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INTRODUCTION

• Incentives for chemical process control.

Regulations

Chemical Process
ProductsRaw Materials

Safety

Economics
Envir.

Production
Specs.

¦ Need for continuous monitoring and external intervention (control).

• Objectives of a process control system.

¦ Ensuring stability of the process.

¦ Suppressing the influence of external disturbances.

¦ Optimizing process performance.



BASIC CONCEPTS IN PROCESS CONTROL

• Process variables.
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• Feedback control loop.
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¦ Controller synthesis based on a fundamental process model.



PROCESS CONTROL RESEARCH IN OUR GROUP

Control and Estimation of Nonlinear Systems
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LUMPED CHEMICAL PROCESSES

• Example: continuous stirred tank reactor.
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• Models: Systems of nonlinear ordinary differential equations.

dx

dt
= f(x) + g(x)u

y = h(x)

• Approaches for nonlinear controller design.

¦ Geometric control.

¦ Lyapunov-based control.

¦ Model predictive control.



DISTRIBUTED CHEMICAL PROCESSES

• Diffusion-convection-reaction processes.

¦ Control of spatially-distributed profiles.

• Processes with coupled macroscopic and microscopic phenomena.

¦ Control of material microstructure.

• Fluid dynamic systems.

¦ Control for wave suppression, drag reduction and delay of separation.

• Particulate processes.

¦ Control of particle size distribution.

• Typical process models:

¦ Nonlinear parabolic partial differential equations (PDEs).

¦ Coupled PDE and molecular dynamics / Monte-Carlo models.

¦ Navier-Stokes equations.

¦ Nonlinear integro-differential equations.



HISTORICAL PERSPECTIVE

• 1950s and 1960s: lumping.

¦ Distributed nature is neglected.

• 1970s and up to mid 1980s: optimal control (Ray, 1981).

¦ Formulations for linear/nonlinear distributed systems.

¦ Infinite-dimensional controllers / high-order discretizations.

¦ Linearization is typically employed to speed up calculations.

• mid 1980s to mid 1990s: almost no activity.

¦ Control of nonlinear finite-dimensional systems.

• mid 1990s: resurgence of interest.

¦ New actuation / sensing techniques that allow control of distributed
objectives become available.

¦ Need to actively control spatial profiles, material microstructure,
aerodynamic flows and size distributions becomes clear.



PARABOLIC PDE SYSTEMS

• Systems of parabolic partial differential equations:

∂x̄

∂t
= A

∂x̄

∂z
+ D

∂2x̄

∂z2
+ f(x̄) + wū(z, t)

ȳc(z, t) = kx̄, ȳm(z, t) = ωx̄

• Boundary conditions:

C1x̄(α, t) + B1
∂x̄

∂z
(α, t) = R1, C2x̄(β, t) + B2

∂x̄

∂z
(β, t) = R2

x̄(z, t): state variable

ū(z, t): manipulated variable

ȳm(z, t): measured variable

ȳc(z, t): controlled variable

• Boundary control can be included in the above formulation.



RAPID THERMAL CHEMICAL VAPOR DEPOSITION

Quartz Process Chamber

Reactant Gases

Lamp Bank C

Lamp Bank B

Lamp Bank A

Positioning Arm
Retracting and Rotating

Steel Loading Chamber

• Process objective:

¦ Deposit a 0.5 µm polycrystalline silicon thin film on the wafer.

• Operation:

¦ The wafer is heated up to 1200 K with a heating rate of 150 (K/s).

• Control objective:

¦ Manipulate the power of the top lamps to achieve uniform temperature
across the wafer.



SPECIFICATION OF THE CONTROL PROBLEM
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ui(t) : i− th manipulated input

bi(z) : distribution function of i− th control actuator

yi
c(t) : i− th controlled output

ci(z): performance specification function

yκ
m(t) : κ− th measured output

sκ(z): measurement sensor shape function

∂x̄

∂t
= A

∂x̄

∂z
+ D

∂2x̄

∂z2
+ f(x̄) + w

l∑

i=1

bi(z)ui(t)

yi
c(t) =

∫ β

α

ci(z)kx̄(z, t)dz, yκ
m(t) =

∫ β

α

sκ(z)ωx̄(z, t)dz



RAPID THERMAL CHEMICAL VAPOR DEPOSITION

Quartz Process Chamber

Reactant Gases

Measured Temperatures

Lamp Bank C

Lamp Bank B

Lamp Bank A

Positioning Arm
Retracting and Rotating

Steel Loading Chamber

• Control problem specification:

¦ Four concentric independently-controlled lamps are used on the top.

