
mathematics

Article

Statistical Machine Learning in Model Predictive Control of
Nonlinear Processes

Zhe Wu 1, David Rincon 1, Quanquan Gu 2 and Panagiotis D. Christofides 1,3,*

����������
�������

Citation: Wu, Z.; Rincon, D.; Gu, Q.;

Christofides, P.D. Statistical Machine

Learning in Model Predictive Control

of Nonlinear Processes. Mathematics

2021, 9, 1912. https://doi.org/

10.3390/math9161912

Academic Editor: Freddy Gabbay

Received: 29 July 2021

Accepted: 9 August 2021

Published: 11 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemical and Biomolecular Engineering, University of California, Los Angeles,
CA 90095-1592, USA; wuzhe@g.ucla.edu (Z.W.); fdrinconc@gmail.com (D.R.)

2 Department of Computer Science, University of California, Los Angeles, CA 90095-1592, USA;
qgu@cs.ucla.edu

3 Department of Electrical and Computer Engineering, University of California,
Los Angeles, CA 90095-1592, USA

* Correspondence: pdc@seas.ucla.edu

Abstract: Recurrent neural networks (RNNs) have been widely used to model nonlinear dynamic sys-
tems using time-series data. While the training error of neural networks can be rendered sufficiently
small in many cases, there is a lack of a general framework to guide construction and determine
the generalization accuracy of RNN models to be used in model predictive control systems. In this
work, we employ statistical machine learning theory to develop a methodological framework of
generalization error bounds for RNNs. The RNN models are then utilized to predict state evolution in
model predictive controllers (MPC), under which closed-loop stability is established in a probabilistic
manner. A nonlinear chemical process example is used to investigate the impact of training sample
size, RNN depth, width, and input time length on the generalization error, along with the analyses of
probabilistic closed-loop stability through the closed-loop simulations under Lyapunov-based MPC.

Keywords: generalization error; recurrent neural networks; machine learning; model predictive
control; nonlinear systems

1. Introduction

Modeling large-scale, complex nonlinear processes has been a long-standing research
problem in process systems engineering. The traditional approaches to modeling nonlin-
ear processes include data-driven modeling approach with parameters identified from
industrial/simulation data [1,2], and first-principles modeling approach based on a funda-
mental understanding of the underlying physico-chemical phenomena. While traditional
first-principles modeling approach has been used extensively in monitoring, control and
optimization of chemical processes, it can be time-demanding and inaccurate to model
complex nonlinear processes using first-principle modeling tools. Machine learning meth-
ods have been increasingly adopted to model complex nonlinear systems due to their
ability to model a rich set of nonlinear functions and handle efficiently with big datasets
from processes [3–10]. Among many machine learning modeling techniques, recurrent
neural network (RNN) is widely used to model nonlinear dynamic systems using time-
series data [11–13]. While the history of machine learning methods in chemical process
control can be traced back to 1990s [14–18], machine learning has become popular again
this decade due to a number of reasons such as cheaper computation (mature and effi-
cient libraries/hardware), availability of large datasets, and advanced learning algorithms.
Designing MPC systems that utilize machine learning models with well-characterized ac-
curacy is a new frontier in control systems that will impact the next generation of industrial
control systems.

Despite the success of machine learning methods in modeling nonlinear chemical
processes in the context of MPC, there remain fundamental challenges that limit the

Mathematics 2021, 9, 1912. https://doi.org/10.3390/math9161912 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9161912
https://doi.org/10.3390/math9161912
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9161912
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9161912?type=check_update&version=2

Mathematics 2021, 9, 1912 2 of 37

implementation of machine-learning-based MPC to real chemical processes. One important
challenge is to characterize the generalization ability on unseen data for machine learning
models trained using finite training samples. Furthermore, a theoretical analysis of closed-
loop stability for MPC using machine learning models needs to be developed via machine
learning and control theory. Typically, theoretical developments on machine-learning-
based MPC derived closed-loop stability properties based on the assumption of bounded
modeling errors. For example, in [9], a Lyapunov-based MPC scheme using RNN models
as the prediction model has been developed with guaranteed closed-loop stability by
assuming that the RNN models are able to obtain a sufficiently small and bounded testing
error. Similarly, a neural Lyapunov MPC that trains a stabilizing nonlinear MPC based
on surrogate model and neural-network-based terminal cost was proposed in [19] with
stability properties derived by assuming the boundedness of modeling error. Additionally,
in [20], a nonparametric machine learning model is implemented together with MPC
in which input-to-state stability is evaluated. In [21], a learning-based MPC targeting
deterministic linear models is proposed in which safety, stability, and robustness are
proved. However, the fundamental question regarding the generalization accuracy of
machine learning models in MPC has not been addressed.

Probably approximately correct (PAC) learning theory is a framework that mathemati-
cally analyze the generalization ability of machine learning models [22]. Specifically, in
PAC learning, given a set of training data, the learner is supposed to choose the optimal
hypothesis (i.e., machine learning model) that yields a low generalization error with high
probability from a certain class of hypotheses. Therefore, PAC learning theory provides a
useful tool that demonstrates under what conditions a learning algorithm will probably
output an approximately correct hypothesis. For example, in [23], PAC learning theory
was used to study the learnability of compression learning algorithm for the optimization
problem of stochastic MPC using a finite number of realizations of the uncertainty. In [24],
PAC learning was used to analyze the generalization performance of a convex piecewise
linear classifier that classifies the thermal comfort in a HVAC system. However, to the
best of our knowledge, the use of statistical machine learning theory in analyzing stability
properties of machine learning models in MPC, and guiding machine learning model
structure and training data collection have not been fully explored.

Many recent works have been developed characterizing learnability of neural net-
works in terms of sample complexity and generalization error [25–32]. Generalization
error bound is a common methodology in statistical machine learning for evaluating the
predictive performance of machine learning algorithms [33]. This bound depends on a
number of factors such as the number of data samples, the number of layers and neurons,
bounds of weight matrices, initialization method, among others. For example, in [29], a
generalization error bound was developed for a family of RNN models including vanilla
RNNs, long short term memory and minimal gated unit. The generalization error bound
was established for multiclass classification problems, and was dependent on the total
number of network parameters and the spectral norms of the weight matrices. In [27], a
sample complexity bound that was fully independent of network depth and width under
some assumptions was developed for feedforward neural networks. In [34], an expected
risk bound was developed for RNNs that model single-output nonlinear dynamic systems.
However, at this stage, generalization error bounds for RNNs that model multiple-input
and multiple-output (MIMO) nonlinear dynamic systems using time-series data have not
been studied.

Motivated by the above, in this work, we develop the methodological framework
of generalization error bounds from machine learning theory for the development and
verification of RNN models with specific theoretical accuracy guarantees and integrate
these models into model predictive control system design for nonlinear chemical processes.
Specifically, in Section 2, the class of nonlinear systems, the formulation of RNNs, along
with some general assumptions on system stabilizability and RNN development are pre-
sented. In Section 3, preliminaries including some important definitions and lemmas are

Mathematics 2021, 9, 1912 3 of 37

first presented, followed by the development of a probabilistic generalization error bound
for RNN models accounting for the impact of training data size and the number of neurons
and layers on accuracy and guiding network structure selection and training. In Section 4,
the RNN models are incorporated in the MPC formulation, under which probabilistic
closed-loop stability is derived based on the RNN generalization error bound. Finally,
in Section 5, a chemical reactor example is used to demonstrate the impact of training sam-
ple size, RNN depth and width, input time length on its generalization error. Additionally,
closed-loop simulations are carried out to analyze the probabilistic closed-loop stability
and performance.

2. Preliminaries
2.1. Notation

The Frobenius norm of A is denoted by ‖A‖F. The Euclidean norm of a vector is
denoted by the operator |·| and the weighted Euclidean norm of a vector is denoted by the
operator |·|Q where Q is a positive definite matrix. R+ denotes nonnegative real numbers.
xT denotes the transpose of x. The notation L f V(x) denotes the standard Lie derivative

L f V(x) := ∂V(x)
∂x f (x). Set subtraction is denoted by "\", i.e., A\B := {x ∈ Rn | x ∈

A, x /∈ B}. A function f (·) is of class C1 if it is continuously differentiable. A continuous
function α : [0, a) → [0, ∞) belongs to class K if it is strictly increasing and is zero only
when evaluated at zero. A function f : Rn → Rm is said to be L-Lipschitz, L ≥ 0, if
| f (a)− f (b)| ≤ L|a− b| for all a, b ∈ Rn. P(A) denotes the probability that event A will
occur. E[X] denotes the expected value of a random variable X.

2.2. Class of Systems

The class of continuous-time nonlinear systems considered is described by the follow-
ing state-space form:

ẋ = F(x, u) := f (x) + g(x)u, x(t0) = x0 (1)

where x ∈ Rn and u ∈ Rk are the sate vector, and the manipulated input vector. The
control action is constrained by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rk, where umin and umax
represent the minimum and the maximum value vectors of inputs allowed, respectively.
f (·) and g(·) are sufficiently smooth vector and matrix functions of dimensions n× 1, and
n× k, respectively. Without loss of generality, the initial time t0 is taken to be zero (t0 = 0),
and it is assumed that f (0) = 0, and thus, the origin is a steady-state of the system of
Equation (1).

We assume the system of Equation (1) is stabilizable in the sense that there exists a
stabilizing controller u = Φ(x) ∈ U that renders the origin exponentially stable. The stabi-
lizability assumption implies that there exists a C1 control Lyapunov function V(x) such
that for all x in an open neighborhood D around the origin, the following inequalities hold:

c1|x|2 ≤ V(x) ≤ c2|x|2, (2)

∂V(x)
∂x

F(x, Φ(x)) ≤ −c3|x|2, (3)∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ c4|x| (4)

where c1, c2, c3 and c4 are positive constants. Additionally, the Lipschitz property of F(x, u)
and the boundedness of u implies there exist positive constants MF, Lx, L

′
x such that the

following inequalities hold for all x, x′ ∈ D and u ∈ U:

Mathematics 2021, 9, 1912 4 of 37

|F(x, u)| ≤ MF (5)

|F(x, u)− F(x′, u)| ≤ Lx|x− x′| (6)∣∣∣∣∂V(x)
∂x

F(x, u)− ∂V(x′)
∂x

F(x′, u)
∣∣∣∣ ≤ L

′
x|x− x′| (7)

Following the data generation method in [9], open-loop simulations of the nonlinear
system of Equation (1) are first conducted to generate a large dataset that captures the
system dynamics for x ∈ Ωρ and u ∈ U, where Ωρ := {x ∈ Rn | V(x) ≤ ρ}, ρ > 0,
is a compact set within which the system stability is guaranteed using the controller
u = Φ(x) ∈ U. Specifically, we sweep over all the values that (x, u) can take by running
extensive open-loop simulations of the system of Equation (1) under various x0 ∈ Ωρ and
inputs u to generate a large number of dynamic trajectories. The open-loop simulation
of the continuous system of Equation (1) under a sequence of inputs u ∈ U is carried out
in a sample-and-hold fashion (i.e., the inputs are fed into the system of Equation (1) as
a piecewise constant function, u(t) = u(tk), ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆, and ∆
is the sampling period). The nonlinear system of Equation (1) is integrated via explicit
Euler method with a sufficiently small integration time step hc < ∆. Using the open-loop
simulation data, recurrent neural network (RNN) models are developed to predict future
states for (at least) one sampling period based on the current state measurements, and the
manipulated inputs that will be applied for the next sampling period. In other words, the
RNN model is developed to predict x(t), ∀t ∈ [tk, tk+1) based on the measurements x(tk)
and the inputs u ∈ [tk, tk+1). Finally, the time-series dataset is partitioned into three subsets
for the purposes of training, validation and testing.

2.3. Recurrent Neural Network Model

Consider an RNN model that approximates the nonlinear dynamics of the system of
Equation (1) with m sequences of T-time-length data points (xi,t, yi,t) where xi,t ∈ Rdx is
the RNN input, and yi,t ∈ Rdy is the RNN output, i = 1, ..., m and t = 1, ..., T (Figure 1).
It should be noted that the RNN inputs and outputs do not necessarily represent the
nonlinear system inputs and states/outputs in Equation (1). Therefore, to differentiate the
notations for RNN inputs/outputs from those for the nonlinear system of Equation (1),
all the vectors for RNN models are written in boldface. Additionally, to simplify the
discussion, the RNN model of Equations (8) and (9) is developed to predict states over
one sampling period with total time steps T = ∆

hc
(i.e., the RNN model is to predict future

states for all the integration time step hc within one sampling period ∆). As a result, the
RNN input xi,t consists of the current state measurements and manipulated inputs that will
be applied over t = 1, ..., T, and the RNN output yi,t consists of the predicted states over
t = 1, ..., T. Note that xi,t remains unchanged over t = 1, ..., T due to the sample-and-hold
implementation of manipulated inputs.

