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Abstract: This tutorial review provides a comprehensive
overview of machine learning (ML)-based model predictive
control (MPC) methods, covering both theoretical and prac-
tical aspects. It provides a theoretical analysis of closed-loop
stability based on the generalization error of MLmodels and
addresses practical challenges such as data scarcity, data
quality, the curse of dimensionality, model uncertainty,
computational efficiency, and safety from both modeling
and control perspectives. The application of thesemethods is
demonstrated using a nonlinear chemical process example,
with open-source code available on GitHub. The paper con-
cludeswith a discussion on future research directions inML-
based MPC.

Keywords: machine learning; neural networks; model pre-
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1 Introduction

Model predictive control (MPC) is an advanced control tech-
nique that has seen extensive use in industrial applications
since the 1980s. Unlike traditional control methods, MPC uses
a dynamic model of the system of interest to predict future
behavior and compute optimal control actions. Upon
receiving information on the system’s current state, the MPC

will generate a sequence of optimal control actions over a
predefined time horizon, based on the predictions made by
the dynamic model. The receding horizon feature of MPC
implies that only the first control input in the optimal control
action sequence is implemented, and a new sequence is
calculated at the next time step with updated system infor-
mation. As the MPC relies heavily on the predictions of
the dynamic model for computation, a highly accurate model
is vital for satisfactory control performance. Traditionally,
these models are derived predominantly from fundamental
theories. For example, the dynamic behaviors of chemical
processes are theoretically described using mass and energy
balance equations.

However, the derivation of these first-principles models
can often be tedious and costly, especially for complex
nonlinear systems. Empirical methods that construct
dynamical models from data pose as an alternative to the
theoretical approach. Although the use of machine learning
(ML) tools such as artificial neural networks (ANNs) has been
applied to chemical systems over the past decades (Hoskins
and Himmelblau 1988; Nascimento et al. 2000), the recent
success of deep learning models has reignited interest in
adopting ML models for MPC applications. Moreover, with
increasing access to industrial data and enhanced compu-
tational capabilities, a paradigm shift from a theory-based
modeling approach to a data-centric approach has been
observed. In particular, recurrent neural networks (RNNs), a
subbranch of deep learning models, known for its ability to
process time series data, have shown promising results in
modeling the dynamics of complex chemical systems for
MPC applications (Limon et al. 2017; Su et al. 1992; Terzi et al.
2021; Wu et al. 2019d; You and Nikolaou 1993). In addition to
simulation studies, ML-based MPC has been successfully
applied to real-life systems such as a paper machine (Lan-
zetti et al. 2019), an experimental electrochemical reactor
(Luo et al. 2023), a yeast biofermentation bioreactor (Nagy
2007), and a continuous pharmaceutical manufacturing
process (Wong et al. 2018). Despite these advancements, the
implementation of ML-based MPC in industrial settings is
still far from being realized. In a strengths, weaknesses,
opportunities and threats (SWOT) analysis performed by
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Dobbelaere et al. (2021), on the use of ML tools in chemical
engineering, the authors identified the lack of interpret-
ability of black-box ML models and the challenges in
obtaining sufficient and reliable data as the main obstacles
that prevent the application of ML models. In addition,
controller robustness, operation safety, and system stability
are some of the common issues that have been raised in the
discussion ofML-basedMPC (Bonassi et al. 2022; Brunke et al.
2022; Hewing et al. 2020; Nian et al. 2020; Schweidtmann et al.
2021). In this review article, we consolidate some of the
common challenges faced in the industrial implementation
of ML-based MPC and categorize them according to their
theoretical and practical aspects.

The theoretical challenge of ML-based MPC lies in the
mathematical guarantee of closed-loop stability under ML-
based MPC (Berberich et al. 2020). Closed-loop stability is
essential to ensure safe, efficient, and reliable operation of
control systems.MLmodels are typically developed using a set
of training data that is representative of the underlying data
distribution. Even with sufficient training, some ML models
may struggle to generalize to new, unseen data beyond the
training set. This may result in poor controller performance
and stability issues in ML-based MPC. Thus, understanding
the generalization performance of ML models is a key chal-
lenge in guaranteeing closed-loop stability.

On the other hand, the practical challenges of imple-
menting ML-based MPC in industrial settings are significantly
more diverse, arising from the different stages in the devel-
opment of ML-basedMPC. The formation of anML-basedMPC
can be divided chronologically into three phases: data collec-
tion, modeling, and execution phases. Each phase presents a
unique set of challenges that need to be addressed to ensure
the feasibility of ML-based MPC. Data scarcity and data cor-
ruption are common issues that plague the data collection
process in industrial settings. As ML models are highly
dependent on the quantity and quality of the data used for
training, the question of how to develop accurate ML models
under such circumstances poses a major concern in the
application ofML-basedMPC (Thebelt et al. 2022). Additionally,
practical challenges often arise when modeling large-scale
systems in industries. The curse of dimensionality, a phe-
nomenon in which an increase in data dimensions results in
an exponential growth in data requirement and a reduction in
the efficiency and effectiveness of ML algorithms, presents a
significant challenge in modeling large-scale systems. Thus,
how to effectively capture the dynamics of complex large-scale
systems and bypass the curse of dimensionality is another key
challenge in the development of ML-based MPC for industrial
applications. The heavy computational burden and sluggish
processing speed of ML-based MPC is a well-acknowledged
problem (Wu et al. 2019d). In addition, as noted by Mesbah

et al. (2022), model uncertainty and process disturbances are
unavoidable issues in controller implementation, how to speed
up ML-based MPC calculations and improve the robustness of
ML-based MPC are valid concerns that require attention dur-
ing the execution phase of ML-basedMPC. Overall, safety is an
overarching concern that applies to all stages of the develop-
ment ofML-basedMPC (Brunke et al. 2022; Hewing et al. 2020).
Safe data collection, safe modeling, and safe implementation
are vital to ensure safe operation under ML-based MPC.
Finally, the lack of interpretability of black-box ML models
raises a general concern among global community (Bonassi
et al. 2022; Dobbelaere et al. 2021; Schweidtmann et al. 2021;
Shang and You 2019). The lack of understanding of the decision
process and internal workings of data-driven models can
impede users’ trust towards these models, especially for con-
trol applications where safety is paramount. Thus, enhancing
the transparency of ML models is a critical step towards
gaining industrial approval of ML-based MPC.

Substantial reviews on the application of ML models to
process system engineering have been discussed by Daou-
tidis et al. (2023), Everett (2021), Khan and Ammar Taqvi
(2023), Lee et al. (2018),Mowbray et al. (2022), Pan et al. (2022),
and Shang and You (2019). However, since the objective of
these reviews was to provide an overview on the develop-
ment of ML models and to analyze existing and potential
applications of ML models in the industry, discussions on
ML-based MPCs were limited. On the other hand, reviews
specific to ML-based MPC focused on various aspects of ML-
based MPC (Abdullah and Christofides 2023a; Berberich and
Allgöwer 2024; Bonassi et al. 2022; Brunke et al. 2022; Dev
et al. 2021; Gonzalez et al. 2023; Lu et al. 2019; Mesbah et al.
2022; Nian et al. 2020; Norouzi et al. 2023; Ren et al. 2022; Tang
and Daoutidis 2022). For instance, Mesbah et al. (2022) and
Nian et al. (2020) examine the applications of a particular
type of ML-based MPC: reinforcement learning (RL)-based
MPC, while Brunke et al. (2022) explores its safety aspect.
While Ren et al. (2022) focuses on a broader category of ML
models, neural networks (NNs), providing a tutorial review
on their modeling approaches in MPC, there was limited
mention of the challenges related to the implementation of
ML-based MPC. Bonassi et al. (2022) consolidated recent ef-
forts in the development of RNN-based MPC and discussed
issues related to RNN-basedMPC in terms of safe verification
and interpretability of the RNN model, as well as stability
and robustness of RNN-based MPC. Similarly, Berberich and
Allgöwer (2024) focus on closed-loop stability and guarantee
of ML-based MPC. However, to the best of the authors’
knowledge, a comprehensive overview of the challenges
faced in the implementation of ML-based MPC has yet to be
established. Hence, this review aims to complement the
existing literature by providing an extensive review of the
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theoretical and practical challenges in ML-based MPC, spe-
cifically NN-based MPC, as well as a summary of the current
efforts taken to address each of these challenges. The review
also presents a dual perspective to approach some of the
practical issues, namely from both modeling and control
viewpoints.

This article is organized as follows: preliminary knowl-
edge on the class of systems considered and an introduction to
neural networks and ML-based MPC is provided in Section 2.
In Section 3, the theoretical challenges of ML-based MPC and
current advances in characterizing the generalization per-
formance of ML models and analyzing the closed-loop sta-
bility of ML-based MPC are reviewed. In Section 4, practical
challenges and potential solutions to resolve these issues are
discussed. This includes topics such as data scarcity, data
quality, the curse of dimensionality, model uncertainty,
computational efficiency, and safety concerns of ML-based
MPC. In Section 5, novel ML modeling and ML-MPC control
methods mentioned in Section 4 are applied to a nonlinear
chemical process to demonstrate their effectiveness. Finally,
Section 6 concludeswith anoutlookon the future directions of
ML-based MPC.

2 Preliminaries

2.1 Notation

The notation ⋅| | is used to denote the Euclidean norm of a
vector. xT denotes the transpose of x. For a given matrix
A ∈ Rm×n, its Frobenius norm is denoted by ‖A‖F . The no-
tation Lf V(x) denotes the standard Lie derivative where

Lf V(x) ≔ ∂V(x)
∂xT f (x). Set subtraction is denoted by “\”

(i.e., A \ B≔ {x ∈ Rn | x ∈ A, x ∉ B}). ∅ signifies the null set.
The function f (⋅) is of class C 1 if it is continuously
differentiable in its domain. A function f : Rn → Rm is
said to be L-Lipschitz, if for all x, y ∈ Rn, if |f (x) − f (y)| ≤
L|x − y| where L > 0. A continuous function α : [0, a)→
[0,∞) is said to belong to classK if it is strictly increasing
and is zero only when evaluated at zero. For a random
variable X , its expected value is denoted as E[X]. The
notation P(A) represents the probability that an eventA is
occurring.

2.2 Class of systems

The class of continuous-time nonlinear systems considered
is described by the following system of first-order nonlinear
ordinary differential equations (ODEs):

x ̇ = F(x, u, d), x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipu-
lated input vector, and d ∈ D is the disturbance vector
with D≔ d ∈ Rq | |d| ≤ dm, dm ≥ 0{ }. The control input
vector u is constrained by the following set
u ∈ U ≔ {ui,min ≤ ui ≤ ui,max, i = 1,…,m} ⊂ Rm. F(⋅, ⋅, ⋅) is a
sufficiently smooth vector function. Throughout the
manuscript, the initial time t0 is taken to be zero (t0 = 0),
and it is assumed that F(0, 0, 0) = 0, and thus, the origin
is a steady-state of the nominal system (i.e., w(t) ≡ 0) of
Eq. (1) (i.e., x*s, u*

s( ) = (0, 0), where u*
s and x*s represent the

steady-state input and state vectors, respectively).

2.3 Supervised learning – neural networks

Machine learning can be divided into four learning types:
supervised, unsupervised, semi-supervised, and reinforce-
ment learning. In supervised learning, the dataset S used for
model construction is the collection of M labeled data,
i.e., S = {(xi, yi), i = 1,…,M}. Each data sample (xi, yi) con-
sists of a feature input vector xi ∈ Rdx and a labeled/target
output yi, where dx is the dimension of xi, i.e., the number of
features. If the label yi can only take on finitely many values,
i.e., the labeled output yi is discrete-valued, then the learning
task is identified as a classification problem. On the other
hand, if the labeled output yi is continuous, then this is a
regression task. In the context of MPC, where models are
required to predict uncountably many values, this consti-
tutes a regression problem. ML models such as linear and
nonlinear regression, autoregressive models, state-space
models, and neural networks have been widely adopted for
MPC applications (Huang and Kadali 2008; Tang and Daou-
tidis 2022). Neural networks are a subset ofmachine learning
models that consist of layers of interconnected neurons.
Neurons are the most fundamental unit of NNs. Given a data
sample (xi, yi), each neuron in the NN acts as a processing
unit that first computes the weighted sum of the inputs
and the bias term associated with the neuron, that is,
∑dx

j=1wjxi, j( ) + b, where xi = [xi, 1, xi, 2,…, xi, dx], b is the bias
term, and wj is the weight associated with the j-th feature.
The neuron then applies an activation function f (⋅) to the
weighted sum to produce its output yi. The different ar-
rangements and connections of neurons within the network
architecture determine the type of neural network. The
formulations of twoneural networks commonly used inMPC
applications, feedforward neural networks (FNNs) and
recurrent neural network (RNNs), will be provided in the
following section. Discussions on data generation, model
training, and model incorporation into MPC will not be
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covered in this review as an in-depth review has been pro-
vided in (Ren et al. 2022).

2.3.1 FNN and RNN

The formulation of a one-hidden-layer FNN is provided
below, with hidden states h ∈ Rdh computed as follows:

h = σh(Wx + bh) (2)

where σh is the element-wise nonlinear activation function
(e.g., ReLU) and bh ∈ Rdh is the bias vector of the hidden state.
W ∈ Rdh×dx is theweightmatrix connected to the input vector
x. The output layer y is computed as follows:

y = σy(Vh + by) (3)

where V ∈ Rdy×dh is the weight matrix, by is the bias vector for
the output, and σy is the element-wise activation function
in the output layer (typically linear unit for regression prob-
lems). To develop an FNN model for the nonlinear system of
Eq. (1) using a training dataset with data collected at every
sampling time t = tk , k = 1, 2,…, where tk+1 ≔ tk + Δ, and Δ
represents one sampling period, one can choose the current
state x(tk) and the manipulated input u(tk) that is applied
over t ∈ [tk , tk+1) as FNN inputs, i.e., x = x(tk)T u(tk)T[ ]T , to
predict the output y = x(tk+1) at the next sampling time.

RNNs are a type of neural network that uses sequential
data or time-series data. While the hidden layer configura-
tion varies among different NNs, the output layer configu-
ration remains consistent for FNNs and RNNs. The key
difference between an FNN and an RNN lies in the direction
of information flow. A figure showing the network struc-
tures of an FNN and an RNN is presented in Figure 1.

From Figure 1, the flow of information in an FNN is
observed to be unidirectional, where information is passed
sequentially in the forward fashion through the input layer,
hidden layer, and finally to the output layer. On the other
hand, RNNs are designed for sequential data where the or-
der of inputs is important. RNNs represent an improvement
over FNNs in the sense that RNNs have connections that

create loops within the networks. The recurrent structure of
the RNNs allows them to retain information from previous
time steps which facilitates the capturing of patterns in
sequential data. Therefore, RNNs are widely utilized for
modeling nonlinear dynamic processes, particularly in ap-
plications that require time series predictions where RNNs
have demonstrated their efficiency to capture nonlinear
behaviors over some time period. To illustrate the differ-
ence, we consider a one-hidden-layer RNN. The computation
of RNN hidden states ht ∈ Rdh is slightly different from FNN,
with the inclusion of a time factor t, as shown in Eq. (4)
below:

ht = σh(Uht−1 +Wxt + bh) (4)

where σh is the element-wise nonlinear activation function
of the hidden layer and bh ∈ Rdh is the bias vector of the
hidden state. U ∈ Rdh×dh and W ∈ Rdh×dx are weight matrices
connected to the hidden states and the input vector,
respectively. From Eq. (4), it can be seen that in addition to
using the current input vector xt for computation, RNNs also
use the hidden state of the previous time step ht−1 in calcu-
lating the current hidden state ht .

The aforementioned configuration constitutes the stan-
dard and simplest RNN structure. Since thefirst introduction of
RNNs in the 1980s, many variations of the conventional RNNs
have emerged and demonstrated exceptional capabilities in
processing time series data. Popular variants of RNNs include
the long short-term memory (LSTM) network (Hochreiter and
Schmidhuber 1997) and gated recurrent unit (GRU) (Cho et al.
2014). LSTMs and GRUs are gated variants of RNNs that modify
the computation of RNN hidden states. A standard LSTM cell
uses three gates, namely the forget, input, and output gates, to
update its cell and hidden states. The update equations are
listed below:

f t = σ(Wfxt + Ufht−1 + bf ) (5a)

it = σ(Wixt + Uiht−1 + bi) (5b)

ot = σ(Woxt + Uoht−1 + bo) (5c)

c̃t = tanh(Wcxt + Ucht−1 + bc) (5d)

ct = f t ⊙ ct−1 + it ⊙ c̃t (5e)

ht = ot ⊙ tanh(ct) (5f)

where ht, ct ∈ Rdh represent the hidden state and cell state
vectors, respectively, with initial values h0 = c0 = 0. xt ∈ Rdx

is the input feature vector and ⊙ denotes the Hadamard
product operator. Equations (5a)–(5c) define the gate func-
tions. Specifically, f t, it, ot ∈ Rdh represent the forget, input,
and output gates at time t, respectively, with their associated

Figure 1: A feedforward neural network (left) and a recurrent neural
network (right).
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bias terms bf ,bi,bo ∈ Rdh . The gates use element-wise
nonlinear activation functions (e.g., sigmoid function σ(⋅)
and tanh(⋅)). The weight matrices Wf ,Wi,Wo,Wc, ∈Rdh×dx

and Uf ,Ui,Uo,Uc ∈ Rdh×dh are used to connect the input
vector and the hidden states to the different gates, respec-
tively. The term c̃t represents the candidate cell state in the
LSTM cell. It serves as an intermediate state that reflects the
potential information used to update the cell state ct ,
modulated by the input and forget gates in Eq. (5e).

