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Abstract: Machine learning has attracted extensive interest in the process engineering field, due to
the capability of modeling complex nonlinear process behavior. This work presents a method for
combining neural network models with first-principles models in real-time optimization (RTO) and
model predictive control (MPC) and demonstrates the application to two chemical process examples.
First, the proposed methodology that integrates a neural network model and a first-principles model
in the optimization problems of RTO and MPC is discussed. Then, two chemical process examples are
presented. In the first example, a continuous stirred tank reactor (CSTR) with a reversible exothermic
reaction is studied. A feed-forward neural network model is used to approximate the nonlinear
reaction rate and is combined with a first-principles model in RTO and MPC. An RTO is designed
to find the optimal reactor operating condition balancing energy cost and reactant conversion, and
an MPC is designed to drive the process to the optimal operating condition. A variation in energy
price is introduced to demonstrate that the developed RTO scheme is able to minimize operation
cost and yields a closed-loop performance that is very close to the one attained by RTO/MPC using
the first-principles model. In the second example, a distillation column is used to demonstrate an
industrial application of the use of machine learning to model nonlinearities in RTO. A feed-forward
neural network is first built to obtain the phase equilibrium properties and then combined with
a first-principles model in RTO, which is designed to maximize the operation profit and calculate
optimal set-points for the controllers. A variation in feed concentration is introduced to demonstrate
that the developed RTO scheme can increase operation profit for all considered conditions.

Keywords: real-time optimization; nonlinear processes; process control; model predictive control;
chemical reactor control; distillation column control

1. Introduction

In the last few decades, chemical processes have been studied and represented with different
models for real-time optimization (RTO) and model predictive control (MPC) in order to improve the
process steady-state and dynamic performance. The available models range from linear to nonlinear
and from first-principles models to neural network models, among others [1]. For many applications,
first-principles models are the preferable choice, especially when applied with process systems
methodologies [2]. However, first-principles models are difficult to maintain due to the variation of
some parameters. Furthermore, it could be difficult or impractical to obtain first-principles models for
large-scale applications [3]. As a well-tested alternative, machine learning method, especially neural
network models are able to represent complicated nonlinear systems [4,5]. Neural networks fit the data

Mathematics 2019, 7, 890; doi:10.3390/math7100890 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/10/890?type=check_update&version=1
http://dx.doi.org/10.3390/math7100890
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 890 2 of 25

in an input-output fashion using fully-connected layers within the hidden output layers [6]. However,
due to their general structures, neural networks lack physical knowledge in their formulation. To
alleviate the above problem, this work integrates neural network models with first-principles models.
Specifically, first-principles models are used to represent the well-known part of the process and
embedding physical knowledge in the formulation, while the complex nonlinear part of the process is
represented with neural networks. This proposed hybrid formulation is then applied in the context of
real-time optimization and model predictive control in two chemical processes.

The machine learning method has been part of process system engineering for at least 30 years
in which the feed-forward neural network is the most classical structure found in the literature [7].
For instance, neural networks have been proposed as an alternative to first-principles models for
the classical problems of process engineering [7], such as modeling, fault diagnosis, product design,
state estimation, and process control. The neural network model has also gained much interest in the
chemical engineering field, and more comprehensive reviews with detailed information on neural
networks in chemical processes are available in [7,8]. For example, an artificial neural networks was
applied to approximate pressure-volume-temperature data in refrigerant fluids [9]. Complex reaction
kinetic data have been fitted using a large experimental dataset with neural networks to approximate
the reaction rate and compared with standard kinetics methods, showing that neural networks can
represent kinetic data at a faster pace [10]. Reliable predictions of the vapor-liquid equilibrium has been
developed by means of neural networks in binary ethanol mixtures [11]. Studies on mass transfer have
shown good agreements between neural network predictions and experimental data in the absorption
performance of packed columns [12].

Since the applications with standard neural networks rely on fully-connected networks,
the physical interpretation of the obtained model can be a difficult task. One solution is to integrate
physical knowledge into the neural network model. For example, the work in [13] proposed a learning
technique in which the neural network can be physically interpretable depending on the specifications.
Similarly, the work in [14] designed a neural network with physical-based knowledge using hidden
layers as intermediate outputs and prioritized the connection between inputs and hidden layers based
on the effect of each input with the corresponding intermediate variables. Another method to add
more physical knowledge into neural networks is to combine first-principles models with neural
networks as hybrid modeling [15]. For instance, biochemical processes have been represented with
mass balances for modeling the bioreactor system and with artificial neural networks for representing
the cell population system [16]. Similarly, an experimental study for a bio-process showed the benefits
of the hybrid approach in which the kinetic models of the reaction rates were identified with neural
networks [17]. In crystallization, growth rate, nucleation kinetics, and agglomeration phenomena
have been represented by neural networks, while mass, energy, and population balances have been
used as a complement to the system’s behavior [18]. In industry, hybrid modeling using rigorous
models and neural networks has also been tested in product development and process design [19].
However, most of the applications with hybrid modeling are limited to the open-loop case.

Real-time optimization (RTO) and model predictive control (MPC) are vital tools for
chemical process performance in industry in which the process model plays a key role in their
formulations [20,21]. RTO and MPC have been primarily implemented based on first-principles
models, while the difference is that RTO is based on steady-steady models and MPC is based on
dynamical models [20,21]. In both RTO and MPC, the performance depends highly on the accuracy of
the process model. To obtain a more accurate model, machine learning methods have been employed
within MPC [6] and within RTO [22], as well. In practice, it is common to use process measurements to
construct neural network models for chemical processes. However, the obtained model from process
operations may lack robustness and accuracy for parameter identification, as was shown in [23]. As
a consequence, there has been significant effort to include hybrid models in process analysis, MPC,
and process optimization [24–30] in order to reduce the dependency on data and infuse physical
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knowledge. At this stage, little attention has been paid to utilizing the full benefit of employing hybrid
modeling in both the RTO and MPC layers.

Motivated by the above, this work demonstrates the implementation of a hybrid approach of
combining a first-principles model and a neural network model in the RTO and MPC optimization
problems. Specifically, the nonlinear part of the first-principles model is replaced by a neural network
model to represent the complex, nonlinear term in a nonlinear process. We note that in our previous
works, we developed recurrent neural network models from process data for use in MPC without
using any information from a first-principles model or process structure in the recurrent neural
network model formulation [4,5,31]. Furthermore, the previous works did not consider the use of
neural network models to describe nonlinearities in the RTO layer and focused exclusively on model
predictive control. In the present work, we use neural networks to describe nonlinearities arising
in chemical processes and embed these neural network models in first-principles process models
used in both RTO (nonlinear steady-state process model) and MPC (nonlinear dynamic process
model), resulting in the use of hybrid model formulations in both layers. The rest of the paper is
organized as follows: in Section 2, the proposed method that combines neural network with the
first-principles model is discussed. In Section 3, a continuous stirred tank reactor (CSTR) example is
utilized to illustrate the combination of neural network models and first-principles models in RTO and
Lyapunov-based MPC, where the reaction rate equation is represented by a neural network model. In
Section 4, an industrial distillation column is co-simulated in Aspen Plus Dynamics and MATLAB. A
first-principles steady-state model of the distillation column is first developed, and a neural network
model is constructed for phase equilibrium properties. The combined model is then used in RTO to
investigate the performance of the proposed methodology.

