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Abstract

In this study, we present machine-learning–based predictive control schemes for

nonlinear processes subject to disturbances, and establish closed-loop system stabil-

ity properties using statistical machine learning theory. Specifically, we derive a gen-

eralization error bound via Rademacher complexity method for the recurrent neural

networks (RNN) that are developed to capture the dynamics of the nominal system.

Then, the RNN models are incorporated in Lyapunov-based model predictive control-

lers, under which we study closed-loop stability properties for the nonlinear systems

subject to two types of disturbances: bounded disturbances and stochastic distur-

bances with unbounded variation. A chemical reactor example is used to demonstrate

the implementation and evaluate the performance of the proposed approach.
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1 | INTRODUCTION

Machine learning has gained increasing attention in modeling nonlinear

systems due to powerful learning strategies, the availability of big data

sets, and the development of computing resources. While the training

error of machine learning models could be sufficiently low with good-

quality datasets and a careful tuning of model hyper-parameters, a fun-

damental challenge for the implementation of machine learning models

in chemical process control is the generalization performance on unseen

data. Generalization error bound provides an efficient way to measure

the effectiveness of training and accuracy of machine learning models.

The generalization error bound relies on various factors, including data

sample size, bounds of weight matrices, and the number of neurons and

layers. Many recent studies have been done to obtain the generalization

error bounds for the implementation of neural networks in classification

problems with single output.1–4 Additionally, in Bartlett et al.,5 a margin-

based multi-class generalization bound was derived for the neural net-

works based on their margin-normalized spectral complexity. In Chen

et al.6 and Wu et al.,7 the generalization error for RNNs was developed

for multiclass classification problems, and regression problems of multi-

input and multi-output (MIMO) nonlinear systems, respectively.

Additionally, model predictive controllers (MPC) using machine learn-

ing models have been studied in recent years, with successful applications

to a number of chemical engineering problems.8–11 As machine learning

models can capture complex process dynamics, machine-learning–based

MPCs have demonstrated their superior closed-loop performance when

compared with the MPCs using (usually linear) data-driven models in tradi-

tional industrial process control systems. Most existing works on data-

driven or learning-based MPC derived closed-loop stability properties

based on the assumption that the generalization error is bounded. How-

ever, this assumption may not hold in practice. Additionally, machine learn-

ing models are typically approximations of the nominal system dynamics,

and thus, how to deal with uncertainty in processes within machine-learn-

ing–based MPCs is an important issue that requires further study.

Motivated by the above considerations, we develop RNN-based

MPC schemes for nonlinear systems with model uncertainty in this

manuscript. While MPC of stochastic nonlinear systems has been

extensively studied in literature, for example,12–16 very few research

works study machine-learning–based MPC for stochastic nonlinear

systems. A recent work developed an artificial neural network for a

stochastic multiscale chemical engineering system under uncertainty

in MPC.17 However, at this stage, machine-learning–based MPC of
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stochastic nonlinear systems is still in its infancy. In this study, we

perform a probabilistic closed-loop stability analysis for the nonlinear

systems subject to two common types of disturbances (unknown-but-

bounded disturbances and stochastic disturbances with unbounded

variation) under RNN-MPC based on the generalization error bound

derived for RNN models. The theoretical study provides a guidance

showing how to improve machine learning models in a systematic way

in order to achieve desired accuracy in both open-loop and closed-loop

simulations. The rest of this article is organized as follows: in Section 2,

the notations, the nonlinear systems, and the RNN formulation are pres-

ented. In Section 2.4, a generalization error bound is derived for RNNs

through Rademacher complexity approach. In Section 3, closed-loop

stability results are developed for the nonlinear systems subject to

bounded, and unbounded, stochastic disturbances, respectively. Finally,

in Section 4, we use a chemical reactor as an example to illustrate the

relation between training sample size and the RNN generalization error

as well as the probability of closed-loop system stability.

2 | PRELIMINARIES

2.1 | Notation

The transpose of x is denoted by xT. The Lie derivative is

LfV xð Þ≔ ∂V xð Þ
∂x f xð Þ. The operator �j j denotes the Euclidean norm of a

vector. �j jQ denotes the weighted Euclidean norm of a vector, where Q is

a positive definite matrix. The Frobenius norm of A is denoted by

Ak kF. Set subtraction is denoted by “\”, that is,

A ∖B≔ x�Rn j x�A, x =2Bf g. Given a set D, the boundary of D is den-

oted by ∂D, and the interior of D is denoted by Do. The first hit time

(or the hitting time) of a set X is defined as the first time that the state

trajectory hits the boundary of X, and is denoted by τX . Also, we

define τX tð Þ¼min τX ,tf g and τX,T tð Þ¼min τX ,T,tf g, where T is the

operation time.

Rþ represents nonnegative real numbers. A function f xð Þ belongs
to class Ck if for all i¼1, 2,…,k, the ith derivative of f exists and is

continuous. A function f :Rn !Rm is l-Lipschitz continuous, if for all

a, b�Rn, j f að Þ� f bð Þ j ≤ l j a�b j holds, where l≥ 0 is a real constant. A

continuous function α : 0,a½ Þ! 0,∞½ Þ belongs to a class K function if it

is zero only when evaluated at zero, and is strictly increasing.  X½ � is
the expected value of a random variable X, and P Að Þ is the probability

of the event A occurring.

2.2 | Class of systems

The following state-space model represents the class of continuous-

time nonlinear systems considered in this work:

_x¼ F x, uð Þ≔ f xð Þþg xð Þu, x t0ð Þ¼ x0, ð1Þ

where the n-dimensional state vector is denoted by x�Rn, and u�Rk

denotes the k-dimensional manipulated input vector bounded by

u�U. The set U defines the maximum umax and the minimum value

umin for input vectors, that is, U≔ umin ≤ u≤ umaxf g�Rk . The vector

f �ð Þ and the matrix functions g �ð Þ are sufficiently smooth with dimen-

sions n�1, and n�k, respectively. We assume that f 0ð Þ¼0 without

loss of generality, and therefore, the origin is a steady-state of

Equation (1). Additionally, we assume that t0 ¼0 (i.e., the initial time

is zero).

We assume that there exists a feedback controller u¼Φ xð Þ�U

under which the origin can be rendered exponentially stable. The

stabilizability assumption implies that there is a C1 Lyapunov function

V xð Þ such that for all x in D the following inequalities hold:

c1 xj j2 ≤V xð Þ≤ c2 xj j2, ð2aÞ

∂V xð Þ
∂x

F x,Φ xð Þð Þ≤ �c3 xj j2, ð2bÞ

∂V xð Þ
∂x

���� ����≤ c4 jxj , ð2cÞ

where D is an open neighborhood around the origin, and ci, i¼1, 2, 3, 4

are positive constants. We follow the method in Wu et al.11 to gener-

ate the data by carrying out extensive open-loop simulation for the

system of Equation (1) with various inputs u�U and initial conditions

x0 to develop a set of time-series data for x�Ωρ, where Ωρ is a level

set of Lyapunov function (i.e., Ωρ ≔ x�Rn jV xð Þ≤ ρf g, ρ>0) utilized as

the operating region. Then, we develop recurrent neural network

(RNN) models for capturing system dynamics and predicting state

evolution. Specifically, the RNN models predict future states x tð Þ,
t> tk based on the current state measurements x tkð Þ at time t¼ tk , and

the manipulated inputs u tð Þ, t> tk .

2.3 | Recurrent neural networks

In this section, we consider a general RNN model developed with m

sequences of data xi,t,yi,t
� �

, where yi,t �Rdy is the RNN output, and

xi,t �Rdx , i¼1,…,m, and t¼1,…,T (T is the time length) is the RNN

input, to capture the system dynamics of Equation (1). The RNN

input/state/output vectors are written in boldface to differentiate the

notations from those for the nonlinear system of Equation (1). Addi-

tionally, to simplify the discussion, we develop the RNN model of

Equations (3) and (4) to predict future states for one sampling period

(denoted by Δ) with internal steps T¼ Δ
hc
, where hc is the integration

time step used by the Explicit Euler method to solve the continuous-

time system of Equation (1), and Δ is the sampling period within which

the control action u tð Þ remains unchanged (i.e., for all t¼1,…,T).

The RNN model predicts one sampling period forward, including all

the internal states every hc time step. As a result, for t¼1,…,T, the

predicted states are the RNN output yi,t, and the inputs and the cur-

rent state measurements are RNN input xi,t.