The dataset is developed consisting of m data sequences drawn independently from
some underlying distribution over Rdx×T ×Rdy×T . In this work, we consider a one-hidden-
layer RNN with hidden states hi ∈ Rdh computed as follows:

hi,t = σh(Uhi,t−1 + Wxi,t) (8)

where σh is the element-wise nonlinear activation function (e.g., ReLU). U ∈ Rdh×dh

and W ∈ Rdh×dx are weight matrices connected to the hidden states and input vector,
respectively. The output layer yi,t is computed as follows:

yi,t = σy(Vhi,t) (9)

where V ∈ Rdy×dh is the weight matrix, and σy is the element-wise activation function in
the output layer (typically linear unit for regression problems).

Mathematics 2021, 9, 1912 5 of 37

Figure 1. Recurrent neural network structure.

We consider the loss function L(y, ȳ) which calculates the squared difference between
the true value ȳ and the predicted value y (i.e., L2 loss). Without loss of generality, we have
the following assumptions on the RNN model and dataset.

Assumption 1. The RNN inputs are bounded, i.e., |xi,t| ≤ BX , for all i = 1, ..., m and t = 1, ..., T.

Assumption 2. The Frobenius norms of all the weight matrices are bounded as follows:

‖U‖F ≤ BU,F, ‖V‖F ≤ BV,F, ‖W‖F ≤ BW,F (10)

Assumption 3. Training, validation, and testing datasets are drawn from the same distribution.

Assumption 4. The nonlinear activation function σh is 1-Lipschitz continuous, and is positive-
homogeneous, i.e., σh(αz) = ασh(z) for all α ≥ 0 and z ∈ R.

Remark 1. All the assumptions made are standard in machine learning theory, and can be presented
in system-theoretic language as follows. Assumption 1 assumes that the RNN inputs are bounded,
which is consistent with the fact that the process states x and inputs u are bounded by x ∈ Ωρ

and u ∈ U. Assumption 2 requires the RNN weight matrices to be bounded, which implies that
only a finite class of neural network hypotheses are considered for modeling the nonlinear system of
Equation (1). Assumption 3 is a natural and necessary assumption for generalization performance
analysis. It implies that the machine learning models built from industrial operation data will be
applied to the same process with the same data distribution. An example of activation function that
satisfies Assumption 4 is Rectified Linear Unit (ReLu), which is a nonlinear activation function
that has gained popularity in the machine learning domain.

3. RNN Generalization Error

Since any learning algorithms are evaluated on finite training samples only, and do not
provide any information on their predictive performance for unseen data, generalization
error provides an important measure of how accurately a neural network model is able
to predict output values for input data that has not been used in training. To implement
machine learning models into real chemical processes, it is necessary to demonstrate that
models are developed with a desired generalization error such that they can be applied for
any reasonable operating conditions beyond those in the training dataset while maintaining
a sufficiently small modeling error. In this section, we develop an upper bound for the
generalization error of RNN models, and demonstrate that this error can be bounded with
high probability provided that the training data samples and neural network structure
meet a few requirements.

Mathematics 2021, 9, 1912 6 of 37

3.1. Preliminaries

We first present some important definitions and lemmas that will be used in the
derivation of RNN generalization error. The random variables satisfying sub-Gaussian dis-
tribution, which is a probability distribution with strong tail decay, are defined as follows:

Definition 1. A centered random variable x ∈ R is said to be sub-Gaussian with variance proxy
σ2, if E[x] = 0, and the moment generating function satisfies

E[exp(aX)] ≤ exp
(

a2σ2

2

)
, ∀a ∈ R (11)

Lemma 1 (McDiarmid’s inequality [35]). Consider independent random variables X1, ..., Xn ∈
X and a function f : Xn → R with bounded difference property, i.e., there exist positive numbers ci
such that the following inequality holds for all x1, ..., xn, x′i ∈ X, xi 6= x′i and i ∈ {1, ..., n}:

| f (x1, ..., xi, ..., xn)− f (x1, ..., x′i , ..., xn)| ≤ ci (12)

then the following probability holds for any a > 0:

P(f (X1, ..., Xn)−E[f (X1, ..., Xn)] ≥ a) ≤ exp

(
− 2a2

∑n
i=1 c2

i

)
(13)

Let L(yt, ȳt) be the loss function, where yt = h(xt) is the predicted RNN output, and
h(·) represents the RNN functions in the hypothesis class H mapping input x ∈ Rdx to
output y ∈ Rdy . The following error definitions are commonly used in machine learning
theory.

Definition 2. Given a function h that predicts output values y for each input x, and an underlying
distribution D, the expected loss/error or generalization error is

LD(h) , E[L(h(x), y)] =
∫

X×Y
L(h(x), y)ρ(x, y)dxdy (14)

where ρ(x, y) is joint probability distribution for x and y, and X, Y are the vector space of all
possible inputs, and outputs, respectively.

Since in general the joint probability distribution ρ is unknown, we use the data
samples drawn from this unknown probability distribution to compute empirical error,
which is a proxy measure for the expected loss.

Definition 3. Given a dataset with m data samples S = (s1, ..., sm), where si = (xi, yi), the
empirical error or risk is

ÊS[L(h(x), y)] =
1
m

m

∑
i=1

L(h(xi), yi) (15)

The RNN model is developed by minimizing the empirical risk of Equation (15) using
a set of m data sequences. To ensure that the RNN model achieves a desired generalization
performance in the sense that it well captures the nonlinear dynamics of the system of
Equation (1) for various operation conditions, the objective of this work is to show that
the generalization error E[L(h(x), y)] can be bounded provided that the empirical risk is
sufficiently small and bounded.

We consider the mean squared error (MSE) as loss function in this work. It is readily
shown that the MSE loss function L(y, ȳ) is not Lipschitz continuous for all y, ȳ ∈ Rdy .
However, since we consider a finite hypothesis class that satisfies Assumptions 1–4, we can
show that the RNN output is bounded. This is consistent with the fact that the nonlinear

Mathematics 2021, 9, 1912 7 of 37

system of Equation (1) is operated in the stability region Ωρ, and therefore, the RNN
outputs are bounded within a compact set.

Let rt > 0 denote the upper bound of yt, i.e., |yt| ≤ rt, t = 1, ..., T. Without loss of
generality, we assume that the true outputs are also bounded by rt. Therefore, the MSE
loss function is a locally Lipschitz continuous function satisfying the following inequality
for all |yt|, |ȳt| ≤ rt.

|L(y1, ȳ)− L(y2, ȳ)| ≤ Lr|y1 − y2| (16)

where Lr is the local Lipschitz constant.
The generalization error of a neural network function hS chosen from a hypothesis

class H based on a certain learning algorithm and a training dataset S drawn from dis-
tribution D can be decomposed into the approximation error and the estimation error
as follows:

LD(hS)− LD(h∗) = (min
h∈H

LD(h)− LD(h∗)) + (LD(hS)−min
h∈H

LD(h)) (17)

where the first and second terms in parentheses represent approximation error and esti-
mation error, respectively. Specifically, LD(hS) represents the error evaluated using the
hypothesis hS over the underlying data distribution D. h∗ represents the optimal hypothesis
(maybe outside of the finite hypothesis classH) for the data distribution D. minh∈H LD(h)
is the optimal hypothesis withinH that minimizes the loss functions over the distribution
D. It can be seen that the approximation error depends on how close the hypothesis class
H is to the optimal hypothesis h∗. In other words, a larger hypothesis class H generally
leads to a lower approximation error since it is more likely that the optimal hypothesis
h∗ is included in H. The estimation error depends on both the hypothesis class size and
training data, and characterizes how good the selected hypothesis hS associated with the
training dataset S is with respect to the best hypothesis minh∈H LD(h) within hypothesis
class H. As a result, a larger hypothesis class H may in turn lead to a higher estimation
error since it is more difficult to find the optimal hypothesis withinH over the distribution
D. From the error decomposition of Equation (17), we demonstrate the dependencies of
generalization error on the training dataset size and the complexity of hypothesis class. In
the next section, we will take advantage of Rademacher complexity technique to derive
a generalization error bound accounting for its dependencies on the above factors in a
quantitative aspect. The results will also provide a guide for the design of neural network
structures and the collection of training data in order to achieve a desired generalization
performance for a specific modeling task.

3.2. Rademacher Complexity Bound

Rademacher complexity quantifies the richness of a class of functions, and is often
used in machine learning theory to bound the generalization error. The definition of
empirical Rademacher complexity is given below.

Definition 4 (Empirical Rademacher Complexity). Given a hypothesis class F of real-valued
functions, and a set of data samples S = {s1, ..., sm}, the empirical Rademacher complexity of F is
defined as

RS(F) = Eε

[
sup
f∈F

1
m

m

∑
i=1

εi f (si)

]
(18)

where ε = (ε1, ..., εm)T with εi being independent and identically distributed (i.i.d.) Rademacher
random variables satisfying P(εi = 1) = P(εi = −1) = 0.5.

We also have the following contraction inequality for the hypothesis classH of vector-
valued functions h ∈ Rdy .

Mathematics 2021, 9, 1912 8 of 37

Lemma 2 (c.f. Corollary 4 in [36]). Consider a hypothesis class H of vector-valued functions
h ∈ Rdy , and a set of data samples S = {s1, ..., sm}. Let L(·) be a Lr-Lipschitz function mapping
h ∈ Rdy to R, then we have

Eε

[
sup
h∈H

m

∑
i=1

εiL(h(xi), yi)

]
≤
√

2LrEε

sup
h∈H

m

∑
i=1

dy

∑
k=1

εikhk(xi)

 (19)

where hk(·) is the k-th component in the vector-valued function h(·), and εik is an m× dy matrix of
independent Rademacher variables. In the following text, we will omit the subscript ε of expectation
for simplicity.

Since the RHS of Equation (19) is generally difficult to compute, we can reduce it to
scalar classes, and derive the following bound [36]:

E

sup
h∈H

m

∑
i=1

dy

∑
k=1

εikhk(xi)

 ≤ dy

∑
k=1

E
[

sup
h∈Hk

m

∑
i=1

εih(xi)

]
(20)

whereHk, k = 1, ..., dy, are classes of scalar-valued functions that correspond to the compo-
nents of vector-valued functions inH. Equation (20) will later be used in the derivation of
the generalization error bound for RNN models approximating the nonlinear system of
Equation (1).

Let Gt be the family of loss functions associated to H mapping the first t-time-step
inputs {x1, x2, ..., xt} ∈ Rdx×t to the t-th output yt ∈ Rdy .

Gt = {gt : (x, ȳ)→ L(h(x), ȳ), h ∈ H} (21)

where x is the RNN input vector, and ȳ is the true output vector. The following lemma
characterizes the upper bound for the generalization error using Rademacher complexity
RS(Gt).

Lemma 3 (c.f. Theorem 3.3 in [37]). Given a set of m i.i.d. data samples, with probability at least
1− δ over samples S = (xi,t, yi,t)

T
t=1, i = 1, ..., m, the following inequality holds for all gt ∈ Gt:

E[gt(x, y)] ≤ 1
m

m

∑
i=1

gt(xi, yi) + 2RS(Gt) + 3

√
log(2

δ)

2m
(22)

Proof. While the full proof can be found in many machine learning books, e.g., [37], a
proof sketch is presented below to help readers understand the derivation of Equation (22).
To simplify the notations, let E[gt] and ÊS[gt] denote the expected loss E[gt(x, y)] and the
empirical loss 1

m ∑m
i=1 gt(xi, yi) based on a dataset S with m data samples, respectively.

Additionally, we assume that gt(x, y) is bounded in [0, 1] (if not, we can scale the RNN
output layer or loss function) without loss of generality. We define β(S) to be a function of
data samples S = (s1, s2, ..., sm) as follows, where si represents each data sample (xi,t, yi,t),
i = 1, ..., m.