2. Neural Network Model and Application

2.1. Neural Network Model

The neural network model is a nonlinear function y = fNN(x) with input vector x = [x1, x2, ..., xn]

and output vector y = [y1, y2, ..., ym]. Mathematically, a neural network function is defined as a series
of functional transformations. The structure of a two-layer (one hidden-layer) feed-forward neural
network is shown in Figure 1, where h1, h2, ..., hp are hidden neurons [32,33]. Specifically, the hidden
neurons hj and the outputs yk are obtained by Equation (1):

hj = σ1(
n

∑
i=1

w(1)
ji xi + w(1)

j0 ), j = 1, 2, ..., p (1a)

yk = σ2(
p

∑
i=1

w(2)
ki hi + w(2)

k0 ), k = 1, 2, ..., m (1b)

where parameters w(1)
ji and w(2)

ki are weights in the first and the second layer and parameters w(1)
j0

and w(2)
k0 are biases. σ1 and σ2 are nonlinear element-wise transformations σ : R1 → R1, which are

generally chosen to be sigmoid functions such as the logistic sigmoid S(x) = 1/(1+ e−x) or hyperbolic
tangent function tanh(x) = 2/(1 + e−2x)− 1. Each hidden neuron hj is calculated by an activation
function σ1 with a linear combination of input variables xi. Each output variable yk is also calculated
by an activation function σ2 with a linear combination of hidden neurons hi. Since the neural network
models in this work are developed to solve regression problems, no additional output unit activation
functions are needed. All the neural network models in this work will follow the structure discussed
in this section.
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Figure 1. A feed-forward neural network with input x1, ..., xn, hidden neurons h1, h2, ..., hp, and outputs

y1, y2, ..., ym. Each weight w(k)
ji is marked on the structure. Neuron “1” is used to represent the biases.

Given a set of input vectors {xn} together with a corresponding set of target output vectors {ŷn}
as a training set of N data points, the neural network model is trained by minimizing the following
sum-of-squares error function [33]:

E(w) =
1
2

N

∑
n=1
‖y(xn, w)− ŷn‖2 (2)

The proper weight vectors w are obtained by minimizing the above cost function via the gradient
descent optimization method:

wτ+1 = wτ − η∇E(wτ) (3)

where τ labels the iteration, η > 0 is known as the learning rate, and ∇E(wτ) is the derivative of the
cost function with respect to weight w. The weight vectors are optimized by moving through weight
space in a succession of Equation (3) with some initial value w(0). The gradient of an error function
∇E(w) is evaluated by back propagation method. Additionally, data are first normalized, and then,
k-fold cross-validation is used to separate the dataset into the training and validation set in order to
avoid model overfitting.

2.2. Application of Neural Network Models in RTO and MPC

In the chemical engineering field, model fitting is a popular technique in both academia and
industry. In most applications, a certain model formulation needs to be assumed first, and then,
the model is fitted with experiment data. However, a good approximation is not guaranteed since
the assumed model formulation may be developed based on deficient assumptions and uncertain
mechanism, which lead to an inaccurate model. Alternatively, neural network model can be employed
to model complex, nonlinear systems since neural networks do not require any a priori knowledge
about the process and are able to fit any nonlinearity with a sufficient number of layers and neurons
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according to the universal approximation theorem [34]. The obtained neural network model can be
used together with existing first-principles models. Specifically, the combination of the neural network
model and first-principles model can be used in optimization problems, such as real-time optimization
(RTO) and model predictive control (MPC).

2.2.1. RTO with the Neural Network Model

Real-time optimization (RTO) maximizes the economic productivity of the process subject to
operational constraints via the continuous re-evaluation and alteration of operating conditions of a
process [35]. The economically-optimal plant operating conditions are determined by RTO and sent to
the controllers to operate the process at the optimal set-points [36].

Since RTO is an optimization problem, an explicit steady-state model is required in order to obtain
optimal steady-states. First-principles models are commonly used in RTO; however, first-principles
models may not represent the real process well due to model mismatch, and thus lead to non-optimal
steady-states or even infeasible steady-states. In these cases, the machine learning method becomes
a good solution to improve model accuracy. Specifically, a neural network model can be used to
replace the complicated nonlinear part of the steady-state model to increase the accuracy of the
first-principles model.

In general, the RTO problem is formulated as the optimization problem of Equation (4), where x ∈
Rn is the state and x̂ ∈ Rm is part of the state. g(x̂) is a nonlinear function of x̂, which is a part of the
steady-state model.

min
x

cost f unction(x)

s.t. F(x, g(x̂)) = 0

other constraints

(4)

Since it is difficult to obtain an accurate functional form of g(x̂), a neural network FNN(x̂) is
developed using simulation data to replace g(x̂) in Equation (4). Therefore, the RTO based on the
integration of first-principles model and neural network model is developed as follows:

min
x

cost f unction(x)

s.t. F(x, FNN(x̂)) = 0

other constraints

(5)

2.2.2. MPC with Neural Network Models

Model predictive control (MPC) is an advanced control technique that uses a dynamic process
model to predict future states over a finite-time horizon to calculate the optimal input trajectory.
Since MPC is able to account for multi-variable interactions and process constraints, it has been widely
used to control constrained multiple-input multiple-output nonlinear systems [37]. Since MPC is
an optimization problem, an explicit dynamic model is required to predict future states and make
optimal decisions. First-principles models can be developed and used as the prediction model in MPC;
however, first-principles models suffer from model mismatch, which might lead to offsets and other
issues. Therefore, machine learning methods can be used to reduce model mismatch by replacing the
complicated nonlinear part of the dynamic model with a neural network model.