¦ Control of temperature profile across the wafer.

¦ Temperature measurements at five locations across the wafer are
available.



PROPERTIES OF PARABOLIC PDEs

• Parabolic PDEs:

∂x̄

∂t
= A

∂x̄

∂z
+ D

∂2x̄

∂z2
+ f(x̄) + w

l∑

i=1

bi(z)ui(t)

• Eigenvalue problem:

A
∂φi

∂z
+ D

∂2φi

∂z2
= λiφi

C1φi(α) + B1
∂φi

∂z
(α) = R1,

C2φi(β) + B2
∂φi

∂z
(β) = R2

λi: eigenvalue; φi: eigenfunction.



PROPERTIES OF PARABOLIC PDEs

• Typical structure of eigenspectrum:

Re

Im

• A finite number of dominant modes practically determines the system
dynamics.



NONLINEAR CONTROL OF PARABOLIC PDEs

(Christofides, Birkhäuser, 2001)

• Derivation of low-dimensional ODE models.

¦ Singular perturbation formulation of Galerkin’s method.

¦ Inertial manifolds and approximate inertial manifolds.

• Feedback controller synthesis.

¦ Nonlinear control methods for ODE systems.

• Characterization of closed-loop stability and transient performance.

¦ Singular perturbations and Lyapunov techniques.



GALERKIN’S METHOD

• Hs = span{φ1, φ2, . . . , φm}, Hf = span{φm+1, φm+2, . . . , }.

xs(t) = Psx(t), xf (t) = Pfx(t)

Ps, Pf : orthogonal projection operators.

xs: state vector corresponding to slow eigenmodes.

xf : state vector corresponding to fast eigenmodes.

• Set of infinite ODEs.

dxs

dt
= Asxs + bsu + fs(xs, xf )

∂xf

∂t
= Afxf + bfu + ff (xs, xf )



GALERKIN’S METHOD

Singular Perturbation formulation

• ε =
|Reλ1|
|Reλm+1| < 1.

dxs

dt
= Asxs + bsu + fs(xs, xf )

ε
∂xf

∂t
= Afεxf + εbfu + εff (xs, xf )

• Setting ε = 0:
dx̄s

dt
= Asx̄s + bsu + fs(x̄s, 0)

x̄f = 0

• Closeness of solutions (u(t) ≡ 0, ε sufficiently small):

¦ ||x− x̄s||2 = O(ε), ∀ t ≥ 0.

High-dimensionality of the ODE system for desired accuracy?



INERTIAL MANIFOLD

• Inertial manifold: a finite-dimensional invariant manifold M :

xf = Σ(xs, u, ε)

• On M the solutions are exactly described by the ODE slow system:

dxs

dt
= Asxs + bsu + fs(xs, Σ(xs, u, ε))

• Σ(xs, u, ε) is the solution of:

ε
∂Σ
∂xs

[Asxs + bsu + fs(xs, xf )] + ε
∂Σ
∂u

u̇ = Afεxf + εbfu + εff (xs, xf )



APPROXIMATE INERTIAL MANIFOLDS

• Procedure for the construction of approximations of Σ(xs, u, ε).

¦ Series expansion in ε.

u(xs, ε) = u0(xs, ε) + εu1(xs, ε) + · · ·+ εkuk(xs, ε) + O(εk+1)

Σ(xs, u, ε) = Σ0(xs, u) + εΣ1(xs, u) + · · ·+ εkΣk(xs, u) + O(εk+1)

¦ Substitution into the manifold equation.

• Results:

O(ε) approximation: Σ0(xs, u) = 0.

O(ε2) approximation: Σ1(xs, u) = (Af )−1[−bfu0 − ff (xs, 0)].