β(S) = sup
gt∈Gt

(E[gt]− ÊS[gt]) (23)

Mathematics 2021, 9, 1912 9 of 37

Given two datasets S = (s1, ..., si, ..., sm) and S′ = (s1, ..., s′i, ..., sm) with only one different
data point, i.e., si 6= s′i, the following inequality holds for any gt(xi, yi) ∈ [0, 1]:

∣∣β(S)− β(S′)
∣∣ = ∣∣∣∣∣ sup

gt∈Gt

(E[gt]− ÊS[gt])− sup
gt∈Gt

(E[gt]− ÊS′ [gt])

∣∣∣∣∣
≤
∣∣∣∣∣ sup
gt∈Gt

(ÊS′ [gt]− ÊS[gt])

∣∣∣∣∣
=

∣∣∣∣∣ sup
gt∈Gt

gt(s′i)− gt(si)

m

∣∣∣∣∣
≤ 1

m

(24)

Then, using the McDiarmid’s inequality in Lemma 1 and letting a ≥
√

log(2
δ)

2m , we have

P[β(S)−ES[β(S)] ≥ a] ≤ exp

(
−2a2

∑m
i=1

1
m2

)
= exp(−2a2m) ≤ δ

2
(25)

where ES[β(S)]denotes the expectation of β(S) with respect to the dataset S of m data
samples. Equivalently, the following inequality holds with probability at least 1− δ

2 , for
any δ > 0, :

β(S) ≤ ES[β(S)] +

√
log(2

δ)

2m
(26)

Next, we derive the upper bound for ES[β(S)] as follows:

ES[β(S)] = ES

[
sup
gt∈Gt

(E[gt]− ÊS[gt])

]

≤ ES,S′

[
sup
gt∈Gt

(ÊS′ [gt]− ÊS[gt])

]

= Eε,S,S′

[
sup
gt∈Gt

(
1
m

m

∑
i=1

εi(gt(s′i)− gt(si))

)]

≤ Eε,S′

[
sup
gt∈Gt

(
1
m

m

∑
i=1

εigt(s′i)

)]
+Eε,S

[
sup
gt∈Gt

(
1
m

m

∑
i=1
−εigt(si)

)]

= 2Eε,S

[
sup
gt∈Gt

1
m

m

∑
i=1

εigt(si)

]
= 2Eε,S[RS(Gt)]

(27)

where the first line is by substituting the definition of Equation (23) into ES[β(S)]. The sec-
ond line is derived using the fact that E[gt] = ES′ [ÊS′(gt)] and the property of supremum
function: supgt∈Gt

ES′(f (S′, gt)) ≤ ES′ [supgt∈Gt
f (S′, gt)] for any function f . The third line

is derived by introducing Rademacher variables εi, which do not affect its outcome since
εi are i.i.d. randome variables taking values in {−1,+1}. The fourth line is obtained by
separating the supremum function as sup(f + g) ≤ sup(f) + sup(g), and the last line is
derived using the fact that Rademacher variables εi have a symmetric distribution. Note
that Eε,S[RS(Gt)] in the last line of Equation (27) represents the expectation of the empirical
Rademacher complexity,RS(Gt), over all samples of size m drawn from the same distribu-
tion. In order to bound this term, we apply McDiarmid’s inequality again using confidence
δ
2 , which yields a similar result as in Equation (25). Finally, using union bound which states

Mathematics 2021, 9, 1912 10 of 37

that P(∪i Ai) ≤ ∑i P(Ai) holds for any finite or countable set of events Ai, i = 1, 2, ..., the
following inequality holds with probability at least 1− δ:

β(S) ≤ 2

RS(Gt) +

√
log 2

δ

2m

+

√
log 2

δ

2m

= 2RS(Gt) + 3

√
log 2

δ

2m

(28)

By substituting the definition of β(S) of Equation (23) into the above equation, we obtain
the result in Equation (22). This completes the proof of Lemma 3.

It can be seen from Equation (22) that the generalization error bound depends on the
empirical error (the first term), Rademacher complexity (the second term), and an error
function associated with the confidence δ and the number of samples m (the last term). Since
the first and last terms are known given a set of m training data, in order to characterize
the upper bound for the generalization error E[gt(x, y)], we need to determine the upper
bound for the Rademacher complexity RS(Gt). Since most of the established results
of Rademacher complexity are with respect to feedforward neural networks modeling
real-valued functions only, we will start with a lemma for the hypothesis class of real-
valued functions.

Lemma 4. Given a hypothesis classHk of real-valued functions corresponding to the k-th compo-
nent of vector-valued function class H, and a set of m i.i.d. data samples S = (xi,t, yi,t)

T
t=1,

i = 1, ..., m, the following inequality holds for the scaled empirical Rademacher complexity
mRS(Hk) = E[suph∈Hk

∑m
i=1 εih(xi)].

mRS(Hk) =
1
λ

log exp

(
λE
[

sup
h∈Hk

m

∑
i=1

εih(xi)

])

≤ 1
λ

log

(
E
[

sup
h∈Hk

exp(λ
m

∑
i=1

εih(xi))

]) (29)

where λ > 0 is an arbitrary parameter.

Proof. Equation (29) can be readily proved by using Jensen’s inequality which states that
given a random variable X and a convex function β(·), it holds that β(E[X]) ≤ E[β(X)].
Equation (29) will be used in the derivation of the upper bound for the Rademacher
complexity RS(H) in Lemma 7.

We can see from the definition of Rademacher complexity of Equation (18) that the
value of RS(Gt) depends on the complexity of hypothesis class Gt. However, since the
RNN model of Equations (8) and (9) is a complex nonlinear function which is difficult to
measure its learning capacity, we need to peel off the nonlinear activation functions and
weight matrices through layers. The following lemma shows the “peeling” step used in the
derivation of Rademacher complexity for the output layer of RNNs.

Lemma 5 (c.f. Lemma 1 in [27]). Given a hypothesis class H of vector-valued functions that
map the RNN inputs x ∈ Rdx to the hidden states h ∈ Rdh , and any convex and monotonically
increasing function p : R→ R+, the following inequality holds for the RNN model of Equations (8)
and (9) with a 1-Lipschitz, positive-homogeneous activation function σy(·):

E
[

sup
h∈H,||V||F≤BV,F

p

(∣∣∣∣∣ m

∑
i=1

εiσy(Vhi)

∣∣∣∣∣
)]
≤ 2 ·E

[
sup
h∈H

p

(
BV,F ·

∣∣∣∣∣ m

∑
i=1

εihi

∣∣∣∣∣
)]

(30)

Mathematics 2021, 9, 1912 11 of 37

Proof. The proof is omitted here as it is similar to the proof for the next lemma, which will
be presented in detail. Interested readers can refer to [27] for the proof of Lemma 5.

Lemma 5 peels off the weight matrix V between the RNN hidden layer and output
layer. To further peel off the weight matrices in the RNN hidden layers, we provide the
following lemma.

Lemma 6. Given a hypothesis class H of vector-valued functions that map the RNN inputs
x ∈ Rdx to the hidden states h ∈ Rdh , and any convex and monotonically increasing function
p : R → R+, the following equation holds for the RNN model of Equations (8) and (9) with a
1-Lipschitz, positive-homogeneous activation function σh(·):

E
[

sup
h∈H,||U||F≤BU,F ,||W||F≤BW,F ,

p

(∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)]

= E
[

sup
h∈H,||U||F≤BU,F ,||W||F≤BW,F

p

(∣∣∣∣∣ m

∑
i=1

εiσh(Uhi,t−1 + Wxi,t)

∣∣∣∣∣
)]

≤ 2E
[

sup
h∈H

p

(
BU,F

∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ BW,F

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
)] (31)

Proof. We first define an augmented weight matrix Z = [U|W] ∈ Rdh×(dh+dx), and an
augmented vector h̄i,t = [hi,t−1|xi,t] ∈ Rdh+dx . To simplify the discussion, we assume that
the Frobenius norm of the matrix Z is bounded by ||Z||F ≤ BZ,F, given that both U and
W are bounded by ||U||F ≤ BU,F and ||W||F ≤ BW,F. Then, the hidden layer vector at t-th
time step, hi,t, can be written as follows:

hi,t = σh(Uhi,t−1 + Wxi,t) = σh(Zh̄i,t) (32)

Letting z1, z2, ..., zh denote the rows of the matrix Z, we have∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
2

=
dh

∑
j=1
|zj|2

(
m

∑
i=1

εiσh(
zT

j

|zj|
h̄i,t)

)2

(33)

The supremum of Equation (33) over all the weight matrix Z = [z1 z2 ... zh] that satisfies
||Z||F ≤ BZ,F is obtained when |zj| = BZ,F for some j, and |zi| = 0 for all i 6= j. Therefore,
we have

E
[

sup
h∈H,||U||F≤BU,F ,||W||F≤BW,F

p

(∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)]

= E
[

sup
h∈H,|z|=BZ,F

p

(∣∣∣∣∣ m

∑
i=1

εiσh(z
Th̄i,t)

∣∣∣∣∣
)] (34)

Since p(·) is a convex and monotonically increasing function, p(|a|) ≤ p(a) + p(−a) holds,
and the above equation can be further bounded as follows:

E
[

sup
h∈H,|z|=BZ,F

p

(∣∣∣∣∣ m

∑
i=1

εiσh(z
Th̄i,t)

∣∣∣∣∣
)]
≤ E

[
sup

h∈H,|z|=BZ,F

p

(
m

∑
i=1

εiσh(z
Th̄i,t)

)]

+E
[

sup
h∈H,|z|=BZ,F

p

(
−

m

∑
i=1

εiσh(z
Th̄i,t)

)]

= 2E
[

sup
h∈H,|z|=BZ,F

p

(
m

∑
i=1

εiσh(z
Th̄i,t)

)] (35)

Mathematics 2021, 9, 1912 12 of 37

where the last equality is derived from the fact that the random variables εi have a sym-
metric distribution, i.e., P(εi = 1) = P(εi = −1) = 0.5. Following the proof in [27] and
Theorem 4.12 in [38], the RHS of Equation (35) can be further bounded by

2E
[

sup
h∈H,|z|=BZ,F

p

(
m

∑
i=1

εiσh(z
Th̄i,t)

)]
≤ 2E

[
sup

h∈H,|z|=BZ,F

p

(
m

∑
i=1

εizTh̄i,t

)]

≤ 2E
[

sup
h∈H,|u|=BU,F ,|w|=BW,F

p

(
|u|
∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ |w|
∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
)]

= 2E
[

sup
h∈H

p

(
BU,F

∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ BW,F

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
)] (36)

Based on Lemmas 5 and 6, the following lemma provides an upper bound for the
Rademacher complexity of the RNN hypothesis class.

Lemma 7. LetHk,t, k = 1, ..., dy, be the class of real-valued functions that corresponds to the k-th
component of the RNN output at t-th time step, with weight matrices and activation functions
satisfying Assumptions 1–4. Given a set of m i.i.d. data samples S = (xi,t, yi,t)

T
t=1, i = 1, ..., m,

the following equation holds for the Rademacher complexity:

RS(Hk,t) ≤
M(
√

2 log(2)t + 1)BX√
m

(37)

where M = BV,FBW,F
(BU,F)

t−1
BU,F−1 .

Proof. Let vk be the k-th row in the weight matrix V. Using Equations (29) and (30), the
scaled Rademacher complexity mRS(Hk) can be bounded as follows:

mRS(Hk,t) = E
[

sup
h∈Hk,t ,||V||F≤BV,F

m

∑
i=1

εiσy(vkhi,t)

]

≤ 1
λ

logE
[

sup
h∈Hk,t ,||V||F≤BV,F

exp

(
λ

m

∑
i=1

εiσy(vkhi,t)

)]

≤ 1
λ

logE
[

sup
h∈Hk,t

exp

(
BV,Fλ

∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)] (38)

where exp(·) corresponds to the monotonically increasing function p(·) in Lemmas 5 and 6.
Then, we use Equation (31) and further derive the bound for the RHS of the above equation
as follows:

1
λ

logE
[

sup
h∈Hk,t

exp

(
BV,Fλ

∣∣∣∣∣ m

∑
i=1

εihi,t

∣∣∣∣∣
)]

≤ 1
λ

log

(
2 ·E

[
sup

h∈Hk,t−1

exp

(
BV,Fλ ·

(
BU,F

∣∣∣∣∣ m

∑
i=1

εihi,t−1

∣∣∣∣∣+ BW,F

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
))]) (39)

Assuming that the initial hidden states hi,0 = 0, by recursively applying Lemma 6 to
the term |∑m

i=1 εihi,t−1| in Equation (39), we obtain that

Mathematics 2021, 9, 1912 13 of 37

mRS(Hk,t) ≤
1
λ

log

(
2t ·E

[
exp

(
BV,Fλ ·

(
BW,F ·

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣ · t−1

∑
j=0

(BU,F)
j

))])

=
1
λ

log

(
2t ·E

[
exp

(
BV,Fλ ·

(
BW,F ·

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣ · (BU,F)
t − 1

BU,F − 1

))]) (40)

It is noted that the RNN model in this work is developed to predict one sampling time,
for which the RNN inputs xi,t remain the same. If the RNN inputs are varying over time,
Equation (40) can be modified by taking the maximum value of |∑m

i=1 εixi,t| within the
prediction period. Subsequently, we define the following random variable q

q = M

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣ (41)

where the randomness comes from the Rademacher variables εi, and M denotes the product

of all weight matrices, i.e., M = BV,FBW,F
(BU,F)

t−1
BU,F−1 . Then, Equation (40) can be written as

mRS(Hk,t) ≤
1
λ

log(2t ·E[exp(λq)])

=
t log(2)

λ
+

1
λ

log(E[exp(λ(q−E[q]))]) +E[q]
(42)

Using Jensen’s inequality, we can bound E[q] as follows:

E[q] = E
[

M

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
]
≤ M

√√√√√E

∣∣∣∣∣ m

∑
i=1

εixi,t

∣∣∣∣∣
2
 = M

√
m

∑
i=1
|xi,t|2 ≤

√
mMBX (43)

where the second equality comes from the fact that εi are i.i.d. Rademacher random
variables, and the last inequality is due to the assumption that |xi,t| ≤ BX. Subsequently,
following the results in [38], we can show q is sub-Gaussian with the following variance
factor v since q satisfies a bounded-difference condition with respect to its random variables
εi, i.e., q(ε1, ..., εi, ..., εm)− q(ε1, ...,−εi, ..., εm) ≤ 2M|xi,t|.

v =
1
4

m

∑
i=1

(2M|xi,t|)2 = M2
m

∑
i=1
|xi,t| (44)

According to the property of sub-Gaussian random variables in Definition 1, the following
inequality holds for q:

1
λ

log(E[exp(λ(q−E[q]))]) ≤ λM2 ∑m
i=1|xi,t|
2

(45)

Let λ =

√
2 log(2)t

M
√

∑m
i=1 |xi,t |2

> 0. The Rademacher complexity mRS(Hk,t) in Equation (42) can be

bounded as follows:

mRS(Hk,t) ≤
t log(2)

λ
+

1
λ

log(E[exp(λ(q−E[q]))]) +E[q]

≤ M(
√

2 log(2)t + 1)

√
m

∑
i=1
|xi,t|2

≤ M(
√

2 log(2)t + 1)
√

mBX

(46)

Mathematics 2021, 9, 1912 14 of 37

Lemma 7 develops the Rademacher complexity upper bound for the hypothesis class
Hk of real-valued functions that map RNN inputs to the k-th output. Subsequently, we
derive the generalization bound for the loss function associated with the vector-valued
functions that map the RNN inputs to the output vector by taking advantage of the
contraction inequality of Equations (19) and (20).