In general, MPC can be formulated as the optimization problem of Equation (6), where the
notations follow those in Equation (4) and ẋ = F(x, g(x̂)) is the first-principles dynamic process model.

min
u

cost f unction(x, u)

s.t. ẋ = F(x, g(x̂), u)

other constraints

(6)



Mathematics 2019, 7, 890 6 of 25

Similar to Equation (5), a neural network FNN(x̂) is developed using simulation data to replace g(x̂) in
Equation (6). As a result, the MPC based on the integration of the first-principles model and neural
network model is developed as follows:

min
u

cost f unction(x, u)

s.t. ẋ = F(x, FNN(x̂), u)

other constraints

(7)

Remark 1. To derive stability properties for the closed-loop system under MPC, additional stabilizing
constraints can be employed within the MPC of Equation (7) (e.g., terminal constraints [38] and Lyapunov-based
constraints [39]). In this work, a Lyapunov-based MPC (LMPC) is developed to achieve closed-loop stability in
the sense that the close-loop state is bounded in a stability region for all times and is ultimately driven to the
origin. The discussion and the proof of closed-loop stability under LMPC using machine learning-based models
can be found in [4,31].

Remark 2. All the optimization problems of MPC and RTO in this manuscript are solved using IPOPT,
which is an interior point optimizer for large-scale nonlinear programs. The IPOPT solver was run on the OPTI
Toolbox in MATLAB. It is noted that the global optimum of the nonlinear optimization problem is not required
in our case, since the control objective of MPC is to stabilize the system at its set-point, rather than to find the
globally-optimal trajectory. The Lyapunov-based constraints can guarantee closed-loop stability in terms of
convergence to the set-point for the nonlinear system provided that a feasible solution (could be a locally-optimal
solution) to the LMPC optimization problem exists.

Remark 3. In the manuscript, the MPC is implemented in a sample-and-hold fashion, under which the control
action remains the same over one sampling period, i.e., u(t) = u(x(tk)), ∀t ∈ [tk, tk+1), where tk+1 represents
tk + ∆ and ∆ is the sampling period. Additionally, one possible way to solve the optimization problems
of Equations (6) and (7) is to use continuous-time optimization schemes. This method has recently gained
researchers attention and can be found in [40,41].

Remark 4. In this work, the neural network is used to replace the nonlinear term in the first-principles model,
for which it is generally difficult to obtain an accurate functional form from first-principles calculations. It
should be noted that the neural network FNN(x̂) was developed as an input-output function to replace only a
part (static nonlinearities) of the first-principles model, and thus does not replace the entire steady-state model or
dynamic model.

3. Application to a Chemical Reactor Example

3.1. Process Description and Simulation

The first example considers a continuous stirred tank reactor (CSTR), where a reversible
exothermic reaction A↔ B takes place [42,43]. After applying mass and energy balances, the following
dynamic model is achieved to describe the process:

dCA
dt

=
1
τ
(CA0 − CA)− kAe

−EA
RT CA + kBe

−EB
RT CB

dCB
dt

= − 1
τ

CB + kAe
−EA

RT CA − kBe
−EB
RT CB

dT
dt

=
−∆H
ρCP

(kAe
−EA

RT CA − kBe
−EB
RT CB) +

1
τ
(T0 − T) +

Q
ρCPV

(8)

In the model of Equation (8), CA, CB are the concentrations of A and B in the reactor, and T is
the temperature of the reactor. The feed temperature and concentration are denoted by T0 and CA0 ,
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respectively. kA and kB are the pre-exponential factor for the forward reaction and reverse reaction,
respectively. EA and EB are the activation energy for the forward reaction and reverse reaction,
respectively. τ is the residence time in the reactor; ∆H is the enthalpy of the reaction; and CP is the heat
capacity of the mixture liquid. The CSTR is equipped with a jacket to provide heat to the reactor at rate
Q. All process parameter values and steady-state values are listed in Table 1. Additionally, it is noted
that the second equation of Equation (8) for CB is unnecessary if CA0 is fixed due to CB = CA0 − CA.
This does not hold when CA0 is varying, and thus, the full model is used in this work for generality.

Table 1. Parameter values and steady-state values for the continuous stirred tank reactor (CSTR)
case study.

T0 = 400 K τ = 60 s
kA = 5000 /s kB = 106 /s

EA = 1× 104 cal/mol EB = 1.5× 104 cal/mol
R = 1.987 cal/(mol K) ∆H = −5000 cal/mol

ρ = 1 kg/L CP = 1000 cal/(kg K)
CA0 = 1 mol/L V = 100 L

CAs = 0.4977 mol/L CBs = 0.5023 mol/L
TAs = 426.743 K Qs = 40386 cal/s

When the tank temperature T is too low, the reaction rate is maintained as slow such that the
reactant A does not totally reacted during the residence time, and thus, the reactant conversion
(1− CA/CA0) is low. When the tank temperature T is too high, the reversible exothermic reaction
equilibrium turns backwards so that the reactant conversion (1− CA/CA0) also drops. As a result,
there exists a best tank temperature to maximize the reactant conversion. Figure 2 shows the variation
of the CSTR steady-state (i.e., concentration CA and temperature T) under varying heat input rate
Q, where Q is not explicitly shown in Figure 2. Specifically, the minimum point of CA represents the
steady-state of CA and T, under which the highest conversion rate (conversion rate = 1− CA/CA0) is
achieved. Therefore, the CSTR process should be operated at this steady-state for economic optimality
if no other cost is accounted for.

400 410 420 430 440 450 460 470
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Figure 2. Steady-state profiles (CA and T) for the CSTR of Equation (8) under varying heat input rate
Q, where the minimum of CA is achieved at Q= 59,983 cal/s.
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3.2. Neural Network Model

In the CSTR model of Equation (8), the reaction rate r = kAe
−EA

RT CA − kBe
−EB
RT CB is a nonlinear

function of CA, CB, and T. To obtain this reaction rate from experiment data, an assumption of the
reaction rate mechanism and reaction rate function formulation is required. In practice, it could be
challenging to obtain an accurate reaction rate expression using the above method if the reaction
mechanism is unknown and the rate expression is very complicated.

In this work, a neural network model is built to represent the reaction rate r as a function of CA,
CB, and T (i.e., r = FNN(CA, CB, T)), and then, the neural network model replaces the first-principles
rate equation in the process model. Specifically, around eight million data were generated by the

original reaction rate expression r = kAe
−EA

RT CA − kBe
−EB
RT CB with different values of CA, CB, and

T. The dataset was generated such that various reaction rates under different operating conditions
(i.e., temperature, concentrations of A and B) were covered. The operating conditions were discretized
equidistantly. Specifically, we tried the activation functions such as tanh, sigmoid, and ReLU for
hidden layers and a linear unit and softmax function for the output layer. It is demonstrated that
the choice of activation functions for the output layer significantly affected the performance of the
neural network in a regression problem, while those for the hidden layers achieved similar results.
tanh(x) = 2/(1 + e−2x)− 1 was ultimately chosen as the activation function for the hidden layers,
and a linear unit was used for the output layer since they achieved the best training performance
with the mean squared error less than 10−7. Data were first normalized and then fed to the MATLAB
Deep Learning toolbox to train the model. The neural network model had one hidden layer with 10
neurons. The parameters were trained using Levenberg–Marquardt optimization algorithm. In terms
of the accuracy of the neural network model, the coefficient of determination R2 was 1, and the error
histogram of Figure 3 demonstrates that the neural network represented the reaction rate with a high
accuracy, as can be seen from the error distribution (we note that error metrics used in classification
problems like the confusion matrix, precision, recall, and f1-score were not applicable to the regression
problems considered in this work). In the process model of Equation (8), the first-principles reaction

rate term kAe
−EA

RT CA − kBe
−EB
RT CB was replaced with the obtained neural network FNN(CA, CB, T). The

integration of the first-principles model and the neural network model that was used in RTO and MPC
will be discussed in the following sections.