...



APPROXIMATE INERTIAL FORM

• Approximate inertial form.

dx̄s

dt
= Asx̄s + bsu

+fs(x̄s, Σ0(x̄s, u) + εΣ1(x̄s, u) + · · ·+ εkΣk(x̄s, u))

ycs = C(x̄s + Σ0(x̄s, u) + εΣ1(x̄s, u) + · · ·+ εkΣk(x̄s, u))

• Closeness of solutions (u(t) ≡ 0, ε sufficiently small):

||x(t)− x̄s(t)||2 = O(εk+1), ∀t ≥ tb,

tb: time required for xf (t) to approach Σ(xs, u, ε).



NONLINEAR OUTPUT FEEDBACK CONTROL

• Controller synthesis: combination of state feedback with state observers.

¦ State feedback controller synthesis.

u = u0 + εu1 + · · ·+ εkuk

. Synthesize u0 on the basis of O(ε) slow system.

. Synthesize u1 on the basis of O(ε2) slow system.

. ...

¦ State observer:
dη

dt
= Asη + bsu + fs(η, Σ0(η, u) + εΣ1(η, u) + · · ·+ εkΣk(η, u))

+L(ym − S(η + Σ0(η, u) + εΣ1(η, u) + · · ·+ εkΣk(η, u))

• Performance characterization:

yi
c(t) = yc

i
s(t) + O(εk+1) , i = 1, . . . , l , t ≥ tb



CONTROL OF PARABOLIC PDEs: SUMMARY OF RESULTS

• Robust control of PDEs with uncertainty (Christofides, CES,
1998; Christofides and Baker S & CL, 1999).

• Nonlinear control of PDEs with time-delays (Antoniades
and Christofides, IJC, 2000).

• Bounded control of PDEs with actuator saturation
(El-Farra, Armaou and Christofides, Automatica, 2003).

• Nonlinear control of PDEs with nonlinear spatial differential operators
(Baker and Christofides, I & EC Research, 1999; IJC, 2000).

• Nonlinear and robust control of PDEs with time-dependent spatial
domains (Armaou and Christofides, JMAA, 1999; Automatica, 2000;
IJAMCS 2001).

• Integration of optimal actuator/sensor placement and nonlinear
control (Antoniades and Christofides, C & CE, 2000; CES 2001;
C & CE, 2002; IEEE CST, 2003).



APPLICATIONS TO TRANSPORT-REACTION PROCESSES

• Diffusion-reaction processes with various kinetic mechanisms,
time-dependent spatial domains and spatially-varying coefficients
(Christofides, Birkhäuser, 2001).

¦ Stabilization of spatially-distributed profiles.

• Tubular reactors with/without recycle loops (Antoniades and Christofides,
NA, 2001).

¦ Control of reactor temperature profiles.

• Chemical vapor deposition processes (Armaou and Christofides, CES, 1999;
Baker and Christofides, IJC, 2000).

¦ Control of wafer temperature profile and deposition rate.

• Czochralski crystallization of high-purity crystals (Armaou and
Christofides, AIChE J., 2001).

¦ Crystal temperature and thermal gradient control.



RAPID THERMAL CHEMICAL VAPOR DEPOSITION

Quartz Process Chamber

Reactant Gases

Measured Temperatures

Lamp Bank C

Lamp Bank B

Lamp Bank A

Positioning Arm
Retracting and Rotating

Steel Loading Chamber

• Manipulate the power of the top lamps to achieve uniform
temperature across the wafer.

• Four concentric independently-controlled lamps are used on the top.

• Temperature measurements at five locations across the wafer are
assumed to be available.

• Low pressure; radiation is the dominant heat transfer mechanism.