Theorem 1. Let Gt be the family of loss function associated to the hypothesis class Ht of vector-
valued functions that map the RNN inputs to the RNN output at t-th time step, with weight
matrices and activation functions satisfying Assumptions 1–4. Given a set of m i.i.d. data samples
S = (xi,t, yi,t)

T
t=1, i = 1, ..., m, with probability at least 1− δ over S, we have r

E[gt(x, y)] ≤ 1
m

m

∑
i=1

gt(xi, yi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

M(
√

2 log(2)t + 1)BX√
m

)
(47)

where M = BV,FBW,F
(BU,F)

t−1
BU,F−1 .

Proof. Using the results in Lemma 7 and Equations (19) and (20), we can derive the follow-
ing upper bound for the loss function L(h(xi), yi) with h(xi) being vector-valued functions:

RS(Gt) = E
[

sup
h∈H

1
m

m

∑
i=1

εiL(h(xi), yi)

]
≤
√

2LrE

sup
h∈H

1
m

m

∑
i=1

dy

∑
k=1

εikhk(xi)

≤
√

2Lrdy
M(
√

2 log(2)t + 1)BX√
m

(48)

Then, substituting Equation (48) into Equation (22), we derive the generalization error
bound in Equation (47).

Remark 2. As stated in [27], the assumption of positive-homogeneity for the nonlinear activation
function can be loosened in some cases, under which a similar result of generalization error bound
can be derived. Interested readers are referred to Lemma 2 and Theorem 2 in [27].

Remark 3. The generalization error bound of Equation (47) implies that the following attempts can
be taken to reduce the generalization error: (1) minimize the empirical loss 1

m ∑m
i=1 gt(xi, yi) over

the training data samples S through a careful design of neural network, and (2) increase the number
of training samples m. Additionally, as discussed in the error decomposition of Equation (17),
increasing the complexity hypothesis class in terms of larger weight matrices bounds M could
decrease the approximation error, but may also increase the estimation error, which corresponds to
the last term O(·) in Equation (47). Therefore, in practice, we generally start with a simple neural
network and gradually increase it complexity in terms of more neurons, layers and larger weight
matrices bounds to improve the training and testing performance. The whole process stops when the
testing error starts increasing, which indicates the occurrence of overfitting.

Remark 4. While the actual generalization error is difficult to obtain due to unknown data distri-
bution and complexity of hypothesis class, Equation (47) characterizes the upper bound for the gap
between the generalization error and empirical error by moving the term 1

m ∑m
i=1 gt(xi, yi) to the

LHS of Equation (47). Since the neural network training process itself is to minimize the training
error only, this generalization gap is more useful in practice by showing how good the neural
network will be for unseen data under the same data distribution. In terms of modeling the nonlinear
system of Equation (1), this generalization gap provides an upper bound for the modeling error for
all the states in the operating region, and can be used in the design of model-based controllers that
probabilistically ensure closed-loop stability accounting for bounded modeling errors.

Mathematics 2021, 9, 1912 15 of 37

Remark 5. It is noticed that the generalization error bound also depends on the time length t
of RNN inputs, which is different from the results derived for the feedforward neural networks
in [27]. Additionally, unlike other deep neural networks which utilize different parameters for
each hidden layer, RNNs share the same weight matrix U at each time step, and therefore, the

bound for the product of weight matrices is derived in the form of M = BV,FBW,F
(BU,F)

t−1
BU,F−1 . From

Equation (47), it can be seen that as the data sequence length t increases, the network hypothesis
becomes more complex, which leads to a larger generalization error bound. Therefore, a shorter time
sequence prediction is preferred from the perspective of prediction accuracy. However, it does not
necessarily mean a short prediction period is always desirable from the control perspective, especially
in model predictive control (MPC) schemes. In Section 5, we will demonstrate that the RNN models
predicting a short period of time achieved desired prediction performance in open-loop tests, but
perform poorly in closed-loop simulation due to the error accumulated during successive execution
of RNN predictions within MPC prediction horizon.

4. RNN-Based MPC with Probabilistic Stability Analysis

In this section, we present the formulation of Lyapunov-based MPC (LMPC) that
uses RNN models to predict evolution of future states, along with the closed-loop stability
analysis showing the boundedness of closed-loop state of Equation (1) in the stability
region for all times in probability.

4.1. Lyapunov-Based Control Using RNN Models

To simplify the discussion of RNN stability properties for the continuous-time nonlin-
ear system of Equation (1), we represent the RNN model in the following continuous-time
form [9]:

˙̂x = Fnn(x̂, u) := Ax̂ + ΘTz (49)

where x̂ ∈ Rn and u ∈ Rk are the RNN state vector and the manipulated input vector,
respectively. z = [z1, ..., zn, zn+1, ..., zk+n] = [σ(x̂1), ..., σ(x̂n), u1, ..., uk] ∈ Rn+k is a vector of
both the input u and the network state x̂, where σ(·) represents the nonlinear activation
function. A is a diagonal coefficient matrix with all diagonal elements being negative, and
Θ = [θ1, ..., θn] ∈ R(k+n)×n with θi = bi[wi1, ..., wi(k+n)], i = 1, ..., n, where wij denotes the
weight connecting the jth input to the ith neuron, i = 1, ..., n and j = 1, ..., (k + n). The
weight matrices and activation functions satisfy Assumptions 1–4. To simplify the notation,
we use Equation (49) to represent one-hidden-layer RNN model, and bias terms are not
explicitly included in Equation (49); however, it is noted that the results that we will derive
in this section are not restricted to one-hidden-layer RNN models, and can be extended to
deep RNNs with multiple hidden layers.

We assume that there exists a stabilizing feedback controller u = Φnn(x) ∈ U that
can render the origin of the RNN model of Equation (49) exponentially stable in an open
neighborhood D̂ around the origin. The stabilizability assumption implies the existence
of a C1 control Lyapunov function V̂(x) such that the following inequalities hold for all x
in D̂:

ĉ1|x|2 ≤ V̂(x) ≤ ĉ2|x|2, (50)

∂V̂(x)
∂x

Fnn(x, Φnn(x)) ≤ −ĉ3|x|2, (51)∣∣∣∣∂V̂(x)
∂x

∣∣∣∣ ≤ ĉ4|x| (52)

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants. The closed-loop stability region for the RNN
model of Equation (49) is characterized as a level set of Lyapunov function embedded in
D̂ as follows: Ωρ̂ := {x ∈ D̂ | V̂(x) ≤ ρ̂}, where ρ̂ > 0. Additionally, there exist positive

Mathematics 2021, 9, 1912 16 of 37

constants Mnn and Lnn such that the following inequalities hold for all x, x′ ∈ Ωρ̂ and
u ∈ U:

|Fnn(x, u)| ≤ Mnn (53)∣∣∣∣∂V̂(x)
∂x

Fnn(x, u)− ∂V̂(x′)
∂x

Fnn(x′, u)
∣∣∣∣ ≤ Lnn|x− x′| (54)

Due to the model mismatch between the nonlinear system of Equation (1) and the RNN
model of Equation (49), the following proposition is developed to demonstrate that the
feedback controller u = Φnn(x) ∈ U is able to stabilize the system of Equation (1) with
high probability if the modeling error is sufficiently small.

Proposition 1. Consider the RNN model trained using a set of m i.i.d. data samples S =
(xi,t, yi,t)

T
t=1, i = 1, ..., m, and satisfying Assumptions 1–4. Under the assumption that the

feedback controller u = Φnn(x) ∈ U renders the the origin of the RNN system of Equation (49)
exponentially stable for all x ∈ Ωρ̂, if for all x ∈ Ωρ̂ and u ∈ U, the modeling error can
be constrained by |F(x, u) − Fnn(x, u)| ≤ γ|x|, where γ is a positive real number satisfying
γ < ĉ3/ĉ4, then the controller u = Φnn(x) ∈ U also renders the origin of the nonlinear system of
Equation (1) exponentially stable with probability at least 1− δ for all x ∈ Ωρ̂.

Proof. To demonstrate that the origin of the nominal system of Equation (1) can be rendered
exponentially stable ∀x ∈ Ωρ̂ with probability at least 1 − δ under the controller u =
Φnn(x) ∈ U designed for the RNN model of Equation (49), we prove that the time-
derivative of V̂ associated with the state x of Equation (1) can be rendered negative in
probability under u = Φnn(x) ∈ U. Based on Equations (51) and (52), ˙̂V is derived
as follows:

˙̂V =
∂V̂(x)

∂x
F(x, Φnn(x))

=
∂V̂(x)

∂x
(Fnn(x, Φnn(x)) + F(x, Φnn(x))− Fnn(x, Φnn(x)))

≤− ĉ3|x|2 + ĉ4|x| · |(F(x, Φnn(x))− Fnn(x, Φnn(x)))|

(55)

where the last term |F(x, Φnn(x))− Fnn(x, Φnn(x))| represents the error between the RNN
model and the process model of Equation (1). Since the RNN model is trained using
sampled data with a sufficiently small time interval (i.e., integration time step hc), the
modeling error term for the same initial state x(t) = x̂(t) can be approximated as follows:

|F(x, Φnn(x))− Fnn(x, Φnn(x))|

≤
∣∣∣∣ x(t + hc)− x(t)

hc
− x̂(t + hc)− x̂(t)

hc

∣∣∣∣+O(hc)

≤
∣∣∣∣ x(t + hc)− x̂(t + hc)

hc

∣∣∣∣+O(hc)

(56)

where x̂ is the predicted state by RNN model, and x is the state of actual nonlinear sys-
tem of Equation (1). O(hc) is the truncation error from finite difference method. Since
|x(t + hc)− x̂(t + hc)| represents the Euclidean norm of the prediction error, while the gen-
eralization error bound is derived using MSE as loss function in Theorem 1, the modeling
error can be bounded as follows:

|F(x, Φnn(x))− Fnn(x, Φnn(x))| ≤ EM (57)

Mathematics 2021, 9, 1912 17 of 37

where

EM =
1
hc

√√√√ 1
m

m

∑
i=1

g(xi, yi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

M(
√

2 log(2)hc + 1)BX√
m

)
+O(hc) (58)

By choosing the number of samples m ≥ mN(δ, hc, |x|), where mN(δ, hc, |x|) is the
minimum data sample size satisfying EM ≤ γ|x|, γ < ĉ3/ĉ4, we have the following
equation showing that ˙̂V can be rendered negative for all x ∈ Ωρ and x 6= 0 with probability
at least 1− δ, i.e., P[˙̂V ≤ 0] ≥ 1− δ,

˙̂V ≤− ĉ3|x|2 + ĉ4|x| · |F(x, Φnn(x))− Fnn(x, Φnn(x))|

≤ − ĉ3|x|2 + ĉ4|x|
ĉ3|x|

ĉ4

=− c̃3|x|2

≤0

(59)

where c̃3 = −ĉ3 + ĉ4γ < 0 for any γ < ĉ3/ĉ4. Therefore, with probability at least 1− δ, the
closed-loop state of the system of Equation (1) converges to the origin under u = Φnn(x) ∈
U for all x0 ∈ Ωρ̂.

Remark 6. The modeling error constraint EM ≤ γ|x|, ∀x ∈ Ωρ̂ implies that more data is needed
for states closer to the origin. This is because when x approaches the origin, the upper bound γ|x| is
close to zero, and therefore, the prediction of x̂ should be more accurate in order to yield a desired
approximation of system dynamics ẋ = F(x, u) using numerical methods. As a result, it seems
that an infinite number of data samples may be needed when state converges to the origin (i.e., x
is infinitely close to zero). However, we will show in the next subsection that the requirement of
such a large dataset for the states around a small neighborhood around the origin is not necessary
for operation under MPC. This is because under sample-and-hold implementation of control actions,
the states are forced to be bounded in a small ball around the origin, instead of converging to the
exact steady-state. Therefore, the modeling error constraint EM ≤ γ|x|, ∀x ∈ Ωρ̂ can be loosened
for states in this small ball, which could improve computational efficiency of training process.