Figure 3. Error distribution histogram for training, validation, and testing data.

Remark 5. The activation function plays an important role in the neural network training process and may
affect its prediction performance significantly. Specifically, in the CSTR example, since it is known that the
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reaction rate is generally in the form of exponential functions, we tried tanh and sigmoidactivation functions. It
is demonstrated that both achieved the desired performance with mean squared error less than 10−7.

3.3. RTO and Controller Design

3.3.1. RTO Design

It is generally accepted that energy costs vary significantly compared to capital, labor, and other
expenses in an actual plant. Therefore, in addition to productivity, it is important to account for energy
cost in the real-time optimization of plant operation. Specifically, in this example, the heating cost was
regarded as the entire energy cost since other energy costs may be lumped into the heating energy cost.
The overall cost function is defined as follows:

total cost =
CA
CA0

+ heat price×Q (9)

Equation (9) attempts to find the balance between the reactant conversion and heat cost. A simple
linear form was taken between Q and CA in this case study since it was sufficient to illustrate the
relationship between energy cost and reactant conversion. The above total cost was optimized in real
time to minimize the cost of the CSTR process, by solving the optimization problem of Equation (10).

min
CA ,CB ,T,Q

total cost =
CA
CA0

+ heat price×Q (10a)

s.t. 0 =
1
τ
(CA0 − CA)− FNN(CA, CB, T) (10b)

0 = − 1
τ

CB + FNN(CA, CB, T) (10c)

0 =
−∆H
ρCP

FNN(CA, CB, T) +
1
τ
(T0 − T) +

Q
ρCPV

(10d)

CA ∈ [0, 1] (10e)

CB ∈ [0, 1] (10f)

T ∈ [400, 500] (10g)

Q ∈ [0, 105] (10h)

The constraints of Equation (10b), Equation (10c), and Equation (10d) are the steady-state models
of the CSTR process, which set the time derivative of Equation (8) to zero and replace the reaction rate
term by the neural network model built in Section 3.2. Since the feed concentration CA0 is 1 mol/L, CA
and CB must be between 0 and 1 mol/L. The temperature constraint [400, 500] and energy constraint
[0, 105] are the desired operating conditions. At the initial steady-state, the heat price is 7× 10−7, and
the CSTR operates at T = 426.7 K, CA = 0.4977 mol/L and Q = 40,386 cal/s. The performance is not
compromised too much since CA = 0.4977 mol/L is close to the optimum value CA = 0.4912 mol/L,
while the energy saving is considerable when Q = 40,386 cal/s is compared to the optimum value
Q = 59,983 cal/s. In the presence of variation in process variables or heat price, RTO recalculates the
optimal operating condition, given that the variation is measurable every RTO period. The RTO of
Equation (10) is solved every RTO period, and then sends steady-state values to controllers as the
optimal set-points for the next 1000 s. Since the CSTR process has a relatively fast dynamics, a small
RTO period of 1000 s is chosen to illustrate the performance of RTO.

3.3.2. Controller Design

In order to drive the process to the optimal steady-state, a Lyapunov-based model predictive
controller (LMPC) is developed in this section. The controlled variables are CA, CB, and T, and the
manipulated variable is heat rate Q. The CSTR is initially operated at the steady-state [CAs CBs Ts] =
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[0.4977 mol/L 0.5023 mol/L 426.743 K], with steady-state Qjs = 40, 386 cal/s. At the beginning
of each RTO period, a new set of steady-states are calculated, and then, the input and the states are
represented in their deviation variable form as u = Q− Qs and xT = [CA − CAs CB − CBs T − Ts],
such that the systems of Equation (8) together with FNN(CA, CB, T) can be written in the form of ẋ =

f (x) + g(x)u. A Lyapunov function is designed using the standard quadratic form V(x) = 100,000x2
1 +

100,000x2
2 + x2

3, and the parameters are chosen to ensure that all terms are of similar order of magnitude
since temperature is varying in a much larger range compared to concentration. We characterize the
stability region Ωρ as a level set of Lyapunov function, i.e., Ωρ =

{
x ∈ R3 | V(x) ≤ ρ

}
. For the system

of Equation (8), the stability region Ωρ with ρ = 1000 is found based on the above Lyapunov function
V and the following controller h(x) [44]:

h(x) =

 −
L f V+

√
L f V2+LgV4

LgV2 LgV if LgV 6= 0

0 if LgV = 0
(11)

where L f V(x) denotes the standard Lie derivative L f V(x) := ∂V(x)
∂x f (x). The control objective

is to stabilize CA, CB, and T in the reactor at its steady-state by manipulating the heat rate
Q. A Lyapunov-based model predictive controller (LMPC) is designed to bring the process to
the steady-state calculated by the RTO. Specifically, the LMPC is presented by the following
optimization problem:

min
u∈S(∆)

∫ tk+N

tk

(‖x̃(τ)‖2
Qc

+ ‖u(τ)‖2
Rc
) dτ (12a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (12b)

x̃(tk) = x(tk) (12c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (12d)

∂V(x(tk))

∂x
( f (x(tk)) + g(x(tk))u(tk)) ≤

∂V(x(tk))

∂x
( f (x(tk)) + g(x(tk))h(x(tk))) (12e)

where x̃ is the predicted state, N is the number of sampling periods within the prediction horizon,
and S(∆) is the set of piece-wise constant functions with period ∆. The LMPC optimization problem
calculates the optimal input trajectory over the entire prediction horizon t ∈ [tk, tk+N), but only applies
the control action for the first sampling period, i.e., u(t) = u(x(tk)), ∀t ∈ [tk, tk+1). In the optimization
problem of Equation (12), Equation (12a) is the objective function minimizing the time integral of
‖x̃(τ)‖2

Qc
+ ‖u(τ)‖2

Rc
over the prediction horizon. Equation (12b) is the process model of Equation (8)

in its deviation form and is used to predict the future states. A neural network FNN(x1, x2, x3) is

used to replace kAe
−EA

RT CA − kBe
−EB
RT CB in Equation (8). Equation (12c) uses the state measurement

x(tk) at t = tk as the initial condition x̃(tk) of the optimization problem. Equation (12d) defines the
input constraints over the entire prediction horizon, where U = [0−Qs 105 −Qs]. The constraint of
Equation (12e) is used to decrease V(x) such that the state x(t) is forced to move towards the origin.
It guarantees that the origin of the closed-loop system is rendered asymptotically stable under LMPC
for any initial conditions inside the stability region Ωρ. The detailed proof of closed-loop stability can
be found in [39].