The time-series data is generated independently following the

data distribution over Rdx�T �Rdy�T . Then, we develop the dataset by
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generating m data sequences of the same distribution. To simplify the

discussion, a one-hidden-layer RNN (Figure 1) is considered. The RNN

states in the hidden layers hi �Rdh are

hi,t ¼ σh Uhi,t�1þWxi,tð Þ, ð3Þ

where the weight matrices W �Rdh�dx and U�Rdh�dh are associated

with the input and hidden state vectors, respectively. The element-

wise nonlinear activation function is denoted by σh (e.g., ReLU). The

output layer yi,t is calculated using the following equation:

yi,t ¼ σy Vhi,tð Þ, ð4Þ

where the activation function σy and the weight matrix V �Rdy�dh are

associated with the output layer.

We have the following standard assumptions on the RNN model

and datasets.

Assumption 1. The RNN inputs are bounded,

i.e., xi,tj j≤BX , for all i¼1,…,m and t¼1,…,T.

Assumption 2. The Frobenius norms of the weight

matrices are bounded as follows:

Wk kF ≤BW,F , Vk kF ≤BV,F , Uk kF ≤BU,F ð5Þ

Assumption 3. All the datasets (i.e., training, validation,

and testing) are drawn from the same distribution.

Assumption 4. σh is a 1-Lipschitz continuous activation

function, and is positive-homogeneous in the sense that

σh αzð Þ¼ ασh zð Þ holds for all α≥0 and z�R.

Remark 1. Assumptions 1–4 are standard assumptions in

machine learning theory. Specifically, Assumptions 1, 2

assume the boundedness of RNN inputs and weight matri-

ces. This is consistent with the practical implementation of

RNN training that only a finite class of RNN hypotheses

are searched for the optimal solution. Assumption 3 is also

a basic assumption that is widely adopted in machine

learning modeling works. Note that we only require that

the testing, validation and training data are drawn from

the same distribution, and there is no specific requirement

for the type of data distribution. This is a reasonable

assumption from a practical application point of view as it

implies that the training, validation and testing data sets

are obtained from the same chemical process. The RNN

models trained from the process operational data will be

tested against data that come from the same target distri-

bution. Assumption 4 requires positive-homogeneity of

the activation function. For example, Rectified Linear Unit

(ReLu), a popular nonlinear activation function in the

machine learning domain, is a candidate of activation func-

tion that meets this assumption.

2.4 | RNN generalization error

The RNN learning algorithms provide no information on the generali-

zation performance for unseen testing data since they are evaluated

on training data only. Therefore, the generalization error is used to

measure the neural network's predictive capability for any data not

utilized in training. Specifically, an upper bound is developed in this

section for the RNN generalization error. Then we demonstrate that

with high probability, this error is bounded if the development of

RNN models meets a few requirements.

2.5 | Preliminaries

Let ℋ be the hypothesis class of RNN functions h �ð Þ that map a

dx-dimensional input x�Rdx to a dy-dimensional output y�Rdy . The

predicted output of the RNN model and the loss function are denoted by

yt ¼ h xtð Þ and L yt,ytð Þ, respectively, where L y,yð Þ calculates the

squared difference between the predicted output y and the true output

y. We have the following error definitions for training RNN models.

Definition 1. Given a data distribution D, and a func-

tion h that predicts y (output) based on x (input), the

generalization error or expected loss/error is:18

 L h xð Þ,yð Þ½ � ¼
ð
X�Y

L h xð Þ,yð Þρ x,yð Þdxdy ð6Þ

where the joint probability distribution for x and y is

represented as ρ x,yð Þ, and the vector space for all possi-

ble outputs and inputs are denoted by Y and X,

respectively.

Since in most cases ρ is an unknown distribution, we utilize empir-

ical error as an approximation measure for the expected error. The

empirical error is calculated as follows.F IGURE 1 Recurrent neural network structure
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Definition 2. Given a dataset S¼ s1,…,smð Þ, si ¼ xi ,yið Þ,
with m data samples drawn from the data distribution D,

the empirical risk or error is:18

bS L h xð Þ,yð Þ½ � ¼ 1
m

Xm
i¼1

L h xið Þ,yið Þ ð7Þ

Since the RNN data is generated within a compact set, the RNN

predicted outputs yt and the true outputs yt are assumed to be

bounded by rt > 0, t¼1,…,T, that is, jytj , jytj ≤ rt. Thus, the following

inequality from local Lipschitz continuity holds for the loss function of

mean squared error (MSE) for all jytj ≤ rt, and jytj ≤ rt.

j L y2,yð Þ�L y1,yð Þ j ≤ Lr y2�y1j j, ð8Þ

where the local Lipschitz constant is denoted by Lr .

2.6 | Rademacher complexity

Rademacher complexity is used to quantify the richness of a function

class in computational learning theory. The definition of empirical

Rademacher Complexity is presented below.

Definition 3. Given a set of data samples S¼ s1,…,smð Þ,
and a hypothesis class ℱ of real-valued functions, the

definition of empirical Rademacher complexity ofℱ is18:

ℛS ℱð Þ¼ϵ sup
f �ℱ

1
m

Xm
i¼1

ϵif sið Þ
" #

ð9Þ

where ϵ¼ ϵ1,…,ϵmð ÞT , and ϵi are Rademacher random

variables that are independent and identically distrib-

uted (i.i.d.) and satisfy P ϵi ¼�1ð Þ¼P ϵi ¼1ð Þ¼0:5.

The Rademacher complexity is used to derive the generalization

error bound in the following lemma.

Lemma 1. (c.f. Theorem 3.3 in Mohri et al.18) Let ℋ be

the hypothesis class that maps x1,…,xtf g�Rdx�t

(i.e., the first t-time-step inputs) to yt �Rdy (i.e., the t-th

output), and Gt be loss function set with ℋ.

Gt ¼ gt : x,yð Þ! L h xð Þ,yð Þ,h�ℋf g ð10Þ

where y and x are the true output vector and the RNN

input vector, respectively. Then, given a dataset con-

sisting of m i.i.d. data samples, the inequality below

holds in probability for all gt �Gt over the data samples

S¼ xi,t,yi,t
� �T

t¼1, i¼1,…,m:

 gt x,yð Þ½ �≤ 1
m

Xm
i¼1

gt xi, yið Þþ2ℛS Gtð Þþ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2

δ

� �
2m

s
ð11Þ

The RHS of Equation (11) represents the upper bound for the generali-

zation error, which relies on various factors. Specifically, the first term of

the RHS in Equation (11) represents the empirical risk, the second term

represents the Rademacher complexity, and an error function of the

samples size m and the confidence δ is represented in the last term.

Note that the last and the first terms can be computed once a set of

training data of size m and the confidence δ are given. Therefore, our

goal is to derive the Rademacher complexity bound for ℛS Gtð Þ.

2.7 | Generalization error bound

We first present a few lemmas to provide preliminary results following

the proof technique in.21

Lemma 2. (c.f. Lemma 4 in Wu et al.7) Given a dataset

S¼ xi,t,yi,t
� �T

t¼1, of m i.i.d. data samples, i¼1,…,m, and a

real-valued function class ℋk that corresponds to the

k-th component of the class ℋ of vector-valued func-

tions, the scaled empirical Rademacher complexity

mℛS ℋkð Þ¼ suph �ℋk

Pm
i¼1ϵih xið Þ� �

satisfies the follow-

ing inequality:

mℛS ℋkð Þ ¼1
λ
log exp λ sup

h �ℋk

Xm
i¼1

ϵih xið Þ
" # !

≤
1
λ
log  sup

h �ℋk

exp λ
Xm
i¼1

ϵih xið Þ
 !" # ! , ð12Þ

where λ is an arbitrary positive real number.

Additionally, since the RNN models of Equations (3) and (4) are

essentially complex nonlinear functions that are difficult to measure

the learning capacity, the following lemma provides a useful tool to

peel off RNN weights and nonlinear activation functions through

layers.