4.2. Stabilization of Nonlinear System under Lyapunov-Based Controller

Subsequently, the following propositions are developed to demonstrate the impact
of sample-and-hold implementation of control actions on system stability. Specifically,
Proposition 2 demonstrates that in the presence of mismatch between the plant model
of Equation (1) and the RNN models of Equation (49), the error between the predicted
state and the actual state is bounded in a finite period of time. Then, we consider the
Lyapunov-based controller u = Φnn(x) applied to the nonlinear system of Equation (1)
in sample-and-hold fashion, and demonstrate in Proposition 3 that with high probability,
the nonlinear system of Equation (1) can be stabilized using the controller u = Φnn(x)
designed for the RNN model of Equation (49).

Proposition 2 (c.f. Proposition 3 in [9]). Consider the nonlinear system ẋ = F(x, u) of
Equation (1) and the RNN model ˙̂x = Fnn(x̂, u) of Equation (49) with the same initial condi-
tion x0 = x̂0 ∈ Ωρ̂. There exists a class K function fw(·) and a positive constant κ such that the
following inequalities hold ∀x, x̂ ∈ Ωρ̂:

|x(t)− x̂(t)| ≤ fw(t) :=
EM
Lx

(eLxt − 1) (60)

V̂(x) ≤ V̂(x̂) +
ĉ4
√

ρ̂
√

ĉ1
|x− x̂|+ κ|x− x̂|2 (61)

Mathematics 2021, 9, 1912 18 of 37

Proof. The proof can be found in [9], and is omitted here. Note that the proof in [9]
considers the nonlinear system subject to bounded disturbances, while in this work, we
consider the nominal system without disturbances only. However, the stability results
derived in this section can be readily generalized to the disturbed systems provided that
the disturbances are sufficiently small and bounded. Additionally, the modeling error term
in [9] is replaced by EM (see the definition of EM in Equation (58)) in Equations (60) and (61)
which accounts for the RNN generalization error derived in a probabilistic manner.

The following proposition is developed to show probabilistic closed-loop stability
of the nonlinear system of Equation (1) under sample-and-hold implementation of the
controller u = Φnn(x) ∈ U.

Proposition 3 (c.f. Proposition 4 in [9]). Consider the nonlinear system of Equation (1) with
the controller u = Φnn(x̂) ∈ U that meets the conditions of Equations (50)–(52), and the RNN
model of Equation (49) that meets all the conditions in Theorem 1. Under the sample-and-hold
implementation of control actions, i.e., u(t) = Φnn(x̂(tk)), ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆.
there exist εw > 0, ∆ > 0 and ρ̂ > ρmin > ρnn > ρs that satisfy

− c̃3

ĉ2
ρs + L

′
x MF∆ ≤ −εw (62)

and

ρnn := max{V̂(x̂(t + ∆)) | x̂(t) ∈ Ωρs , u ∈ U} (63)

ρmin ≥ ρnn +
ĉ4
√

ρ̂
√

ĉ1
fw(∆) + κ(fw(∆))2 (64)

such that for any x(tk) ∈ Ωρ̂\Ωρs , with probability at least 1− δ, the following inequality holds:

V̂(x(t)) ≤ V̂(x(tk)), ∀t ∈ [tk, tk+1) (65)

and the state x(t) of the nonlinear system of Equation (1) is bounded in Ωρ̂ for all times and
ultimately bounded in Ωρmin .

Proof. The key steps for the proof of Proposition 3 are presented below, and the full proof
is omitted here as it is similar to the proof of Proposition 4 in [9]. The only difference is
that Equation (65) now holds in probability due to the probabilistic nature of the modeling
error bound.

To show that the state will move towards Ωρs , which is a sufficiently small level set of
V̂ around the origin, we show that the time derivative of V̂ can be rendered negative for
any x(tk) ∈ Ωρ̂\Ωρs under u = Φnn(x) ∈ U.

˙̂V(x(t)) =
∂V̂(x(t))

∂x
F(x(t), Φnn(x(tk)))

=
∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk))) +

∂V̂(x(t))
∂x

F(x(t), Φnn(x(tk)))

− ∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)))

(66)

As shown in Proposition 1, by choosing the number of samples m ≥ mN(δ, hc, |x|) such
that EM ≤ γ|x|, where γ < ĉ3/ĉ4, it holds that P[˙̂V ≤ 0] ≥ 1− δ under u = Φnn(x) ∈ U.

Mathematics 2021, 9, 1912 19 of 37

Then, using the Lipschitz condition in Equations (5)–(7) and the condition for Lyapounov
function in Equations (50)–(52), Equation (66) can be further bounded as follows:

˙̂V(x(t)) ≤− c̃3

ĉ2
ρs +

∂V̂(x(t))
∂x

F(x(t), Φnn(x(tk)))−
∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)))

≤− c̃3

ĉ2
ρs + L

′
x|x(t)− x(tk)|

≤ − c̃3

ĉ2
ρs + L

′
x MF∆

(67)

Therefore, if Equation (62) is satisfied, we can find a negative real number −εw that bounds
the time derivative of V̂. This implies that for any state x(tk) ∈ Ωρ̂\Ωρs , with probability at
least 1− δ, the Lyapunov function value will decrease in one sampling time, and therefore,
the state can ultimately reach the set Ωρs under u = Φnn(x) ∈ U with a certain probability.
Additionally, since ˙̂V may not be rendered negative within Ωρs under sample-and-hold
implementation of Lyapunov-based control law u = Φnn(x) ∈ U, the predicted state of the
RNN model of Equation (49) is only required to be bounded in Ωρnn , which is a slightly
larger level set that includes Ωρs (see definition of Ωρnn in Equation 63). In this case, we
can show that the state of the actual nonlinear system of Equation (49) is bounded in Ωρmin ,
which is a superset of Ωρnn that accounts for the modeling error within one sampling period
(see definition of Ωρmin in Equation (64)). As a result, we do not impose any constraints on
˙̂V for x ∈ Ωρs . This explains why the modeling error constraint EM ≤ γ|x| is not necessary

for x ∈ Ωρs as stated in Remark 6.

4.3. Lyapunov-Based MPC Using RNN Models for Nonlinear Systems

The Lyapunov-based model predictive control design is given by the following opti-
mization problem [9,10]:

J = min
u∈S(∆)

∫ tk+N

tk

LMPC(x̃(t), u(t))dt (68)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (69)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (70)

x̃(tk) = x(tk) (71)
˙̂V(x(tk), u) ≤ ˙̂V(x(tk), Φnn(x(tk)), if x(tk) ∈ Ωρ̂\Ωρnn (72)

V̂(x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (73)

where x̃, N and S(∆) are the predicted states, the prediction horizon length, and the set
of piecewise constant functions with period ∆, respectively. We use ˙̂V(x, u) to represent

the time derivative of Lyapunov function V̂, i.e., ˙̂V(x, u) = ∂V̂(x)
∂x (Fnn(x, u)). After solving

the optimization problem of Equations (68)–(73) at t = tk, we apply the first control action
u(t), t ∈ [tk, tk+1) from the optimal input trajectory u∗(t), t ∈ [tk, tk+N) to the system of
Equation (1). Then the horizon is rolled one sampling period forward, and the LMPC is
resolved at the next sampling time with new state measurements available at t = tk+1.

The optimization problem of Equations (68)–(73) minimizes the objective function of
Equation (68), which is the integral of LMPC(x̃(t), u(t)) over the prediction horizon, subject
to the constraints of Equations (69)–(73). The RNN model of Equation (49) is used to predict
state evolution over t ∈ [tk, tk+N) given the state measurements at t = tk in Equation (71).
In the constraint of Equation (69), the RNN model of Equation (49) is used to predict the
states of the closed-loop system. The constraint of Equation (70) ensures that the input are
bounded over the entire prediction horizon. Finally, the constraints of Equations (72)–(73)
drives the predicted state towards the origin and ultimately maintain it inside Ωρnn . It
should be noted that despite the probabilistic nature of the RNN generalization error
bound, the neural network prediction of Equation (69) is deterministic after training is

Mathematics 2021, 9, 1912 20 of 37

completed. In other words, given the same initial state x(tk), and the manipulated inputs
u(t), ∀t ∈ [tk, tk+N), the RNN model of Equation (69) produces deterministic results
that statistically approximate the evolution of states over t ∈ [tk, tk+N). This is different
from stochastic MPC which uses a stochastic process model in the MPC formulation, and
therefore, requires calculation of uncertainty prorogation and accounts for probabilistic
constraint satisfaction. The LMPC formulation of Equations (68)–(73) is solved with
a deterministic RNN model, based on which recursive feasibility is guaranteed, and
probabilistic stability results can be developed.

The following theorem is established to demonstrate that LMPC ensures closed-loop
stability for the nonlinear system of Equation (1) with high probability provided that the
RNN model is well constructed that satisfies the modeling error constraint in Proposition
1.

Theorem 2. Consider the closed-loop system of Equation (1) under the LMPC of Equations (68)–(73)
based on the controller Φnn(x) that satisfies Equations (50)–(52). Let ∆ > 0, εw > 0 and
ρ̂ > ρmin > ρnn > ρs satisfy Equations (62)–(64). Then, given any initial state x0 ∈ Ωρ̂, if the
RNN model is developed satisfying the conditions in Proposition 2 and Proposition 3, there always
exists a feasible solution for the optimization problem of Equations (68)–(73) . Additionally, by
choosing the number of samples m ≥ mN(δ, hc, |x|) such that EM ≤ γ|x| holds, then for each time
step, with probability at least 1− δ, closed-loop stability is guaranteed for the system of Equation (1)
under the LMPC of Equations (68)–(73) in the sense that x(t) ∈ Ωρ̂, ∀t ≥ 0, and x(t) ultimately
converges to Ωρmin .

Proof. The proof consists of two parts. In the first part, we prove recursive feasibility of
the LMPC optimization problem of Equations (68)–(73) . The proof of this part follows
closely the proof of Theorem 2 in [9], which shows that the stabilizing controller u(t) =
Φnn(x(t)) ∈ U, t = [tk, tk+N) is a feasible solution to the LMPC optimization problem.
Specifically, when x(tk) ∈ Ωρ̂\Ωρnn at t = tk, it is readily shown that the control action
u(t) = Φnn(x(tk)) is a feasible solution that satisfies the constraint of Equation (72) by
taking the equal sign. When x(tk) ∈ Ωρnn , as shown in [9], u(t) = Φnn(x(t)) ∈ U,
t = [tk, tk+N) again are feasible solutions that maintain predicted states within Ωρnn within
the prediction horizon.

In the second part, we prove that closed-loop stability is guaranteed in probability for
the nonlinear system of Equation (1) under LMPC. Specifically, when x(tk) ∈ Ωρ̂\Ωρnn at
t = tk, we have shown in Proposition 3 that for each sampling time, V̂(x(t)) ≤ V̂(x(tk))
holds under u(t) = Φnn(x(t)) ∈ U for t ∈ [tk, tk+1) with probability at least 1− δ. This
implies that the state of the actual nonlinear system of Equation (1) can be driven towards
the origin under the LMPC using RNN models for prediction provided that the modeling
error is sufficiently small and satisfies EM ≤ γ|x|, ∀x ∈ Ωρ̂. When x(tk) ∈ Ωρnn , the input
sequences are optimized to minimize the objective function of Equation (68) while meeting
the constraint of Equation (73). However, due to the existence of modeling error, the true
states may leave Ωρnn while the predicted states remain inside Ωρnn . In Proposition 3, we
have shown that with probability at least 1− δ, the true state of the system of Equation (1)
can be bounded within Ωρmin , which is a superset of Ωρnn designed accounting for the
modeling error within one sampling period. Additionally, it is noted that depending
on the prediction horizon of RNN models, we may need to perform RNN predictions
successively to obtain the full prediction of the state trajectory over the entire prediction
horizon, t ∈ [tk, tk+N). For example, in this work, the RNN model of Equation (49) is
developed to predict one sampling period forward, and thus, in order to predict state
trajectory over t ∈ [tk, tk+N), we need to carry out RNN predictions N times. After the
initial prediction at t = tk, each prediction uses the previous predicted state as the initial
state, along with the manipulated input u to predict the state at the next sampling time.
This inevitably accumulates the modeling error over calculation, which may lead to a
probability lower than 1− δ for the final state prediction error to be bounded by EM ≤ γ|x|.

Mathematics 2021, 9, 1912 21 of 37

As a result, the true states may further deviate from predicted states, and ultimately leave
Ωρmin within finite time. Despite the degradation of prediction performance over time,
closed-loop stability is not affected since LMPC is implemented in a rolling horizon manner
with feedback state measurements available every sampling time. The input sequences
are re-optimized using new state measurements at every sampling time to meet desired
closed-loop performance. Additionally, since the modeling error condition EM ≤ γ|x|
holds for the first sampling period, the state of the actual nonlinear system of Equation (1) is
guaranteed to not leave Ωρmin within one sampling period with probability at least 1− δ as
shown in Proposition 3. At the next sampling period, the constraints of Equation (72) and
of Equation (73) will be activated depending on the measurement of x(tk+1). Regardless
of where x(tk+1) is, the LMPC of Equations (68)–(73) will drive the predicted state into
Ωρnn , and correspondingly, maintain the true state within Ωρmin in probability. Therefore,
for any state x(tk) ∈ Ωρ̂, with probability at least 1− δ, the closed-loop state of the system
of Equation (1) is bounded in Ωρ̂ for each sampling time, and is ultimately bounded within
Ωρmin . This completes the proof of Theorem 2.