To simulate the dynamic model of Equation (8) numerically under the LMPC of
Equation (12), we used the explicit Euler method with an integration time step of hc = 10−2 s.
Additionally, the optimization problem of the LMPC of Equation (12) is solved using the solver
IPOPT in the OPTI Toolbox in MATLAB with the following parameters: sampling period ∆ = 5 s;
prediction horizon N = 10. Qc =

[
1 0 0; 0 1 0; 0 0 5× 10−5] and Rc = 10−11 were chosen such that

the magnitudes of the states and of the input in ‖x̃(τ)‖2
Qc

and ‖u(τ)‖2
Rc

have the similar order.
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3.4. Simulation Results

In the simulation, a variation of heat price is introduced to demonstrate the performance of the
designed RTO and MPC. Since the heat price is changing as shown in Figure 4, the initial steady-state
is no longer the optimal operating condition. The RTO of Equation (10) is solved at the beginning
of each RTO period to achieve a set of improved set-points, which will be tracked by the MPC of
Equation (12). With the updated set-points, the CSTR process keeps adjusting operating conditions
accounting for varying heat price. After the controller receives the set-points, the MPC of Equation (12)
calculates input u to bring x to the new set-point, and finally, both state x and input u are maintained
at their new steady-states. The concentration profiles, temperature profile, and heat rate profile are
shown in Figures 5–7.
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-6

Figure 4. Heat price profile during the simulation, where the heat price first increases and then
decreases to simulate heat rate price changing.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.5

0.51

0.52

Hybrid model
First-principles model
Set-point for hybrid model
Set point for first-principles model

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.48

0.49

0.5 Hybrid model
First-principles model
Set-point for hybrid model
Set point for first-principles model

Figure 5. Evolution of the concentration of A and B for the CSTR case study under the proposed
real-time optimization (RTO) and MPC.
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Figure 6. Evolution of the reactor temperature T for the CSTR case study under the proposed RTO and
MPC scheme.
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Figure 7. Evolution of the manipulated input, the heating rate Q, for the CSTR example under the
proposed RTO and MPC scheme.

During the first half of the simulation, heat price rises up to a doubled value. Considering the
increasing heat price, the operation tends to decrease the heat rate to reduce the energy cost, while
compromising the reactant conversion. Therefore, the energy cost and reactant conversion will be
balanced by RTO to reach a new optimum. As demonstrated in Figure 5, CA increases and CB decreases
during the first half of simulation, which implies that less reactant A is converted to product B in the
tank. The reactor temperature also drops as shown in Figure 6, which corresponds to the reducing
heat rate as shown in Figure 7.

Total cost is calculated by Equation (9) using state measurements of CA and Q from the closed-loop
simulation and is plotted in Figure 8. The total cost with fixed steady-state is also calculated and
plotted for comparison. After the heat price starts to increase, both total costs inevitably increase.
Since RTO keeps calculating better steady-states compared to the initial steady-state, the total cost
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under RTO increases less than the simulation without RTO. The total cost is integrated with time to
demonstrate the difference in cost increment, using Equation (13).

cost increase =
∫ t f inal

0
‖total cost− initial cost‖ dt (13)

where initial cost = 0.526 and t f inal = 10,000 s. The ratio of cost increment between simulations with
RTO and without RTO is 195 : 241. Although the operating cost increases because of rising heat
price, RTO reduces the cost increment by approximately a factor of 1/5, when compared to the fixed
operating condition without RTO.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.525

0.53

0.535

0.54

0.545

0.55

0.555

0.56
with RTO

without RTO

Figure 8. Comparison of the total operation cost for the CSTR example for simulations with and
without RTO adapting to the heat rate price changing.

The combination of neural network models and first-principles models works well in both
RTO and MPC. Additionally, it is shown in Figures 5–7 that the RTO with the combined
first-principles/neural-network model calculates the same steady-state when compared to the RTO
with a pure first-principles model. Moreover, the MPC also drives all the states to the set-points without
offset when the MPC uses the combination of a neural network model with a first-principles model.
In this case study, the neural network model is accurate such that the combination of neural network
and first-principles model attains almost the same closed-loop result as the pure first-principles model
(curves overlap when plotted in the same figure as is done in Figures 5–7, where the blue curve denotes
the solution under MPC with the combined first-principles/neural network model, the red curve
denotes the solution under MPC with the first-principles model, the green curve denotes the set-points
calculated by RTO with the hybrid model, and the black curve denotes the set-points calculated by
RTO with the first-principles model). Additionally, we calculated the accumulated relative error

(i.e., E =
∫ t=10,000s

t=0 |Tf−Th |dt∫ t=10,000s
t=0 Tf dt

) between the temperature curves (Figure 6) under the first-principles model

(i.e., Tf ) and under the hybrid model (i.e., Th) over the entire operating period from t = 0 to t = 10,000 s.
It was obtained that E = 4.98× 10−6, which is sufficiently small. This implies that the neural network
successfully approximated the nonlinear term of reaction rate. In practice, neural network could be
more effective when the reaction rate is very complicated and depends on more variables and the
reaction mechanism is unknown.
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4. Application to a Distillation Column

4.1. Process Description, Simulation, and Model

4.1.1. Process Description

A simple binary separation of propane from isobutane in a distillation column was used for
the second case study [45]. Aspen Plus (Aspen Technology, Inc., Bedford, MA, USA) and Aspen
Plus Dynamics V10.0 were utilized to perform high-fidelity dynamic simulation for the distillation
column. Specifically, Aspen Plus uses the mass and energy balances to calculate the steady-state of the
process based on a process flowsheet design and carefully-chosen thermodynamic models. After the
steady-state model is solved in Aspen Plus, it can be exported to a dynamic model in Aspen Plus
Dynamics, which runs dynamic simulations based on the obtained steady-state models and detailed
process parameters [46,47].