Lemma 3. (c.f. Lemma 6 in Wu et al.7) Given any mono-

tonically increasing and convex function p :R!Rþ, and

a vector-valued RNN function class ℋ with a positive-

homogeneous, 1-Lipschitz, activation function σh �ð Þ, the
inequality below holds:

 sup
Wk kF ≤BW,F , Uk kF ≤BU,F ,h �ℋ

p
Xm
i¼1

ϵihi,t

�����
�����

 !" #

≤2 sup
h �ℋ

p BW,F

Xm
i¼1

ϵixi,t

�����
�����þBU,F

Xm
i¼1

ϵihi,t�1

�����
�����

 !" # ð13Þ

Based on Lemma 3, the following lemma derives a Rademacher

complexity bound for the real-valued RNN function class ℋk that cor-

responds to the k-th output of the class ℋ of vector-valued functions.
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Lemma 4. (c.f. Lemma 7 in Wu et al.7) Given a dataset

S¼ xi,t,yi,t
� �T

t¼1, of m i.i.d. data samples, i¼1,…,m, and a

class of real-valued functions, ℋk,t , k¼1,…,dy , that cor-

responds to the k-th output at t-th time step, and satisfy

Assumptions 1–4, the Rademacher complexity can be

bounded using the following inequality:

ℛS ℋk,tð Þ≤ MBX 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log 2ð Þtp� �ffiffiffiffi
m

p ð14Þ

where M¼ 1� BU,Fð Þt
1�BU,F

BW,FBV,F .

Finally, we consider the class of loss function for the vector-

valued RNN models, and use the contraction inequality in Maurer19 to

further bound the RNN generalization error as follows.

Theorem 1. (c.f. Theorem 1 in Wu et al.7) Given a

dataset S¼ xi,t,yi,t
� �T

t¼1 with i.i.d. data samples, i¼1,…,m,

and the loss function class Gt associated with the RNN

function class ℋt that predicts outputs at the t-th time

step, with probability at least 1�δ over S, the following

inequality holds for the RNN models with the activation

functions andweightmatrices that satisfy Assumptions 1–4.

 gt x,yð Þ½ �≤O Lrdy
MBX 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2log 2ð Þtp� �ffiffiffiffi
m

p
 !

þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2

δ

� �
2m

s

þ 1
m

Xm
i¼1

gt xi ,yið Þ,
ð15Þ

where M is given in Equation (14), BX is the RNN input

bound defined in Equation (1), Lr is the local Lipschitz

constant defined in Equation (8), and dy is the RNN out-

put dimension.

Remark 2. Based on Theorem 1, to minimize the error

between the actual process dynamics and the RNNmodel,

we should first collect as much data as possible since the

generalization error of Equation (15) decreases with

increasing training samples m. Subsequently, we need to

carefully tune the RNN hyper-parameters (e.g., weight

bounds, and the number of layers and neurons) to

achieve a desired training and validation performance. It

should be noted that a complex RNN model can gener-

ally learn the training data well, but may not generalize

well due to overfitting. Therefore, to reduce overfitting,

a number of approaches such as regularization, dropout

and early stopping methods can be adopted to improve

the generalization performance of RNN models.

Remark 3. The RNN generalization error bound of

Equation (15) implies that with a larger δ (i.e., a lower prob-

ability 1�δ), the RNN generalization error is less likely

to be bounded by a tighter bound. Therefore, the choice of

δ really depends on the level of trust of this bound. To

derive a tighter bound with higher confidence, we essen-

tially need to reduce the other two terms in Equation (15)

by increasing the training sample sizem and carefully train-

ing the RNN models to obtain a desired training error. It

should be mentioned that the choice of δ affects the

generalization error bound in the sense that a tighter

bound implies less likelihood, but does not directly

affect the generalization performance after the training

is completed since δ is not involved in the RNN training

process. In practice, we first require the RNN generali-

zation error to be bounded by a constant or a function

of state (e.g., EM ≤ γ jxj in the next section) such that

MPC stability results hold. Based on this bound, we then

tune the RNN hyperparameters and execute the training

process to achieve a desired training performance and

model complexity. Finally, we can approximate the

probability 1�δ by calculating how many testing sam-

ples meet the generalization error bound.

3 | PROBABILISTIC STABILITY ANALYSIS

The RNN models are incorporated within MPC in this section to provide

the prediction of future states. We develop the MPC scheme using RNN

models (RNN-MPC), and study the system stability properties for the

nonlinear system of Equation (1) subject to disturbances. We demonstrate

that under RNN-MPC, the state of the closed-loop system remains inside

the stability region in probability for all times in the presence of process

disturbances.

The single-hidden-layer RNN model is represented as a

continuous-time nonlinear system for simplifying the analysis of its

stability properties11:

_bx¼ Fnn bx, uð Þ≔AbxþΘTz, ð16Þ

where u�Rk is the manipulated input, and bx�Rn is the RNN state

vector. A and Θ are the weight matrices, and z is a vector associated

with the bx and u. The readers are referred to Wu et al.7 for the details

of Equation (16). In the following sections, the Lyapunov-based MPC

schemes using RNN models are designed to stabilize the nonlinear

system in a probabilistic manner in the presence of process distur-

bances. Specifically, we consider two types of disturbances:

unknown-but-bounded disturbances and stochastic disturbances with

unbounded variation, and establish the probabilistic closed-loop sta-

bility results for the nonlinear systems under RNN-MPC.

3.1 | Nonlinear systems with bounded
disturbances

The class of continuous-time nonlinear systems subject to bounded dis-

turbances is described by the following ordinary differential equation:
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_x¼ F x, u, wð Þ≔ f xð Þþg xð Þuþh xð Þw, x t0ð Þ¼ x0 ð17Þ

where the notations are the same as those in Equation (1). The dis-

turbance vector w is bounded by W≔ w�Rq jwj≤wmj wm ≥0f g. h xð Þ
is a sufficiently smooth matrix function of dimension n�q. Based

on the boundedness of x, u, and w, and the Lipschitz property of

F x, u, wð Þ, there exist positive constants MF , Lx, L
0
x, Lw , L

0
w such that

for all w�W, u�U, x,x0 �Ωρ, the following inequalities hold:

jF x0, u, 0ð Þ�F x, u, wð Þj ≤ Lw jwj þ Lx jx�x0j ð18aÞ

∂V x0ð Þ
∂x

F x0, u, 0ð Þ� ∂V xð Þ
∂x

F x, u, wð Þ
���� ����≤ L0

w jwj þ L
0
x jx�x0j ð18bÞ

jF x, u, wð Þj ≤MF ð18cÞ

Under the assumption of exponential stabilization of the origin of the

RNN model of Equation (16) for states in an open set bD around the

origin by a feedback controller u¼Φnn xð Þ�U, a C1 Lyapunov functionbV xð Þ can be found such that for all states x in bD, the following inequal-

ities hold:

∂bV xð Þ
∂x

�����
�����≤bc4 jxj , ð19aÞ

∂bV xð Þ
∂x

Fnn x,Φnn xð Þð Þ≤ �bc3 xj j2, ð19bÞ

bc1 xj j2 ≤ bV xð Þ≤bc2 xj j2, ð19cÞ

where bci, i¼1, 2, 3, 4 are positive constants. Similarly, we character-

ize the stability region for the RNN model of Equation (16) as a com-

pact set embedded in bD as follows: Ωbρ ≔ x� bD j bV xð Þ≤bρn o
, wherebρ>0. The following proposition demonstrates that for the RNN model

developed with a sufficiently small modeling error, the nominal system

of Equation (17) with w tð Þ�0 can be stabilized under u¼Φnn xð Þ�U

with high probability.

Proposition 1. Consider the nominal system of

Equation (17) with w tð Þ�0 and an RNN model that is

trained with m i.i.d. data samples and satisfies the condi-

tions in Theorem 1. Under the stabilization assumption

of Equation (19), if there exists a positive real number γ

that satisfies γ <bc3=bc4, and constrains the modeling

error, i.e., j Fnn x, uð Þ�F x, u, 0ð Þ j ≤ γ jxj, for all u�U and

x�Ωbρ, then for all x�Ωbρ, the origin of the nominal sys-

tem is rendered exponentially stable with probability at

least 1�δ under u¼Φnn xð Þ�U.

Proof. Following the proof of Proposition 2 in Wu

et al.,11 the time derivative of bV is obtained as follows

using Equations (19a) and (19b):

_̂V¼ ∂V̂ xð Þ
∂x

F x, Φnn xð Þ, 0ð Þ
≤ ĉ4 jxj � F x, Φnn xð Þ, 0ð Þ�Fnn x, Φnn xð Þð Þj j� ĉ3 xj j2, ð20Þ

where the term jF x, Φnn xð Þ, 0ð Þ�Fnn x, Φnn xð Þð Þj is the modeling mis-

match between the nominal system of Equation (17) and the RNN

model. Using the generalization error results derived in Theorem 1,

we have the following bound for the modeling error:

jFnn x, Φnn xð Þð Þ�F x, Φnn xð Þ, 0ð Þj ≤ EM, ð21Þ

where EM represents the generalization error that is bounded by the

RHS of Equation (15). Since Equation (15) depends on the training

sample size, we can find the minimum data sample size mN jxj, hc, δð Þ
such that the modeling error is upper bounded by EM ≤ γ jxj. By choos-

ing the sample size m≥mN jxj, hc, δð Þ, the following equation holds for
_bV xð Þ (x≠0), with probability at least 1�δ.