Remark 7. It is noted that in Theorem 2, the probability of closed-loop stability (i.e., at least 1− δ)
is derived for each sampling time since the probability of the modeling error bounded by γ|x| is
at least 1− δ for one sampling period only. It is difficult to compute the overall probability of
closed-loop stability for the entire state trajectory because given an initial state x0 ∈ Ωρ̂, we do not
know how many times steps it will take to drive the state into Ωρmin beforehand. Additionally, the
actual probability of closed-loop stability for each time step could be higher than the lower bound
1− δ due to many reasons. For example, 1) the RNN model is well trained that yields a modeling
error far below its upper bound, and 2) closed-loop stability may be unaffected if the next state
does not leave Ωρ̂ even if the modeling error exceeds its upper bound during one sampling period.
Therefore, the probability 1− δ is conservative in many cases, and only provides a lower bound for
the probability of closed-loop stability.

5. Application to a Chemical Process Example

We use the same chemical process example as in [10] to illustrate the application of
LMPC using RNN models. However, in this work, we will primarily demonstrate the
use of generalization error bound framework to provide estimates of their accuracy in the
development of RNN models for nonlinear dynamic processes. Specifically, we carry out
five case studies to evaluate the relation between RNN generalization error and a number
of factors such as data sample size, RNN depth/width, and data time length that impact its
performance. Additionally, after the RNN model is incorporated in the LMPC formulation,
we will demonstrate the closed-loop performances under the RNN models developed
with different data sample size and structures, and evaluate their probabilistic closed-loop
stability properties. We consider a well-mixed, non-isothermal continuous stirred tank
reactor (CSTR) with an irreversible second-order exothermic reaction in this example. The
reaction transforms a reactant A to a product B (A → B), where CA0, T0 and F denote
the inlet concentration of A, the inlet temperature and feed volumetric flow rate of the
reactor, respectively. A heating jacket is used to supply/remove heat to/from the CSTR at
a rate Q. The CSTR dynamic model is represented by the following material and energy
balance equations:

dCA
dt

=
F
V
(CA0 − CA)− k0e

−E
RT C2

A

dT
dt

=
F
V
(T0 − T) +

−∆H
ρLCp

k0e
−E
RT C2

A +
Q

ρLCpV

(74)

where CA and T are the concentration of reactant A and temperature in the reactor, re-
spectively. Q denotes the heat input rate, and V is the volume of the reacting liquid in
the reactor. F, T0, and CA0 are the volumetric flow rate, the feed temperature and the feed

Mathematics 2021, 9, 1912 22 of 37

concentration of reactant A, respectively. We assume that the reacting liquid has a constant
density of ρL and a heat capacity of Cp. ∆H, k0, E, and R represent the enthalpy of reaction,
pre-exponential constant, activation energy, and ideal gas constant, respectively. The list of
process parameter values can be found in [10].

The objective of LMPC is to stabilize the CSTR at its unstable equilibrium point
(CAs, Ts) = (1.95 kmol/m3, 402 K) corresponding to (CA0s Qs) = (4 kmol/m3, 0 kJ/hr) by
manipulating the inlet concentration of species A and the heat input rate. All the process
states (CA, T) and manipulated inputs (CA0, Q) are represented in the deviation variables
form, i.e., ∆CA0 = CA0 − CA0s , ∆Q = Q− Qs, ∆CA = CA − CAs, and ∆T = T − Ts. To
simplify the notation, we use xT = [∆CA ∆T] and uT = [∆CA0 ∆Q] to represent CSTR states
and inputs, respectively. By using deviation variables, the equilibrium point of the CSTR
of Equation (74) is at the origin of the state-space. The following positive definite P matrix
is used to characterize the closed-loop stability region Ωρ̂ (i.e., a level set of Lyapunov
function V(x) = xT Px) with ρ̂ = 368:

P =

[
1060 22

22 0.52

]
(75)

Additionally, the manipulated inputs are required to be bounded as follows: |∆CA0| ≤
3.5 kmol/m3 and |∆Q| ≤ 5× 105 kJ/hr to meet physical constraints. The integration of
RNN models in MPC follows the method in [10,39]. Specifically, the RNN models are
developed offline using Keras (version 2.4) [40], and then used to predict future states
based on the state measurement at each sampling time in the real-time implementation
of MPC. Then, the nonlinear optimization problem of the LMPC of Equations (68)–(73) is
solved under the sampling period ∆ = 10−2 hr using PyIpopt, which is the python module
of the IPOPT software package (version 3.9.1) [41]. The dynamic model of Equation (74) is
integrated using numerical method, i.e., explicit Euler method, with a sufficiently small
integration time step of hc = 10−4 hr.

5.1. RNN Generalization Performance

In this section, we carry out a number of RNN trainings with different RNN structures
and data samples to show the relation between RNN generalization performance and
a number of factors such as RNN input length, width, depth, weight bounds and data
sample size.

5.1.1. Case Study 1: Data Sample Size

In the first case study, we trained RNN models using different data sample sizes.
Specifically, we follow data generation method in [10] to initially generate a large dataset
from open-loop simulation of Equation (74) under various control actions u ∈ U and initial
conditions within the stability region, i.e., x0 ∈ Ωρ̂. The dataset consists of 200,000 time-
series data samples, and is separated into 140,000 training, 30,000 validation, and 30,000
testing samples. The RNN models are developed by gradually increasing the training
sample size, and is tested using unseen data from the testing dataset. It should be noted that
only the data sample size is changed in this case study, while all the other parameters such
as the RNN structure (i.e., number of layers, neurons, and other hyper-parameters) and
training algorithm remain the same for all RNN models. The RNN models are developed
with one hidden layer of 50 neurons, and using mean squared errors (MSE) as loss function.

Figure 2 shows the variation of RNN training and testing performances with respect
to the training sample size. In the top figure of Figure 2, it is observed that both the
testing and training MSEs increase as training data becomes less; in the bottom figure,
we show the generalization gap E[gt(x, y)]− 1

m ∑m
i=1 gt(xi, yi) in Equation (47), where the

expected error E[gt(x, y)] is approximated using the testing dataset. The trend in Figure 2
is consistent with the result in Theorem 1, which demonstrates that more training data is
needed in order to obtain a lower generalization gap between expected loss and training
loss. Additionally, it is noticed when the training sample size is greater than 3000, both

Mathematics 2021, 9, 1912 23 of 37

training and testing MSEs approach zero, and no significant improvement is observed
for the models using more training data. The trend in Figure 2 also follows the relation
between generalization error and data sample size in Equation (47), i.e., the generalization
gap E[gt(x, y)] − 1

m ∑m
i=1 gt(xi, yi) is roughly proportional to 1√

m , which shows that the
generalization gap initially decreases fast when the sample size m starts increasing from
zero, and changes slowly when m becomes large.

0 5000 10000 15000
0

0.05

0.1

0.15

T
ra

in
in

g
 &

 T
e

s
ti
n

g
 E

rr
o

rs

0 5000 10000 15000
0

0.05

0.1

0.15

G
e

n
e

ra
liz

a
ti
o

n
 G

a
p

 (
M

S
E

)

Figure 2. RNN generalization performance vs. training sample size.

5.1.2. Case Study 2 : RNN Depth and Width

In the second case study, we train RNN models with various depths and widths.
1400 training data, 300 validation data, and 300 testing data are used for all models. We
first develop RNN models by fixing the network depth as one hidden layer, and increasing
the number of neurons. As shown in Figure 3, both training and testing errors decrease as
the network width increases up to 250 neurons. However, as more neurons are added (i.e.,
270 and 280 neurons in Figure 3), the testing MSE increases while the training MSE remains
close to zero all the time, which implies that overfitting has occurred during training. As a
result, the generalization gap in Figure 3 shows a similar pattern, which decreases initially
and increases again when a large number of neurons are used. While theoretically the
expected error of Equation (47) does not explicitly depend on the network width, the results
in Figure 3 are consistent with the fact that increasing the capacity of a model by adding
more layers and/or more nodes to layers can improve the network learnability, but may
also lead to overfitting.

Subsequently, we train RNN models by increasing the number of layers, and fixing
five neurons each layer. Figure 4 shows that the testing MSE starts at around 0.02 for
one hidden layer, gradually decreases with more layers, and finally increases again as the
neural network becomes deeper. Meanwhile, the training MSE remains close to zero at
the beginning, yet also slightly increases as the number of hidden layers increase. From
Figure 4, it is concluded that one hidden layer is not sufficient to learn the process dynamics
well, and with two, three, and four layers, the RNN models achieve the best training and
generalization performance among all the models. Similar to Figure 3, the increase of
generalization gap in Figure 4 implies that deeper RNN models are overfitting the training
data. Additionally, it is also interesting to notice that the training error slightly increases
in deeper networks. While in general, the generalization performance deteriorates and
the training error remains unaffected when increasing the capacity of a model, the worse
training performance in Figure 4 are actually common in neural network development due

Mathematics 2021, 9, 1912 24 of 37

to the difficulty of training deep networks. Specifically, the optimization problem of neural
network training is highly non-convex, and may get stuck at some local minima as the
network becomes deeper. This is noticed during the training of RNN models in Figure 4,
where both the training and validation losses exhibit a sharp increase at a certain epoch
and then get stuck around that point until the end of epochs. Additionally, with more
hidden layers, the number of parameters to be trained grows exponentially, which could
lead to a poor training performance without a careful tuning of other hyperparameters.

50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

T
ra

in
in

g
 &

 T
e

s
ti
n

g
 E

rr
o

rs

50 100 150 200 250 300 350
0

0.005

0.01

0.015

0.02

G
e

n
e

ra
liz

a
ti
o

n
 G

a
p

 (
M

S
E

)

Figure 3. RNN generalization performance vs. RNN width (One hidden layer with increasing
number of neurons).

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

T
ra

in
in

g
 &

 T
e

s
ti
n

g
 E

rr
o

rs

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

G
e

n
e

ra
liz

a
ti
o

n
 G

a
p

 (
M

S
E

)

Figure 4. RNN generalization performance vs. RNN depth (Increasing the number of hidden layers
and fixing 5 neurons for each layer).

Remark 8. At first glance, the generalization error trend in Figures 3 and 4 seems in contrast
to the results in Equation (47), which shows the generalization error bound is proportional to the
complexity of RNN hypothesis class. However, it should be noted that Equation (47) only gives
the upper bound for the generalization error of RNN models from the hypothesis class. It does
not mean all the RNN models from the hypothesis class have a generalization error as large as

Mathematics 2021, 9, 1912 25 of 37

its upper bound. From the error decomposition of Equation (17) showing the interplay between
approximation and estimation errors, we have learned that as we enlarge the hypothesis class,
the approximation error decreases, but the estimation error may increase. In this case study, by
increasing the complexity of RNN hypothesis class in terms of more layers and neurons, overall
the generalization performance improves; however, as the RNN models become deeper, overfitting
also occurs due to a large estimation error. Therefore, in practice, we can do a grid search such as
Figures 3 and 4 to determine the optimal number of layers and neurons.

5.1.3. Case Study 3: Different Regions in Ωρ̂

As discussed in Remark 6, to meet the modeling error constraint EM ≤ γ|x|, ∀x ∈ Ωρ̂,
more data is needed as the state approaches the origin, i.e., x → 0. It is equivalent
to show that under the same data density for different regions within the stability re-
gion Ωρ̂, a larger constant γ is needed to bound the modeling error EM ≤ γ|x| for
the states close to the origin. Therefore, in this case study, we develop multiple RNN
models for different regions inside Ωρ̂ with the same data density, and demonstrate the
variation of generalization performances. Specifically, we choose 9 level sets of Lya-
punov function Ωρi := {x ∈ Rn | V̂(x) ≤ ρi}, i = 0, ..., 8, within Ωρ̂, with ρ̂ = 368 and
ρi = [40, 88, 115, 138, 159, 177, 195, 213, 244]. For example, the first RNN model (model 0
with ρ0) is developed and tested using the data within Ωρ0 , the second RNN model (model
1 with ρ1) uses the data between Ωρ0 and Ωρ1 , and so on. Figure 5 shows a schematic of
the training regions considered for the CSTR of Equation (74), where xs is the steady-state,
and Ωρ̂ is the stability region. The training datasets are generated for each region (i.e.,
elliptical annuli in Figure 5) with the same data density, where the data density is defined
as the ratio of sample size to the area of each elliptical annulus. Similarly, in this case study,
we use data from different regions within Ωρ̂ to build RNN models, while all the other
parameters remain the same. The RNN models are developed with one hidden layer of 20
neurons, and using MSE as loss function.

Figure 5. Schematic of different regions inside Ωρ̂.

To compute the modeling error |F(x, u)− Fnn(x, u)| = | dx
dt −

dx̂
dt |where x and x̂ denote

the true state and predicted state, respectively, we carry out prediction for one integration
time step, and use finite difference method to approximate the derivatives following
Equation (56). Specifically, we first calculate the training and testing mean absolute errors
(MAE) and divide them by the integration time step hc, i.e., | x(t+hc)−x̂(t+hc)

hc
|. Subsequently,

to obtain an approximated value of γ for each model, i.e., EM
|x| ≤ γ, we divide those MAEs

by the maximum value of |x| in each elliptical annulus in Figure 5. Figure 6 shows the
training and testing errors for the RNN models trained for different regions inside Ωρ̂.