A schematic of the distillation process is shown in Figure 9. The feed to the separation process
was at 20 atm, 322 K and 1 kmol/s, with a propane mole fraction of 0.4 and an isobutane mole fraction
of 0.6. After a valve controlling the feed flow rate, the feed enters the distillation column at Tray 14.
The feed tray is carefully chosen to achieve the best separation performance and minimum energy
cost, as discussed in [45]. The column has 30 trays with a tray spacing of 0.61 m, and the diameter
of the tray is 3.85 m and 4.89 m for the rectifying section and stripping section, respectively. At the
initial steady-state, the distillate product has a propane mole fraction 0.98 and a flow rate 0.39 kmol,
while the bottom product has a propane mole fraction 0.019 and a flow rate 0.61 kmol. The reflux ratio
is 3.33, together with condenser heat duty −2.17× 107 W and reboiler heat duty 2.61× 107 W. The
pressure at the top and bottom is 16.8 atm and 17 atm. Both the top and bottom products are followed
by a pump and a control valve. All the parameters are summarized in Table 2.

Figure 9. A schematic diagram of the distillation column implemented in Aspen Plus Dynamics.

In our simulation, the involved components of propane and isobutane were carefully chosen, and
the CHAO-SEA model was selected for the thermodynamic property calculation. The steady-state
model was first built in Aspen Plus using the detailed information as discussed above and the
parameters in Table 2. Then, the achieved steady-state simulation was exported to the dynamic model
as a pressure-driven model, based on additional parameters such as reboiler size and drum size. After
checking the open-loop response of the dynamic model, controllers will be designed in Section 4.3.2.
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Table 2. Parameter values and steady-state values for the distillation column case study.

F = 1 kmol xF = 0.4
TF = 322 K PF = 20 atm

q = 1.24 NF = 14
NT = 30 Diameterreboiler = 5.08 m

Lengthreboiler = 10.16 m Diameterre f lux drum = 4.08 m
Lengthre f lux drum = 8.16 m

steady-state condition: R = 3.33
xB = 0.019 xD = 0.98

Pbottom = 17 atm Ptop = 16.8 atm
B = 0.61 kmol/L D = 0.39 kmol/L

Qtop = −2.17× 107 W Qbottom = 2.61× 107 W

4.1.2. Process Model

In order to calculate the steady-state of the distillation process, an analytic steady-state model is
developed in this section. Since the Aspen model cannot be used in the optimization problem explicitly,
this analytic steady-state model will be used in the RTO.

The analytic steady-state model consists of five variables, which are the reflux ratio R, the
distillate mole flow rate D, the bottom mole flow rate B, the distillate mole fraction xD, and the bottom
mole fraction xB. For clarification, x is denoted as the mole fraction for the light component propane.
Other parameters include feed conditions: feed molar flow rate F, feed mole fraction xF, feed heat
condition q; column parameters: total number of trays NT , feed tray NF; component property: relative
volatility α. Three equations were developed for the steady-state model.

The first equation F1(D, B) = 0 is the overall molar balance between feed and products, as shown
in Equation (14).

F = D + B (14)

The second equation F2(D, B, xD, xB) = 0 is the overall component balance of light component
propane, as shown in Equation (15):

FxF = DxD + BxB (15)

The third equation applies the binary McCabe–Thiele method. The constant molar overflow
assumptions of the McCabe–Thiele method were held in this case study: the liquid and vapor flow
rates were constant in a given section of the column. Equilibrium was also assumed to be reached
on each tray. The top tray was defined as the first tray. To apply the McCabe–Thiele method, the
rectifying operating line (ROL), stripping operating line (SOL), and phase equilibrium were developed
as follows:

Rectifying operating line (ROL):

yn+1 =
R

R + 1
xn +

xD
R + 1

(16)

Stripping operating line (SOL):

yn+1 =
RD + qF

(R + 1)D− (1− q)F
xn +

F− D
(R + 1)− (1− q)F

xB (17)

Phase equilibrium:

xn =
yn

α− (α− 1)yn
(18)

where α = yC3/xC3
yC4/xC4

= 1.79 is the approximate relative volatility between propane and isobutane at a
pressure 16.9 atm, which is the mean of the top and bottom pressure.
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The third equation F3(R, D, xD, xB) = 0 is expressed in Equation (19) below:

y1 = xD (19a)

xn =
yn

α− (α− 1)yn
n = 1, 2...NT (19b)

yn+1 =
R

R + 1
xn +

xD
R + 1

n = 1, 2...NF − 1 (19c)

yn+1 =
RD + qF

(R + 1)D− (1− q)F
xn +

F− D
(R + 1)− (1− q)F

xB n = NF, NF + 1...NT − 1 (19d)

xNT = xB (19e)

The third equation F3(R, D, xD, xB) = 0 ties the distillate mole fraction xD to the bottom mole
fraction xB by calculating both liquid and vapor mole fractions through all trays from top to bottom.
Equation (19a) defines the vapor mole fraction y1 on the first tray as the distillate mole fraction xD.
Then, the liquid mole fraction x1 on the first tray can be calculated by the phase equilibrium of
Equation (19b). Subsequently, the vapor mole fraction y2 on the second tray is calculated by the ROL
of Equation (19c). The calculation is repeated until x14 and y14 are obtained. Then, y15 is calculated by
the SOL of Equation (19d), instead of ROL. Then, x15 can be calculated again by the phase equilibrium
of Equation (19b). The above calculations are repeated until x30 and y30 are obtained, and x30 = xB
since the liquid on the last tray is the bottom product. In this way, all the variables (i.e., R, D, xD, xB)
have values that satisfy F3(R, D, xD, xB) = 0.

There are five variables R, D, B, xD, xB and three equations F1, F2, F3, which implies that there
are two degrees of freedom. In order to determine the whole process operating condition, two more
states need to be fixed, potentially by RTO. It is necessary to point out that the concentrations xi and
yi on each tray can be calculated by Equation (19) if all five variables R, D, B, xD, xB are determined.
Additionally, if the equilibrium temperature-component curve T = fe(x) (bubble point curve) or
T = fe(y) (dew point curve) are provided, then the temperature on each tray Ti can also be calculated
by simply using Ti = fe(xi) or Ti = fe(yi).

4.2. Neural Network Model

Phase equilibrium properties are usually nonlinear, and the first-principles models are often found
to be inaccurate and demand modifications. In the above steady-state model, the phase equilibrium
xn = yn

α−(α−1)yn
of Equation (19b) assumes that relative volatility α is constant; however, the relative

volatility α does not hold constant with varying concentration and pressure. Therefore, a more accurate
model for phase equilibrium x ∼ y can improve the model performance. Similarly, dew point curve
T ∼ y can be built from first-principles formulation upon Raoult’s Law and the Antoine equation.
However, the Antoine equation is an empirical equation, and it is hard to relate saturated pressure
with temperature accurately, especially for a mixture. As a result, the machine learning method can be
used to achieve a better model to represent the phase equilibrium properties.