_bV¼ ∂bV
∂x

Fnn x, Φnn xð Þð ÞþF x, Φnn xð Þ, 0ð Þ�Fnn x, Φnn xð Þð Þð Þ
≤ �bc3 xj j2þ jFnn x, Φnn xð Þð Þ�F x, Φnn xð Þ, 0ð Þj �bc4 jxj
≤ �bc3 xj j2þbc3 jxjbc4 �bc4 jxj
≤ �ec3 xj j2
< 0

ð22Þ

where ec3 ¼�bc3þbc4γ <0 for any γ <bc3=bc4. This implies that with a cer-

tain probability,
_bV can be rendered negative (i.e., P _bV <0

h i
≥1�δ), and

therefore, the state of the nominal system of Equation (17) moves

toward the origin under u¼Φnn xð Þ�U for all x0 �Ωbρ.
Remark 4. Note that the minimum data sample size

mN jxj,hc,δð Þ that satisfies EM ≤ γ jxj is a function of jxj, hc,
and δ. Specifically, by substituting the RHS of

Equation (15) into EM, it is straightforward to show that

the solution to EM ≤ γ jxj is a function of the confidence

level δ. Additionally, it is observed from EM ≤ γ jxj that
the solution depends on the value of x in the way that a

smaller x value (i.e., the states closer to the origin) leads

to a tighter generalization error bound EM, which

requires more data to be used for training. In the

extreme case where the state x is sufficiently close to

the origin, a large number of data is needed to render

EM sufficiently low in order to meet the condition

EM ≤ γ jxj, which is computationally impracticable in gen-

eral. Therefore, to reduce the computational time in

training RNN models, we do not require this condition

to hold in a small neighborhood around the origin, and

we will demonstrate in Theorem 2 that closed-loop sta-

bility remains unaffected under RNN-based MPC

despite this loose condition. Lastly, mN �ð Þ is also a
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function of hc since we calculate the modeling error

of Equation (21) by approximating the derivatives

using finite differences with a sufficiently small time

step hc.

Proposition 2. Consider the RNN model _bx¼ Fnn bx,uð Þ of
Equation (16) developed satisfying Assumptions 1–4

and the nonlinear system _x¼ F x,u,wð Þ of Equation (17)

with bounded disturbances jwj ≤wm. There exists a pos-

itive constant κ and a class K function fw �ð Þ such that

for all x, bx�Ωρ̂, with probability at least 1�δ, the fol-

lowing inequalities hold with x0 ¼bx0 �Ωρ̂ (i.e., the same

initial condition):

jx tð Þ�bx tð Þj ≤ fw tð Þ≔ LwwmþEM
Lx

eLxt�1
� � ð23aÞ

bV xð Þ≤ κ x�bxj j2þbc4 ffiffiffibρpffiffiffiffiffibc1p jx�bxj þ bV bxð Þ ð23bÞ

Proof. The results are derived following the proof tech-

nique used in Proposition 3 in Wu et al.11 Note that in

Wu et al.,11 the modeling error is assumed to

be bounded by a constant number almost surely

(i.e., with probability 1). However, the modeling error

jF bx, u, 0ð Þ�Fnn x, uð Þj in this work is bounded by EM

with probability at least 1�δ since we use the generali-

zation error to represent the model mismatch for any

states in the stability region including those which are

not used in training. The key steps for the proof are

presented below. We first define an error vector e tð Þ¼
x tð Þ�bx tð Þ that represents the modeling error between

the RNN model state _bx¼ Fnn bx, uð Þ and the actual

nonlinear system state _x¼ F x, u, wð Þ subject to bounded

disturbances. The time derivative of error vector is

bounded for all bx, x�Ωρ̂, w tð Þ�W, and u�U as follows:

j _e j ¼ jF x, u, wð Þ�Fnn bx, uð Þj
≤ jF x, u, wð Þ�F bx, u, 0ð Þjþ jF bx, u, 0ð Þ�Fnn bx, uð Þj
≤ Lx je tð Þj þLwwmþEM

, ð24Þ

where the last inequality is obtained using Equation

(18a) and the modeling error constraint of Equation (21).

Since the initial error e 0ð Þ is zero for the same initial

condition x0 ¼bx0, the evolution of error vector is

bounded as follows:

je tð Þj ≤ LwwmþEM
Lx

eLxt�1
� � ð25Þ

Additionally, using Taylor series expansion and ignoring

higher-order terms, we have

bV xð Þ≤ bV bxð Þþ ∂bV bxð Þ
∂x

jx�bxj þ κ x�bxj j2

≤ bV bxð Þþbc4 ffiffiffibρpffiffiffiffiffibc1p j x�bx j þ κ x�bxj j2
, ð26Þ

where the last inequality is obtained using

Equations (19a), (19c), and κ is a positive real number.

This completes the proof of Proposition 2.

Subsequently, the RNN models are utilized within MPC to pro-

vide the prediction of future state evolution. The optimization prob-

lem of RNN-MPC is presented as follows11,20:

J ¼ min
u � S Δð Þ

ðtkþN

tk

LMPC ex tð Þ, u tð Þð Þdt ð27aÞ

s:t: _ex tð Þ¼ Fnn ex tð Þ, u tð Þð Þ ð27bÞ

u tð Þ�U, 8t� tk , tkþN½ Þ ð27cÞ

ex tkð Þ¼ x tkð Þ ð27dÞ

_bV x tkð Þ, uð Þ≤ _bV x tkð Þ, Φnn x tkð Þð Þð Þ,

if x tkð Þ�Ωρ̂ ∖Ωρnn ð27eÞ

bV ex tð Þð Þ≤ ρnn, 8t� tk , tkþN½ Þ, if x tkð Þ�Ωρnn , ð27fÞ

where LMPC denotes the objective function of MPC that attains its

minimum value at the origin. ex is the state predicted by the RNN

model Fnn x,uð Þ. The RNN-MPC of Equation (27) is applied in a

sample-and-hold fashion in which control actions remain unchanged

within each sampling period, with control actions optimized over the

prediction horizon from tk to tkþN as a piece-wise function in S Δð Þ.
The goal of RNN-MPC is to stabilize the nonlinear system at the

steady-state in the way that the state is maintained in the stability

region Ωbρ at all times, and is driven into a small terminal set around

the origin ultimately. Equation (27b) is the prediction model, and

Equation (27c) is the input constraint. The feedback measurement of x

at each sampling time is utilized as the initial state for solving

Equation (27b). The two Lyapunov-based constraints of

Equations (27e) and (27f) ensure stability for the closed-loop system

under RNN-MPC. The following theorem establishes the closed-loop

stability properties for the uncertain system of Equation (17) subject

to bounded disturbances w�W under RNN-MPC.

Theorem 2. Consider the nonlinear system of Equation

17 under the RNN-MPC of Equation (27) with the con-

troller Φnn xð Þ that meets Equation (19). Let Δ>0,bρ> ρmin > ρnn > ρs and ϵw >0 satisfy Equations (28)

and (29).
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�ec3bc2 ρsþL
0
xMFΔþL

0
wwm ≤ �ϵw ð28Þ

and

ρnn ≔max bV bx tþΔð Þð Þ j u�U, bx tð Þ�Ωρs

n o
ð29aÞ

ρmin ≥ ρnnþ
bc4 ffiffiffibρpffiffiffiffiffibc1p fw Δð Þþκ fw Δð Þð Þ2, ð29bÞ

where fw tð Þ¼ EMþLwwm
Lx

eLxt�1
� �

. Then, by choosing the

sample size m to be greater than the minimum sample

size mN jxj,hc,δð Þ that satisfies EM ≤ γ j x j, for any initial

state x0 �Ωρ̂ and for each sampling time step, system

stability is achieved for the disturbed system of

Equation (17) with w�W with probability at least 1�δ,

under the RNN-MPC of Equation (27) in the sense that

x tð Þ ultimately converges to Ωρmin
, and is maintained in

Ωbρ at all times, that is, x tð Þ�Ωbρ,8t≥0.
Proof. The proof follows the proofs of Proposition

3 and Theorem 2 in Wu et al.7 for the nominal system

of Equation (17) with w tð Þ�0, and we present a proof

sketch here to help readers understand the key steps.