Compared to LSTMs, GRUs have a more simplified
structure with only two gates, the update rt and reset gates
zt . The update equations of GRU are listed as follows:

rt = σ(Wrxt + Urht−1 + br) (6a)

zt = σ(Wzxt + Uzht−1 + bz) (6b)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (6c)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t (6d)

withweightmatricesWr,Wr,Wh ∈ Rdh×dx ,Ur,Uz,Uh ∈ Rdh×dh

and bias parameters br ,bz,bh ∈ Rdh . The term h̃t represents
the candidate hidden state which is used to compute the GRU
hidden state ht in Eq. (6d). A summary of the differences in
the network structures of a simple RNN, an LSTM, and a GRU
is provided in Figure 2.

While RNNs, LSTMs, and GRUs are all types of neural
networks used for processing sequential data, they have
different structures and mechanisms to handle the vanishing
gradient problem and maintain long-term dependencies. In
general, RNNs are suitable for simpler tasks, LSTMs can be
used for tasks that require long-termmemory, and GRUsmay
achieve a balance of efficiency and performance. We will
primarily focus on simple RNNs when addressing theoretical
and practical challenges in the following sections. However, it
shouldbenoted that themethodsdiscussed in thismanuscript

can also be readily applied to other types of RNNs, such as
LSTMs and GRUs.

2.4 ML-based MPC

To simplify the notation for MPC using RNN models, we
represent the RNN model in the following continuous-time
form for the nominal system of Eq. (1) (i.e., w(t) ≡ 0):

x̂̇ = Fnn(x ̂, u) (7)

where x ̂ ∈ Rn and u ∈ Rm are the state vector predicted by
the RNN model and the manipulated input vector, respec-
tively. Note that neural networks are generally developed
as discrete-time models with sampled training data. While
there are some methods such as using differential equa-
tions to model the evolution of the hidden state, or using
neural ordinary differential equations (neural ODEs)
(Chen et al. 2018a), that directly model continuous dy-
namics in neural networks, the continuous-time
representation of RNNs adopted in this work is primarily
to simplify notation. In other words, when incorporated
into MPC, the RNN model is used to predict states at
discrete future time steps, rather than generating a
continuous-time state trajectory. Consequently, the objec-
tive function and constraints in the MPC framework will be
based solely on the states predicted by the RNN models.

A general tracking model predictive control design is
given by the following optimization problem:

J = min
u

∫
tk+N

tk

L(x̃(t) , u(t))dt (8a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (8b)

Figure 2: Network architecture of a simple
recurrent neural network cell, a long
short-term memory and a gated recurrent
unit.
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x̃(tk) = x(tk) (8c)

u(t) ∈ U , ∀ t ∈ [tk , tk+N ) (8d)

x(t) ∈ X , ∀ t ∈ [tk , tk+N ) (8e)

where the objective function seeks to minimize the integral of
the cost function L(x̃(t), u(t)) over the prediction horizon t ∈
[tk , tk+N ) by optimizing the manipulated input u. The term N
represents the number of sampling periods in the prediction
horizon. x̃(t) is the predicted state trajectory by the model,
using the state measurement at tk as its initial condition.
Equations (8d) and (8e) are the constraints imposed on the
input and state variables, respectively, where U and X repre-
sent the sets of feasible u and x.

As it is a well-known fact that the MPC formulation given
by Eq. (8) is not always stabilizing, several approaches have
been proposed in the literature to achieve closed-loop stability.
One approach involves using infinite prediction horizons or
carefully designed terminal penalty terms; for a comprehen-
sive review of these methods, see Bitmead et al. (1990) and
Mayne et al. (2000). Another approach is to enforce stability
constraints directly within the MPC optimization problem
(Chen and Allgöwer 1998; Mayne et al. 2000). Ensuring closed-
loop stability under MPC with terminal constraints extends
standard MPC by incorporating additional constraints on the
system’s state at the end of the prediction horizon. Proper
design of terminal constraints and terminal regions is crucial to
ensure that the system reaches a desired or safe operating
point within a finite time horizon.

Another important approach in stabilizing MPC is
Lyapunov-based MPC (LMPC). LMPC provides an explicit
characterization of the stability region and guarantees
controller feasibility and closed-loop stability. In the context of
predictive control for the system of Eq. (1), the LMPC is
designed based on an existing explicit control law Φnn(x)
that is capable of stabilizing the closed-loop system. The
formulation ofML-basedLMPC is as follows (Wuet al. 2019c,d):

J = min
u*∈S(Δ)

∫
tk+N

tk

L(x̃(t), u(t))dt (9a)

s.t. x̃̇(t) = Fnn(x̃(t), u(t)) (9b)

u(t) ∈ U , ∀ t ∈ [tk , tk+N ) (9c)

x̃(tk) = x(tk) (9d)

V ̂̇(x(tk), u) ≤ V ̂̇ x( (tk),Φnn(x(tk)), if x(tk) ∈ Ωρ \ Ωρnn (9e)

V ̂(x̃(t)) ≤ ρnn, ∀ t ∈ [tk , tk+N ), if x(tk) ∈ Ωρnn (9f)

where x̃ is the predicted state trajectory, S(Δ) is the set of
piecewise constant functions with period Δ, and N is the

number of sampling periods in the prediction horizon.
˙̂V(x, u) is used to represent ∂V̂( x)

∂x (Fnn(x, u)). The optimal
input trajectory computed by the LMPC is denoted by u*(t),
which is calculated over the entire prediction horizon
t ∈ [tk , tk+N). The control action computed for the first
sampling period of the prediction horizon u*(tk) is sent by
the LMPC to be applied over the first sampling period, and
the LMPC is resolved at the next sampling time. The set Ωρ is
the closed-loop stability region for the nonlinear system of
Eq. (1) defined as a level set of the Lyapunov function V(x),
that isΩρ ≔ {x ∈ Rn | V(x) ≤ ρ}. The termΩρnn denotes a small
level set of the Lyapunov function V(x) around the origin
within which the system is considered practically stable as
long as the states x remain inside this region.

In the optimization problem of Eq. (9), the objective
function of Eq. (9a) is the integral of L(x̃(t), u(t)) over the
prediction horizon. The constraint of Eq. (9b) is the RNN
model of Eq. (4) that is used to predict the states of the closed-
loop system. Equation (9c) defines the input constraints
applied throughout the prediction horizon. Equation (9d)
defines the initial condition x̃(tk) of Eq. (9b), which is the
state measurement at t = tk . The constraint of Eq. (9e) forces
the closed-loop state to move towards the origin if
x(tk) ∈ Ωρ \ Ωρnn. However, if x(tk) enters Ωρnn, the states
predicted by the RNNmodel of Eq. (9b) will be maintained in
Ωρnn for the entire prediction horizon.

WhileML-basedMPC offers promising opportunities for
addressing complex control problems by using data-driven
models, several challenges need to be addressed to ensure
the effectiveness and reliability of ML-based MPC ap-
proaches. In this review paper, we will discuss the state-of-
the-art technologies that tackle the emerging challenges in
ML-MPC.

Remark 1. In addition to the general set-point tracking MPC,
machine learning models can also be used in zone-tracking
MPC (Ferramosca et al. 2010; González and Odloak 2009).
Unlike MPC that tracks the set-point, zone-tracking MPC al-
lows the system to operate within a predefined region. It has
been reported that a single NNmodelmay not be sufficient to
fully capture the system dynamics over the entire operating
region consisting of multiple operating points, especially for
complex nonlinear processes (Huang et al. 2023; Wu et al.
2019d). The recent work of Huang et al. (2023) divided the
operating region into three overlapping sub-regions and
trained separate LSTMmodels, which were combined in the
first layer of a neural network. This two-layer NN, integrated
into a zone-tracking MPC system, improved open-loop pre-
diction and provided feedback control for irrigation.
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3 Theoretical challenges inML-MPC

The stability of MPC is a fundamental consideration in its
application. ML models trained on historical data may
struggle to generalize to new or unseen operating condi-
tions, leading to poor performance and stability issues in
MPC. Developing a better understanding and techniques for
improving the generalization of ML models is a key chal-
lenge in ML-based MPC.

3.1 Generalization performance

Early work in ML-MPC often assumes that the model-plant
mismatch is bounded, and therefore, the closed-loop stabil-
ity ofMPC holds through the robust design ofMPC. However,
this assumption may not be true for practical ML models.
The generalization error in machine learning refers to the
expected error of a model on unseen data drawn from the
same distribution as the training data. In other words, it
measures how well a trained model performs on new, un-
seen data points. Generalization error is a critical concept in
machine learning because the ultimate goal is to build
models that can make accurate predictions on data that they
have not seen during training. Initial research on the
generalizability of ML models was developed using Vapnik–
Chervonenkis (VC) dimension, a method that characterizes
the capacity and complexity ofmodels (Sontag 1998b; Vapnik
et al. 1994). However, due to the simplified assumptions
underlying the VC dimension approach, the derived gener-
alization error bounds can be overly conservative (Chen
et al. 2019). Thus, alternatives such as probably approxi-
mately correct (PAC) – Bayesian method (Neyshabur et al.
2017) and empirical Rademacher complexity approach un-
der the PAC Learning framework (Bartlett et al. 2017) were
introduced and adopted in recent years. Numerous studies
have analyzed the generalizability of RNNs, predominantly
focusing on their performance in classification tasks (Chen
et al. 2019; Sontag 1998a; Wei andMa 2019; Zhang et al. 2018).
Recent works by Akpinar et al. (2019) and Wu et al. (2021b),
have proposed PAC analysis frameworks to derive general-
ization error bounds for RNNs in regression problems. For
demonstration purposes, this review will follow the empir-
ical Rademacher complexity approach presented inWu et al.
(2021b) to derive the generalization error bound of RNNs.
Interested readers may refer to works by Koiran and Sontag
(1998) and Sontag (1998a) for the VC dimension method,
Zhang et al. (2018) for the PAC-Bayesian approach, and
Akpinar et al. (2019) for the traditional PAC framework in the
derivation of the generalization error bound for RNNs.

3.1.1 Generalization error

Given a single-layer RNN model trained with M data sam-
ples, where each sample has a time sequence length of T , its
input and output are denoted as xi, t ∈ Rdx and yi, t ∈ R

dy

respectively, where i = 1, 2,…,M and t = 1, 2,…, T . This RNN
model is designed to predict the states over the next T time
steps, based on past or current state measurements and any
manipulated inputs. This approach is analogous to solving a
nonlinear ODE (e.g., Eq. (1)) given the initial condition of x
and the manipulated input u that will be applied. In the
derivation of the generalization error bound, we assume
negligible bias terms in the RNN model. The revised equa-
tions of the hidden layer and the output layer are provided
below:

hi, t = σh(Uhi, t−1 +Wxi, t) (10)

yi, t = σy(Vhi, t) (11)

The loss function is denoted as L(y ̌, y), where y̌ is the
predicted RNN output and y is the true/labeled output. The
following assumptions are made on the RNN model and
dataset.

Assumption 1. All inputs into the RNN model are bounded,
that is, for all i = 1,…,M and t = 1,…, T , xi, t

⃒⃒⃒⃒ ⃒⃒⃒⃒
≤ AX .

Assumption 2. The Frobenius norms of all the weight
matrices are bounded in the following manner:

‖U‖F ≤ AU , F , ‖V‖F ≤ AV , F , ‖W‖F ≤ AW , F

Assumption 3. The nonlinear activation σh is positive ho-
mogeneous and 1-Lipschitz continuous, i.e., for all γ ≥ 0,
x ∈ R, we have σh(γx) = γσh(x).

Assumption 4. Data samples used for training, validation,
and testing purposes are drawn from the same distribution.

All the assumptions made adhere to common practice in
machine learning theory. Specifically, the first two assump-
tions assume the boundedness of RNN inputs and weights, a
condition typically satisfied in many modeling tasks where a
finite class of neural network hypotheses is used to model
nonlinear systems based on data collected from a finite set.
The third assumption can be satisfied by activation functions
such as ReLU and its variants. It is used for the derivation of
generalization error in this section, and can be omitted when
using other proof techniques, as demonstrated in Golowich
et al. (2018). The last assumption is a fundamental and neces-
sary condition for analyzing generalization performance,
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which is adopted in many machine learning works that
consider the application of machine learning models to the
same process without disturbances or model uncertainties.
However, in the presence of disturbances that cause varia-
tions in process dynamics over time, the generalization error
can still be derived for machine learning models by account-
ing for the drift in distribution. We will discuss this further
when introducing online machine learning in Section 4.4.1.

The following text entails the essential definitions and
lemmas widely used within the theoretical framework of
machine learning.

Definition 1. The expected loss/error or generalization
error of a function f which predicts output values y for each
given input x, with an underlying distribution Q, is given as:

LQ(f ) ≜ E[L(f (x), y)] = ∫
X×Y

L(f (x), y)P(x, y)dxdy (12)

where the vector spaces of all possible inputs and outputs
are denoted by X and Y , respectively, and the term P(x, y)
represents the joint probability distribution for x and y.

However, since the joint probability distribution P is often
unknown, the empirical error, calculated from the data
samples, is used as an estimate of the expected loss.

Definition 2. The empirical error or risk of a dataset withM
data samples S = (s1,…, sM), where si = (xi, yi), is defined as:

ÊS[L(f (x), y)] = 1
M

∑
M

i=1
L(f (xi), yi) (13)

In order to ensure that the RNN model can capture the
nonlinear dynamics of the system of Eq. (1) and generalize
well to unseen operating conditions, it is essential to show
that the generalization error E[L(f (x), y)] can be bounded.
Since the empirical error is used as a proxy measure of the
generalization error, it is necessary that the empirical error
be sufficiently small and bounded such that the generaliza-
tion error can be bounded. The empirical error can also be
viewed as the loss associatedwith the training dataset. As the
training process of ML models is designed to reduce the
models’ training loss, it is achievable to obtain a sufficiently
small and bounded empirical error. The subsequent text
will outline the steps taken to derive the upper bound of the
generalization error.

In this study, the loss function used is the mean squared
error (MSE). While it can be readily demonstrated that the
MSE loss functionL(y, ȳ) is not Lipschitz continuous for every
y, ȳ∈Rdy , we can prove that the MSE loss function is locally
Lipschitz continuous for y, ȳwithin a compact set in Rdy . As a

finite hypothesis class that fulfills Assumptions 1–4 was
considered, the RNNoutput canbeproven tobebounded. This
aligns with the fact that the nonlinear system described in Eq.
(1) operates in the stability region Ωρ, thus ensuring that the
RNN outputs are bounded within a compact set. Thus, the
upper bound of yt is denoted by rt > 0, that is, |yt| ≤ rt,
t = 1,…, T . Without loss of generality, it is assumed that the
true outputs are also constrained by rt . Since the RNN outputs
and the true outputs are bounded, i.e., for all |yt|, |ȳt | ≤ rt , we
can show that the MSE loss function is a locally Lipschitz
continuous function satisfying the following inequality.

|L(y1, ȳ ) − L(y2, ȳ )| ≤ Lr y1 − y2
⃒⃒⃒⃒ ⃒⃒⃒⃒

(14)

where Lr is the Lipschitz constant. Since Lipschitz conditions
occur several times throughout this article for different
functions, to clarify, the definition of an L-Lipschitz function
in Section 2.1 (Notation) refers to the global Lipschitz con-
dition. However, when we assume that the mean-squared-
error loss function is Lipschitz continuous, we are referring
to the local Lipschitz condition. This is because the neural
network’s input and output data are drawn from a compact
set in the state space.

Further analysis shows that the generalization error can
be perceived as a combination of the approximation and the
estimation error. The breakdown of the generalization error
of a given neural network function fS taken from a hypothesis
class F , trained with a specific learning algorithm using a
training dataset S sampled from distribution Q, is as follows:

LQ(fS) − LQ(f *) = (min
f ∈F

LQ(f ) − LQ(f *)) + (LQ(fS)
−min

f ∈F
LQ(f )) (15)

where LQ(fS) is the generalization error of the function fS on
the underlying data distribution Q. The term f * represents
the global optimal hypothesis that yields the lowest gener-
alization error, for the data distribution Q; this hypothesis
could be outside of the finite hypothesis class F . The term
minf ∈FLQ(f ) searches for the optimal hypothesis within F
that minimizes loss functions over the distribution Q.
Thus, minf ∈FLQ(f ) can be seen as the generalization error of
the local optimal hypothesis. The term LQ(fS) − LQ(f *),
measures the generalization gap between the selected
hypothesis fS and the global optimal hypothesis f *. This dif-
ference can be decomposed into the approximation error
and estimation error, represented by the first and second
parenthesized terms, respectively.

The approximation error can be thought of as how far
the local optimal minf ∈FLQ(f ) deviates from the global
optimal LQ(f *). This provides insights into how close the
hypothesis class F is to the global optimal hypothesis f *. In
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general, the likelihood of the optimal hypothesis f * being in
the hypothesis class F is greater for a larger hypothesis
class. Hence, larger hypothesis classes tend to have a smaller
approximation error. On the other hand, the estimation
error compares the performance of the candidate hypothe-
sis fS , trained with training dataset S, with the best hypoth-
esis within the hypothesis class, minf ∈FLQ(f ). Thus, the
estimation error is dependent on both hypothesis class and
training data. In general, an increase in the size of the hy-
pothesis class F could result in a higher estimation error,
as it may be more challenging to search for the optimal
hypothesis in a larger hypothesis class. The error decom-
position analysis in Eq. (15) illustrates how the generaliza-
tion error is influenced by the size of the training dataset
and the complexity of the hypothesis class. Thus, the next
segment will explore methods to quantify the effect of these
factors on the generalization error.

3.1.2 Upper bound for generalization error

Generalization error is a measure of how well a model
generalizes from the training data to unseen data. While it
is typically estimated using a separate validation dataset or
through techniques such as cross-validation, deriving a
theoretical understanding is also important as it can help
improve the architecture and training of ML models to
achieve the desired generalization performance. The
computer science community has made great efforts to
derive an upper bound for the generalization error of
various neural network models. Specifically, the following
lemma characterizes the upper bound of the generalization
error using the Rademacher complexity R S(⋅), which
quantifies the richness of a class of functions, and is often
used in machine learning theory to bound the generaliza-
tion error.

