penalty, or we can also apply well-established methods such

s relative gain array to determine the best input-output pairings

or multivariable processes. 

. RNN-based predictive control 

In this section, we incorporate the RNN model developed in

he previous section into the design of model-based predictive

ontrollers to optimize process performance while guaranteeing

losed-loop stability. Specifically, for any initial condition x 0 ∈ �ρ ,

 Lyapunov-based model predictive controller (LMPC) using RNN

odels is developed to drive the closed-loop state of the nonlinear

ystem of Eq. (1) to the steady-state while maintaining the state in

he stability region �ρ for all times. Subsequently, Lyapunov-based

conomic model predictive controller (LEMPC) is developed using

he RNN model to optimize process economic performance with

uaranteed boundedness of the state in �ρ for all times. 

.1. Lyapunov-based MPC using RNN models 

The Lyapunov-based model predictive control (LMPC) using the

NN model of Eq. (3) is utilized to stabilize the nonlinear system
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of Eq. (1) in the stability region. The formulation of LMPC opti-

mization problem is given as follows: [24,25] 

J = min 

u ∈ S(�) 

∫ t k + N 

t k 

( ̃  x T Q ̃

 x + u 

T Ru ) dt (11a)

s.t. ˙ ˜ x (t) = F nn ( ̃  x (t ) , u (t )) (11b)

u (t) ∈ U, ∀ t ∈ [ t k , t k + N ) (11c)

˜ x (t k ) = x (t k ) (11d)

˙ V (x (t k ) , u ) ≤ ˙ V (x (t k ) , �nn (x (t k )) , 

if x (t k ) ∈ �ρ\ �ρnn 
(11e)

 ( ̃  x (t)) ≤ ρnn , ∀ t ∈ [ t k , t k + N ) , if x (t k ) ∈ �ρnn 
(11f)

where ˜ x is the predicted state trajectory, S ( �) is the set of piece-

wise constant functions with period �, N is the number of sam-

pling periods in the prediction horizon, and 

˙ V (x, u ) represents
∂V (x ) 

∂x 
(F nn (x, u )) . In the optimization problem of Eq. (11), the ob-

jective function of Eq. (11a) is the integral of the cost func-

tion l( ̃  x , t) = ( ̃  x T Q ̃  x + u T Ru ) over the prediction horizon, where

l(0 , 0) = 0 and l( ̃  x , t) > 0 , ∀ ( ̃  x , t) � = (0 , 0) . The constraint of

Eq. (11b) is the RNN model of Eq. (3) that is used to predict the

states of the closed-loop system. Eq. (11c) defines the input con-

straints applied over the entire prediction horizon. Eq. (11d) de-

fines the initial condition ˜ x (t k ) of Eq. (11b) , which is the state mea-

surement at t = t k . The constraint of Eq. (11e) forces the closed-

loop state to move towards the origin if x (t k ) ∈ �ρ\ �ρnn . How-

ever, if x ( t k ) enters �ρnn , the states predicted by the RNN model

of Eq. (11b) will be maintained in �ρnn for the entire prediction

horizon. The LMPC of Eq. (11) is implemented in a sample-and-

hold fashion, i.e., an optimal input trajectory u ∗( t ), t ∈ [ t k , t k + N ) is

obtained by solving the LMPC optimization problem of Eq. (11) at

each sampling time, from which only the control action for the

first sampling period of the prediction horizon will be applied.

In [24] , it is demonstrated that under the LMPC of Eq. (11), the

state of the nonlinear system of Eq. (1) is bounded in the stability

region �ρ for all times, and can ultimately converge to the origin

provided that the modeling error between the nonlinear system of

Eq. (1) and the RNN model of Eq. (3) is sufficiently small. Detailed

proof for closed-loop stability can be found in [24] and is omitted

here due to space limitations. 

4.2. Lyapunov-based EMPC using RNN models 

The Lyapunov-based economic model predictive control

(LEMPC) using the RNN model of Eq. (3) is utilized to optimize

process economic performance while maintaining the closed-loop

state of the nonlinear system of Eq. (1) in the stability region �ρ .