The main difference is that the system of Equation (17)

is subject to sufficiently small bounded disturbances

jw tð Þj ≤wm in this work, which needs to be accounted

for in the controller design and stability analysis, while

in Wu et al.,7 the results were developed for the nomi-

nal system of Equation (17) with w tð Þ�0. We first

obtain the time derivative of bV for any x tkð Þ�Ωbρ ∖Ωρs

under the controller u¼Φnn xð Þ�U:

_bV x tð Þð Þ¼ ∂bV x tð Þð Þ
∂x

F x tð Þ, Φnn x tkð Þð Þ, wð Þ

¼ ∂bV x tkð Þð Þ
∂x

F x tkð Þ, Φnn x tkð Þð Þ, 0ð Þ

þ ∂bV x tð Þð Þ
∂x

F x tð Þ, Φnn x tkð Þð Þ, wð Þ

� ∂bV x tkð Þð Þ
∂x

F x tkð Þ, Φnn x tkð Þð Þ, 0ð Þ

ð30Þ

Using the results in Proposition 1 and Equation (18b), we can further

bound Equation (30) for x tð Þ�Ωbρ ∖Ωρs , u�U, and w�W as follows:

_bV x tð Þð Þ ≤ ∂bV x tð Þð Þ
∂x

F x tð Þ,Φnn x tkð Þð Þ,wð Þ�ec3bc2 ρs
� ∂bV x tkð Þð Þ

∂x
F x tkð Þ,Φnn x tkð Þð Þ,0ð Þ

≤ �ec3bc2 ρsþL
0
xMFΔþL

0
wwm

ð31Þ

Therefore, if Equation (28) is satisfied, with probability at least 1�δ,
_bV x tð Þð Þ is rendered negative for any x tkð Þ�Ωbρ ∖Ωρs , which implies the

convergence of state toward the terminal set, as well as the

boundedness of state within Ωbρ in probability. Additionally, Ωρmin
and

Ωρnn of Equation (29) are the two small sets around the origin which

contain Ωρs as their subsets (i.e., ρmin > ρnn > ρs). Specifically, we do not

require the modeling error to be bounded by EM within Ωρs , and thus,

Equation (31) does not hold for the state in Ωρs . This loose condition

of modeling error within Ωρs significantly reduces the computational

complexity for training RNN models with the data sufficiently close to

the origin. The set Ωρnn is characterized to ensure that for any state

within Ωρs , the predicted state remains inside Ωρnn under any control

actions within the bounds. As a result, the state of the actual

nonlinear system of Equation (17) subject to disturbances w tð Þ�W is

bounded in the set Ωρmin
that is characterized accounting for the

modeling error and disturbances.

3.2 | Nonlinear systems with stochastic
disturbances

In addition to the robustness treatment of the process disturbances as

bounded uncertain variables, another approach to dealing with model

uncertainty is to develop controllers that achieve stability in probabil-

ity for the closed-loop system by modeling the disturbance terms in a

probabilistic manner and taking the distribution information of distur-

bances into account. Specifically, we consider the nonlinear system

with stochastic disturbances in the form of the following stochastic

differential equation (SDE):

dx tð Þ¼ f x tð Þð Þdtþg x tð Þð Þu tð Þdtþh x tð Þð Þdw tð Þ, ð32Þ

where the notations follows those in Equation (1). The disturbance

vector w tð Þ is represented by a standard Wiener process. The steady-

state of the nominal system with w tð Þ�0 is assumed to be at the ori-

gin, that is, x�s , u
�
s

� �¼ 0, 0ð Þ. In Equation (1), f x tð Þð Þþg x tð Þð Þu tð Þ and

h x tð Þð Þ are the deterministic drift and the diffusion matrix, respec-

tively. h 0ð Þ is assumed to be zero such that h x tð Þð Þdw tð Þ (i.e., the dis-

turbance term) vanishes at the origin. Similarly, we assume that

LgV xð Þ, LfV xð Þ, and h xð ÞT ∂2V xð Þ
∂x2 h xð Þ are locally Lipschitz. For the system

of Equation (32), if for any ε>0, the following conditions hold, then

the origin is asymptotically stable in probability.

lim
x 0ð Þ!0

P lim
t!∞

jx tð Þj¼0

� 	
¼1,

lim
x 0ð Þ!0

P sup
t≥0

jx tð Þj> ε
� 	

¼0
ð33Þ

It is assumed that a stochastic feedback controller u¼Φs xð Þ�U exists

such that for all x�D2 �Rn (D2 is an open neighborhood of the origin),

exponential stabilization of the origin of the RNN model of

Equation (16) is achieved in probability. The stabilizability assumption

implies that a C2, positive definite stochastic Lyapunov function V

exists and meets the following conditions:
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ℒV xð Þ¼ ∂V xð Þ
∂x

Fnn x, Φs xð Þð Þþ1
2
Tr hT

∂2V
∂x2

h

( )
≤ �α1 xj j2 ð34Þ

h xð ÞT ∂
2V
∂x2

h xð Þ≥0, ð35Þ

where ℒV xð Þ represents the infinitesimal generator of the

system of Equation (32), and α1 is a positive real number. ϕd ¼
x�Rn j ℒVþκV xð Þ≤ 0, κ > 0, u¼Φs xð Þ�Uf g is characterized as a set

of initial conditions from which the exponential stabilization of the origin

of the RNN model of Equation (16) can be achieved in probability using

the controller u¼Φs xð Þ�U. Subsequently, a level set of V xð Þ inside ϕd,

that is, Ωρ ≔ x�ϕd jV xð Þ≤ ρf g, ρ> 0, is chosen as the operating region.

Based on u¼Φs xð Þ�U, the following Lyapunov-based MPC

scheme is designed to stabilize the stochastic nonlinear system of

Equation (32), where the notations follow those in Equation (27).

min
u � S Δð Þ

ðtkþN

tk

LMPC ex tð Þ, u tð Þð Þdt ð36aÞ

s:t: _ex tð Þ¼ Fnn ex tð Þ, u tð Þð Þ ð36bÞ

u tð Þ�U, 8t� tk , tkþN½ Þ ð36cÞ

ex tkð Þ¼ x tkð Þ ð36dÞ

ℒV x tkð Þ, u tkð Þð Þ≤ℒV x tkð Þ, Φs x tkð Þð Þð Þ, if x tkð Þ�Ωρ ∖Ωo
ρnn

ð36eÞ

V ex tð Þð Þ< ρnn, 8t� tk , tkþN½ Þ, if x tkð Þ�Ωo
ρnn

ð36fÞ

Theorem 3 establishes the probabilistic stability properties for the uncer-

tain system of Equation (32) under the RNN-MPC of Equation (36).

Theorem 3. Consider the system of Equation (32) under

the MPC of Equation (36) using RNN models that meet

the Assumptions 1–4. By letting m≥mN jxj, hc, δð Þ, given
any initial condition x 0ð Þ�Ωρ, probability λ� 0,1ð �, and
positive real numbers satisfying ρ> ρmin > ρnn and

ρc � ρnn ,ρ½ �, there exists a sampling period Δ>0 and

probabilities β,γ � 0,1½ � such that the following inequal-

ities hold for t� tk ,tkþ1½ Þ, tkþ1 ≔ tkþΔ.