Definition 3. (Empirical Rademacher Complexity) The
empirical Rademacher complexity of a given hypothesis
class K of real-valued functions, trained with a set of data
samples S = {s1,…, sM}, is defined as

R S(K ) = Eϵ sup
k∈K

1
M

∑
M

i=1
ϵik(si)[ ] (16)

where ϵ = (ϵ1,…, ϵM)T with ϵi being independent and
identically distributed (i.i.d.) Rademacher random variables
satisfying P(ϵi = 1) = P(ϵi = −1) = 0.5.

Lemma 1 . (c.f. Theorem 3.3 in Mohri et al. (2018)) Consider a
class of loss functions G t (G t = {gt : (x, y)→ L(f (x), y)})
associated to the hypothesis class F t of vector-valued

functions f (⋅) that map the RNN inputs to the RNN output at
t-th time step, and trained with M i.i.d. data samples; the
following inequality holds for all gt ∈ G t , with probability at
least 1 − δ over samples S = (xi, t, yi, t)Tt=1, i = 1,…,M

E[gt(x, y)] ≤
1
M

∑
M

i=1
gt(xi, yi) + 2R S(G t) + 3

̅̅̅̅̅
log 2

δ( )
2M

√
(17)

It can be seen from Eq. (17) that the generalization error
bound depends on the empirical error (the first term),
Rademacher complexity (the second term), and an error
function associated with confidence δ and the number of
samples M (the last term). Since the first and last terms are
known given a set of M training data, in order to charac-
terize the upper bound for the generalization error
E[gt(x, y)], we need to determine the upper bound for the
Rademacher complexity R S(G t).

Intuitively, the Rademacher complexity measures the
maximum correlation between functions in the hypothesis
class F and random noise. A smaller Rademacher
complexity indicates that the hypothesis class is less likely to
fit random noise and therefore may generalize better to
unseen data. The following error bound was derived for the
generalization error of the RNN of Eqs. (10) and (11).

Theorem 1 . (c.f. Theorem 1 inWu et al. (2021b)) Given an i.i.d
training samples of size M , S = (xi, t, yi, t)Tt=1, i = 1,…,M and
an RNN model that satisfy Assumptions 1–4, the following
inequality holds forG t , the family of loss function associated
to the hypothesis class F t of vector-valued functions that
map the RNN inputs to the RNN output at t-th time step, with
probability at least 1 − δ over S:

E[gt(x, y)] ≤ O Lrdy
H( ̅̅̅̅̅̅̅̅

2 log(2)t√ + 1)AX̅̅
M

√( )
+ 1
M

∑
M

i=1
gt(xi, yi) + 3

̅̅̅̅̅
log 2

δ( )
2M

√
(18)

where H = AV , FAW , F
(AU , F )t−1
AU , F−1 .

Remark 2. The generalization error bound of Eq. (18) implies
that the following attempts can be taken to reduce the
generalization error: (1) minimize the empirical loss
1
M∑

M
i=1gt(xi, yi) over the training data samples S through a

careful design of neural network, and (2) increase the
number of training samplesM . Additionally, as discussed in
the error decomposition of Eq. (15), increasing the
complexity hypothesis class in terms of larger weight
matrices boundsM could decrease the approximation error,
but may also increase the estimation error, which corre-
sponds to the termO (⋅) in Eq. (18). This is consistent with the
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analysis of the trade-off between approximation error and
estimation error in Eq. (15). Therefore, in practice, we
generally start with a simple neural network and gradually
increase its complexity in terms ofmore neurons, layers and
larger weight matrices bounds to improve the training and
testing performance. The whole process stops when the
testing error starts increasing, which indicates the occur-
rence of overfitting.

Note that for neural networks with different architectures
(e.g., types of NNs, number of layers and neurons, activation
functions, etc.), we will have different values for Rademacher
complexity. For instance, Golowich et al. (2018) derived the
Rademacher complexity upper bounds for a multi-layer FNN
(see Eq. (19)).

O
BX(

̅̅̅̅̅̅̅̅
2 log(2)η√ + 1)∏d

j=1 Bj, F̅̅
M

√⎛⎝ ⎞⎠ (19)

The FNN has η hidden layers in total, the Frobenius
norm of the weight matrices of the j-th hidden layer is
bounded by Bj, F . Similar to the RNN, the FNN is trained using
a dataset of size M and its input x is bounded by BX ,
i.e., |x| ≤ BX .

3.2 Closed-loop stability

Closed-loop stability inMPC is important for ensuring the safety
and reliability of plant operations, and some recent efforts have
beenmade to investigate the stability of ML-basedMPC (Limon
et al. 2017; Meng et al. 2022; Soloperto et al. 2022;Wu et al. 2019c,
2021b). This section will explore and analyze the closed-loop
stability ofML-basedMPCbasedon theLMPC formulationofEq.
(9). Specifically, in the LMPC of Eq. (9), the constraint of Eq. (9e)
ensures that the timederivative of the Lyapunov functionV(x),
at time tk remains less than or equal to the value it would attain
if the nonlinear control law u = Φnn(x) is applied in a sample-
and-holdmannerwithin the closed-loop system. This constraint
allows us to demonstrate (given state measurements at syn-
chronous sampling times) that LMPC inherits the stability and
robustness properties of the nonlinear control law Φnn(x). The
stability characteristic of LMPC is directly inherited from the
stability of the nonlinear control law Φnn(x) when applied in a
sample-and-hold manner.

Additionally, the feasibility of LMPC is inherently
guaranteed by the nonlinear control law Φnn(x), since it is a
feasible solution to the optimization problem of Eq. (9).
Detailed results on this aspect forMPCs using first-principles
model can be found in Mahmood and Mhaskar (2008) and
Mhaskar et al. (2006) (note that the results in these papers
can be readily applied to neural-network-based MPC

provided that a stabilizing controller Φnn(x) can be found).
One of the primary advantages of the LMPC approach over
the nonlinear control law Φnn(x) is its ability to explicitly
incorporate optimality considerations, as well as constraints
on inputs and states within an online optimization frame-
work. This approach improves the closed-loop performance
of the system. Furthermore, since the closed-loop stability
and feasibility of LMPC are guaranteed byΦnn(x), there is no
need to introduce a terminal penalty term in the cost func-
tion. Additionally, while the horizon length N affects the
closed-loop performance, it does not impact the stability of
the closed-loop system.

A key step for closed-loop stability under MPC is to
ensure that the discrepancy between NN predictions and the
actual state evolution is bounded. If we consider a deter-
ministic error bound, that is, the error between NN pre-
dictions and the true evolution of states is bounded for all
times, the ML-MPC of Eq. (9) guarantees closed-loop stability
by designing the nonlinear control lawΦnn(x) appropriately
to render the steady-state stable in the presence of theworst-
case scenario where the prediction error reaches its bound
at all times. However, since in reality, the generalization
errors of any neural networks developed using supervised
learning methods are bound in some probability (e.g., the
error bound in Eq. (18)), closed-loop stability under ML-MPC
is actually guaranteed in a probabilistic sense. This implies
that closed-loop stability is guaranteed with a certain prob-
ability for each time step. In otherwords, there exists a small
probability that stability may not hold if the prediction error
exceeds the theoretical bound. Additionally, although sta-
bility cannot be guaranteed due to the probabilistic nature of
its prediction error, it should be noted that the actual
probability of closed-loop stability for each time step could
be higher than the lower bound 1 − δ for many reasons. For
instance, (1) if the RNN model is well trained and the
modeling error remains significantly below its upper bound,
and (2) if the next state remains within the stability region
even when the modeling error surpasses its upper limit in a
single sampling period, then the probability. Therefore, the
theoretical error bound of Eq. (18) serves as a conservative
estimate of the probability of maintaining closed-loop sta-
bility, and can be used to guide the construction of network
architecture and selection of sample size.

4 Practical challenges in
applications of ML-MPC

In addition to the theoretical understanding of the general-
ization performance of ML models and the resulting
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closed-loop stability properties, there exist many other
practical challenges for the implementation of ML-based
MPC systems in real-world systems.

4.1 Data scarcity

The quantity and quality of the data used for model devel-
opment are paramount for the performance and accuracy of
ML models. In Section 3.1, we see that an increase in the
number of training samples is helpful in reducing the
generalization error of the model, thereby improving its
accuracy. However, in practice, it can be difficult to gather a
substantial amount of data samples to meet the re-
quirements of developing an accurate ML model. This is
especially true for complex systems with a large number of
feature variables, where data collection can be costly and
limited. Hence, this section presents an overview of some
popular techniques to address data scarcity in machine
learning.

4.1.1 Physics-informed machine learning

Physics-informed machine learning (PIML) is an emerging
ML technique that seeks to improve the accuracy, robust-
ness, interpretability, and physical consistency ofMLmodels
by integrating physics laws and domain knowledge into the
learning process (Karniadakis et al. 2021). According to
Karniadakis et al. (2021), physics can be incorporated intoML
models in three ways: (1) through observational data that
reflect the fundamental physics laws, (2) by implicitly inte-
grating domain knowledge into ML models by customizing
the model architecture, and (3) by explicitly embedding
physics into the model algorithm, typically through addi-
tional loss functions and constraints. In particular, physics-
informed neural networks (PINNs) are a prominent subclass
of PIML that have gained traction in recent times due to their
ability to learn effectively in small data regimes (Raissi et al.
2019; Zheng et al. 2023). Since their advent, PINNs have
been extensively applied in engineering, ranging from the
modeling of chemical/biochemical processes (Rogers et al.
2023; Subraveti et al. 2022) and reactors (Bangi et al. 2022;
Patel et al. 2023; Wu et al. 2024) to process control (Antonelo
et al. 2024; Arnold and King 2021;Wang andWu 2024b; Zheng
et al. 2023).

PINNs operate by integrating physical laws directly into
the learning process, where physics, in the form of ordinary
or partial differential equations (ODEs/PDEs), is embedded
into the loss function. This can be illustrated using the
formulation of a physics-informed RNN (PIRNN) model
provided in Zheng et al. (2023). Given a PIRNN that uses the

current state of a system x(tk) and manipulated input u(tk)
to predict the evolution of the state of the system over a
period of time, that is, x(t) ∀ t ∈ tk , tk + Δ[ ], where Δ rep-
resents one sampling period. The state trajectory x(t) con-
sists of multiple internal states, i.e., the collection of states
between tk and tk + Δ separated by a fixed time interval τ (τ
can be considered as the smallest time interval for which
sensor measurements are available). The loss function of
PIRNN is defined as follows:

Loss = αX LossX + αG LossG (20a)

where

LossX = 1
NX

∑
NX

n=1

1
NT

∑
NT

i=0
xn ti( ) − x̃n ti( )| |2 (20b)

LossG = γ
1

NG
∑
NG

n=1
xn t0( ) − x̃n t0( )| |2

+ 1
NG

∑
NG

n=1

1
NT

∑
NT

i=0
G x̃n ti( ), un( )| |2 (20c)

NX is the number of training data, i.e., the number of
dynamic state trajectories of Eq. (1) used for training. NG

is the number of collocation points (i.e., initial conditions
for the RNN model introduced in this article) for each
sampling time Δ, where the initial condition encompasses
only the initial state and the manipulated inputs. NT is the
number of internal states of PIRNN within one sampling
period Δ.

The loss term consists of two terms, where the subscripts
X andG are used to represent the loss terms with respect to
the standard supervised loss and the physics-driven loss,
respectively. The first loss term LossX in Eq. (20b) measures
the MSE between the predicted output x̃n ti( ) and the labeled
output xn(ti). The second loss term LossG represents the
regularization term driven by physical laws. The first term of
Eq. (20c) represents a supervised loss term at the initial
conditions for each sampling period Δ and the second term
represents an unsupervised loss term of the governing

equations, where G is defined as G ( x̃, u) ≔ ˙̃x − F( x̃, u). The
terms αX , αG and γ denote the weight coefficients that
adjust the magnitude of different loss terms. Generally, these
weights are user-defined to regulate the interaction between
different contributing loss components and to assist the
training of PIRNN.

The computation of the ODE residual G (x, u) =
˙̃x − F( x̃, u) is divided into three steps. Firstly, the finite differ-
ence method is used to approximate the value of ˙̃x using the
predicted state trajectory by PIRNN. Secondly, the ODE, i.e., the
functionF(x̃, u), is calculated by substituting the RNNpredicted
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states x̃ and the manipulated inputs u into F(x̃, u). Finally, the
ODE residual can be calculated by subtracting F(x̃, u) from ˙̃x.
Specifically, given an initial condition, we do not need labeled
output data (i.e., dynamic state trajectory from the training data
starting at that initial condition) to evaluate LossG . In partic-
ular, one could take a set of initial points (possibly random) in
the domain of consideration where there is no labeled output
(i.e., state trajectories), use the PIRNN to predict the trajectory
forward with that starting point (x̃n(t, u)), and evaluate the
physics-driven loss LossG directly using the physics-informed
knowledge of the first-principles model F(x, u). It is also noted
that in the extreme case with no labeled output data used as
training data (hence NX = 0), the PIRNN learns the dynamics
using only the loss function LossG . A summary of the PIRNN
training process is provided in Figure 3, interested reader may
refer to Zheng et al. (2023) for details.

A forward problem is a problem that involves solving
for the outputs of a system when the inputs and governing
equations are known. On the other hand, an inverse problem
seeks to infer unknown inputs or parameters from the
observed outputs byworking backward.While the discussion
above introduced and explored the applications of PINNs to
forward problems, PINNs have also been extensively applied
to inverse problems. For example, PINNs demonstrated
remarkable accuracy when used to derive velocity and pres-
sure fields from fluid flow images, such as temperature
gradient maps that depict the flow in an espresso cup (Cai
et al. 2021; Raissi et al. 2020).

Following the study of a generalization error bound for
purely data-driven RNN models, recent efforts have been
made to analyze the generalization performance of PINNs.
For example, in Mishra and Molinaro (2022, 2023), the
generalization error analysis for a general class of PINNs
approximating solutions of the forward and inverse prob-
lems for PDEs was performed, respectively. Furthermore, in
Zheng et al. (2023), the results of generalization errors were
developed specifically for PIRNNs. As PINNs were developed

from domain knowledge, such as the first-principles model,
the accuracy of these theoretical models may affect the
generalization performance of PINNs. The limitations of the
theoretical models can be addressed by applying the PINNs
in an inverse manner, using observed data. For example,
Zheng andWu (2023) proposed an inverse problem of PIRNN
to improve the first-principles model used in the loss func-
tion of PIRNN using real-time data.

In addition, different types of domain knowledge can be
incorporated into the design of PINNs. For example, for
systems with physical constraints on states and/or inputs,
additional loss terms can be included in the loss function to
enforce the constraints on the relevant states/inputs. The
following loss term is an example that imposes non-negative
constraints on the states (Wu et al. 2023a):

LossReLU = β
1

NG
∑
NG

n=1

1
NT

∑
NT

i=0
ReLU −x̃n ti( )( ) (21)

where β denotes the weight coefficient of the loss term. In
Eq. (21), the non-negative constraints are implemented by the
ReLU function. As the output of the ReLU function is always
non-negative, the additional loss term guarantees physically
reasonable predictions by ensuring that the model is penal-
ized whenever the physical constraints are violated. It has to
be noted that the physical constraints, such as non-negativity
constraints on process states, are integrated into PIRNN
models as soft constraints. Unlike using a ReLU activation
function at the output layer, the soft constraint method offers
greater flexibility by modifying the loss function without
requiring adjustments to the network architecture.

In addition to incorporating physics-induced loss terms,
domain knowledge such as process structure knowledge of a
process network can be used to improve the design of the NN
architecture to reflect the underlying physics (de Giuli et al.
2024; Wu et al. 2020). In many industrial chemical processes,
operations in the upstream phase of production have a
direct impact on those in the downstream phase, whereas
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Figure 3: Structure of the PIRNN model
encompassing data-driven and
physics-informed regularization terms into the
loss function.
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the reverse influence is often negligible, unless recycling is
involved. While theoretical models (if available) are able to
capture the relationship between the upstream and down-
stream processes in their equations, this relational infor-
mation is rarely utilized in data-driven models. In Wu et al.
(2020), a partially-connected RNN structure that mirrors the
process network of a two continuous stirred tank reactors
(CSTR) system,was proposed. Figure 4 shows how a standard
RNN model, with a fully connected structure, can be
decoupled into a partially-connected structure. Unlike the
fully connected structure where all inputs affect all output,
in the partially connected structure, the output of the first
RNN layer x1 = [CA1 T1] is designed to be affected only by the
input u1 = [CA10 Q1], and the output of the second RNN layer
x2 = [CA2 T2] is affected by both inputs u1 and u2 = [CA20 Q2].
CA1, T1, CA2, T2 denote the concentration of the reactant
A and the temperature in the two reactors, respectively, and
CA10, Q1, CA20, Q2 denote the inlet concentration of A and
heat input rate for the outer cooling jacket, respectively.
Thus, the partially-connected network resembles the con-
nections in a two-CSTR system. Likewise, in de Giuli et al.
(2024), relational information was used in developing a data-
driven model for a district heating system, where individual
RNN models were connected based on the physical system
network structure. Both studies reported a significant
improvement in the model’s generalization performance
and accuracy, highlighting the merits of PIMLs.

4.1.2 Transfer learning

Another perspective to address data scarcity in data-centric
approaches would be to reuse models already developed for
similar tasks. This is the key concept of transfer learning
(TL), where knowledge learned from a task (source) can be
transferred to a related task (target) to boost performance or
reduce the data requirement for the new task (Alhajeri et al.
2024; Thebelt et al. 2022). Pan and Yang (2009) provided a
comprehensive overview of the types of TL tasks. In sum-
mary, TL can be classified into transductive, inductive, and
unsupervised TL, based on the availability of label infor-
mation from source and target domains. If only the source

domain labels are available, i.e., no label from target
domain, then this is a transductive TL problem. On the other
hand, if the target domain labels are available, then this is an
inductive TL task. If both the source and target domain labels
are unavailable, then this constitutes an unsupervised TL
task. In this review, we will focus our discussion on the
inductive TL problem, where labeled data from both the
source and the target domains are available.