TheLEMPC is formulated by the following optimization problem:

[22] 

J = max 
u ∈ S(�) 

∫ t k + N 

t k 

l e ( ̃  x (t) , u (t)) dt (12a)

s.t. ˙ ˜ x (t) = F nn ( ̃  x (t ) , u (t )) (12b)

u (t) ∈ U, ∀ t ∈ [ t k , t k + N ) (12c)

˜ x (t ) = x (t ) (12d)
k k 
 ( ̃  x (t)) ≤ ρe , ∀ t ∈ [ t k , t k + N ) , if x (t k ) ∈ �ρe 
(12e)

˙ V (x (t k ) , u ) ≤ ˙ V (x (t k ) , �nn (x (t k )) , 

if x (t k ) ∈ �ρ\ �ρe 
(12f)

here the notations follow those in Eq. (11). The optimiza-

ion problem of Eq. (12) maximizes the objective function of

q. (12a) that integrates l e ( ̃  x (t) , u (t)) over the prediction horizon

ubject to the constraints of Eqs. (12b)–(12f) . Specifically, the con-

traint of Eqs. (12b)–(12d) are the same as Eqs. (11b)–(11d) for

MPC. The constraint of Eq. (12e) maintains the predicted closed-

oop states in �ρe if x (t k ) ∈ �ρ\ �ρe , where �ρe , 0 < ρe < ρ ,

s a level set of Lyapunov function that guarantees the bounded-

ess of state in the closed-loop stability region �ρ accounting for

he model mismatch between the RNN model of Eq. (12b) and the

onlinear process of Eq. (1) . On the other hand, if x ( t k ) leaves �ρe ,

he contractive constraint of Eq. (12f) will be activated to drive

he state towards the origin within the next sampling period. It

s demonstrated that the closed-loop state of the nonlinear system

f Eq. (1) is bounded in the stability region �ρ for all times under

he LEMPC of Eq. (12). The detailed proof of closed-loop stability

nder LEMPC is given in Wu et al. [24] . 

emark 10. It is demonstrated in [24] that closed-loop stabil-

ty is guaranteed for the nonlinear system of Eq. (1) under the

NN-based MPC of Eq. (11) provided that the modeling error be-

ween the RNN model and the actual nonlinear system is suffi-

iently small. Specifically, the constraints of Eqs. (11e) and (11f) are

eveloped to guarantee that the closed-loop state will move to-

ards the origin and can be ultimately bounded in a small neigh-

orhood around the origin regardless of the length of prediction

orizon. However, it is noted that the use of a longer prediction

orizon in MPC can generally improve closed-loop performance

y obtaining better solutions that lead to less control energy con-

umption and smoother state trajectories. Though we did not show

he detailed proof for closed-loop stability due to space limita-

ion in this manuscript, the proposed partially-connected RNN and

eight-constrained RNN models that account for process structural

nowledge by modifying the structure of RNNs, and adding certain

onstraints in the training process of RNNs, respectively, are de-

eloped satisfying the modeling error constraint. Therefore, closed-

oop stability can be established for the closed-loop MPC using the

roposed RNN models. 

. Application to a chemical process example 

A chemical process example is utilized to demonstrate the ap-

lication of the proposed RNN modeling with the incorporation

f structural process knowledge. Specifically, two well-mixed, non-

sothermal continuous stirred tank reactors (CSTR) in series are

onsidered where an irreversible second-order exothermic reaction

akes place in each reactor as shown in Fig. 4 . The reaction trans-

orms a reactant A to a product B ( A → B ). Each of the two reac-

ors are fed with reactant material A with the inlet concentration

 Aj 0 , the inlet temperature T j 0 and feed volumetric flow rate of the

eactor F j 0 , j = 1 , 2 , where j = 1 denotes the first CSTR and j = 2

enotes the second CSTR. Each CSTR is equipped with a heating

acket that supplies/removes heat at a rate Q j , j = 1 , 2 . The CSTR

ynamic models are described by the following material and en-

rgy balance equations: 

dC A 1 
dt 

= 

F 10 

V 1 

(C A 10 − C A 1 ) − k 0 e 
−E 
RT 1 C 2 A 1 (13a)

dT 1 
dt 

= 

F 10 

V 1 

(T 10 − T 1 ) + 

−�H 

ρL C p 
k 0 e 

−E 
RT 1 C 2 A 1 + 

Q 1 

ρL C p V 1 

(13b)
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Fig. 4. Process flow diagram of two CSTRs in series. 