P sup
t � tk ,tkþ1½ Þ

V x tð Þð Þ< ρmin

 !
≥ 1�δð Þ 1�βð Þ 1�λð Þ, 8x tkð Þ�Ωρnn ð37Þ

P τRn ∖ Ωo
ρnn

< τΩρ


 �
≥ 1�δð Þ 1� γð Þ 1�λð Þ, 8x tkð Þ�Ωρc ∖Ω

o
ρnn

ð38Þ

where

supx � ∂Ωρnn
V xð Þ

infx � Rn ∖ Ωρmin
V xð Þ ≤ β ð39aÞ

sup
x � Ωρc ∖ Ωo

ρnn

V xð Þ
ρ

≤ γ ð39bÞ

Proof. The two probabilities in Equations (37) and (38)

can be interpreted as follows. Equation (37) gives the

probability that the future state remains inside Ωρmin

(i.e., the terminal set around the origin) during one sam-

pling period for any initial state inside Ωρnn (Ωρnn is a sub-

set of Ωρmin
as defined in Equation 29). Equation (38) is

the probability that the state hits the boundary of Ωρnn

before it leaves the stability region Ωρ for any initial

states in Ωρ ∖Ωρnn . The proof consists of three parts. In

the first part, we demonstrate that the infinitesimal gen-

erator ℒV for the stochastic system of Equation (32) is

rendered negative (Equation 34) under the controller

u¼Φs xð Þ�U for all x�Ωρ with a certain probability,

which is a key step in the derivation of Equations (37)

and (38). Specifically, Equation (34) holds almost surely

for the RNN model since the stability region Ωρ is char-

acterized using the RNN model and the controller

u¼Φs xð Þ�U; however, due to the existence of generali-

zation error, Equation (34) holds for the nonlinear sys-

tem of Equation (32) in a probabilistic manner (i.e., with

probability at least 1�δ), which leads to the probability

of 1�δ on the RHS of Equations (37) and (38). Further-

more, the final probability of ℒV being negative also

needs to account for the impact of stochastic,

unbounded disturbance. In the second part, we prove

the probabilities in Equations (37) and (38), and demon-

strate that the probability terms (i.e., 1�β, 1� γ, and

1�λ) depend on the size of the sets Ωρ, Ωρnn , Ωρmin
and

the sampling period. Finally, in the third part, we prove prob-

abilistic closed-loop stability for the stochastic nonlinear sys-

tem of Equation (32) under the RNN-MPC of Equation (36).

Part1 : We first prove that there exists a sufficiently

small sampling period Δ such that ℒV x tð Þð Þ can be

rendered negative for all the states x tkð Þ�Ωρ ∖Ωo
ρs

in

probability. Following the proof of Theorem 1 in

Wu et al.,16 we define an event that the disturbance

w tð Þ is bounded within one sampling period as follows:

AB ≔ w�Rq j supt � tk ,tkþΔ½ Þjw tð Þj≤B� 
. Then, there exists

a sufficiently small ball B such that P ABð Þ¼1�λ holds

for any probability λ¼ 0,1ð � under the disturbance w tð Þ
following standard Brownian motion. As a result, for

w�AB, the probability P AWð Þ≥ 1�λ holds for the event

AW ≔ supt � tk ,tkþΔ½ Þjx tð Þ�x tkð Þj≤ k1 Δð Þr� 
, k1 > 0, r < 1

2,

which states that the state evolution is bounded within

one sampling period in the presence of a bounded dis-

turbance.21 Subsequently, we prove that ℒV x tð Þð Þ is

negative for any x tkð Þ�Ωρ ∖Ωo
ρs

accounting for the

modeling error between RNN model and the nominal
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system of Equation (32). Specifically, by letting the train-

ing sample size m≥mN jxj, hc, δð Þ such that the modeling

error is constrained by γ jxj for any x tkð Þ�Ωρ ∖Ωo
ρs
, the

following equation holds under u¼Φs xð Þ�U, with prob-

ability no less than 1�δ.

ℒV x tð Þð Þ ¼ ∂V
∂x

Fnn x,Φs xð Þð ÞþF x,Φs xð Þ,0ð Þ�Fnn x,Φs xð Þð Þð Þ

þ1
2
Tr h xð ÞT ∂

2V xð Þ
∂x2

h xð Þ
( )

≤ �α1 xj j2þ Fnn x,Φs xð Þð Þ�F x,Φs xð Þ,0ð Þj j �bc4 xj j
≤ �α1 xj j2þ γ xj j �bc4 xj j≤ �eα1 xj j2 < 0,

ð40Þ

where eα1 ¼�α1þbc4γ <0 for any γ < α1=bc4. Equation (40)

shows that under the stochastic stabilizing controller

u¼Φs xð Þ designed for the RNN model, the infinitesimal

generator ℒV x tð Þð Þ for the stochastic nonlinear system

of Equation (32) is rendered negative for x�Ωρ ∖Ωo
ρs

with probability at least 1�δ, provided that the training

sample size is chosen appropriately to ensure a suffi-

ciently small and bounded modeling error. As a result,

we can find a positive real number κ such that

ℒV x tð Þð Þ≤ �κV xð Þ holds for any x�Ωρ ∖Ωo
ρs

with

probability at least 1�δ.Subsequently, we prove under

sample-and-hold implementation (i.e., u tð Þ¼ u tkð Þ,
8t� tk ,tkþ1½ Þ, where tkþ1 ≔ tkþΔ), there exists a

sufficiently small sampling period Δ such that ℒV x tð Þð Þ
can be rendered negative within one sampling

period. Specifically, since ℒV xð Þ¼LfV xð ÞþLgV xð Þþ
1
2Tr h xð ÞT ∂2V xð Þ

∂x2 h xð Þ
n o

, and LfV xð Þ, LgV xð Þ, h xð ÞT ∂2V xð Þ
∂x2 h xð Þ

are locally Lipschitz, there exist positive real numbers

k3, k4, k5 such that the following equations hold.

LfV x tð Þð Þ�LfV x tkð Þð Þj j≤ k3 x tð Þ�x tkð Þj j
LgV x tð Þð Þu tkð Þ�LgV x tkð Þð Þu tkð Þ�� ��≤ k4 x tð Þ�x tkð Þj j�����12Tr h x tð Þð ÞT ∂

2V x tð Þð Þ
∂x2

h x tð Þð Þ
( )

�1
2
Tr h x tkð Þð ÞT ∂

2V x tkð Þð Þ
∂x2

h x tkð Þð Þ
9=;

8<:
�����

≤ k5 x tð Þ�x tkð Þj j

ð41Þ

Using the results from Equation (40), we obtain the fol-

lowing inequality for ℒV x tð Þð Þ, 8x�Ωρ ∖Ωo
ρs

under

u tð Þ¼Φs x tkð Þð Þ�U, 8t� tk ,tkþ1½ Þ:

ℒV x tð Þð Þ¼ℒV x tkð Þð Þþ ℒV x tð Þð Þ�ℒV x tkð Þð Þð Þ
≤ � κρsþ k3þk4þk5ð Þ jx tð Þ�x tkð Þj ð42Þ

Therefore, for any w�AB with P AWð Þ≥1�λ, and

Δ< κρs�ϵ
k1 k3þk4þk5ð Þ

 � 1

rð Þ
, we have ℒV x tð Þð Þ< �ϵ, for all

t� tk ,tkþ1½ Þ. We define the event that ℒV x tð Þð Þ is ren-

dered negative within one sampling period as

AV ≔ supt � tk ,tkþ1½ ÞℒV x tð Þð Þ< �ϵ
� 

, and the final proba-

bility of AV occurring is derived as P AVð Þ≥ 1�λð Þ
1�δð Þ, given that the modeling error is sufficiently

small, and the disturbance is bounded. This completes

the proof of Part1.

Part2 : Subsequently, we prove the main results of

the probabilities of Equations (37) and (38). We first

prove Equation (37) which states that for any initial

state inside Ωρnn , the future state remains inside the ter-

minal set Ωρmin
in one sampling period. To simply the

notations, the conditional expectations and the proba-

bilities given that the event AV occurs are denoted as

� �ð Þ and P� �ð Þ, respectively. We consider the extreme

scenario where the initial state is on the boundary of

Ωρnn , and show Equation (37) holds in this case. Specifi-

cally, using Dynkin's formula, we obtain the expected

value of V xð Þ as follows15,16,22:

� V x τT,Z tð Þð Þð Þð Þ¼V x tkð Þð Þþ�
ðtkþτT,Z tð Þ

tk

ℒV x sð Þð Þds
 !