Consider an inductive TL task of transferring knowledge
from a source task to a target task. The process first involves
developing a pre-trained model (e.g., RNN model) on a large
dataset from the source domain. Thereafter, the pre-trained
RNN model is adapted to the target domain. Formally, we
define Q and P to be the source and target distributions. The
RNN input is denoted as xi ∈ Rdx and the labeled output as
yi ∈ R

dy . The set S = s1,…, sM( ) = x1, y1( ),…, xM, yM( )( ) ∈
X × Y( )M denotes the collection of M labeled data sampled
from a certain distribution, where X denotes the input space
and Y denotes the output space. The labeling function or
ground truth model that returns yi = f (xi), is denoted as
f : X→ Y. It is noted that the labeling function for the target
task fP can be different from the source task fQ. Furthermore,
the loss function is defined as L(⋅, ⋅) : Y × Y→ R+, where R+
denotes the set of all positive real numbers. The expected loss
for any two functiona(x), b(x) on thedistributionQ, thatmaps
the input space X to the output space Y, is given by
L Q a, b( ) ≔ Ex~Q[L a x( ), b x( )( )].

In modeling nonlinear processes, it is assumed that both
the source and target processes canbe represented in the form
of Eq. (1), but with different process dynamics. For instance, in
the case of a chemical reactor, the source process with similar
configurations might involve the same reactor type but under
varying operating conditions and reactions, different types of
reactors performing the same reactions, or even different
reactors under different conditions (see Figure 5). Therefore,
the distributions of Q and P for the source and target pro-
cesses are different. However, in reality, because the source
and target distributions are typically unknown, we use the
corresponding empirical distributions Q ̂ and P ̂ for the source
and target samples, respectively. These samples, S from the
source distributionQ, andT from the target distribution P, are

Figure 4: Structure of a partially-connected
RNN for a two-CSTR system.
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drawn independently and identically distributed (i.i.d.) and
used to train the model.

In general, TL approaches can be generalized to instance-
based, feature-based, parameter-based, and relational-based
approaches (Pan and Yang 2009; Zhuang et al. 2020). In the
instance-basedapproach, each training sample from the source
domain is assigned a weight in the calculation of the loss
function. The weights will be optimized to minimize discrep-
ancies between samples from the source and target domains
(Huang et al. 2006). The feature-based method seeks to find
representative features that describe both the source and
target domains well. This involves strategies such as feature
mapping, feature extraction, and feature encoding. The
parameter transfer approach aims to transfer knowledge by
sharing the model parameters of the source with the target
domain. Finally, the relational-based approach focuses on the
transfer of learned relationships between entities in the source
domain to the target domain.

TL methods such as feature-based (Bi et al. 2020; Guo
et al. 2020; Zhu et al. 2022) and parameter-based (Briceno-
Mena et al. 2022; Lee et al. 2022; Xiao et al. 2023) approaches
have been widely adopted in the field of engineering. Spe-
cifically, parameter sharing is a common TL strategy for NN
models. In detail, during the fine-tuning process, a portion
of the model’s parameters will be adjusted to adapt the pre-
trained model to the new task while the remaining pa-
rameters are kept unchanged, preserving the knowledge
gained during the initial pre-training. For example, in Xiao
et al. (2023), a single hidden layer RNN model was first
trained with labeled source data from distribution Q ̂. Af-
terwards, a new hidden layer (‘adaptation layer’) was
added to the developed RNN model. While keeping the
weights in the first hidden layer frozen, the weights of the
adaptation layer were optimized using target training
samples T from the distribution P ̂. In the final step, the
entire model was fine-tuned using the target samples T .

Although the implementation of transfer learning
methods is straightforward, a critical challenge is that trans-
ferred knowledge can sometimes harm the performance of
the target task. This phenomenon is also known as negative
transfer (Wang et al. 2019). According to Wang et al. (2019),
factors that lead to negative transfer include the choice of
algorithm, differences in source and target distributions, and
the size of the labeled target dataset. Therefore, how to
quantify the effectiveness of knowledge transfers from the
source to the target domain and select a relevant source
domain remain important questions. To this end, the gener-
alization error of transfer learning methods has been devel-
oped to show the performance of TLmodels in target learning
tasks (Ben-David et al. 2006, 2010; Blitzer et al. 2007; David
et al. 2010; Mansour et al. 2009; Xiao et al. 2023). Specifically,
Xiao et al. (2023) established a quantitative analysis for the
generalization error of TL models for regression tasks and
shows its dependence on a number of factors, including the
discrepancy distance between source and target distributions,
and the complexity of networks.

As an extension to the classic single-source single-target
TL problem,multi-source TL, where two ormore sources are
used for knowledge transfer, has been proposed to enhance
the robustness of TL models (Mansour et al. 2008; Tian et al.
2022; Xiao et al. 2024; Yao and Doretto 2010). Furthermore, TL
can be coupled with PIML to accelerate and improve pre-
diction accuracy in the presence of data scarcity (Wu et al.
2023b; Xiao and Wu 2023).

4.1.3 Synthetic data generation

Data augmentation is a technique used to artificially increase
the size and diversity of a dataset by applying various trans-
formations or perturbations to existing data samples. This
helps improve the generalization and robustness of machine
learning models, especially when the original dataset is small
or imbalanced. Generative AI methods have been used to
enrich data sets for the design of new molecules/materials
(Abbasi et al. 2022; Batra et al. 2020; Han et al. 2019; Kim et al.
2020; Nouira et al. 2018; Schilter et al. 2023). However, we
observe that applications of generative AI to modeling of
nonlinear dynamic systems in the chemical industry are still
at an early stage of development. Many efforts in synthetic
data generation focus on soft sensor development (Lee and
Chen2023; Xie et al. 2019; Zhu et al. 2021), fault diagnosismodel
development, and risk analysis model development (He et al.
2020; Qin and Zhao 2022) for process industries. For example,
the sampling rates of quality variables and process variables
are usually inconsistent in process industries due to the high
cost of the acquisition of quality data. Additionally, missing
data due to sensor failures may occur in process industries,

Figure 5: Transfer knowledge from source processes to a target process,
where the source processes from bottom to top represent various
scenarios: a different reaction in different types of reactors, the same
reaction in the same type of reactor under different operating conditions,
and different reactions in the same reactor, respectively.
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leading to insufficient training data. Therefore, synthetic data
generation is applied as an augmentation of incomplete and
unlabeled process signal data. Various generative models
have beenproposed for data augmentation suchas generative
adversarial networks (GAN), variational autoencoders (VAE),
normalizing flow (NF) models, Gaussian mixture models,
hidden Markov models, latent Dirichlet allocation, and
Boltzmann machines (Bond-Taylor et al. 2021; Harshvardhan
et al. 2020). Specifically, GAN, VAE, and NF have been applied
in some recent works in chemical engineering for synthetic
data generation, e.g., He et al. (2020), Lee and Chen (2023), Qin
and Zhao (2022), Xie et al. (2019), Zhang et al. (2021b, 2024), and
Zhu et al. (2021).

GANs are a class of generative models inspired by the
concept of Nash equilibrium in game theory (Goodfellow
et al. 2014). A typical GAN consists of two networks: a
generator G and a discriminator D. The generator takes
random variables z (z~pz(z)) as input, and aims to generate
samples G(z)~pg that can fool the discriminator. The
discriminator is used to evaluatewhether a given sample x is
from real data (x~pdata(x)) or from the generator x~pg(x). It
returns a score D(x), where D(x) = 1 if x is classified as real
data, and D(x) = 0 if x is classified as generated data. Both
the generator and discriminator continuously optimize
themselves until they reach Nash equilibrium. Through this
process, the difference between two distributions pg(x) and
pdata(x) isminimized such that the generator can capture the
distribution of real data pdata.

VAE is another class of generative models that combines
Bayesian inference with deep networks (Kingma andWelling
2013). Typically structured like an autoencoder, a VAE consists
of an encoder and a decoder. Given real data x following the
distribution x~pdata(x), the encoder qϕ(z|x) maps the real
data to a latent space, and the decoder pθ(x|z) reconstructs
the latent variable to original data, where the latent variables
z are designed to follow a continuous distribution z~p(z). The
objective of VAE training is to balance the reconstruction
accuracy and the divergence between the latent distribution
qϕ(z|x) and the prior distribution p(z). Therefore, by sam-
pling from the prior distribution p(z) and decoding these
samples, VAEs are effective in generating new samples that
closely mimic the statistical properties of real data.

Remark 3. In addition to GANs and VAEs, traditional
methods, such as bootstrapping in statistics and interpola-
tion techniques (e.g., linear or quadratic interpolation
between nearby points), are also commonly used for data
augmentation. Bootstrapping generates new datasets by
resampling with replacement from the original data, while
interpolation creates synthetic data points by estimating

values between existing data. These approaches, though
simpler thanmodern generative models, can be effective for
certain applications where data patterns are relatively well
understood and straightforward.

4.1.4 Active learning

Active learning is another approach that intelligently selects
data points that are associated with high uncertainty or low
confidence predictions by the currentmodel for labeling and
inclusion in training. Unlike synthetic data generation, the
goal of active learning is to choose as few labeled samples as
possible to minimize the cost of obtaining real data. Active
learning methods can generally be classified into three cat-
egories: pool-based sampling, stream-based selective sam-
pling, and membership query synthesis (Settles 2009). In
pool-based sampling, a large set of unlabeled data is avail-
able, from which samples are drawn iteratively at no cost.
On the other hand, stream-based selective sampling involves
drawing unlabeled samples one at a time. In membership
query synthesis, the active learner generates synthetic
samples and requests labels for them. In Zhao et al. (2022b),
pool-based active learning is used to enrich the training set
for modeling a nonlinear chemical process by iteratively
identifying the training data that improve model perfor-
mance most efficiently. Additionally, active learning has the
potential to be intergrated with machine-learning-aided
optimal experiment design strategies aimed at minimizing
time and costs associated with experiments in chemical
engineering problems, such as identifying the proper kinetic
model structure (Sangoi et al. 2022, 2024).

4.2 Data quality

Another common issue faced in the development and
implementation of ML models for real-world applications is
the quality of the data. The presence of noise in sensor data is
almost inevitable due to factors such as sensor limitation,
environmental conditions, measurement error, etc. Since
noisy data can impede the learning process of ML models,
this section will explore popular and innovative solutions to
handle and mitigate the issue of noise-corrupted data.

4.2.1 Conventional approaches

Dropoutmethod is a popular regularization technique used in
the training of neural networks to prevent overfitting
(Abdullah et al. 2022a;Hinton et al. 2012; Srivastava et al. 2014).
Overfitting occurs when a model learns the training data too
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well, including its noise and outliers, which results in poor
generalization to new, unseen data. Introduced by Hinton
et al. (2012), dropout involves randomly “dropping out” a
fraction of the neurons in the network during each training
iteration. This means that for each forward and backward
pass, certain neurons are temporarily removed from the
network, along with all their incoming and outgoing con-
nections. The neurons to be dropped out are chosen at
random with a probability p, known as the dropout rate. By
training the network with dropout, the model becomes more
robust and less likely to rely on specific neurons, encouraging
it to learn more distributed and generalizable representa-
tions. During testing or inference, dropout is turned off, and
all neurons are used, but their outputs are scaled by the
dropout rate tomaintain consistency with the training phase.

Furthermore, Monte Carlo (MC) dropout, a technique used
to estimate uncertainty in deep neural networks, can be used to
develop stochastic neural networks that characterize the un-
certainties of prediction (Gal and Ghahramani 2016a,b). In
contrast to the standard dropout, which is only applied during
the training phase, theMCdropout applies dropout during both
the training and inference phases. Hence, predictions made by
NN models using the MC dropout are not deterministic. While
the standard dropout helps mitigate the impact of data over-
fitting by learning a deterministicmodel, theMCdropout learns
a stochastic model that can quantify the system’s uncertainty.
This ability to estimate uncertainty is particularly valuable for
improving controller design under uncertainty. Therefore, MC
dropout has been adopted in many chemical process modeling
works when training datasets (e.g., sensor measurements) is
corruptedwith noise, and there is a need to estimate prediction
uncertainty (Alhajeri et al. 2022; Wu et al. 2021a).

Specifically, the MC dropout method aims to find the
posterior distribution of the model weights p(W | X,Y),
where X and Y respectively denote the input and output
matrices of the NN, andW denotes the weight matrix of the
NN. However, since it is intractable to obtain the posterior
distribution in practice, an estimation of the predictive dis-
tribution of the NN output is used and its calculation is
provided as follows (Wu et al. 2021c):

p(y* | x*, X, Y) ≈ 1
Nt

∑
Nt

k=1
p y* | x*, Wk( ) (22)

where Nt represents the total number of times the model is
executed with different dropout masks (i.e., the number of
realizations). Since the NN model with MC dropout is sto-
chastic, we are able to generate random predictions by
running the MC dropout-NN model multiple times using the
same input. By performing multiple forward passes through
the networkwith different dropoutmasks and averaging the
results, we can gather an approximate probabilistic

distribution of NN output. Hence, by allowing us to quantify
the uncertainty in predictions and reducing the risk of
overfitting, MC dropout is a powerful method for learning
the ground truth from data corrupted by noise.

4.2.2 Co-teaching method

Co-teaching is an innovative way to address noise in labeled
data. The idea behind co-teaching stems from the observations
that deep learning models tend to fit simple patterns at the
early stageof the trainingprocess andprogressively learnmore
complex nuances as training continues (Han et al. 2018). Based
on the belief that the training loss is related to the level of noise
in the data sample, i.e., noise-free or ‘clean’ data samples are
more likely to have small training loss and vice versa, co-
teaching is designed to have two simultaneously trainedNNs. A
schematic of the co-teaching method with two NNs, A and B, is
shown in Figure 6. For every mini batch training iteration,
the models identify and collect a small portion of the data
samples with small training losses. Subsequently, the models
exchange the identifieddatasetwith ‘clean’ samples andupdate
their weights based on the exchanged dataset. The process is
repeated until all training epochs have been completed.

Although the co-teaching method was initially proposed
for classification problemswith noisy labels, co-teaching has
been successfully adapted for regression problems, such as
modeling of nonlinear processes in the presence of noise
(Abdullah et al. 2022b; Wu et al. 2021c). In addition to the
standard co-teaching algorithm highlighted in this section,
variants such as asymmetric co-teaching (Yang et al. 2020),
stochastic co-teaching (de Vos et al. 2023; Robinet et al. 2022),
and co-teaching+ (Yu et al. 2019) have been proposed to
improve the accuracy of themodel. In essence, by leveraging

A B

A

A

B

B

Figure 6: The symmetric co-teaching framework that trains two
networks (A and B) simultaneously.
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on the peer network’s perspective, co-teaching is an effective
method to reduce the influence of noisy data and improves
the overall generalization capability of the NN model.

4.2.3 Lipschitz-constrained NN

To reduce the effect of data noise on the generalization
performance of the model, another approach is to design an
inherently robust NN. In particular, Lipschitz-basedNNhave
demonstrated robustness and trustworthiness, especially in
handling adversarial attacks. Sincemany real-world systems
(e.g., chemical processes) are Lipschitz continuous, devel-
oping a Lipschitz-constrained NN provides a promising
solution to addressing data noise in the training set. In
mathematical terms, given a function f that maps from set
X ∈ Rn to set Y ∈ Rm, i.e., f : X → Y , f is said to be Lipschitz
continuous if there exists a constant CL ≥ 0 such that for all
x, y ∈ X , the inequality |f (x) − f (y)| ≤ CL ⋅ |x − y| holds. The
term CL is known as the Lipschitz constant, and the function
f can also be referred to as CL-Lipschitz. The Lipschitz con-
stant CL allows one to quantify the maximum change in the
output of a Lipschitz continuous function f with respect to
changes in its input. Hence, if the Lipschitz constant CL is
small, the function f will be less sensitive to perturbations in
its input, making it more robust. Various methods have been
proposed to constrain the Lipschitz constant of neural
network models, with most focusing on weight matrices
(Arjovsky et al. 2017; Cisse et al. 2017; Gouk et al. 2021), gra-
dients (Anil et al. 2019; Gulrajani et al. 2017; Hein and
Andriushchenko 2017), or network architectures (Tang 2023;
Wang and Manchester 2023).

Here, we give an example of using the SpectralDense
layer that was proposed by (Serrurier et al. 2021). Specif-
ically, SpectralDense layers are dense layers such that (1)
the activation function σ is a GroupSort function and (2) the
largest singular value of the weight matrix W is 1. The
following equations describe the GroupSort function (of
group size 2) i.e., σ : Rm → Rm:

σ [x1, x2,…, xm−1, xm]T( ) = max(x1, x2),min(x1, x2),…,[
max(xm−1, xm),min(xm−1, xm)]T

(23a)

σ [x1, x2,…, xm−2, xm−1, xm]T( ) = max(x1, x2),min(x1, x2),…,[
min(xm−2, xm−1), xm]T

(23b)

where Eq. (23a) applies when m is an even number and Eq.
(23b) when m is a odd number. Aside from the activation
function that does not operate component-wise and the
weight matrices having a spectral norm of 1, the Spec-
tralDense layers are structurally similar to the conventional

dense layers. The spectral norm of the weight matrix w,
denoted as ‖W‖2 is 1, as the spectral norm of a matrix is
defined to be equal to the largest singular value in its sin-
gular value decomposition (SVD). Since the Jacobian matrix
of the activation function σ : Rm → Rm has a spectral norm of
1 almost everywhere (except for a set of measure 0), then
based on Theorem 3.1.6 in (Federer 2014), the function σ is
1-Lipschitz continuous with respect to the Euclidean norm.
Hence, it can be concluded that every SpectralDense layer is
1-Lipschitz continuous. Following this, the definition of the
class of Lipschitz-constrained neural networks (LCNNs) is
given as follows.