Mathematics 2021, 9, 1912 26 of 37

It is observed that under the same data density, the models trained for the regions close
to the origin (i.e., Models 0, 1, and 2 for Ωρ0 , Ωρ1 and Ωρ2) produce larger generalization
gaps. This implies a larger γ, or equivalently, more data is needed to meet the constraint
EM ≤ γ|x| for x in these regions. Additionally, it is observed that the generalization gap
settles at around 2× 10−5 for model 4 and after because those RNN models have achieved
the best they can do under the current neural network training settings and data density.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

T
ra

in
in

g
 &

 T
e
s
ti
n
g
 E

rr
o
rs

10
-4

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

G
e
n

e
ra

liz
a

ti
o
n
 G

a
p
 (

M
A

E
) 10

-4

Figure 6. RNN generalization performance vs. different regions in Ωρ̂.

5.1.4. Case Study 4: Weight Matrix Bound

From Equation (48), it is seen that the generalization gap also depends on the weight
matrix bound. To evaluate the relation between generalization performance and weight
matrix bound, in this case study, we train RNN models with different weight matrix bounds.
Specifically, we impose an upper bound constraint for each element in the RNN weight
matrices with the following values [0.8, 1.3, 1.8, 2.5, 3.0, 3.4, 3.9, 4.3].

The Frobenius norms of all the weight matrices are therefore also bounded. The
training and testing errors are calculated following the approach in Case study 1, and
are shown in Figure (7). It is observed that as the weight matrix bound becomes larger,
the generalization gap gradually increases and settles at around 8× 10−4. This behavior
implies that the RNN model is over-fitting when training with a large weight bound. The
reason for the trend in Figure 7 is similar to that for Case study 2, which demonstrates
that as the size of neural network hypothesis class becomes larger with increasing weight
bounds, it is easier to find a hypothesis that fits training data well, but could also lead to
large testing error (i.e., over-fitting).

Mathematics 2021, 9, 1912 27 of 37

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

T
ra

in
in

g
 &

 T
e

s
ti
n

g
 E

rr
o

rs 10
-3

1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

G
e

n
e

ra
liz

a
ti
o

n
 G

a
p

 (
M

S
E

)

10
-3

Figure 7. RNN generalization performance vs. weight matrix bound.

5.1.5. Case Study 5: RNN Input Length

Lastly, we study the dependency of RNN generalization error on the input time length
t according to Equation (47). If we unfold a vanilla RNN over time to form a multi-layer
feedfoward neural network, then this relation can also be interpreted in the way that a deep
feedforward neural network has a large generalization error. In this example, we train RNN
models with different input time length as follows: t = 10−3 × [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] hr.

Figure 8 shows the training and testing errors for different time lengths. Specifically,
as RNN input time length increases, it is seen that the training error remains at a very low
level for all models, but the testing error gradually increases and finally settles at around
6× 10−3. It is concluded from Figure 8 that a shorter input sequence yields better general-
ization performance, which is consistent with the theoretical result shown in Equation (47).
However, it should be noted that a shorter input sequence does not necessarily yield better
prediction in the formulation of MPC because as discussed in Theorem 2, in order to predict
future states for a long prediction horizon, the RNN prediction needs to be executed succes-
sively, which inevitably accumulates the error during calculations. Therefore, when used
in MPC, the RNN input length should be carefully chosen to account for MPC prediction
horizon and maintain a desired generalization performance simultaneously.

Remark 9. A small training dataset was chosen in Case studies 2–5 for demonstration purposes.
Specifically, it was demonstrated in Case study 1 that with more than 3000 data samples, both
training and testing errors are rendered sufficiently small. Therefore, to better demonstrate the
relation between RNN generalization error bound and RNN depth/width, and data time length in
other case studies, we chose a small training dataset such that significant differences can be observed
by varying RNN depths, widths, time sequence length. However, it is noted that in practice, the
sample size and all the other factors studied in this manuscript should be carefully chosen in order
to improve the RNN generalization performance.

Mathematics 2021, 9, 1912 28 of 37

1 2 3 4 5 6 7 8 9 10

10
-3

0

2

4

6

T
ra

in
in

g
 &

 T
e

s
ti
n

g
 E

rr
o

rs

10
-3

1 2 3 4 5 6 7 8 9 10

10
-3

2

3

4

5

6

7

G
e

n
e

ra
liz

a
ti
o

n
 G

a
p

 (
M

S
E

)

10
-3

Figure 8. RNN generalization performance vs. input time length.

5.2. Closed-Loop Performance Analysis

In this section, we carry out closed-loop simulations of CSTR under the LMPC of
Equations (68)–(73) using the different RNN models derived from the previous case studies.
Additionally, we demonstrate the probabilistic closed-loop stability properties of RNN-
based LMPC through extensive closed-loop simulations for the CSTR of Equation (74) with
different initial conditions.

Figures 9–12 show the simulation results using 48 different initial conditions within
Ωρ̂ for a few RNN models trained in Case study 1. Specifically, we first discretize the
stability region Ωρ̂ and choose 48 initial conditions x0 ∈ Ωρ̂ that are evenly spread within
the stability region. Then, we run closed-loop simulations for all initial conditions using
the following settings: (1) the whole simulation period tp is twenty sampling periods
(i.e., 20 × 0.01 = 0.2 hr), (2) the stability region Ωρ̂ and the terminal region Ωρmin are
characterized as ρ̂ = 368 and ρmin = 2, respectively, and (3) the simulations are carried out
using UCLA Hoffman 2 cluster and the optimization problem is solved using the python
module of the IPOPT software package (i.e., PyIpopt). After obtaining the closed-loop
profiles for each initial condition, the following policies are utilized to determine whether
the closed-loop system is stable or not. Specifically, the closed-loop system is considered
unstable if (1) the closed-loop state leaves the stability region Ωρ̂ at any point during the
simulation, or (2) the closed-loop state remains inside Ωρ̂, but stays outside of Ωρmin until
the end of simulation or leaves Ωρmin after entering for the first time.

Figure 9 shows the probability of closed-loop stability calculated following the above
policies. It is seen that with more training data, the probability of the CSTR of Equation (74)
being stabilized at its steady-state becomes higher, and the probability settles at around
0.78 for a sufficiently large dataset. The probability results in Figure 9 for RNN models in
Case study 1 are consistent with its generalization performance plot in Figure 2, which
shows that the generalization error decreases with more data used for training. In addition
to the calculation of the probability for closed-loop stability, we also use the MPC cost
function of Equation (68) as an indicator for comparing control performance in terms of
the convergence speed and energy consumption. Specifically, the MPC cost function of
Equation (68) in this example is designed in the following form:

LMPC(x, u) = xT Px + uTQu (76)

Mathematics 2021, 9, 1912 29 of 37

where P = [1000 0; 0 1] and Q = [1 0; 0 3× 10−10] are chosen such that the two states
and the two inputs are in the same order of magnitude, respectively. Also, in this example,
we put more penalty on the states x to allow the states to be driven to the steady-state
more quickly. For each RNN model, we calculate the total costs

∫ tp
t=0 LMPC(x, u)dt over

the entire simulation period tp = 0.2 hr, and sum up the cost values for all the trajectories
initiated from 48 different initial conditions. Figure 10 shows the MPC total costs for the
RNN models trained with different data sample sizes. It is demonstrated that with less
training data, the MPC achieves a higher total cost, representing a slower convergence to
the steady-state and/or a higher energy consumption. With a large number of training data
(i.e., ≥ 6000), the MPC total costs remain at around 1420, and no significant improvement
is noticed with more data added in training. Additionally, Figures 11 and 12 show the
closed-loop state trajectory and state profiles for one of the initial condition out of 48 initial
conditions. As shown in Figure 11, the state trajectory using the RNN model trained
with 50 training data (dashed line) leaves the stability region due to poor predictions in
solving the MPC optimization problem. On the contrary, the state trajectory using the RNN
model with 14,000 training data (solid line) moves towards the steady-state smoothly and
is ultimately bounded in the terminal set Ωρmin . This can also be seen in the closed-loop
state profiles of Figure 12, where the temperature under 50 training data shows a sharp
increase at 0.03 hr.

0 2 4 6 8 10 12 14
Training sample size

×10
4

0

0.2

0.4

0.6

0.8

P
ro

b
a

b
ili

ty

Figure 9. Probability of closed-loop stability vs. training sample sizes.

0 2 4 6 8 10 12 14

10
4

1400

1450

1500

1550

1600

1650

M
P

C
 t
o
ta

l
c
o
s
ts

Figure 10. MPC total costs vs. training sample size.

Mathematics 2021, 9, 1912 30 of 37

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-80

-60

-40

-20

0

20

40

60

80
stability region

terminal region

50 training data

140000 training data

Figure 11. Closed-loop state trajectory under LMPC using two RNN models trained with different
data sample sizes.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.2

0.4

0.6

0.8

1
50 training data

140000 training data

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-40

-20

0

20

Figure 12. Closed-loop state profiles under LMPC using two RNN models trained with different
data sample sizes.

Similar to the analysis for Case study 1, Figures 13–16 show the probability of closed-
loop stability, MPC total costs, as well as the state-space trajectory and state profiles for
one of the initial condition for the RNN models in Case study 2. In Figure 13, it is shown
that the probability starts from 0.5, and settles at around 0.7 for wider RNN models (i.e.,
more neurons). Figure 14 shows the MPC total costs for different models, from which
it is demonstrated that the first model with only 5 neurons has a extremely high value,
and all the other models achieve a total cost around 1500. Figures 13 and 14 demonstrate
that all the RNN models except the first one achieve desired closed-loop performance in
terms of high probability of closed-loop stability and low total costs. This is due to the low
generalization error (around 0.005) for nearly all the models in Figure 3. Figure 15 shows
the comparison of the closed-loop state trajectories under the two RNN models using 5 and
350 neurons, respectively, from which it is demonstrated that the model with 5 neurons
(dashed line) drives the state out of the stability region, while the one with 350 neurons
successfully stabilizes the system in the terminal set. The corresponding state profiles (i.e.,
CA − CAs and T − Ts) can be found in Figure 16.

Mathematics 2021, 9, 1912 31 of 37

0 50 100 150 200 250 300 350
Number of neurons

0.5

0.6

0.7

0.8

P
ro

b
a

b
ili

ty

Figure 13. Probability of closed-loop stability vs. RNN width.

0 50 100 150 200 250 300 350
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

M
P

C
 t
o
ta

l
c
o
s
ts

Figure 14. MPC total costs vs. RNN width.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-120

-100

-80

-60

-40

-20

0

20

40

60

80 stability region

terminal region

5 neurons

350 neurons

Figure 15. Closed-loop state trajectory under LMPC using two RNN models trained with differ-
ent widths.

Mathematics 2021, 9, 1912 32 of 37

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
-1

0

1

2

5 neurons

350 neurons

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-300

-200

-100

0

Figure 16. Closed-loop state profiles under LMPC using two RNN models trained with differ-
ent widths.

To simplify the discussion for the remaining case studies, we will show the probability
plot and MPC total cost plot only. Figure 17 shows the probability of closed-loop stability
with respect to different RNN depths. It is demonstrated that the probability starts close
to zero for one layer, increases up to 0.7 for four layers, and then decreases to almost zero
for six layer and after. This trend follows exactly the generalization error plot in Figure 4,
which shows the model with two, three and four layers achieve the lowest generalization
error, and the models with more than five layers show worse generalization performance
due to overfitting. Comparing to the closed-loop results for the RNNs with various widths
in Figures 13 and 14, it is not surprising to see that the overall probability of closed-loop
stability in this case study is worse because the open-loop generalization performance for
the RNNs developed with different depths (Figure 4) is worse than that for the RNNs
developed with different widths (Figure 3). Additionally, in Figure 18, we observe a similar
pattern showing that the MPC total costs have the lowest values for two, three and four
layers, and rise up for more layers.

1 2 3 4 5 6 7 8 9 10
Number of layers

0

0.2

0.4

0.6

0.8

P
ro

b
a
b
ili

ty

Figure 17. Probability of closed-loop stability vs. RNN depth.

Mathematics 2021, 9, 1912 33 of 37

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

M
P

C
 t

o
ta

l
c
o

s
ts

10
4

Figure 18. MPC total costs vs. RNN depth.

Closed-loop simulations for Case study 3 of different regions in Ωρ̂ are not carried out
in this work, since the MPC formulation of Equations (68)–(73) only uses a single RNN
model for prediction. Additionally, it is demonstrated from previous case studies that a
single RNN model is sufficient to capture the process dynamics in the stability region, and
therefore, there is no need to use different RNN models for different regions in Ωρ̂ from
the control perspective.

Figure 19 shows the probability of closed-loop stability for the RNN models with
different weight matrix bounds in Case study 4. It is shown that all the RNN models
achieve a probability up to 0.7. The high probability of closed-loop stability is expected
since in the open-loop generalization error plot in Figure 7, it is shown that all the models
with different weight matrix bounds have a sufficiently small generalization error around
8× 10−4. As a result, the MPC total costs in Figure 20 are stable around 1000 for all models.