, ð43Þ

where Z¼Ωρmin
∖Ωo

ρnn
, t� tk , tkþ1½ Þ, and T¼∞. As

defined in Section “Notations”, we have

τT,Z tð Þ¼min τZ ,T,tf g, where τZ is the hitting time of the

set Z. Then, for any x tkð Þ� ∂Ωρnn , we have the following

inequality using the proof technique in Mahmood and

Mhaskar15 and Wu et al.16

� V x τT,Z tð Þð Þð Þð Þ ¼
ð
V ≥eλV x τT,Z tð Þð Þð ÞdP� þ

ð
V <eλV x τT,Z tð Þð Þð ÞdP�

≥eλP� V x τT,Z tð Þð Þð Þ≥eλ
 �
ð44Þ

Let eλ¼ infx � Rn ∖ Ωρmin
V xð Þ. We have the following

inequality for x tkð Þ� ∂Ωρnn :

P� V x tð Þð Þð Þ≥ ρmin, for some t� tk , tkþ1½ ÞÞ ≤
� V x τT,Z tð Þð Þð Þð Þeλ

¼
V x tkð Þð Þþ� Ð tkþτT,Z tð Þ

tk
ℒV x sð Þð Þds


 �
infx � Rn ∖ Ωρmin

V xð Þ

≤
V x tkð Þð Þ

infx � Rn ∖ Ωρmin
V xð Þ

ð45Þ

The last inequality is obtained using the fact

derived in Part1 that ℒV is rendered negative with

probability at least 1�λð Þ 1�δð Þ. By taking the comple-

mentary events, we obtain the probability

infx tkð Þ � ∂Ωρnn
P� V x tð Þð Þ< ρmin,ð 8t� tk , tkþ1½ ÞÞ ≥ 1�βð Þ,

conditioned on the occurrence of event AV , where β is

defined in Equation (39a). Since we have

P AVð Þ≥ 1�λð Þ 1�δð Þ from Part1, the probability

of Equation (37) is obtained using the properties of con-

ditional probability.
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Next, we consider the initial state x tkð Þ�Ωρ ∖Ωρonn ,

and prove the probability of Equation (38). Specifically,

we assume the initial state is on the boundary of Ωρc ,

ρc � ρnn ,ρ½ �, which is a set between Ωρ and Ωρnn , and

show that the state will reach the boundary of Ωρnn

before leaving Ωρ with a certain probability. Let

AT ≔ τRn ∖ Ωo
ρnn

> τΩρ

n o
denotes the complementary event

that the state first hits the boundary of Ωρ instead of

Ωρnn . The following inequality is obtained since the

event AT belongs to the event
V x τΩρ ∖ Ωoρnn


 �
 �
ρ ≥1

8<:
9=;.

P� τRn ∖ Ωo
ρnn

> τΩρ


 �
≤P�

V x τΩρ ∖ Ωo
ρnn


 �
 �
ρ

≥1

0@ 1A≤
V x tkð Þð Þ

ρ
ð46Þ

The last inequality is derived using the results in

Equation (45). Therefore, given a positive real number γ

satisfying Equation (39b), we have

P� τRn ∖ Ωo
ρnn

< τΩρ


 �
≥ 1� γð Þ by taking the complementary

event of AT . The final probability of Equation (38) is

derived accounting for the conditional probability of AV .

Part3 : Finally, consider the stochastic nonlinear

system of Equation (32) under the RNN-MPC of

Equation (36). When x tkð Þ�Ωρ ∖Ωρonn , the constraint of

Equation (36e) is activated to optimize control actions

such that ℒV is no greater than the one using the stabi-

lizing controller u¼Φs xð Þ�U, and thus, is also rendered

negative. Therefore, using the results in Part2 which

prove that with a certain probability the state will reach

the boundary of Ωρnn before leaving Ωρ, it follows that

the probability under MPC is no worse than the proba-

bility of Equation (38). Once the state enters Ωρnn , the

constraint of Equation (36f) is activated to maintain the

predicted states within Ωρnn . In this case, Equation (37)

gives the probability that the state of Equation (32)

remains inside Ωρmin
for the next sampling period.

Therefore, for the stochastic nonlinear system of

Equation (32) under the RNN-MPC of Equation 36, we

derive the probability of closed-loop stability in the

sense that the closed-loop state is bounded in Ωρ, and is

ultimately bounded in Ωρnn . This completes the proof of

Theorem 3.

Remark 5. Equations (37) and (38) in Theorem 3 give

the probabilities of closed-loop stability for each sam-

pling period. While the RNN predictions are invoked

recursively within MPC to predict for the entire predic-

tion horizon, the probabilities of closed-loop stability

remain unaffected since only the first control action is

applied for the next sampling period. The RNN-MPC

is implemented in a receding horizon manner by

recursively solving the optimization problem of

Equation (36) with new state measurements received

at each sampling time. Therefore, at each time step,

Equations (37) and (38) can be used to estimate the

probability of system being stable under RNN-MPC.

Remark 6. It should be noted that the probabilities of

Equations (37) and (38) represent only the lower bounds for

closed-loop stability under RNN-MPC. The actual probabil-

ity of closed-loop stability could be higher due to a number

of reasons: (1) the RNN model is well trained and the

modeling error does not reach the upper bound for every

time step, (2) in general, the stochastic disturbances in

industrial chemical plants fall within a bounded region in

most of the time, which can be handled through the robust-

ness of MPC, and (3) the optimality of MPC improves

closed-loop performance in terms of fast convergence to

the steady-state under the constraint of Equation (36f),

which leads to better probability results than those derived

under the controller u¼Φs xð Þ in Theorem 3.

Remark 7. Theorem 3 demonstrates that in addition to

the RNN structure in terms of width and depth, and the

training sample size that affect the neural network gener-

alization performance (Theorem 1), the closed-loop sta-

bility for the stochastic system of Equation (32) under

RNN-MPC also depends on the sampling time and the

size of multiple sets embedded in the stability region Ωρ.

Therefore, all the factors above should be accounted for

to improve the overall probability of stability for the

nonlinear systems subject to stochastic disturbances.

Remark 8. In the presence of stochastic disturbances

with unbounded variation, one of the benefits of using

the RNN-MPC of Equation (36) is that the operating

region can be characterized less conservatively by utiliz-

ing the probability distribution of disturbances. It was

demonstrated in Wu et al.16 that compared to the RNN-

MPC of Equation (36), the closed-loop operating regions

were overly conservative using the robust controller

design that handles disturbances in a bounded manner,

which leads to reduced economic benefits in the context

of economic MPC. Therefore, the probabilities in Theo-

rem 3 demonstrate the relationship between closed-loop

stability and operating region size, which could provide a

guidance to characterize the operating region when

implementing machine learning models in real chemical

processes subject to various process disturbances.

4 | APPLICATION TO A CHEMICAL
PROCESS EXAMPLE

To demonstrate the efficacy of machine-learning–based MPC and

study the impact of data sample size on RNN generalization
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performance and system stability in the presence of bounded distur-

bances and stochastic disturbances, we present a simulation example

using the chemical process example from Wu et al.20 Specifically, we

consider a continuous stirred tank reactor (CSTR) that is non-isothermal

and well-mixed with reactant A transformed into product B (A!B) in

an exothermic, irreversible second-order reaction. A heating jacket is

equipped to remove/supply heat at a rate Q. We first consider the

case of bounded disturbances, and present the process dynamical

model by the following energy and material balance equations:

dCA

dt
¼ F
V

CA0�CAð Þ�k0e
�E
RTC2

Aþw1 ð47aÞ

dT
dt

¼ F
V

T0�Tð Þþ�ΔH
ρLCp

k0e
�E
RTC2

Aþ
Q

ρLCpV
þw2 ð47bÞ

where T denotes the temperature in the reactor, and CA represents

the concentration of reactant A. F is the volumetric flow rate, T0 is the

feed temperature, and CA0 is the feed concentration of reactant A. V

and Q are the volume of the reacting substance in the reactor and the

heat input rate, respectively. wT ¼ w1w2½ � are bounded disturbances

of Gaussian distribution with variance σ1 ¼2:5 kmol=m3, σ2 ¼70K,

and bounds jw1j ≤2:5kmol=m3, jw2j ≤70K. The definition of all the

other parameters and their values are reported in Wu et al.20 A sche-

matic of the CSTR with an irreversible, second-order reaction can be

found in Wu and Christofides.23

In the presence of stochastic disturbances, the nonlinear system

can be represented in the following form:

dCA ¼ F
V

CA0�CAð Þdt�k0e
�E
RTC2

Adtþσ1 CA�CAsð Þdw1 ð48aÞ

dT¼ F
V

T0�Tð Þdtþ�ΔH
ρLCp

k0e
�E
RTC2

Adtþ
Q

ρLCpV
dtþσ2 T�Tsð Þdw2, ð48bÞ

where w1, w2 are standard Wiener processes that satisfy w 0ð Þ¼0

and w tð Þ�w sð Þ	 ffiffiffiffiffiffiffiffiffi
t� s

p N 0,1ð Þ (N 0,1ð Þ is a normal distribution with

zero mean and unit variance). To simulate the Wiener process, we dis-

cretize the Wiener process with the integration time step hc as fol-

lows: dwi 	
ffiffiffiffiffi
hc

p N 0, 1ð Þ, i¼1, 2, and thus, the realization of the

Wiener process can be obtained through wi tþhcð Þ¼wi tð Þþdwi,

8t≥0. The coefficients CA�CAs and T�Ts are added to ensure that

the disturbances vanish at the steady-state. The variances

σ1 ¼2:5kmol=m3, σ2 ¼70K are used in the simulation of

Equation (48). The RNN-MPC is designed to stabilize the reactor at

Ts, CAsð Þ¼ 402K, 1:95kmol=m3
� �

, which is an unstable steady-state

under the given input values Qs, CA0sð Þ¼ 0kJ=h, 4kmol=m3
� �

. The

heat supply/removal rate and the inlet concentration of species A are

the two manipulated inputs. All the states and inputs of the process

are represented in their deviation variable forms, i.e., ΔT¼ T�Ts,

ΔCA ¼CA�CAs, ΔCA0 ¼CA0�CA0s , and ΔQ¼Q�Qs. Additionally, the

upper bounds of the manipulated inputs are jΔQj ≤5�105 kJ=h

and jΔCA0j ≤3:5kmol=m3.