Definition 4. Let L N m
n be the class of Lipschitz-constrained

neural networks (LCNNs) defined as follows:

L N m
n ≔ f | f : Rn → Rm , ∃j ∈ N{

such that f = Wj+1fj ◦ fj−1 ◦… ◦ f2 ◦ f1,
where fi = σ(Wix + b), and ‖Wi‖2 = 1, i = 1,…, j } (24)

where σ denotes the GroupSort activation function with
group size 2. Every LCNN in L N m

n is a composition of many
SpectralDense layers (i.e.,Wi, i = 1,…, j), with a final weight
matrix Wj+1 at the end. The spectral norm constraint is
applied to all weight matrices except the final weight matrix
Wj+1.

Since every SpectralDense layer fi, i = 1,…, j, is 1-Lipschitz
continuous, i.e., the Lipschitz constant for each Spec-
tralDense layer is bounded by 1, it can be easily shown that
for every LCNN in class L N m

n , its Lipschitz constant is
bounded by the spectral norm of the final weight matrix
Wj+1.

The SpectralDense LCNN approach was adopted in Tan
and Wu (2024) and Tan et al. (2024b) to handle noisy data
when modeling chemical processes. The proposed LCNN
demonstrated higher accuracy and generalization perfor-
mance compared to the conventional Dense NN trained on
the same set of noisy data. This highlights the effectiveness of
enforcing Lipschitz continuity in NN designs in handling
noisy data.

4.3 Curse of dimensionality: ML-MPC of
large-scale systems

The curse of dimensionality is a practical challenge for
modeling of large-scale systems. It refers to the phenomena
that arise when working with high-dimensional systems, the
requirement for data amount grows exponentially, leading to
more complex network structures, longer training time, and
poorer model performance, as the number of dimensions
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(features or variables) increases. This issue can be addressed
from the modeling and control perspectives, respectively.

4.3.1 Model perspective: reduced-order modeling

Reduced-order modeling (ROM) is a powerful technique to
address the curse of dimensionality in high-dimensional
systems by reducing the complexity of the system while
preserving its essential behavior. In the context of machine
learning and data analysis, reduced-order modeling aims to
capture themost significant features or dynamics of the data
while reducing the dimensionality of the problem. Common
dimensionality reduction techniques include methods such
as principal component analysis (PCA) (e.g., Hassanpour
et al. 2020 integrates PCA with neural networks), which
identifies a linear transformation that maps data from a
higher-dimensional space to a lower-dimensional spacewith
minimal information loss by minimizing the squared sum of
the orthogonal distances between the measured data points
and a straight line, and, more recently, autoencoders.
Dimensionality reduction is particularly advantageous in
process systems engineering where time-scale separation is
a common phenomenon in unit models such as distillation
columns and catalytic reactors (Chang and Aluko 1984),
which can justify the use of reduced-order models. Specif-
ically, if such a timescale separation is not factored into the
design of a standard nonlinear feedback controller, the
controller may become ill-conditioned due to the stiff ordi-
nary differential equations that arise, resulting in perfor-
mance deterioration and possibly even unstable closed-loop
dynamics (Kokotović et al. 1999).

Reduced-order modeling for two-time-scale systems using
sparse identification of nonlinear dynamics (SINDy) was
studied inAbdullah et al. (2021a,b). InAbdullah et al. (2021a), the
mathematical framework of singular perturbations was uti-
lized to decompose the original two-time-scale system into two
lower-order subsystems, each separately modeling the slow
and fast dynamics of the original multiscale system. Specif-
ically, after a brief transient period, the fast states converge to a
slow manifold and can be algebraically related to the slow
states using nonlinear functional representations. To capture
the nonlinear relationship between the slow and fast states,
nonlinear principal component analysis (NLPCA), developed
by Dong and McAvoy (1996), was applied in Abdullah et al.
(2021a), following which SINDy was used to derive well-
conditioned, reduced-orderODEmodels for the slowstates. The
reduced-order SINDy models, owing to their numerical stabil-
ity, allowed for integration with much larger time steps. Once
the slow states were predicted with the SINDy ODE model,
NLPCAwas used to algebraically predict the fast states without
any integration. NLPCA is one of the manifestations or

interpretations of a nonlinear extension of the aforementioned
linear dimensionality reduction technique PCA and is funda-
mentally an autoencoder with a nonlinear activation function.
The use of a feedforwardneural network inNLPCA renders it a
static model at the cost of reduced complexity.

The aforementioned SINDy modeling approach for mul-
tiscale systems was later used in Abdullah et al. (2021b) to
develop a controller based on the slowdynamics. The reduced-
order model-based controller, due to its lower complexity
and computational cost, was able to outperform a full-order
first-principlesmodel-based controller as the former coulduse
a longer prediction horizon in the model predictive control
scheme, which is impacted significantly by the prediction
horizon length.While there is an inevitable loss of accuracy in
a reduced-order model, for tasks involving optimization such
as process intensification and optimal control, the computa-
tional tractability of solving the mathematical optimization
problem is of greater priority, justifying the construction and
deployment of such reduced-order models in process systems
engineering. SINDy was further developed to handle noisy
data and real-time changes in process dynamics using sub-
sampling, co-teaching, error-triggered model update mecha-
nisms, and partial model update algorithms (Abdullah and
Christofides 2023b; Abdullah et al. 2022a,b), all of which
are techniques that can be extended to the reduced-order
modeling framework of Abdullah et al. (2021a,b) as well.

In addition to PCA and SINDy, the autoencoder (AE) is an
unsupervised learning model that adopts an FNN architec-
ture to perform tasks such as dimensionality reduction
(Kramer 1991). A typical AE comprises two components, the
encoder and the decoder. The encoder, parameterized by
θ = {We, b}, compresses the input data x ∈ Rdx into a lower-
dimensional representation xr ∈ Rdh by a function fe(⋅),
described by Eq. (25).

xr = fe(x) = σe(Wex + b) (25)

whereWe ∈ Rdh×dx is theweightmatrix and b ∈ Rdh is the bias.
σe(⋅) is the nonlinear activation function (e.g., hyperbolic
tangent function). The encoded representation xr consists of
lower-dimensional, complex hierarchical nonlinear features,
which are often regarded asmore efficient representations of
the original data (Bank et al. 2023). On the other hand, the
decoder, parameterized by θ′ = Wd , b′{ }, aims to reconstruct
the input data x ∈ Rdx from the encoded lower-dimensional
representation xr ∈ Rdh via function fd(⋅):

x′ = fd(xr) = σd Wdh + b′( ) (26)

where Wd ∈ Rdx×dh , b′ ∈ Rdx are another weight matrix and
bias, respectively. σd(⋅) is the linear activation function. The
objective of an AE is to encode an input data efficiently,
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i.e., learning the optimal weight matricesWe,Wd and biases
b, b′, byminimizing its reconstruction error, described by the
following MSE loss function:

θ, θ' = minθ, θ'
1
M

∑
M

i=1
L xi,x'

i( ) (27)

where L is the loss function or the reconstruction error,
represented by L xi,x′

i( ) = ‖xi − x′
i‖2, andM is the number of

training data. By using the input data x as both the input x
and target x′, AE is inherently self-supervised as the model
learns from the input data itself without needing external
labels. AE can be trained using similar algorithms as the
traditional FNN, such as the classic minibatch gradient
descent with gradients computed from back-propagation.

The close resemblance between AE and the commonly
used linear dimensionality reduction method, PCA, is noted
(Xiu et al. 2020). In a case where only the linear activation
function is used in the AE calculation, the encoder output will
correspond directly to the principal components in PCA.
However, due to its flexibility in adopting a broad range of
activation functions and producing complex nonlinear rep-
resentations of the input data, AE is generally preferred over
PCA formore effective dimensionality reduction. The benefits
of incorporating AEs into machine learning tasks include
reduced training duration, enhanced robustness against
overfitting, and improved convenience in data visualization.
Due to its advantages, NNmodels coupled with AE have been
widely applied in the field of engineering, in areas such as
process monitoring (Cheng et al. 2019; Lee et al. 2019), fault
diagnosis (Zhang and Qiu 2022; Zheng and Zhao 2020), and
process modeling (Na et al. 2018; Saraswathi K et al. 2020).

Since recursive prediction of RNNs could be time-
consuming for high-dimensional systems, we can integrate
RNNs with AE by developing RNNs that predict future states
in the latent space. Figure 7 illustrates the structure of the
integrated AE and RNN (termed AERNN model) (Zhao et al.
2022a; Zheng et al. 2022a). Specifically, an AE was developed
to encode and decode state variables x. The addition of an AE
helps to accelerate the RNNmodel training and computation
time by projecting the state variables in a lower dimension
space. In other words, as a result of the reduced represen-
tation of the RNN input, the number of neurons at the input
and output layers of the RNN model can be significantly
reduced, and hence fewer computations are required. After
the RNN computations, the output from the RNN model is
reverted back to its original space for interpretation. Addi-
tionally, in some recent works, autoencoders have been in-
tegratedwith Koopman operators formodel order reduction
in MPC to effectively handle high-dimensional data (Chan-
drasekar et al. 2024; Wang et al. in press). Moreover, as part
of an effort to improve the robustness of AERNN to noisy

data, the Lipschitz-constrained network structure proposed
in Section 4.2.3 can be used as the backbone for the devel-
opment of both AE and RNN (Tan et al. 2024b).

Although AE and other similar feature extraction tech-
niques (e.g., PCA) are able to transform high-dimensional
feature datasets into a lower-dimensional space whilst
retaining most of the crucial information from the dataset,
these reduced-order representations often do not carry any
physical meaning. The lack of interoperability of the enco-
ded features makes these approaches less appealing,
particularly in safety–critical chemical processes, where a
physical interpretation of the features is necessary, espe-
cially those features identified to be “important”. Hence,
another perspective on reduced-order modeling arises from
the idea of selecting a subset of relevant features for model
construction. In feature selection, the chosen features
should show a high correlation with the system output and
exhibit strong interpretability to support further analysis. In
general, feature selection methods can be categorized into
three classes based on their selection and learning processes,
namely, wrapper, filter, and embedded methods (Chandra-
shekar and Sahin 2014). In summary, the wrapper methods
scan for the best performing subset of features among po-
tential subsets of features, using a specific search algorithm
and a pre-defined ML algorithm (Karagiannopoulos et al.
2007). However, as the input dimension increases, the search
space grows exponentially, making the wrapper methods
increasingly computationally intensive. In contrast, filter
methods do not require the use of ML algorithms in the
selection process. Filter methods select relevant features by
ranking and ordering the features using a suitable ranking
criterion that measures the correlation between the input
features and the target output, e.g., the Pearson correlation
coefficient (Rendall et al. 2019). Features with scores below a
predefined threshold are removed from the feature set, and
the remaining features are used to substitute the original
high-dimensional feature set in the modeling process
(Degeest et al. 2019). The embedded methods, as the name
suggests, directly integrate the feature selection process into
the model training process to save computational time. In

Figure 7: Structure of autoencoder RNN model.
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particular, regularization models are the most commonly
used embeddedmethods,where the loss function ismodified
such that the model learns the important features while
minimizing the fitting error (Li et al. 2017). Interested reader
may refer to Karagiannopoulos et al. (2007) and Li et al.
(2017) for detailed reviews on the various feature selection
methods and Zhao et al. (2023) on their applications in
reduced-order RNN models.

4.3.2 Control perspective: distributed MPC

From a control point of view, another way to mitigate the
curse of dimensionality in large-scale systems is by applying
distributed control techniques. In distributed control systems,
the system is divided into smaller subsystems, where indi-
vidual controllers are designed for each subsystem. Although
control calculations are performed on separate processors,
controllers in distributed control systems are able to
communicate and cooperate with each other to achieve the
objectives of the closed-loop plant. By decomposing the system
into smaller subunits, the complexity and computational de-
mands to model and control the process network can be
significantly reduced. In this regard, distributedMPCs (DMPC)
and decentralized MPCs using ML models have been devel-
oped in Chen et al. (2020a,b). A schematic of two DMPC ar-
chitectures is shown in Figure 8. The key difference between
sequential and iterative DMPCs is that the communication
between two MPCs in a sequential DMPC framework is one-
way only, while the controllers in iterative DMPCs commu-
nicate with each other to cooperatively optimize the control

actions. Since the designs of ML-based DMPCs closely follow
those using first-principles models, the formulations of ML-
DMPCs are omitted here. Various alternative configurations of
DMPC systemshavebeenproposed in literature, eachvaries in
terms of the coordination and communication schemes be-
tween the subsystems’ MPC. Readers are directed to Christo-
fides et al. (2013), Scattolini (2009), and Stewart et al. (2010) for
comprehensive reviews of DMPC.

4.4 Model uncertainty and process
disturbances

Machine learning models are generally developed using his-
torical data, and cannot take model uncertainty and process
disturbances into account. To build more robust and reliable
models that adapt to the variations in system dynamics, on-
line learning and robust control can be adopted to improve
the performance of models and controllers, respectively.

4.4.1 Model perspective: online update of ML models

Online machine learning refers to a paradigm of machine
learning where models are continuously updated as new
data becomes available, often in a streaming fashion. Unlike
traditional batch learning, where models are trained on
fixed datasets, online learning enables models to adapt
and evolve over time as they receive new data points.
This approach is particularly useful for machine learning
modeling of systems with time-varying dynamics due to
disturbances. In-depth discussions on online learning and its
theoretical analysis can be found in Hoi et al. (2021), Rakhlin
et al. (2010), and Shalev-Shwartz (2012), respectively. An
early attempt to implement online learning in the predictive
models of MPC was recorded in Murray-Smith et al. (2003),
where the authors added new process information to the
training set at every timestep and adjust the model’s
hyperparamters accordingly. More recent work on inte-
grating online learning into MPC applications can be found
in Bhadriraju et al. (2019), Bradford et al. (2020), Limon et al.
(2017), and Ning and You (2021).

Updating machine learning models online can be
handled using various strategies. An effective method is
error-triggered updates, where the model is updated only
when the prediction error exceeds a certain threshold. This
helps inmaking efficient use of computational resources and
ensures that the model remains accurate and up-to-date
with minimal overhead. Error-triggered online learning
typically involves the following steps recorded in Abdullah
and Christofides (2023b), Wu et al. (2019b), and Zheng et al.
(2022c): (1) start with an initial model pre-trained on

Figure 8: Schematic diagrams of (a) sequential distributed MPC and
(b) iterative distributed MPC systems.
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historical data, (2) monitor incoming data and compute the
prediction error using new data, and (3) if the current pre-
diction error or accumulated prediction error in a sliding
time window exceeds the predefined threshold, update the
model using the newdata. Furthermore, when incorporating
online machine learning models into MPC, event-triggered
mechanism designed based on stability criteria can be
adopted to update models (Wu et al. 2019b). While online
learning helps maintain the accuracy of machine learning
models in dynamic environments, potential drift in the un-
derlying data distribution over time due to the change of
process dynamics under disturbances can pose a significant
challenge to the performance of updated models. To this end,
some recent works have investigated the generalization per-
formance of online learning models that take independent
and identically distributed (i.i.d.) real-time data and non-i.i.d.
real-time data for online learning, respectively (Hu and Wu
2024; Hu et al. 2023a,b). These two cases represent the sce-
narioswhere systemdynamics remain unchanged andwhere
they change over time, respectively. Specifically, it is shown in
Hu and Wu (2024) that the generalization performance of
online learning models depends on several factors, including
the divergence between historical data and real-time data
distributions, network complexity, and sample size.

4.4.2 Control perspective: robust MPC and tube-based
MPC

From the control perspective, we can design robust MPC and
tube-based MPC to account for plant-model mismatch in un-
certain systems. Specifically, tube-based MPC addresses the
uncertainty in system dynamics by considering a range of
possible future trajectories rather than a single trajectory. It
creates a “tube” around the nominal trajectory, within which
the actual trajectory is expected to lie. Tube-based MPC uses
techniques like robust optimization or stochastic optimization
to compute the tube around the nominal trajectory. Tube-
basedMPC often involves solving optimization problemswith
constraints that ensure that the system remains within the
defined tube despite uncertainties. Machine learning tech-
niques have been incorporated into tube-based MPC to
further improve the characterization of uncertainties and
robustness. Recent developments in tube-based MPC using
machine learning include work by Gao et al. (2024), Zhang
et al. (2022), and Zheng et al. (2022b).

Robust MPC directly incorporates uncertainty into the
control law formulation. It aims to optimize control inputs
such that the systemremains stable and satisfies performance
criteria under the worst-case scenario of uncertainty. Robust
MPC typically involves solving optimization problems with
robust constraints or using techniques like min-max

optimization to find control inputs that perform well under
uncertainty. In recent works by Berberich et al. (2020), Chen
and You (2021), Hu and You (2023), Mahmood et al. (2023), and
Manzano et al. (2020), robust data-driven MPCs and robust
learning-based MPCs have been developed to enhance the
robustness of controllers against uncertainties such as pre-
diction errors from machine learning models and process
disturbances. For example, Chen and You (2021) used ML to
learn uncertainties, and designed a robust MPC for green-
house in-door climate control problems. Mahmood et al.
(2023) developed a robust data-driven-based MPC based on
the minimax approach for temperature control and optimi-
zation of energy consumption.

4.5 Computational efficiency

ML-based MPC is generally solved slowly due to the
complexity of ML models (the ML model is often required to
be evaluated multiple times during optimization, which can
significantly increase computational burden), and the non-
convexity of optimization problem.

4.5.1 Model perspective: optimization and
convexification

One approach to improve the computational efficiency ofML-
MPC is to simplify themodel architecture, such as by reducing
the number of neurons or layers. While manually doing this
can be challenging, automated tools and techniques can assist
in finding an optimal configuration, thereby reducing
computational overhead. Reduced-order modeling that has
been introduced in the previous section could be a solution to
large-scale nonlinear systems. Additionally, hyperparameter
optimization could be one solution to finding the optimal
hyperparameters for ML models. Some common techniques
for hyperparameter optimization of ML models include grid
search (Bergstra et al. 2011) and Bayesian optimization (e.g.,
tools suchasOptuna (Akiba et al. 2019) andHyperopt (Bergstra
et al. 2013)). An analysis and comparison of common hyper-
parameter optimization approaches for developing an LSTM
forecast model for a cyber-physical production system can be
found in Pravin et al. (2022).