In this case study, a neural network (x, T) = FNN(y) was built, with one input (vapor phase
mole fraction y) and two outputs (equilibrium temperature T and liquid phase mole fraction x). One
thousand five hundred data of T, x, and y were generated by the Aspen property library and were
then normalized and fed into the MATLAB Deep Learning toolbox. tanh(x) = 2/(1 + e−2x) − 1
was chosen as the activation function. The neural network model had one hidden layer with five
neurons. The parameters were trained according to Levenberg–Marquardt optimization, and the mean
squared error for the test dataset was around 10−7. It is demonstrated in Figure 10 that the neural
network model fits the data from the Aspen property library very well, where the blue solid curve
is the neural network model prediction and the red curve denotes the Aspen model. Additionally,

we calculated the accumulated relative error (i.e., E =

∫ y=1
y=0 |Tf−Th |dy∫ y=1

y=0 Tf dy
) between the temperature curves
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(Figure 10) under the Aspen model (i.e., Tf ) and under the neural network model (i.e., Th) and
E = 2.32× 10−6; the result was similar for the liquid mole fraction curves. This sufficiently small
error implies that the neural network model successfully approximated the nonlinear behavior of
the thermodynamic properties. Additionally, the coefficient of determination R2 was 1, and the error
histogram of Figure 11 demonstrated that the neural network model represented the thermodynamic
properties with great accuracy.
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Figure 10. Comparison of the neural network model and the Aspen model.
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Figure 11. Error distribution histogram for training, validation, and testing data.

After training the neural network model, the first-principles phase equilibrium expression xn =
yn

α−(α−1)yn
in Equation (19b) is replaced by the neural network phase equilibrium expression xn =

FNN,1(yn), and then, the integrated model of first-principles model and neural network model is used
in RTO as discussed in the following sections. In addition, the second output of the neural network
model Tn = FNN,2(yn) can be combined together with Equation (19) to calculate the temperature on
each tray, which will be used later to calculate the set-points for the controllers.
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4.3. RTO and Controller Design

4.3.1. RTO Design

Since the process has two degrees of freedom, the operating condition has not been determined.
An RTO was designed for the distillation process to obtain the optimal operating condition. Since RTO
needs an objective function, a profit was developed to represent the operation profit. According to the
products, feed, and energy price in [45], the profit is defined by Equation (20).

Pro f it = pricetopD + pricebottomB− price f eedF− priceenergyQ

= pricetopD + pricebottomB− price f eedF− priceenergy(L(R + 1)F)

= Pro f it(R, D, B, xD, xB)

(20)

The profit equals the profit of product subtracting the cost of feed and energy. The profit that will
be used in RTO is represented as a function of R, D, B, xD,xB. As a result, heat duty Q of both the
condenser and reboiler is approximated by Q = L(R + 1)F, where L = 1.29× 107 J/kmol is the molar
latent heat of the mixture. Moreover, mass-based prices are changed to mole-based prices because all
flow rates are mole-based. The price of the top distillate rises linearly as the mole fraction xD increases
in order to demonstrate that the higher purity product has a higher price.

pricetop = (0.528 + (xD − 0.97))$/kg× 44.1kg/kmol = 23.29 + 44.1(xD − 0.97) $/kmol

pricebottom = 0.264$/kg× 58.1kg/kmol = 15.34 $/kmol

price f eed = 0.264$/kg× 52.5kg/kmol = 13.86 $/kmol

priceenergy = 6.11× 10−8 $/J

(21)

To maximize the operation profit, the RTO problem is formulated as Equation (22).

min
R,D,B,xD ,xB

− Pro f it(R, D, B, xD, xB) (22a)

s.t. F1(D, B) = 0 (22b)

F2(D, B, xD, xB) = 0 (22c)

F3(D, xD, xB, R) = 0 (22d)

R ∈ [0, ∞] (22e)

D ∈ [0, 1] (22f)

B ∈ [0, 1] (22g)

xD ∈ [0, 1] (22h)

xB ∈ [0, 1] (22i)

Equation (22a) minimizes the negative profit with respective to five optimization variables R, D,
B, xD,xB. The first three constraint Equation (22b), Equation (22c), and Equation (22d) are the
steady-state model of Equation (14), Equation (15) and Equation (19), as discussed in Section 4.1.2. The
neural network model xn = FNN,1(yn) replaces xn = yn

α−(α−1)yn
in Equation (19). Constraints on the

optimization variables are determined based on process parameters. Specifically, reflux ratio R can be
any positive number; D and B should be between 0 and 1 because the feed had only 1 kmol/s; xD and
xB should be also between zero and one because they are mole fractions. Since there are two degrees of
freedom in the optimization problem, two steady-state values are sent to the controllers as set-points.

4.3.2. Controller Design

Six controllers were added in the distillation column, four of which had fixed set-points and two
of which received set-points from RTO. The control scheme is shown in Figure 12.
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Figure 12. A schematic diagram of the control structure implemented in the distillation column.
Flow rate controller FC, pressure controller PC, and both level controllers LC1 and LC2 have fixed
set-points, and concentration controller CC and temperature controller TC receive set-points from
the RTO.

(1) A flow rate controller FC is controlling the feed mole flow rate at 1 kmol/s by manipulating feed
valve V1. A fixed feed flow rate helps to fix the parameters in the first-principles steady-state model.

(2) A pressure controller PC is controlling the column top pressure at 16.8 atm by manipulating
condenser heat duty Qtop. A fixed column pressure helps to operate the process with fixed
thermodynamic properties.

(3) A level controller LC1 is controlling the reflux drum liquid level at 5.1 m by manipulating the
distillate outlet valve V2. A certain liquid level in the condenser is required to avoid flooding or drying.

(4) A level controller LC2 is controlling the reboiler liquid level at 6.35 m by manipulating the
bottom outlet valve V3. A certain liquid level in the reboiler is required to avoid flooding or drying.

(5) A concentration controller CC is controlling the distillate C3 mole fraction by manipulating the
reflux mole flow rate. A time delay of 5 min was added to simulate the concentration measurement
delay. At the beginning of each RTO period, RTO sends the optimized distillate C3 mole fraction xD to
concentration controller CC as the set-point. Then, controller CC adjusts the reflux flow to track the
mole fraction to its set-point.