Table 1 

Parameter values of the CSTRs. 

T 10 = 300 K T 20 = 300 K 

F 10 = 5 m 

3 /h F 20 = 5 m 

3 /h 

V 1 = 1 m 

3 V 2 = 1 m 

3 

T 1 s = 402 K T 2 s = 402 K 

C A 1 s = 1 . 95 kmol/m 

3 C A 2 s = 1 . 95 kmol/m 

3 

C A 10 s = 4 kmol/m 

3 C A 20 s = 4 kmol/m 

3 

Q 1 s = 0 . 0 kJ/hr Q 2 s = 0 . 0 kJ/h 

k 0 = 8 . 46 × 10 6 m 

3 /kmol h �H = −1 . 15 × 10 4 kJ/kmol 

C p = 0 . 231 kJ/kg K R = 8 . 314 kJ/kmol K 

ρL = 10 0 0 kg/m 

3 E = 5 × 10 4 kJ/kmol 
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Table 2 

RMSE comparison of open-loop prediction results with the 

first-principles model results. 

P-RNN W-RNN F-RNN 

C A 1 ( kmol / m 

3 ) 1 . 0 × 10 −4 5 . 6 × 10 −6 0 . 9 × 10 −4 

T 1 ( K ) 0.14 0.018 0.15 

C A 2 ( kmol / m 

3 ) 8 . 2 × 10 −7 2 . 0 × 10 −6 2 . 6 × 10 −6 

T 2 ( K ) 5 . 4 × 10 −4 0.0076 0.049 
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dC B 1 
dt 

= −F 10 

V 1 

C B 1 + k 0 e 
−E 
RT 1 C 2 A 1 

(13c) 

dC A 2 
dt 

= 

F 20 

V 2 

C A 20 + 

F 10 

V 2 

C A 1 −
F 10 + F 20 

V 2 

C A 2 − k 0 e 
−E 
RT 2 C 2 A 2 (13d) 

dT 2 
dt 

= 

F 20 

V 2 
T 20 + 

F 10 

V 2 
T 1 − F 10 + F 20 

V 2 
T 2 + 

−�H 

ρL C p 
k 0 e 

−E 
RT 2 C 2 A 2 + 

Q 2 

ρL C p V 2 
(13e) 

dC B 2 
dt 

= 

F 10 

V 2 

C B 1 − F 10 + F 20 

V 2 

C B 2 + k 0 e 
−E 
RT 2 C 2 A 2 (13f) 

here C Aj , V j , T j and Q j , j = 1 , 2 are the concentration of reactant

 , the volume of the reacting liquid, the temperature, and the heat

nput rate in the first and the second reactor, respectively. The re-

cting liquid has a constant density of ρL and a heat capacity of

 p for both reactors. �H, k 0 , E , and R represent the enthalpy of the

eaction, pre-exponential constant, activation energy, and ideal gas

onstant, respectively, and are the same for both reactors. Process

arameter values are listed in Table 1 . 

The manipulated inputs for both CSTRs are the inlet concen-

ration of species A and the heat input rate, which are repre-

ented by the deviation variables �C A j0 = C A j0 − C A j0 s , �Q j = Q j −
 j s , j = 1 , 2 , respectively. The manipulated inputs are bounded

s follows: | �C A j0 | ≤ 3 . 5 kmol / m 

3 and | �Q j | ≤ 5 × 10 5 kJ / h , j =
 , 2 . Therefore, the states and the inputs of the closed-loop sys-

em are x T = [ C A 1 − C A 1 s T 1 − T 1 s C A 2 − C A 2 s T 2 − T 2 s ] and u T =
�C A 10 �Q 1 �C A 20 �Q 2 ] , respectively, where C A 1 s , C A 2 s , T 1 s and

 2 s are the steady-state values of concentration of A and temper-

ture in the first and second reactors, such that the equilibrium

oint of the system is at the origin of the state-space. 