We conduct extensive simulation by discretizing the targeted

region (i.e., the stability region Ωbρ in this work) with sufficiently small

intervals in state-space and choosing every possible initial conditions

within this discretized region. Similarly, the input values are also chosen

from u�U with a sufficiently small interval. In this way, sufficient vari-

ety is ensured in our dataset, and the RNN model developed using this

dataset is able to capture the process dynamics well for the entire oper-

ating region. The RNN training process follows the standard training

method in Wu et al.20 In this study, the RNN models are trained using

different data sample size (while other parameters and settings remain

unchanged), and the generalization performance is evaluated using the

testing data. The RNN models are built with 50 neurons in a single hid-

den layer. The MSE is used as the loss function. PyIpopt, which is a

python connector to the IPOPT software package, is used to solve the

MPC optimization problem,24 and Keras is used to build and train RNN

models.25 Figure 2 shows the relationship between the RNN generali-

zation performances and the training sample size, from which it is dem-

onstrated that with less data used for training, the errors for testing

F IGURE 2 Generalization
performance for the RNN models
utilizing various sample sizes.
MSE, mean squared error; RNN,
recurrent neural networks
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and training both increase.7 Additionally, we calculate the generaliza-

tion gap using  gt x, yð Þ½ �� 1
m

Pm
i¼1gt xi , yið Þ. The increase of the gener-

alization gap in Figure 2 implies a worse generalization performance

for models with less training data. It is demonstrated in Figure 2 that a

desired generalization performance has been achieved for sample

sizes greater than 2000, and overfitting does not occur with the

increase of training samples.

Subsequently, we simulate the closed-loop system with

bounded disturbances and Wiener process disturbances with

unbounded variation. Figure 3 shows the probability results

obtained through the simulation of various initial conditions (48 ini-

tial conditions) within Ωbρ using the six RNN models trained earlier

with different sample sizes. The probabilities in Figure 3 are calculated

using the following rule: given an initial condition, the closed-loop sys-

tem under RNN-MPC is unstable if the state trajectory leaves Ωbρ at

any time step or escapes from Ωρmin
after it enters Ωρmin

due to distur-

bances and/or modeling error. It is shown in Figure 3 that the proba-

bility of closed-loop stability increases with more data used for

training, which is consistent with the results shown in the open-loop

simulation study (Figure 2). Additionally, it is observed that the proba-

bilities of closed-loop stability under bounded disturbances reach 0.7

for training sample size greater than 1�104, and the probabilities

under unbounded, stochastic disturbances reach 0.6 with the same

number of training sample size. Overall, it is shown that the MPC

under bounded disturbances achieves higher probabilistic of closed-

loop stability than that under unbounded, stochastic disturbances

with the same variances. This is consistent with the disturbance reali-

zations shown in Figure 4, from which it is demonstrated that the

Gaussian disturbance on temperature T is bounded within the 
σ2

region (top figure), while the Wiener process disturbance is

unbounded, and has a greater impact on system stability due to its

wider range. Additionally, it should be noted that the probability results

in Theorem 2 (for bounded disturbances) and Theorem 3 (for stochastic

disturbances) only provide a lower bound for the probability of closed-

loop stability. Therefore, we cannot directly obtain the value of the

parameter δ from simulation results.

0 2 4 6 8 10 12 14

104

0

0.2

0.4

0.6

0.8

F IGURE 3 Probability of closed-loop stability under bounded
disturbances (blue circles) and stochastic, unbounded disturbances
(red asterisks), respectively, using the RNN-MPC trained with various
sample sizes. MPC, model predictive controllers; RNN, recurrent
neural networks
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F IGURE 4 Bounded,
Gaussian disturbance (top figure),
and unbounded, Wiener process
disturbance (bottom figure) on
temperature T
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F IGURE 5 Closed-loop state trajectories under MPC with
bounded disturbances (blue, solid line) and stochastic, unbounded
disturbances (red, dashed line) for the same initial condition
�1:2, 50ð Þ. MPC, model predictive controllers
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The state-space trajectory and the state profiles for the initial

state x0 ¼ �1:2, 50ð Þ with the model trained with 7000 training data

are shown in Figures 5 and 6. In Figure 5, it is seen that the dynamic

trajectory remains inside the stability region Ωbρ all the time, and ulti-

mately converges to the small ball Ωρmin
in the presence of bounded

disturbances (blue, solid line); however, in the presence of stochastic

disturbances, the state trajectory leaves Ωρmin
during its oscillation

around the steady-state, and thus is considered unstable in this case.

In Figure 6, it is shown that for this particular initial condition, the

closed-loop states (i.e., reactor temperature T and reactant concentra-

tion CA) are stabilized at the origin after around 0.06 h for both distur-

bances, with slight variation around the steady-state afterwards due

to disturbances. The case study demonstrates the relation between

RNN training sample size and its generalization performance as well

as the probability of closed-loop system stability, which supports the

results derived in Theorems 1 and 2.

Remark 9. Note that the RNN generalization perfor-

mance depends on various factors as demonstrated in

Theorem 1. While we only showed the impact of the

sample size of training data on RNN generalization per-

formance in this section due to space limitations, the

generalization error is also affected by RNN width/

depth, and input time length. Interested readers are

referred to21 for the simulation studies of open-loop

RNN generalization performance and system stability

analysis that account for all the above factors for the

nominal system without any disturbances.

Remark 10. The probability results in Figures 2 and 3

are consistent with the theoretical results derived in

Theorems 1–3 in a qualitative manner, i.e., the RNN

generalization performance and probability of closed-

loop stability improve with increasing training samples.

However, it is difficult to carry out a quantitative

analysis since the analytically calculated minimum sam-

ple size is based on the upper bound of RNN generaliza-

tion error, while in practice the RNN prediction error

will not reach its upper bound for every time step.

Therefore, the analytically derived probability results

could be conservative compared to the simulation

results in Figures 2 and 3. Additionally, the probability

of closed-loop stability also depends on the Lipschitz

constants and parameters such as bci, i¼1, 2, 3, 4 that

relate to process dynamics and are generally difficult to

compute. Therefore, in this work, we only provide a

qualitative analysis for the relationship between the

probabilistic closed-loop stability and the training

sample size.

Remark 11. Computational efficiency could be a chal-

lenge for the implementation of RNN models to large-

scale chemical processes. To reduce the computational

costs for developing RNN models and solving RNN-

MPC, reduced-order modeling techniques such as fea-

ture selection and autoencoder can be utilized to build

reduced-order RNN models for large-scale chemical

processes. Additionally, a priori process knowledge can

also be used to reduce the complexity of RNN models

and improve its computational efficiency and accuracy.

5 | CONCLUSION

We developed machine-learning–based predictive control schemes

for nonlinear systems subject to stochastic disturbances with

unbounded variation and bounded disturbances, respectively. We first

derived a generalization error bound for the RNN models developed

for the nominal system using the Rademacher complexity method

from statistical learning theory. Then, we established system stability

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-1

-0.5

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

20

40

F IGURE 6 Closed-loop state
profiles for the CSTR with
bounded disturbances (blue, solid
line) and stochastic, unbounded
disturbances (red, dashed line)
under RNN-MPC for the same
initial condition �1:2, 50ð Þ. CSTR,
continuous stirred tank reactor;
MPC, model predictive

controllers; RNN, recurrent neural
networks
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results for the uncertain system with unknown disturbances in a

bounded manner. With regards to the uncertain system with stochas-

tic disturbances under RNN-MPC, we accounted for the distribution

information of disturbances, and derived the probabilistic closed-loop

stability properties. Through the simulation of a chemical reactor

example, we demonstrated that the training data sample size affects

the RNN generalization performance, and closed-loop stability for the

MPC using RNN models.
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