(6) A temperature controller TC is controlling temperature T7 on Tray 7, by manipulating reboiler
heat duty Qbottom. A time delay of 1 min was added to simulate the temperature measurement delay.
Tray temperature control is common in industry, and two methods were carried out to determine the
best tray temperature to be controlled. A steady-state simulation was used to obtain the temperature
profile along the tube to find out that the temperature changes among Tray 6, Tray 7, and Tray 8
were greater than those among other trays. One more simulation was performed to get the gain of
tray temperature as a response to a small change in the reboiler heat duty. It was also found that the
temperature on Tray 7 had a greater gain than those on other trays. As a result, Tray 7 was chosen as
the controlled variable.
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At the beginning of the RTO period, RTO optimizes the profit and calculates a set of steady-states.
Given the optimum value of R, D, B, xD,xB, the steady-state model of F1 = 0, F2 = 0, and F3 = 0
were used again to obtain the concentration profile in the distillation column. Then, the neural
network model Tn = FNN,2(yn) was used to calculate the temperature on Tray 7. After that, the tray
temperature T7 was sent to the controller TC and will be tracked to its set-point by manipulating the
reboiler heat duty.

Flow rate controller FC, pressure controller PC, and both level controllers LC1 and LC2 had
fixed set-points, which stabilized the process to operate at fixed operation parameters. Concentration
controller CC and temperature controller TC received set-points from RTO at the beginning of RTO
period and drove the process to more profitable steady-state. All the PI parameters were tuned by the
Ziegler–Nichols method and are shown in Table 3.

Table 3. Proportional gain and integral time constant of all the PI controllers in the distillation
case study.

KC τI /min

FC 0.5 0.3
PC 15 12
LC1 2 150
LC2 4 150
CC 0.1 20
TC 0.6 8

4.4. Simulation Results

To demonstrate the effectiveness of RTO, a variation in feed mole fraction xF was introduced to
the process, as shown in Figure 13. At the beginning of each RTO period (20 h), one measurement of
feed mole fraction xF was sent to RTO to optimize the profit. Then, a set of steady-states was achieved
from RTO and was sent to the controllers as set-points.
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Figure 13. The feed concentration profile of the distillation column, which is changing with respect
to time.

The simulation results are shown in Figures 14 and 15. In Figure 14, the set-point of xD increases as
feed concentration xF increases at the beginning of simulation, because higher distillate concentration
is more profitable and more feed concentration xF allows further separation to achieve a higher
concentration in the distillate. The set-point for xD also decreased later when feed concentration xF
decreased. At the beginning of the simulation, reflux flow increased to reach higher xD set-points,
and reflux flow never reached a steady-state during the whole simulation because the feed component
kept changing as shown in Figure 13. In some cases, the mole fraction xD did not track exactly the
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set-point because of the ever-changing feed, too small set-point change, and coupled effect with other
variables and controllers.

Figure 15 illustrates the performance of temperature controller TC. When the feed xF increased,
the set-point for Tray 7 temperature T7 decreased according to RTO. The controller then manipulated
the reboiler heat duty to track the tray temperature with a good performance as shown in Figure 15.
It is noted in Figure 15 that the reboiler heat duty increased as tray temperature decreased at the
beginning of the simulation. The reason is that the reboiler heat duty mainly dependent on the liquid
flow into the reboiler and the vapor flow leaving the reboiler. Since the reflux flow was increased by
the concentration controller CC at the beginning of simulation, both the liquid flow into the reboiler
and vapor leaving the reboiler increased, thus increasing reboiler heat duty.
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Figure 14. Controlled output xD and manipulated input re f lux f low for the concentration controller
CC in the distillation process under the proposed RTO scheme.
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Figure 15. Controlled output T7 and manipulated input reboiler heatfor the temperature controller TC
in the distillation process under the proposed RTO scheme.

Other controllers stayed at the fixed set-points throughout the simulation by adjusting their
manipulated inputs. Therefore, we are not showing the plots for other controllers. It is demonstrated
in Figure 16 that the RTO increased the operation profit when distillation column had a varying
feed concentration. The profit in Figure 16 was calculated by the profit definition of Equation (20),
using the closed-loop simulation data for variables D, B, F, and R. The black line is the operation
profit calculated by the closed-loop simulation where the four controllers (FC, PC, LC1, and LC2) had
fixed set-points and the two controllers (CC and TC) had varying set-points from RTO. The blue line
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is the simulation where the set-points of all controllers were fixed at the initial steady-state and the
controlled variables stayed at the initial set-point by adjusting manipulated variables in the presence
of the same feed variation in Figure 13. Although the feed concentration kept changing each second
and RTO updated the steady-state only each 20 h, the profit was still improved significantly by RTO,
as shown in Figure 16.

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7
without RTO

with RTO

Figure 16. Comparison of the operation profit for the distillation process for closed-loop simulations
with and without RTO adapting for change in the feed concentration.

In this case study, a neural network model was combined only with the steady-state first-principles
model, not the dynamic model. Additionally, it was demonstrated that the steady-states calculated by
RTO using a combination of models were very close to the steady-state values in the Aspen simulator,
which means that the combination of the neural network model and first-principles model was of high
accuracy. The neural network model was used to represent the phase equilibrium properties for RTO
to calculate the optimal steady-state in this work. Neural network models can be useful when the
phase equilibrium is highly nonlinear such that the first-principles model is inaccurate. Additionally, it
can be used when a large number of states are included in thermodynamic equations, such as pressure
or more concentrations for the multi-component case.

5. Conclusions

In this work, we presented a method for integrating neural network modeling with first-principles
modeling in the model used in RTO and MPC. First, a general framework that integrates neural network
models with first-principle models in the optimization problems of RTO and MPC was discussed.
Then, two chemical process examples were studied in this work. In the first case study, a CSTR
with reversible exothermic reaction was utilized to analyze the performance of integrating the neural
network model and first-principles model in RTO and MPC. Specifically, a neural network was first
built to represent the nonlinear reaction rate. An RTO was designed to find the operating steady-state
providing the optimal balance between the energy cost and reactant conversion. Then, an LMPC
was designed to stabilize the process to the optimal operating condition. A variation in energy price
was introduced, and the simulation results demonstrated that RTO minimized the operation cost and
yielded a closed-loop performance that was very close to the one attained by RTO/MPC using the
first-principles model. In the second case study, a distillation column was studied to demonstrate an
application to a large-scale chemical process. A neural network was first trained to obtain the phase
equilibrium properties. An RTO scheme was designed to maximize the operation profit and calculate
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the optimal set-points for the controllers using a neural network model with a first-principles model.
A variation in the feed concentration was introduced to demonstrate that RTO increased operation
profit for all considered conditions. In closing, it is important to note that the two simulation studies
only demonstrated how the proposed approach can be applied and provided some type of “proof of
concept” on the use of hybrid models in RTO and MPC, but certainly, both examples yield limited
conclusions and cannot substitute for an industrial/experimental implementation to evaluate the
proposed approach, which would be the subject of future work.
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