The explicit Euler method with an integration time step of

 c = 10 −4 h is used to numerically simulate the dynamic model

f Eq. (13). The nonlinear optimization problems of the LMPC of

q. (11) and of the LEMPC of Eq. (12) are solved using the python

odule of the IPOPT software package [21] , named PyIpopt with
he sampling period � = 10 −2 h. Two control Lyapunov functions

 1 (x ) = x T P 1 x, and V 2 (x ) = x T P 2 x are designed for two CSTRs, re-

pectively, with the following positive definite P matrices: 

 1 = P 2 = 

[
1060 22 

22 0 . 52 

]
(14) 

he closed-loop stability regions for the two CSTRs are character-

zed with ρ = 380 , where ρe = 260 is chosen for the LEMPC of

q. (12). 

.1. Open-loop simulation on testing dataset 

Open-loop simulations are first carried out to demonstrate

he open-loop prediction performances of the fully-connected

NN model, the partially-connected RNN model, and the weight-

onstrained RNN model, respectively. The development of an RNN

odel for the CSTR process of Eq. (13) follows that in Wu et al.

25] . It should be noted that all the RNN models are developed

sing the same dataset with the same neural network parameters

s follows: 2 hidden layers with 30 neurons in each layer, tanh as

he activation function, and Adam as the optimizer. The root mean

quare errors (RMSE) between the first-principles state trajecto-

ies (i.e., the state trajectories using the first-principles model of

q. (13)) and the above three models, respectively, are reported in

able 2 , where P-RNN, W-RNN and F-RNN represent the partially-

onnected RNN model, the weight-constrained RNN model, and the

ully-connected RNN model, respectively. 

From Table 2 , it is demonstrated that the partially-connected

NN model and the weight-constrained RNN model outperform

he fully-connected model in that the open-loop approximations

f C A 1 , C A 2 , T 1 and T 2 are significantly improved. 

emark 11. It is noted that the comparison results in Table 2 were

enerated using extensive open-loop simulations with various ini-

ial conditions and control actions, under which the superior-

ty of the proposed modeling approaches is clearly demonstrated

y showing that the partially-connected RNN model and the

eight-constrained RNN model outperform the fully-connected 

NN model in terms of better approximation performance in the

ntire operating region. 

.2. Closed-loop simulation under LMPC 

After demonstrating the open-loop prediction performances of

he fully-connected RNN, the partially-connected RNN and the

eight-constrained RNN for the CSTR process of Eq. (13) in the

tability region, we perform the closed-loop simulation under the

MPC of Eq. (11) using the above three models, respectively. Addi-

ionally, the closed-loop simulation under the LMPC of Eq. (11) us-

ng the first-principles model of Eq. (13) is added as a baseline for

omparison. The control objective of RNN-based LMPC is to operate

he CSTR process of Eq. (13) at its steady-state while maintaining

he closed-loop state in the stability region �ρ for all times. 

In Fig. 5 , it is demonstrated that all the states (i.e., C A 1 , T 1 , C A 2 
nd T 2 ) converge to the origin within 0.05 h under the LMPC us-

ng the partially-connected RNN model and the weight-constrained

NN model. However, under the LMPC using a fully-connected
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Fig. 5. The state profiles ( C A 1 − C A 1 s , T 1 − T 1 s , C A 2 − C A 2 s and T 2 − T 2 s ) for the closed-loop simulationof two CSTRs in series under the LMPCusing the fully-connected RNN, the 

partially-connected RNN, the weight-constrained RNN, and the first-principles model of Eq. (13), respectively, for an initial condition ( −1.5, 70, 1.5, −70). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The state-space profiles for the closed-loop simulationfor CSTR 1 (top plot) 

and CSTR 2 (bottom plot) under the EMPCusing the fully-connected RNN model, the 

partially-connected RNN model, the weight-constrained RNN model, and the first- 

principles model of Eq. (13), respectively, for an initial condition (0, 0, 0, 0). 

a  

u  

m  

i  

a  
RNN model, the concentration in the first CSTR (i.e., C A 1 ) shows

undesirable oscillations around the origin due to its considerable

model mismatch as reported in Table 2 . Therefore, through open-

loop and closed-loop simulations, the partially-connected RNN

model and the weight-constrained RNN model that incorporate

structural process knowledge of the CSTR process of Eq. (13) are

demonstrated to achieve better approximation performance than

the fully-connected RNN model. 