Another approach is to build input-convex ML models
(Amos et al. 2017; Chen et al. 2018c;Wang et al. 2025; Yang and
Bequette 2021). An input-convex model in the context of
machine learning refers to a model whose loss function is
convex with respect to its input. This property can be highly
beneficial for optimization because convex functions have a
single global minimum, making the optimization process more
straightforward and ensuring that gradient-based methods
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converge reliably. Certain linear models, such as linear regres-
sion and logistic regression, are inherently convexbecause their
loss functions are convexwith respect to themodel parameters.
However, for amore general class of nonlinearMLmodels, it is
possible to design neural network architectures and loss
functions to be input convex under certain conditions. This
design can significantly improve training stability and
convergence. We provide an example of enforcing input
convexity in FNNs. Following the same idea, input-convex
RNNs and LSTMs have been designed in some recent works
(Chen et al. 2018c;Wang et al. 2025). The output of each layer of
input-convex FNN follows:

zl+1 = gl W z
l zl +Wx

l x + bl( ), l = 0, 1,…, L − 1, (28)

and with z0,W z
0 = 0. The output zl+1 is input-convex for

single-step prediction if all weightsW z
l are non-negative and

all activation functions gl are convex and non-decreasing
(Amos et al. 2017), while the output zl+1 is input-convex for
multi-step ahead predictions if all weights W z

l and Wx
l are

non-negative and all activation functions gl are convex and
non-decreasing (Bünning et al. 2021). Therefore, under
certain conditions (e.g., convex objective functions and
convex constraints), the MPC using input-convex NNs
(ICNNs) becomes a convex optimization problem, which is
computationally less expensive to solve.

Remark 4. It is important to note that while ICNNmodels offer
benefits such as global optimality and stability, they may lose
accuracy when applied to highly non-convex functions due to
their inherent convexity. However, for many practical systems
that are not highly non-convex, ICNN models can provide a
computationally efficient alternative for ML model-based opti-
mization problems while maintaining the desired accuracy. In
practical applications, comparing the testing losses of ICNN
models with traditional FNNmodels can be an effective way to
evaluate the performance of ICNNmodels. If they yield similar
accuracy, ICNN models can be considered a good approxima-
tion for nonlinear systems. Additionally, partially input convex
architecture of ICNN (PICNN) can be utilized to further restore
the representation ability of ICNNmodels bymaking the output
a convex function to some elements of the input (Amos et al.
2017). Therefore, developing ICNN models requires a delicate
balancebetween convexity andrepresentationpower to ensure
optimal performance for various applications.

4.5.2 Control perspective: explicit ML-MPC

Explicit MPC provides another solution from the control
perspective to improve computational efficiency. In explicit
MPC, the control law is precomputed and stored as a

piecewise function of the system state. This precomputation
allows for real-time implementation with constant-time
complexity, regardless of the system’s complexity or pre-
diction horizon. By eliminating the need for online optimi-
zation during operation, explicit MPC can achieve faster
control loop execution times, making it suitable for appli-
cations with stringent real-time requirements.

The explicit control law is derived usingmulti-parametric
programming algorithms, which include multi-parametric
linear/quadratic programming (mpLP/mpQP) and multi-
parametric mixed-integer linear/quadratic programming
(mpMILP/mpMIQP) (Pistikopoulos et al. 2020). Unlike typical
optimization problemwhere the parameters, e.g., system state
x, arefixed andknown, inmulti-parametricprogramming, the
parameters are unknown at the point of computation. Multi-
parametric programming addresses this uncertainty by
generating an optimal solution map for all possible values of
the uncertain parameters, e.g., finding the optimal control
action u* for all possible states x (Ali et al. 2023; Tian et al. 2021).
By obtaining precomputed solutions offline, the online compu-
tational load of the MPC is significantly reduced. By trans-
forming MPC problems of discrete-time, linear time-invariant
state-space models with linear/quadratic cost functions into
mpLP/mpQP problems, these MPC problems can be solved
explicitly, using solvers suchasPythonParametricOPtimization
Toolbox (PPOPT), Parametric OPtimization Toolbox (POP), and
Multi-Parametric Toolbox (MPT) (Kenefake and Pistikopoulos
2022; Kvasnica et al. 2004; Oberdieck et al. 2016).

As it can be time-consuming to solve ML-based MPC (Wu
et al. 2019d), there has been a growing interest in converting
ML-MPC into an explicit ML-MPC for faster computation.
However, the black-box nature ofMLmodels creates obstacles
in the path towards explicit ML-MPC. As ML models can be
difficult to express explicitly, i.e., do not have explicit expres-
sions, it is a challenge to adopt existing explicit MPC algo-
rithms for ML-MPC. An approach to bypass this problem is to
utilize the unique property of the ReLU activation function
and represent the ML model as a mixed-integer linear pro-
gramming (MILP) problem. The MILP problem is then incor-
porated into the formulation of an explicitML-MPC and solved
using mpMILP (Chen et al. 2018b; Grimstad and Andersson
2019; Katz et al. 2020). An althernative approach to solve the
explicit ML-MPC using multi-parametric nonlinear program-
ming (mpNLP) methods. As deriving the exact solutions
to mpNLP is still an unsolvable problem, existing mpNLP
algorithms generally use either piecewise linearization or
quadratic constraints to approximate the strong nonlinear
terms (Kassa and Kassa 2016; Pappas et al. 2021). InWang et al.
(2024a,b), the authors developed explicit ML-MPC for ML
models with a general class of nonlinear activation functions
by first approximating ML models by piecewise linear

380 Z. Wu et al.: Machine learning-based model predictive control



functions. The corresponding mpNLP problems are then
approximated intompLP/mpQPproblemswhich canbe solved
efficiently by existing algorithms.

In addition, compared to some works that develop an
ML model to learn state-input relationship that can be used
to replace the controller in a closed-loop system, explicit
MPC offers transparency and interpretability since the
control law in explicit MPC is represented as a piecewise
function of the system state, for which engineers can easily
analyze and understand how control actions are determined
based on the current state of the system. This interpretability
is valuable for troubleshooting, tuning, and verifying the
controller’s behavior in practical applications.

Remark 5. Themain challengewith explicitML-MPC is thatML
models are typically black-box models without an explicit
functional form (or they are too complex to be directly incor-
porated into explicit MPC solvers). Nonlinearity adds another
layer of difficulty, as a nonlinear ML model leads to mpNLP,
which is generally hard to solve. Potential solutions include
using the unique properties of ReLU activation functions for
ML models to formulate a mixed-integer linear programming
(MILP) problem, or approximating nonlinear ML models with
piecewise linear functions, allowing for the formulation of
mpLP or mpQP problems.

4.6 Safe and secure ML-MPC

While most existing research of ML-MPC in engineering disci-
plines has focused on improving its prediction accuracy and
performance, safety and security are emerging research areas
of significant importance. The misuse of ML-MPC technologies
could lead tounsafe, andpotentially catastrophic, consequences
in safety-critical systems, causing environmental damage,
capital loss, and human injuries.

4.6.1 Safety

Ensuring safety of ML-MPC includes safe learning (data collec-
tion), safe modeling, and safe implementation. Safe data
collection is often not the most critical issue in supervised
learning because datasets are provided for offline learning. The
data used in supervised learning is usually pre-collected,
cleaned, and labeled, which reduces the risks associated with
data collection. However, the importance of safe data collection
becomes much more pronounced in other machine learning
techniques, such as RL. Specifically, in RL, an agent interacts
with an environment to learn optimal actions through trial and
error. This interaction can involve significant risks, especially in
real-world applications like autonomous driving, robotics, and

chemical plants, where unsafe actions can lead to accidents,
injuries, or other severe consequences. To ensure safe explo-
ration, safe RL has recently been studied, where various tech-
niques such as reward shaping and safety constraints through
barrier functions have been developed to limit the action and
state space (Garcıa and Fernández 2015; Kim and Kim 2022;
Wang and Wu 2024a).

Safe modeling in supervised learning often refers to
ensuring the robustness and reliability of predicted outputs.
This involves several strategies and techniques with the goal of
ensuring that the model predictions are consistent, reliable,
and conform to necessary constraints in real-world systems. To
achieve safe modeling in terms of reliable predictions, we can
impose hard constraints on NN outputs through the design of
activation functions, or incorporate the constraints as a regu-
larization term (similarly tophysics-informedML introduced in
Section 4.1.1). Additionally, robustness requires that the pre-
diction of ML models is robust to small perturbations in input
data. Some common techniques include adversarial training
that intentionally introduces adversarial examples in the
training process to improve its robustness, and novel design of
NN architectures with inherent robustness such as Lipschitz-
constrained NNs that have been introduced in Section 4.2.3.

Lastly, from the control perspective, safe implementation
of ML models in MPC requires the improvement of existing
controllers to account for the impact of safety as the last line of
defense. Due to the approximation of ML models, ML-based
MPC may lead to suboptimal or even unreasonable control
actions that may cause unsafe operations. To mitigate these
risks, safety constraints have been incorporated into the design
of MPCs, ensuring that control actions and the resulting state
evolution remain within safe bounds. For example, barrier
functions can be used to design MPCs to effectively prevent the
system from violating safety constraints by heavily penalizing
states near the constraint boundaries. While there are various
types of barrier functions,weprovide an example of the control
barrier function (CBF) for the nonlinear affine control system
x ̇ = f (x) + g(x)u proposed in Wieland and Allgöwer (2007).

Definition 5. Given a set of unsafe states in state-spaceD , a
C 1 function B(x) : Rn → R is a CBF if the following proper-
ties are satisfied:

B(x) > 0, ∀ x ∈D (29a)

Lf B(x) ≤ 0, ∀ x ∈ z ∈ Rn \D | LgB(z) = 0{ } (29b)

U ≔ {x ∈ Rn | B(x) ≤ 0} ≠∅ (29c)

To further reinforce closed-loop stability while ensuring
safety simultaneously, CBFs can be integrated with control
Lyapunov functions via weighted sums. As a result, control
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Lyapunov-barrier functions (CLBFs) that was proposed in
Romdlony and Jayawardhana (2016) has been used to design
safe MPC inWu et al. (2018, 2019a). The definition of CLBFs is
given as follows:

Definition 6. Consider the nonlinear system
x ̇ = f (x) + g(x)u with a set of unsafe states in state-space
(i.e., D ), a proper, lower-bounded and C 1 function Wc(x) :
Rn → R is a CLBF ifWc(x) has a minimum at the origin and
also satisfies the following properties:

Wc(x) > ρc, ∀ x ∈D ⊂ ϕuc (30a)

LfWc(x) < 0,
∀ x ∈ {z ∈ ϕuc\(D ∪ {0} ∪ Xe) | LgWc(z) = 0} (30b)

U ρc ≔ {x ∈ ϕuc | Wc(x) ≤ ρc} ≠∅ (30c)

ϕuc\(D ∪ Uρc) ∩D = ∅ (30d)

where ρc ∈ R, ϕuc is a neighborhood around the origin, and
Xe ≔ {x ∈ ϕuc \ (D ∪ {0}) | ∂Wc(x)

∂x = 0} is a set of states where
LfWc(x) = 0 (for x ≠ 0) due to ∂Wc(x)/∂x = 0. The formu-
lation of CLBF-MPC can be found in Wu et al. (2019a). Addi-
tionally, in Wu and Christofides (2020), CLBF-MPC using ML
models were developed to control chemical processes with
unknown process models. Chen et al. (2022a) discussed the
use of ML methods for the construction of barrier functions
when safe and unsafe regions cannot be represented in
functional forms. Furthermore, in Chen et al. (2022b), the
generalization performance was analyzed for ML-based
construction of barrier functions and the resulting safeMPC.
In addition to control Lyapunov and control barrier func-
tions that can be used to ensure stability and safety,
respectively, in MPC, control invariant sets can been incor-
porated into machine-learning-based controllers to improve
stability (e.g., reinforcement learning-based controllers in
Bo et al. 2023).

4.6.2 Data security

Data security is also an emerging challenge in the design and
implementation of ML-MPC. Data risks can arise during both
the offlinemodeling stage and the online implementation of
ML-MPC. Specifically, since model training often involves col-
lecting and processing data in a centralized manner (e.g., on a
central server), communication channels can be vulnerable to
attacks during data collection process, making the data sus-
ceptible to breaches, tampering, and unauthorized access.
Ensuring data security is essential to protect sensitive infor-
mation and maintain the integrity of the training process. As
discussed in Parker et al. (2023), cybersecurity of industrial

control systems can be improved through a variety of funda-
mental operation and control methods that address the
following aspects: security by design, advanced recovery,
advanced threat detection, secure remote access, and combined
safety. Specifically, we can improve data security in both the
learning and implementation stages of ML-MPC. For example,
unlike the conventional ML approaches for modeling a
nonlinear process network with multiple subsystems, where
the training process is performed on a central server with
training data collected from all subsystems, federated learning
(FL), an emerging distributed ML framework to preserve data
privacy, distributes the training data across multiple local
subsystems, and subsequently, aggregate the submodels
trained locally for each subsystem to create a global FL model
(Zhang et al. 2021a; Zhao et al. 2018). Since FLonly exchanges the
NN weight information, and maintains local data in local sys-
tems without sharing with each other (see Figure 9), data se-
curity is significantly improved under the FL framework. In Xu
and Wu (2024), FL was applied to model the distributed
nonlinear systems with guaranteed data privacy for ML
methods, and then incorporated into the design of MPC.

In addition to data security in the learning stage, the
smooth operation of ML-MPC in real-time heavily depends
on the accuracy of recorded data and the reliability of net-
worked communication channels. Any compromise in the
integrity or confidentiality of this data due to unauthorized
access or manipulation by malicious entities can lead to
serious consequences, impacting operational safety and
economic performance. As sophisticated cyber-attacks pose
risks to system information, there is a need to develop ML-
MPC that ensures the confidentiality of industrial data. A
promising solution to tackle this challenge is the adoption of
an encrypted control system (Farokhi et al. 2017; Kim et al.

Figure 9: A schematic of federated learning, where F denotes the ML
model, and w denotes the model weights.
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2016), offering a versatile and effective means to improve
data security and confidentiality. It can be seamlessly
implemented across various systems without requiring
system-specific modifications, thus addressing the core
challenge of secure data transmission in networked systems.

The work of Suryavanshi et al. (2023) presents the closed-
loop architecture of an encryptedMPC. As depicted in Figure 10,
the sensor signals x(t) are subjected to encryption using the
public key before being sent to the model predictive controller
(MPC). Regarding encryption techniques, Schlüter et al. (2023)
discussed various potential methods that can be used to ensure
the confidentiality of transmitted data. These methods include
homomorphic encryption (HE), securemulti-party computation
(SMPC), differential privacy (DP), and random affine trans-
formations (RAT). Other encryption methods include symmet-
ric encryption and partially homomorphic encryption (PHE) to
secure data. Symmetric encryption, like advanced encryption
standard (AES), is a non-homomorphic technique that prohibits
mathematical operations within encrypted data (Rijmen and
Daemen2001). It is noted that fully homomorphic encryption, as
seen in schemes like Brakerski–Gentry–Vaikuntanathan (BGV),
allows both addition and multiplication operations within
encrypted data (Gentry et al. 2012), while partially homomor-
phic encryption enables either addition or multiplication op-
erations within encrypted data. For example, the Paillier
cryptosystem supports addition operations in an encrypted
environment (Paillier 1999). Paillier encryption, one of the semi-
homomorphic cryptosystems with additive homomorphism,
has beenwidely used for its computational efficiency compared
to other semi-homomorphic encryption schemes like El-Gamal
(Elgamal 1985), and its ability to perform additive operations in
an encrypted space, without decryption. Its security guarantees
rely on a standard cryptographic assumption called decisional
composity residuosity (DCR). Thus, homomorphic (partially and
fully) encryption must be used when the transmitted cipher-
texts need to be utilized for performing linear mathematical
operations without decryption.

After obtaining the encrypted data, it undergoes
decryption, resulting in quantized states x ̂(t). These quan-
tized states serve as the initial values for the plant model

within the MPC at time t. The MPC subsequently computes
optimized inputs u(t), which are encrypted prior to trans-
mission to the actuator. After the actuator receives the
encrypted signals as input, the encrypted input is decrypted,
leading to a quantized input, u ̂(t) that is applied to the
process. Additionally, Kadakia et al. (2024a) developed an
encrypted distributed MPC for networked systems, and
Kadakia et al. (2024d) further integrated cyber-attack
detection with encrypted control systems. Moreover, to
control nonlinear processes with the objective of maxi-
mizing economic performance or achieving desired tracking
performance, a two-layer framework was proposed in
Kadakia et al. (2024b) and Kadakia et al. (2024c) to integrate
encrypted feedback control with dynamic process eco-
nomics optimization through economic MPC, and tracking
MPC, respectively.

5 Applications of ML-MPC to a
chemical process example

In this section, we use a nonlinear chemical process to
demonstrate the performance of various ML modeling and
ML-MPC control methods, addressing different practical
challenges discussed in previous sections. We begin with a
brief introduction to developing conventional RNN models
for nonlinear dynamic systems. We then explore advanced
RNN models incorporating physics-informed ML, transfer
learning, dropout, co-teaching, Lipschitz-constrained archi-
tecture, input-convex structure, online learning, and feder-
ated learning. These advanced methods are designed to
tackle practical issues such as data scarcity, noise, robust-
ness, convexity, model uncertainties, and data security.
Following this, we show several novel designs of ML-MPCs
that enhance computational efficiency, process operational
safety, and cybersecurity. Additionally, the Python codes for
some of the aforementioned ML and ML-MPC methods are
provided for reference.