0 1 2 3 4 5 6 7
Models

0

0.5

1

P
ro

b
a
b
ili

ty

Figure 19. Probability of closed-loop stability vs. weight matrix bound.

Mathematics 2021, 9, 1912 34 of 37

1 2 3 4
0

200

400

600

800

1000

1200

1400

1600

M
P

C
 t

o
ta

l
c
o

s
ts

Figure 20. MPC total costs vs. weight matrix bound.

Lastly, Figures 21 and 22 show the closed-loop simulation results for Case study 5. As
shown in Figure 21, the probability of closed-loop stability increases as the RNN input time
length increases, and settles at around 0.9 for input time length greater than 6× 10−3 hr.
This seems inconsistent with the generalization performance of Figure 8 which shows the
generalization error increases for longer input sequences at first glance. However, as we
have discussed earlier, a low open-loop generalization error for short input sequences does
not guarantee a desired closed-loop performance under MPC. Specifically, with shorter
input sequences, the RNN prediction needs to be executed successively in each MPC
iteration to predict all the future states within the prediction horizon. For example, in order
to predict one sampling time ∆ = 10−2 hr, the first RNN model with 1× 10−3 input length
in Figure 21 needs to run 10 times, and each time uses the previous predicted state as the
initial state. The error accumulates during the calculation, which ultimately leads to poorer
closed-loop performance. Therefore, for RNN models used in MPC, the input time length
should be chosen carefully accounting for the system sampling time and MPC prediction
horizon. Additionally, Figure 22 shows the MPC total costs with respect to different RNN
input time lengths. It is seen that the first RNN model achieves the worst cost value, and all
the other models have similar cost values around 2000. Through the closed-loop simulation
of all the case studies investigated in the previous section, we demonstrate that the closed-
loop performance is consistent with the open-loop generalization performance in the way
that lower generalization errors typically leads to higher probability of closed-loop stability
and lower MPC total costs. Therefore, the generalization error bound proposed in this
work provides an efficient method for choosing neural network structure and data sample
size to meet the closed-loop stability requirements.

2 4 6 8 10
Input time length (hr)

×10
-3

0

0.5

1

P
ro

b
a

b
ili

ty

Figure 21. Probability of closed-loop stability vs. input time length.

Mathematics 2021, 9, 1912 35 of 37

1 2 3 4 5 6 7 8 9 10

10
-3

0

2000

4000

6000

8000

10000

12000

14000

M
P

C
 t
o
ta

l
c
o
s
ts

Figure 22. MPC total costs vs. input time length.

Remark 10. The RNN models are trained offline, and the RNN-based MPC is solved in real time
with new state measurements available at each sampling time. The averaged computation time for
solving RNN-based MPC per sampling step is around 10 s, which is less than one sampling period
∆ = 0.01 hr = 36 s in this example. Therefore, the RNN-based MPC scheme can be implemented
in real time without any computational issues.

6. Conclusions

In this work, we developed a generalization probabilistic error bound for RNN models
by taking advantage of the Rademacher complexity method for vector-valued functions.
The RNN models were incorporated in the design of MPC, and probabilistic closed-loop
stability properties were derived based on the RNN generalization error bounds. A number
of case studies were simulated using a nonlinear chemical reactor example to demonstrate
the impact of training sample size, the number of neurons and layers, regions where
the data was generated, and input time length on the RNN generalization performance.
Closed-loop simulation were carried out to further demonstrate the probabilistic closed-
loop stability properties derived by the RNN-based LMPC.

Author Contributions: Z.W. developed the main results, performed the simulation studies and
prepared the initial draft of the paper. D.R. contributed to the simulation studies in this manuscript.
Q.G. and P.D.C. developed the idea of RNN generalization error, oversaw all aspects of the research
and revised this manuscript. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the publica-
tion of the research article.

References
1. Cozad, A.; Sahinidis, N.V.; Miller, D.C. A combined first-principles and data-driven approach to model building. Comput. Chem. Eng.

2015, 73, 116–127. [CrossRef]
2. Wilson, Z.T.; Sahinidis, N.V. The ALAMO approach to machine learning. Comput. Chem. Eng. 2017, 106, 785–795. [CrossRef]
3. Ali, J.M.; Hussain, M.A.; Tade, M.O.; Zhang, J. Artificial Intelligence techniques applied as estimator in chemical process

systems–A literature survey. Expert Syst. Appl. 2015, 42, 5915–5931.
4. Han, H.; Wu, X.; Qiao, J. Real-time model predictive control using a self-organizing neural network. IEEE Trans. Neural Netw.

Learn. Syst. 2013, 24, 1425–1436. [PubMed]
5. Wang, T.; Gao, H.; Qiu, J. A combined adaptive neural network and nonlinear model predictive control for multirate networked

industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 416–425. [CrossRef] [PubMed]

http://doi.org/10.1016/j.compchemeng.2014.11.010
http://dx.doi.org/10.1016/j.compchemeng.2017.02.010
http://www.ncbi.nlm.nih.gov/pubmed/24808579
http://dx.doi.org/10.1109/TNNLS.2015.2411671
http://www.ncbi.nlm.nih.gov/pubmed/25898246

Mathematics 2021, 9, 1912 36 of 37

6. Wang, Y. A new concept using LSTM Neural Networks for dynamic system identification. In Proceedings of the American
Control Conference 2017, Seattle, WA, USA, 24–26 May 2017; pp. 5324–5329.

7. Wong, W.; Chee, E.; Li, J.; Wang, X. Recurrent Neural Network-Based Model Predictive Control for Continuous Pharmaceutical
Manufacturing. Mathematics 2018, 6, 242. [CrossRef]

8. Shahnazari, H.; Mhaskar, P.; House, J.M.; Salsbury, T.I. Modeling and fault diagnosis design for HVAC systems using recurrent
neural networks. Comput. Chem. Eng. 2019, 126, 189–203. [CrossRef]

9. Wu, Z.; Tran, A.; Rincon, D.; Christofides, P.D. Machine Learning-Based Predictive Control of Nonlinear Processes. Part I: Theory.
AIChE J. 2019, 65, e16729. [CrossRef]

10. Wu, Z.; Tran, A.; Rincon, D.; Christofides, P.D. Machine Learning-Based Predictive Control of Nonlinear Processes. Part II:
Computational Implementation. AIChE J. 2019, 65, e16734. [CrossRef]

11. Pan, Y.; Wang, J. Nonlinear model predictive control using a recurrent neural network. In Proceedings of the IEEE International
Joint Conference on Neural Networks 2008, Hong Kong, China, 1–8 June 2008; pp. 2296–2301.

12. Pan, Y.; Wang, J. Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks.
IEEE Trans. Ind. Electron. 2011, 59, 3089–3101. [CrossRef]

13. Xu, J.; Li, C.; He, X.; Huang, T. Recurrent neural network for solving model predictive control problem in application of four-tank
benchmark. Neurocomputing 2016, 190, 172–178. [CrossRef]

14. Hoskins, J.; Himmelblau, D. Process control via artificial neural networks and reinforcement learning. Comput. Chem. Eng. 1992,
16, 241–251. [CrossRef]

15. Vepa, R. A review of techniques for machine learning of real-time control strategies. Intell. Syst. Eng. 1993, 2, 77–90. [CrossRef]
16. Hussain, M. Review of the applications of neural networks in chemical process control—Simulation and online implementation.

Artif. Intell. Eng. 1999, 13, 55–68. [CrossRef]
17. Hewing, L.; Wabersich, K.; Menner, M.; Zeilinger, M. Learning-based model predictive control: Toward safe learning in control.

Annu. Rev. Control Robot. Auton. Syst. 2020, 3, 269–296. [CrossRef]
18. Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 2019, 65, 466–478.

[CrossRef]
19. Mittal, M.; Gallieri, M.; Quaglino, A.; Salehian, S.; Koutník, J. Neural lyapunov model predictive control. arXiv 2020,

arXiv:2002.10451.
20. Limon, D.; Calliess, J.; Maciejowski, J. Learning-based nonlinear model predictive control. IFAC-PapersOnLine 2017, 50, 7769–7776.

[CrossRef]
21. Aswani, A.; Gonzalez, H.; Sastry, S.; Tomlin, C. Provably safe and robust learning-based model predictive control. Automatica

2013, 49, 1216–1226. [CrossRef]
22. Valiant, L.G. A theory of the learnable. Commun. ACM 1984, 27, 1134–1142. [CrossRef]
23. Lygeros, J.; Margellos, K.; Prandini, M. Compression learning for chance constrained stochastic MPC. IFAC-PapersOnLine 2015,

48, 286–293. [CrossRef]
24. Zhou, Y.; Li, D.; Spanos, C. Learning optimization friendly comfort model for HVAC model predictive control. In Proceedings of

the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015;
pp. 430–439.

25. Bartlett, P.; Foster, D.J.; Telgarsky, M. Spectrally-normalized margin bounds for neural networks. arXiv 2017, arXiv:1706.08498.
26. Zhang, Y.; Lee, J.; Wainwright, M.; Jordan, M.I. On the learnability of fully-connected neural networks. In Proceedings of the

Artificial Intelligence and Statistics PMLR 2017, Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 83–91.
27. Golowich, N.; Rakhlin, A.; Shamir, O. Size-independent sample complexity of neural networks. In Proceedings of the Conference

On Learning Theory PMLR 2018, Stockholm, Sweden, 5–9 July 2018; pp. 297–299.
28. Cao, Y.; Gu, Q. Tight sample complexity of learning one-hidden-layer convolutional neural networks. arXiv 2019,

arXiv:1911.05059.
29. Chen, M.; Li, X.; Zhao, T. On generalization bounds of a family of recurrent neural networks. arXiv 2019, arXiv:1910.12947.
30. Cao, Y.; Gu, Q. Generalization bounds of stochastic gradient descent for wide and deep neural networks. arXiv 2019,

arXiv:1905.13210.
31. Zou, D.; Gu, Q. An improved analysis of training over-parameterized deep neural networks. arXiv 2019, arXiv:1906.04688.
32. Akpinar, N.; Kratzwald, B.; Feuerriegel, S. Sample complexity bounds for recurrent neural networks with application to

combinatorial graph problems. arXiv 2019, arXiv:1901.10289.
33. Reid, M. Generalization bounds. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2010; pp. 447–454._328.

[CrossRef]
34. Hanson, J.; Raginsky, M.; Sontag, E. Learning Recurrent Neural Net Models of Nonlinear Systems. arXiv 2020, arXiv:2011.09573.
35. Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011.
36. Maurer, A. A vector-contraction inequality for rademacher complexities. In Lecture Notes in Computer Science, Proceedings of the

International Conference on Algorithmic Learning Theory, Bari, Italy, 19–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 3–17.

37. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018.

http://dx.doi.org/10.3390/math6110242
http://dx.doi.org/10.1016/j.compchemeng.2019.04.011
http://dx.doi.org/10.1002/aic.16729
http://dx.doi.org/10.1002/aic.16734
http://dx.doi.org/10.1109/TIE.2011.2169636
http://dx.doi.org/10.1016/j.neucom.2016.01.020
http://dx.doi.org/10.1016/0098-1354(92)80045-B
http://dx.doi.org/10.1049/ise.1993.0009
http://dx.doi.org/10.1016/S0954-1810(98)00011-9
http://dx.doi.org/10.1146/annurev-control-090419-075625
http://dx.doi.org/10.1002/aic.16489
http://dx.doi.org/10.1016/j.ifacol.2017.08.1050
http://dx.doi.org/10.1016/j.automatica.2013.02.003
http://dx.doi.org/10.1145/1968.1972
http://dx.doi.org/10.1016/j.ifacol.2015.11.297
http://dx.doi.org/10.1007/978-0-387-30164-8_328

Mathematics 2021, 9, 1912 37 of 37

38. Ledoux, M.; Talagrand, M. Probability in Banach Spaces: Isoperimetry and Processes; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

39. Wu, Z.; Rincon, D.; Christofides, P.D. Process structure-based recurrent neural network modeling for model predictive control of
nonlinear processes. J. Process Control 2020, 89, 74–84. [CrossRef]

40. Keras. Available online: https://keras.io (accessed on 1 August 2015)
41. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear

programming. Math. Program. 2006, 106, 25–57. [CrossRef]

http://dx.doi.org/10.1016/j.jprocont.2020.03.013
https://keras.io
http://dx.doi.org/10.1007/s10107-004-0559-y

	Introduction
	Preliminaries
	Notation
	Class of Systems
	Recurrent Neural Network Model

	RNN Generalization Error
	Preliminaries
	Rademacher Complexity Bound

	RNN-Based MPC with Probabilistic Stability Analysis
	Lyapunov-Based Control Using RNN Models
	Stabilization of Nonlinear System under Lyapunov-Based Controller
	Lyapunov-Based MPC Using RNN Models for Nonlinear Systems

	Application to a Chemical Process Example
	RNN Generalization Performance
	Case Study 1: Data Sample Size
	Case Study 2 : RNN Depth and Width
	Case Study 3: Different Regions in
	Case Study 4: Weight Matrix Bound
	Case Study 5: RNN Input Length

	Closed-Loop Performance Analysis

	Conclusions
	References