5.3. Closed-loop simulation under LEMPC 

The control objective of LEMPC is to maximize the profit of

both CSTR systems described in Eq. (13) by manipulating the inlet

concentration �C A 10 and C A 20 and the heat inputs rate �Q 1 and

�Q 2 , and meanwhile maintain the closed-loop state trajectories in

the stability region �ρ for all times. The objective function of the

LEMPC optimizes the production rate of B as follows: 

l e ( ̃  x , u ) = k 0 e 
−E/RT 1 C 2 A 1 + k 0 e 

−E/RT 2 C 2 A 2 (15)

Closed-loop simulations are performed under the LEMPC of

Eq. (12) using the first-principles model of Eq. (13) and the three

RNN models, respectively. In Fig. 6 , it is demonstrated that the

state trajectories for both CSTRs are bounded in the stability re-

gion �ρ for all times under LEMPC. Fig. 7 shows the evolution

the Lyapunov function values of V 1 and V 2 under LEMPC using the

first-principles model of Eq. (13) and three different RNN models,

respectively. Specifically, due to a relatively large model mismatch

for the fully-connected RNN model as reported in Table 2 , the con-

tractive constraint of Eq. (12f) is activated frequently under the

LEMPC using a fully-connected RNN model because the actual pro-

cess state does not stay in �ρe under the constraint of Eq. (12e) . As

a result, it is observed in Fig. 7 that the V profiles under the fully-

connected model show larger oscillation compared to those under

the other two RNN models and under the first-principles model. 

Additionally, we compare the accumulated economic profits

L E = 

∫ t p 
0 

L e (x, u ) dt within the operation period t p = 0 . 32 h for the

closed-loop CSTRs under the steady-state operation (i.e., the CSTRs
re operated at their steady-states for all times), and the LEMPC

sing the first-principles model of Eq. (13) and the three RNN

odels, respectively. The result is shown in Fig. 8 , from which

t is demonstrated that the closed-loop operation under LEMPC

chieves higher economic profits than the steady-state operation.
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Fig. 7. The Lyapunov function value evaluation with respect to time for the closed-loop CSTR 1 (top plot) and CSTR 2 (bottom plot) under the EMPC using the fully-connected 

RNN model, the partially-connected RNN model, the weight-constrained RNN model, and the first-principles model of Eq. (13), respectively, for an initial condition (0, 0, 0, 0). 

Fig. 8. Accumulated economic profits for the closed-loop CSTRs under the steady-state operation and under the EMPC using the first-principles model of Eq. (13), the 

fully-connected RNN model, the partially-connected RNN model, and the weight-constrained RNN model, respectively, for an initial condition (0, 0, 0, 0). 
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pecifically, the LEMPC using the first-principles model achieves

he highest economic benefits since the closed-loop state trajec-

ory reaches and stays at the boundary of �ρe smoothly based

n accurate predictions. Moreover, it is demonstrated that the

EMPC using the partially-connected RNN model and the weight-

onstrained RNN model economically outperform that under the

ully-connected RNN model due to better prediction accuracy in

he stability region. Therefore, through both open-loop and closed-

oop simulations, we demonstrate that the physics-based RNN

odels achieve desired approximation performance for the CSTR

rocess of Eq. (13) and provide reliable state predictions for model-

ased predictive controllers. 

. Conclusion 

In this work, we developed three modeling approaches that in-

orporates a priori process knowledge into RNN models. Specifi-

ally, a hybrid model that combines a first-principles model and

n RNN model was first developed. Then, a partially-connected

NN model and a weight-constrained RNN model were developed

ased on an assumption on process input-output relationship.

he partially-connected and the weight-constrained RNN models

ere then utilized in RNN-MPC and RNN-EMPC, and applied to a

hemical process example, from which it was demonstrated that

he open-loop and closed-loop prediction performances under the

MPC and the LEMPC using the above two RNN models outper-

ormed those under the LMPC and LEMPC using a fully-connected
NN model in terms of higher prediction accuracy, smoother state

rajectories, and better economic benefits. 
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