5.1 Process description

Consider a well-mixed, non-isothermal CSTR where an
irreversible second-order exothermic reaction is taking
place. The reaction involves the conversion of the reactant A
to the product B (A→ B). The concentration of A at the
reactor inlet is denoted as CA0. The temperature and volu-
metric flow rate of the reactor inlet are represented as T0

and F, respectively. The CSTR is equipped with a heating
jacket that supplies/removes heat at a rate Q. The following

Figure 10: Illustration of the data transfer process in an encrypted MPC
system (Suryavanshi et al. 2023).
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material and energy balance equations describe the CSTR
dynamic behavior:

dCA

dt
= F
V
(CA0 − CA) − k0e

−E
RTC2

A (31a)

dT
dt

= F
V
(T0 − T) + −ΔH

ρLCp
k0e

−E
RTC2

A +
Q

ρLCpV
(31b)

where CA is the concentration of reactant A in the reactor, T
is the temperature of the reactor, V is the volume of the
reacting liquid in the reactor, and Q denotes the heat input
rate. The reacting liquid has a constant density of ρL and a
heat capacity of Cp. ΔH, k0, E, andR represent the enthalpy of
reaction, the pre-exponential constant, the activation en-
ergy, and the ideal gas constant, respectively. Process
parameter values are listed in Table 1.

The CSTR has an unstable steady-state (CAs, Ts) =
(1.95 kmol/m3, 402 K), and (CA0s Qs) = (4 kmol/m3, 0 kJ/h).
Themanipulated inputs are the inlet concentration of reactant
A and the heat input rate, which are represented by the devi-
ation variables ΔCA0 = CA0 − CA0s, ΔQ = Q − Qs, respectively.
The manipulated inputs are bounded as follows: |ΔCA0| ≤
3.5 kmol/m3 and |ΔQ| ≤ 5 × 105 kJ/h. Therefore, the states
and the inputs of the closed-loop system are xT = [ΔCA ΔT]
(ΔCA = CA − CAs and ΔT = T − Ts) and uT = [ΔCA0 ΔQ],
respectively, such that the equilibrium point of the system
is at the origin of the state-space, (i.e., x*s , u*s( ) = (0, 0)).

The control objective is to operate the CSTR at the
unstable equilibrium point (CAs, Ts) by manipulating the
inlet concentration ΔCA0 and the heat input rate ΔQ under
the MPC using RNN models. The dynamic model of Eq. (31)
is numerically simulated using the explicit Euler method
with an integration time step of hc = 10−4 h. The nonlinear
optimization problem of the LMPC of Eq. (9) is solved using
the Python module of the IPOPT software package, termed
PyIpopt (Wächter and Biegler 2006), with the sampling
period Δ = 10−2 h. It is important to note that the CSTR
equations of Eq. (31) are assumed to be unknown to MPCs.
They are used solely for data generation and represent the
real-world system to which MPC control actions will be
applied.

5.2 Development of RNNs

The RNNmodels in this example are developed to predict the
states for the next sampling period x( t), ∀t ∈ [tk , tk+1) based
on the current state x( tk) and the manipulated input u(tk)
that will be applied for t ∈ [tk , tk+1), where tk+1 = tk + Δ. Note
that the RNN predictions include the states for intermediate
time steps within one sampling period, since one sampling
period Δ = 10−2 h includes 100 integration time steps
hc = 10−4 h. The development of NNmodels in the context of
supervised learning involves the following steps: (1) data
generation and processing, (2) network construction
including the design of architecture, hyperparameters, loss
function, and optimizers, and (3) testing its performance and
fine-tuning the model. In the review by Ren et al. (2022), the
authors have provided a step-by-step guide on generating
data using computer simulations, and analysis of the per-
formance of three popular NN models: FNN, RNN, and
encoder-decoder, for dynamic systems. Therefore, in this
case study, we focus more on the construction and training
of novel RNN models.

5.2.1 Physics-informed RNNs

In this section, we will introduce the development and con-
struction of PIRNN using the results from Zheng et al. (2023). In
Zhenget al. (2023), threeRNNmodelsweredeveloped, namely, a
standard RNN, PIRNN, and a purely physics driven RNNmodel
(termed PIRNN without MSEX , where MSEX corresponds to
the regular supervised loss term LossX in Eq. (20)). To demon-
strate the effectiveness of PIRNNs, themodelswere trainedwith
limited process data, concentrated in a small region around the
unstable steady state (CAs, Ts). Specifically, the initial states
(ΔCA, ΔT) and the manipulated inputs (ΔCA0, ΔQ) are uni-
formly and randomly sampled from a small region around
their respective steady states (i.e., 8 data points each from
ΔCA (kmol/m3)~U( −0.2, 0.2) and ΔT (K)~U( −20, 20)),
Similarly, the manipulated inputs (ΔCA0, ΔQ) are randomly
anduniformly selected fromasmall neighborhoodaround their
respective steady states CA0s and Qs (i.e., 10 and 15 data points
from ΔCA0 (kmol/m3)~U( −1.5, 1.5), and ΔQ (kJ/h)~U( −5 ×
103, 5 × 103) respectively). In total, a total of 9,600 state trajec-
tories were generated.

As mentioned in Section 4.1.1, the introduction of initial
conditions/collocation points into the loss function help to
incorporate physics into the NN model. In this example, the
collocation points comprise the initial system states ΔCA and
ΔT , and the manipulated inputs ΔCA0 and ΔQ. These collo-
cation points are obtained by uniform sampling across the
closed-loop stability region (this includes the points within

Table : Parameter values of the CSTR.

T ¼  K F ¼  m=h
V ¼  m E ¼  × 

 kJ=kmol
k ¼ : × 

 m=kmol h ΔH ¼ �: × 
 kJ=kmol

Cp ¼ : kJ=kg K R ¼ : kJ=kmol K

ρL ¼ ;  kg=m CAs ¼  kmol=m

Qs ¼ : kJ=h CAs ¼ : kmol=m

Ts ¼  K
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the region captured in the process data, as well as the area
beyond). 110 pairs of initial states were sampled across the
closed-loop stability region Ωρ, as shown in Figure 11. Each
initial state was subjected to 500 uniformly sampled manip-
ulated inputs in a sample-and-hold fashion. Hence, a total of
55,000 collocation points (i.e., the total number of combina-
tions with 110 pairs of initial states and 500 pairs of manipu-
lated inputs) were obtained. During the model training
process, 80% of the process data and collocation points were
used for training, and the remaining 20 % were saved for
validation.

The standard RNN model was trained solely with the
process data. It is a purely data-driven model that serves
as a baseline to evaluate the predictive capabilities of the
PIRNN models in regions beyond the range provided by
the training data. Additionally, a purely physics-based
RNNmodel, i.e., PIRNNwithoutMSEX , was developed. The
PIRNN without MSEχ model was trained only using the
collocation points, without utilizing the observed process
data. It serves as another baseline for comparisonwith the
standard PIRNN. Finally, the standard PIRNN was created
using both collocation points and process data, with its
loss function described in Eq. (20). All three RNN models
were developed in PyTorch and share the same network
architecture, which consists of three hidden recurrent
layers with 128, 256, and 64 recurrent units, respectively.
The models also had the same parameter settings: the
number of training epochs was set to 300, with Adam as
the optimizer (learning rate of 0.001) and tanh as the
activation function. The models had 4 input features and 2
output features. Specifically, given the initial state mea-
surements (ΔCA and ΔT at the current time step), and the
manipulated inputs (ΔCA0 and ΔQ), the models are
required to predict the future system states (i.e., ΔCA and
ΔT) over a sampling period Δ = 1 × 10−2 h.

The open-loop state profiles predicted by the threemodels
arepresented inFigure 12. It canbe seen fromFigure 12 that the
prediction performance of the standard RNN model starts to
deviates from ground truth from t = 0.25 h onward, the time
when the states begin to deviate from their respectively steady-
state values. The unsatisfactory performance of RNN after t =
0.25 h highlights the poor generalizability of data-driven
models when provided with unseen data beyond its training
set. On the other hand, the standard PIRNN model that was
trained with both process data and collocation points,
demonstrated remarkable generalization performance, in the
sense that its prediction matches the ground truth closely.
Moreover, thePIRNNwithoutMSEX modelwas able toprovide
satisfactory prediction performance despite being a purely
physics-driven model (i.e., no observed data was used for
training). Hence, the strength of physics-informed ML can be
corroborated from this example, where the predictive perfor-
mance of the RNNmodels was significantly enhanced with the
incorporation of physical knowledge into the models. The
exceptional generalizability of physics-informed ML can be
especially beneficial for controlling dynamic systems in the
chemical industry, where the process data collected are often
ill-sampled (e.g., concentratedwithin a small region around the
steady-state set points). The code for PIRNN is available in our
GitHub repository.1

5.2.2 Transfer learning RNNs

In the presence of data scarcity, transfer learning can be
used to accelerate the training process and improve the
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Figure 11: Collocation points sampled uniformly
across the stability regionΩρ, togetherwith a few
examples of the noisy process state trajectories
captured within a small neighborhood around
the origin (i.e., steady-state CAs and Ts).

1 GitHub link to the PIRNN code: https://github.com/Keerthana-
Vellayappan/Demonstration-of-Physics-Informed-Machine-Learning-
Model.
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generalization performance of RNNs for a target process
with limited data using the pre-trained model for a similar
source process with sufficient data. The model development
framework and results of transfer learning based RNN
models presented in this section are taken from Xiao et al.
(2023). In Xiao et al. (2023), one source CSTR was selected for
the construction of a TL-based model of a target CSTR pro-
cess. Except for the ideal gas constant R, the two CSTRs had
different parameter values. Specifically, the parameters of
the source CSTR were 1.1 times its counterparts in the target
CSTR. Themodel construction framework has been provided
in Section 4.1.2. In essence, a single hidden layer RNN is
developed using data from the source CSTR. Subsequently,
the target model is obtained by adding a new RNN hidden
layer to the pre-trained RNN source model and fine-tuned
using the data from the target CSTR. To obtain the source
model in Keras, we trained an RNN model with one hidden
layer of 32 neurons using 42,840 training samples and 7,560
testing samples, all collected from the source CSTR. The
training time for 150 training epochs was 112 s. The testing
error of the source model is reported to be 1.834 × 10−5,
which is a sufficiently small modeling error using normal-
ized data from the CSTR described in Eq. (31). Afterward, a
TL-RNN model was built for the target CSTR by adding a
hidden layer of size 32 to the pre-trained source model. Thus,
the target model has two RNN hidden layers of 32 neurons. The
training process for the TL-RNN is divided into two steps. In the
first step, the parameters in the first hidden layer, i.e., the pre-
trained source model, are set to be ‘untrainable’ by using the
function ‘model.layers[0].trainable = False’ in Keras. In this
stage, only the second hidden layer is trained. The second
hidden layerwas trained for 150 epochs. In the second step, all
the hidden layers in the RNNmodel are set as ‘trainable’, and
the entire model is further trained for 150 epochs. As a
benchmark for comparison, a standard RNN model with two

hidden layers each containing 32 neurons was developed and
trained for 300 epochs, using solely the target data set.

Table 2 presents the training time and testing errors of TL-
RNN and standard RNN trained different sizes of the target
data set. Given sufficient target data (i.e., 16,800 training sam-
ples and 7,200 testing samples), it can be observed fromTable 2
that the prediction performance of TL-RNN and RNN models
are comparable (i.e., TL-RNN testing error = 3.144 × 10−5, RNN
testing error = 2.635 × 10−5). This shows that the TL-RNNmodel
can achieve similar results as the best performing RNN
equivalent under standard training process. Moreover, it can
be seen from Table 2 that the TL-RNN model used up less
training time than the standard RNNmodelwhen trainedwith
16,800data samples. This couldbe attributed to the fact that the
TL-RNN model had less trainable parameters than the stan-
dard RNN during the first part of its training process, where
the parameters in thefirst hidden layer of the TL-RNNwere set
to be untrainable. This reduction in trainable parameters
could have accelerated the training process of TL-RNN. The
results under 24,000 samples suggest that, when sufficient
training samples are provided for the target process, transfer
learning can achieve a similar performance as the standard
RNNmodelwhile requiring less training time. Additionally,we
consider the scenario where the target dataset contains fewer
samples (i.e., 1,920 training samples and 1,280 testing samples).
It is observed from Table 2 that in the case of a small dataset
(i.e., 3,200 samples), the transfer learning RNN model can
achieve better prediction performance while reducing the
training time compared to the standard RNN model. The code
for transfer learning is available in our GitHub repository.2
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60 Figure 12: Comparison of open-loop state
profiles (i.e., ΔCA (top figure), and ΔT (bottom
figure)) predicted by RNN (green dotted-dashed
line), PIRNN (red dotted line), and purely
physics-driven RNN (orange dashed line) with
the ground truth (blue solid line). Noise-free
state measurements were used to train the
three RNN models.

2 GitHub link to the transfer learning-based RNN code: https://github.
com/MingXiaop/Transfer-Learning-for-nonlinear-chemical-process.
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5.2.3 Dropout and co-teaching RNNs with noisy data

Since neural networks are demonstrated to be able to miti-
gate the impact of Gaussian noise to some extent. In this
section, we will use the findings in (Wu et al. 2021c) to un-
derstand the capability of the LSTM model to handle non-
Gaussian noise, as well as how approaches such as dropout
and co-teaching can help to improve the learning perfor-
mances of the LSTM models developed with noisy data.

We will first explore the effect of implementing the MC
dropout, proposed in Gal and Ghahramani (2016a,b), in an
LSTM model. By treating the LSTM weights as random var-
iables and finding the posterior distribution of the weights
by sampling the network with randomly dropped out
weights during testing, the MC dropout method helps
quantify the uncertainty in the prediction and uses the in-
formation to update the weights. The open-loop prediction
results of the standard LSTM and the dropout LSTM are
presented in Figure 13 for comparison. As the predictions
made by the LSTMmodel using MC dropout are stochastic in
nature, the LSTM predictions were executed repeatedly 300
times to generate the predicted state trajectories distribu-
tion. The mean state trajectory is represented as a red line,
and the 95 % standard deviation interval is marked by the
gray region in Figure 13. It is observed that the prediction
made by the standard LSTM model (yellow line), trained
with non-Gaussian noise, deviates significantly from the

ground truth (i.e., the nominal state trajectory in black),
especially at the start. Conversely, the mean state trajectory
predicted by the dropout LSTM shows a closer match to the
ground truth, showing the capability of MC dropout in
handling noisy data.

The effect of incorporating co-teaching into LSTM was
also studied in Wu et al. (2021c). As mentioned in Section
4.2.2, co-teaching involves training two NN models. In Wu
et al. (2021c), the co-teaching process starts by training the
two LSTM models with a noisy dataset. Subsequently, the
models iteratively identify and exchange clean data se-
quences and update their weights accordingly. This allows
the co-teaching models to capture a balanced pattern that
accounts for both noisy and clean data. To understand the
effectiveness of the co-teaching method, the testing perfor-
mances of the standard LSTM, dropout LSTM and co-
teaching LSTM models were compared and are listed in
Table 3. For fair comparison, all LSTM models were trained
and tested on the same noisy dataset. The LSTM models also
shared the same network structure and hyperparameters,
i.e., the same number of neurons, layers, epochs, and acti-
vation functions. The difference between the predicted state
trajectories and the underlying (noise-free) state trajec-
tories, i.e., MSE, was chosen as the criterion for performance
evaluation,where a smallerMSE value signifies bettermodel
performance.

Table : Testing errors of standard and TL-RNNs.

Data set size Training time (s) Testing error

TL-RNN , . : × 
�

Standard RNN , . : × 
�

TL-RNN , . : × 
�

Standard RNN , . : × 
�
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Figure 13: State profiles predicted by the
dropout LSTM and the standard LSTM, where
the red line is dropout LSTM, the black, dashed
line is the ground truth, the yellow line is the
standard LSTM, and the blue, dotted line is the
noisy state measurement.

Table : Statistical analysis of the open-loop predictions under non-
Gaussian noise.

Methods MSE x MSE x

a) LSTM: noise-free data only . .
b) LSTM: mixed data . .
c) LSTM: noisy data only . .
) Co-teaching LSTM . .
) Dropout LSTM . .
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As shown in Table 3, the standard LSTMmodels had the
highest MSE out of the three methods. Furthermore, when
comparing standard LSTM trained noisy data (i.e., 1c in
Table 3) with mixed LSTM trained data (i.e., 1b in Table 3), a
slight improvement in model prediction was observed,
highlighting the adverse impact noisy data have on model
accuracy. These observations imply that the standard
modeling approach cannot achieve the desired model ac-
curacy without a high-quality dataset. However, co-teaching
LSTM and dropout models developed with the same noisy
dataset outperformed the standard LSTM models, with co-
teaching LSTM achieving the best performance among all
models, demonstrating the effectiveness of the co-teaching
model in mitigating the impact of noisy labels.

5.2.4 Lipschitz-constrained NNs

By improving themodel’s robustness to noisy data, LCNN is an
alternative approach to address noise in datasets. Specifically,
LCNNs are designed to control and bound the Lipschitz con-
stant of the neural network such that the models will be less
sensitive and more robust to changes in the input. As there
are various ways to construct an LCNN, we will use the
SpectralDense layer method mentioned in Section 4.2.3 for
demonstration and share the simulation results fromTan et al.
(2024b). To assess the model’s performance, we compared the
LCNN models to the standard FNNs. Specifically, LCNNs were
developed with SpectralDense hidden layers, while the con-
ventional Dense FNNs were developed using the dense layers
from Tensorflow with ReLU activation functions. Both Spec-
tralDense LCNNs and Dense FNNs were trained on the same
datasets, corrupted with Gaussian noise of a standard devia-
tion of 0.1 or 0.2. Moreover, both models shared the same
network structure of twohidden layers of the same size, either
640 or 1,280 neurons. The models were trained using the
optimizerAdamand the training hyperparameters such as the
number of epochs, batch size, early stopping callback config-
urations were kept the same for all models.

The testing errors of the models are provided in Table 4.
As seen in Table 4, the testing errors of Dense FNNs, with
orders of magnitude ranging between 10−3 and 10−2, are
significantly greater than those of the SpectralDense LCNNs,
with order of magnitude of around 10−5. The poor perfor-
mance in Dense FNNs is likely to due to over-fitting as the
testing errors were observed to share a similar order of
magnitude as the variances of the Gaussian noise used,
which are around 10−2. To visualize how the magnitude of
the network’s Lipschitz constant affects its performance, the
authors estimated the Lipschitz constants of the LCNNs and
the Dense FNNs developed for the CSTR of Eq. (31). In
particular, the Lipschitz Branch and Bound (LipBaB)

algorithm developed by Bhowmick et al. (2021) was used to
compute the Lipschitz constant for the Dense FNNs. For
SpectralDense LCNNs, SVD of the final layer weight matrix
was performed, and the spectral norm of this weight matrix
was used as the upper bound of the Lipschitz constant. The
results can also be found in Table 4. FromTable 4, we see that
the standard Dense FNNs have a much larger Lipschitz
constant than its SpectralDense LCNN counterparts. This
indicates that the LCNNs are theoretically less sensitive to
input perturbations as compared to the Dense FNNs. This
was verified in practice, where the SpectralDense LCNNs
demonstrated superior performance over the Dense FNNs,
when trained with noisy data. The Python code for devel-
oping LCNNs can be found in our GitHub repository.3

5.2.5 Error-triggered online learning

Neural networks are generally trained offline using histor-
ical data, and cannot capture the real-time dynamics subject
to process disturbances. Hence, online learning and updat-
ing of ML models can be a viable solution for systems with
time-varying dynamics. To illustrate how online learning
can help address process disturbances, we consider the CSTR
of Eq. (31) with model variations caused by the following
disturbances: (1) As a result of an upstream disturbance, the
feed flow rate F becomes time-varying with the constraint:
0 ≤ F ≤ 12 m3/h. (2) Additionally, catalyst activation is taken
into account during the operation of the CSTR of Eq. (31),
resulting in a reduction in the reaction pre-exponential
factor k0 with the constraint: 0 < k0 < 8.46 × 106 m3/kmol h.
In particular, the feed flow rate F increases to 12 m3/h at
t = 0.05 h, and k0 gradually decreases to 0.8k0, 0.6k0 and
0.4k0 at t = 0.1 h, 0.2 h and 0.4 h, respectively, and remains
unchanged afterward. In Wu et al. (2019b), the authors

Table : Comparison of the testing errors (TEs) and Lipschitz constants
(LCs) for various hidden layer architectures and standard deviation (SD) of
noise introduced into the training dataset.

Hidden
layers

Noise
SD

LCNN TE
ð×�Þ

Dense TE
ð×�Þ

LCNN
LC

Dense LC
ð×Þ

(, ) . . . . .
(,,
,)

. . . . .

(, ) . . . . .
(,,
,)

. . . . .

3 GitHub link to LCNN code: https://github.com/killingbear999/lipschitz-
constrained-neural-networks.
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developed two RNNmodels for the CSTR of Eq. (31) subjected
to the aforementioned disturbances, one being a standard
RNN model trained offline using historical data, and the
other one being an RNN model updated online using real-
time data. The closed-loop state trajectories under Lyapunov
MPC (LMPC) controllers designed with the two models are
shown in Figure 14a. As shown in Figure 14a, the closed-loop
state trajectory under LMPC using the standard RNNmodels
(that is, without online update of the RNN model) exhibited
oscillatory behavior around the origin due to disturbances.
Whereas, the trajectory under the LMPC with online update
of the RNNmodel was able to drive the closed-loop state into
a small neighborhood around the origin successfully.

Figure 14b shows the evolution of the moving-horizon
error detector Ernn(t) that is designed as the accumulated
prediction error for the closed-loop system of Eq. (31) under
the LMPC of Eq. (9) with online update of RNN models

triggered by errors. It is shown that the update of RNN
models is triggered two times throughout the operation.

Remark 6. Due to space constraints, we are unable to
present all the NNmodeling approaches that address each
practical issue discussed in this article. Readers who are
interested in reduced-order modeling, ML-based distrib-
uted MPC, and federated learning methods, which often
require more complex process networks for demonstra-
tion, can refer to the references provided in the corre-
sponding sections.

5.3 NN-based MPC

After we obtain the NN models that learn the dynamics of the
CSTR of Eq. (31), NN-basedMPC can be developed to control the

(kmol/m3)

(h)

(K
)

Figure 14: Closed-loop simulation results under
LMPC using online update of RNN models.
(a) The state-space profiles for the closed-loop
CSTR under the LMPC of Eq. (9) with and
without online update of RNN model for the
initial condition (−1.5, 70). (b) Value of the
prediction error Ernn(t) for the closed-loop
system of Eq. (31) under the LMPC of Eq. (9)
with error-triggered online update of RNN
models.
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system by manipulating CA0 and Q. A conventional LMPC
schemeusing standardRNNmodels has beendeveloped in Ren
et al. (2022) and has been shown to achieve the desired closed-
loop performance by stabilizing the states in the steady state.
The Python code for MPC using conventional RNN models can
be found in ourGitHub repository.4 In this subsection,weagain
will focus more on novel designs of ML-MPCs that address the
practical issues such as computational efficiency, safety and
data security in real-world applications.

5.3.1 Convex MPC using input-convex NNs

While neural networks offer advantages in process modeling,
ensuring computational efficiency is crucial for real-time
optimization and control tasks. In a chemical plant, numerous
operations require real-time or near-real-time control to
maintain product quality, safety, and operational efficiency.
Swift decision-making is pivotal for safety in chemical pro-
cesses, as delays in addressing reactant changes can result in
undesired reactions or unsafe conditions. Inspired by the fact
that convex optimization is easier to solve than non-convex
optimization, in this subsection, our goal is to preserve the
convexity in neural-network-based predictive control that will
be discussed later by developing input-convex NNs where the
neural network outputs remain convex with respect to the
input. Specifically, in addition to the input-convex feedforward
neural network introduced in Section 4.5.1, there are a variety
of input-convex NNs in the family of RNNs such as input-
convexRNNsand input-convexLSTMs. Specifically,wedevelop
input-convex LSTM (ICLSTM), following the formulation in
Wang et al. (2025), and compare its performance in closed-loop
control with the MPC using plain LSTM model. Subsequently,
we consider a simple MPC scheme using a neural network
model as the prediction model given by the following optimi-
zation problem:

L = min
u∈S(Δ)

∫
tk+N

tk

J(x̃(t), u(t))dt (32a)

s.t. x̃̇(t) = Fnn(x̃(t), u(t)) (32b)

u(t) ∈ U , ∀t ∈ [tk , tk+N ) (32c)

x̃(tk) = x(tk) (32d)

where x̃ is the predicted state trajectory, S(Δ) is the set of
piecewise constant functions with period Δ, and N is the
number of sampling periods in the prediction horizon.

The objective function L in Eq. (32a) incorporates a cost
function J in termsof the systemstatesx and the control actions
u. The dynamic function Fnn(x̃(t), u(t)) in Eq. (32b) is param-
eterized as recurrent neural networks (i.e., plain LSTM and
ICLSTM). In this experiment, the PyIpopt library was executed
on an Intel Core i7-12700 processorwith 64 GB of RAM, using 15
different initial conditions within the stability region
(i.e., covering the whole stability region). Table 5 presents the
average runtime across 3 runs for each case and their corre-
sponding percentage decrease with respect to ICLSTM,
showing that ICLSTM-based MPC yields an improvement in
convergence runtime. Specifically, it attains an average per-
centage decrease of 40.0% compared to plain LSTM. The Py-
thon code for MPC using ICLSTM models can be found in our
GitHub repository.5

5.3.2 Safe ML-based MPC

Safe MPCs should be developed to ensure that process opera-
tions remain within the safe operating region, particularly
when there are potential unsafe operating conditions in
chemical processes. CLBF functions can be incorporated into
theMPC scheme (termedCLBF-MPC) to regulate theCSTRof Eq.
(31) to the steady-state while avoiding the unsafe operation at
the same time. The CLBF-MPC scheme is formulated by the
following optimization problem (Wu et al. 2019a):

Table : Convergence runtime of MPCs using LSTM and ICLSTM.

½CAi; Ti� Plain LSTM ICLSTM

Time (s) % Decrease Time (s)

½ �:; � ,: ± : : % : ± :

½ �:; � ,: ± : : % : ± :

½ �; � ,: ± : : % : ± :

½ �:; � ,: ± : : % : ± :

½ �:; � ,: ± : : % : ± :

½ �:; � : ± : : % : ± :

½ �:; � : ± : : % : ± :

½:; �� ,: ± : : % ,: ± :

½:; �� ,: ± : �: % ,: ± :

½:; �� ,: ± : : % ,: ± :

½:; �� ,: ± : : % : ± :

½:; �� ,: ± : : % : ± :

½:; �� : ± : : % : ± :

½:; �� : ± : : % : ± :

½:; �� : ± : : % : ± :

Average ,. : % .

4 GitHub link to RNN-based MPC code: https://github.com/GuoQWu/
Machine-learning-based-model-predictive-control.

5 GitHub link to ICLSTM-based MPC code: https://github.com/
killingbear999/ICLSTM.
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min
u∈S(Δ)

∫
tk+N

tk

lt(x̃(t), u(t))dt (33a)

s.t. x̃̇(t) = Fnn(x̃(t), u(t)) (33b)

x̃(tk) = x(tk) (33c)

u(t) ∈ U , ∀ t ∈ [tk , tk+N ) (33d)

Wc
̇ (x(tk), u(tk)) ≤Wc

̇ (x(tk),Φ(x(tk))),

if Wc(x(tk)) > ρ′
min and x(tk) ∉B δ(xe)

(33e)

Wc(x̃(t)) ≤ ρ′min, ∀ t ∈ [tk , tk+N ), if Wc(x(tk)) ≤ ρ′
min (33f)

Wc(x̃(t)) <Wc(x(tk)), ∀ t ∈ (tk , tk+N ), if x(tk)
∈B δ(xe) (33g)

where Δ is the sampling period, S(Δ) is the set of piecewise
constant functions with time interval Δ, x̃(t) is the predicted
state trajectory, and N is the number of sampling steps in
the prediction horizon. We use Ẇc(x, u) to represent
∂Wc( x)

∂x (Fnn(x, u)). The optimization problem of Eq. (33) is to
minimize the object function of Eq. (33a) subject to the con-
straints of Eqs. (33b)–(33g). The NN model that captures the
dynamics of Eq. (31) can be used as the predictionmodel in Eq.
(33b). The initial condition for this prediction model is deter-
mined by the current state measurement, as shown in Eq.
(33c). The constraints outlined in Eqs. (33e)–(33g) ensure that
the closed-loop state remains bounded within a small neigh-
borhood around the origin (i.e.,U ρ′min

) and does not enter the
unsafe region for all times. Specifically, when x(tk) is outside
ofU ρ′min

and x(tk) ∉B δ(xe), the constraint of Eq. (33e) drives
the closed-loop state into a smaller level set of Wc(x) by
decreasing the value of Wc(x̃) along the predicted state trajec-
tory at least at the rate under the CLBF-based controller
u = Φ(x). When x(tk) enters U ρ′min

(i.e., x(tk) is also
bounded in a small ball around the origin
B d(0)≔ {x ∈ Rn | |x| ≤ d}), the constraint of Eq. (33f)
maintains the closed-loop state inside B d(0) afterwards.
However, if the state is trapped in other stationary points
during the path towards the origin, i.e., x(tk) ∈B δ(xe), we
activate the constraint of Eq. (33g) to drive the state away
from xe in the direction of decreasing Wc(x).

We consider a bounded unsafe region D b in state-
space, and demonstrate that the CLBF-MPC of Eq. (33)
can drive the state to a small neighborhood around
the origin while not entering the unsafe region. Specif-
ically, the unsafe region is defined as an ellipse:

D b ≔ x ∈ R2 | F(x) = (x1+0.92)2
1 + (x2−42)2

500 < 0.06{ }.H is defined

as H ≔ {x ∈ R2 | F(x) < 0.07}. The CLBF is designed as the
weighted sum of the following control barrier function B(x)
and control Lyapunov function V(x):

B(x) = e
F(x)

F(x)−0.07 − e−6, if x ∈ H

−e−6, if x ∉ H

⎧⎪⎨⎪⎩ (34)

and V(x) = xTPx with the following positive definite P
matrix:

P = 1, 060 22
22 0.52[ ] (35)

In Figure 15, it is demonstrated that for all initial states x0
in U ρ̂ (marked by circles), the closed-loop trajectories avoid
the bounded unsafe region D b that is embedded within U ρ̂

(a subset of the safe operating region U ρ), and ultimately
converges to U ρmin

under the CLBF-MPC of Eq. (33).

Remark 7. Although a CSTR example was used to illustrate
the applications of various machine learning modeling
and ML-based MPC methods, it is important to note that
ML-based MPC can be applied to a variety of complex
chemical engineering problems. Due to space constraints,
we will not provide a detailed discussion in the review;
however, we have provided some examples on the appli-
cation of ML models, as well as, ML-based MPC methods to
model and control complex systems, for interested readers
seeking more examples in this area. For example, neural
network models have been applied to model an industrial
ethylene splitter in Jalanko et al. (2021) and experimental
electrochemical reactors in Çıtmacı et al. (2022) and Luo
et al. (2022). Moreover, an LSTM-based MPC method has
been developed in Luo et al. (2023) for the same electro-
chemical reactor of Çıtmacı et al. (2022). Other notable
works on ML-based MPC include: using an LSTM-based

Figure 15: Closed-loop state trajectories for the system of Eq. (31) under
the CLBF-MPC using an RNN model. The initial conditions are marked by
circles, and the set of bounded unsafe states D b is the gray area
embedded within U ρ̂ .
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economic MPC to control the heating, ventilation, and air
conditioning (HVAC) system of a building in Ellis and
Chinde (2020), and using an ANN-based MPC to control the
film properties in the thin film chemical deposition of
quantum dots in Sitapure and Kwon (2022).

6 Conclusion and outlook

The tutorial provided an overview ofmachine learning-based
model predictive control methods, highlighting both theo-
retical insights and practical challenges associated with the
development of NNs and the incorporation of NNs into MPC.
Closed-loop stability of ML-based MPC was first established
based on the generalization error analysis for NNs. Various
ML methods such as physics-informed ML, transfer learning,
and novel designs of NN architectures were discussed
alongside advanced control methods to address the practical
challenges including data scarcity, data quality, the curse of
dimensionality, model uncertainty, computational efficiency,
and safety in ML-MPC. Finally, a chemical process example
was studied to demonstrate the effectiveness of various ML-
MPCmethods to address the aforementioned practical issues.

In addition to the topics covered in this paper, several
emerging areas inML-basedMPC require significant attention
for future research. For example, explainable AI (XAI) is crit-
ical to improving the transparency, trustworthiness, and us-
ability of ML models in MPC. By understanding how a neural
network arrives at its predictions, users can trust more on the
model, and identify the errors more effectively in real-world
applications. Although neural networks are powerful tools for
learning complex patterns and making predictions across
various domains, they are typically developed as black-box
models with inherent complexity, which makes it challenging
to understand the reasoning behind their outputs. Physics-
informed ML provides one solution to incorporate domain
knowledge into NNmodels, yet it does not completely address
the challenge of model explainability. One common approach
for XAI is SHapley Additive exPlanations (SHAP). SHAP is a
method based on cooperative game theory that assigns each
feature an importance value for a particular prediction. It
provides a unified framework to explain the output of any
machine learning model by attributing the prediction
outcome to different input features. However, developing
suitable XAI methods to explain predictions, limitations, and
resulting behaviors of neural networkmodels inMPC remains
an ongoing challenge.

Regarding physics-informed machine learning, while this
review paper discusses several approaches integrating physics
knowledge (e.g., first-principles models and structural process
knowledge) into NNdevelopment, there are numerous types of

knowledge that can improvemodel performance. InmanyML-
MPC applications, NN models are initially trained offline until
achieving sufficiently small errors before incorporation into
MPC. However, this process involves extensive data collection
and training, potentially consuming time and resources.
Therefore, a future direction is to integrate stability re-
quirements into NN model development, ensuring that NN
models naturally meet the MPC stability criteria and can be
easily implemented withinMPC frameworks (Tan et al. 2024a).
Additionally, for modeling distributed systems, knowledge of
network structure (i.e., units [nodes] and their relationships
[edges]) can be integrated into the development of graph
neural networks (GNNs) to improve the modeling accuracy.
Overall, there are various types of domain knowledge that can
be integrated into neural networks tailored to specificML-MPC
applications in different ways (e.g., loss function, network ar-
chitecture, weight constraints, learning algorithms, etc.).

To successfully implement ML-MPC in real-world large-
scale systems, addressing adaptability and scalability is
important to ensure computational efficiency and main-
taining performance across diverse applications. Transfer
learning offers a promising approach by leveraging knowl-
edge from one process to another in modeling and control
tasks for process scale-up. However, finding a suitable
source process that closelymatches the target process can be
challenging in practice. Inspired by the success of large
language models in many recent studies and applications, a
compelling future direction is to develop a single, universal
neural network (referred to as a foundation model) capable
of rapidly adapting to model any new chemical process
(Wang and Wu 2024c). Foundation models have shown
success in fields such as computer science, chemistry, and
material sciences. In the field of chemical engineering, large
language models have been applied in Hirtreiter et al. (2024)
to generate control structures for process flow diagrams
(PFDs) from PFDs without control structures, as part of an
effort to automate the generation of piping and instrumen-
tation diagrams (P&IDs). However, the application of foun-
dation models to chemical process modeling and control is
still in its infancy (Decardi-Nelson et al. 2024). This is partly
due to the complexity of chemical engineering, which in-
volves large-scale industrial processes characterized by
proprietary complex data that is rarely shared publicly by
industries. Additionally, adapting ML-based MPC from a
small-scale to a large-scale system involves several key
considerations such as real-time computation requirements,
availability of sensor data and sensor-related issues (e.g.,
missing, delayed, and asynchronous measurements), and
optimization of MPC hyper-parameters across different
scales. Addressing these challenges not only enables more
efficient utilization of data but also improves the
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applicability of ML-MPC in various chemical engineering
applications.
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