RAPID THERMAL CHEMICAL VAPOR DEPOSITION
(e.g., Breedijk et al., ACC, 1993, Theodoropoulou et al., IEEE TSM, 1997)

• Wafer energy balance:

ρwTamb
∂

∂t

(
Cpw(T )T

)
=

Tamb

R2
w

1
r

∂

∂r

(
κ(T )r

∂T

∂r

)
− qrad(T, r)

δz

• Boundary conditions:

∂T

∂r

∣∣∣∣∣
r=0

= 0, (κ(T )
∂T

∂r
)

∣∣∣∣∣
r=1

= −σεwT 4
amb(T

4 − T 4
c ) + qedgeub

• Energy balance on the chamber:

TambMc
dTc

dt
= εcQlampsu−Ahem qhem −Acyl qcyl −Qconvect

−σεcAcT
4
amb(T

4
c − 1)



RAPID THERMAL CHEMICAL VAPOR DEPOSITION
(e.g., Breedijk et al., ACC, 1993, Theodoropoulou et al., IEEE TSM, 1997)

• Mass balances on the chamber:

dXSiH4

dt
= −α

∫

Aw

Rs dAw +
1
τ

(Xin
SiH4

−XSiH4)

dXH2

dt
= 2α

∫

Aw

Rs dAw − 1
τ

XH2

• Deposition rate:

dS

dt
=

MWSi

ρSi

k0 exp

(
−γ

R T Tamb

)
XSiH4Ptot

1 + bXSiH4Ptot +

√
XH2Ptot

c



RAPID THERMAL CHEMICAL VAPOR DEPOSITION
Methodology for nonlinear controller design

• Finite-difference method is used to develop a detailed simulation
of the process model.

• Data of the detailed process simulation are used to compute
the four dominant empirical eigenfunctions via Karhunen-Loeve
decomposition.

• Orthogonal collocation formulation of Galerkin’s method with
5 collocation points.

• Derivation of a fifth-order ODE model.

• Nonlinear output feedback controller design.



RAPID THERMAL CHEMICAL VAPOR DEPOSITION
Open-loop simulation results

Spatiotemporal wafer temperature profile - a) full model, b) reduced model.
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RAPID THERMAL CHEMICAL VAPOR DEPOSITION
Closed-loop simulation results

Spatiotemporal wafer temperature profile under nonlinear control.
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RAPID THERMAL CHEMICAL VAPOR DEPOSITION
Closed-loop simulation results

Spatiotemporal wafer temperature profile under nonlinear control in the
presence of uncertainty.
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CONTROL OF CZOCHRALSKI CRYSTAL GROWTH
(Armaou and Christofides, AIChE J., 2001)

Heater

Crystal

Melt

Pedestal

Heat Shield

• Process objective: Growth of a 0.7m silicon crystal.

• Control objective: Smooth axial temperature drop inside the crystal.



CZOCHRALSKI CRYSTAL GROWTH
Mathematical model

• Energy balance on the crystal:

∂Tc

∂t
+ up

∂Tc

∂z
=

k

ρcp

[
1
r

∂

∂r

(
r
∂Tc

∂r

)
+

∂2Tc

∂z2

]

• Boundary conditions:

Tc(r, 0, t) = Tmp, 0 ≤ r ≤ R

∂Tc

∂r

∣∣∣∣
0

= 0, 0 ≤ z ≤ l(t)

k

σ

∂Tc

∂r

∣∣∣∣
R

=εwcrεwmFcr→m(R, z)[T 4
m − T 4

c (R, z, t)]

+εwcrεwch
Fcr→ch(R, z)[T 4

ch − T 4
c (R, z, t)]

+εwcrεwamb
Fcr→amb(R, z)[T 4

amb − T 4
c (R, z, t)], 0 ≤ z ≤ l(t)



CZOCHRALSKI CRYSTAL GROWTH
Mathematical model

• Boundary conditions:

k

σ

∂Tc

∂z

∣∣∣∣
l(t)

=εwcrεwmFcr→m(r, l(t))[T 4
m − T 4

c (r, l(t), t)]

+εwcrεwch
Fcr→ch(r, l(t))[T 4

ch − T 4
c (r, l(t), t)]

+εwcrεwamb
Fcr→amb(r, l(t))[T 4

amb − T 4
c (r, l(t), t)], 0 ≤ r ≤ R

• Moving boundary:

l(t) = l(0) + Vp(t)t, Vp(t) =
Vp, l(t) < lmax

0, l(t) = lmax

,

l(0) = 0.05 m, lmax = 0.7 m



CZOCHRALSKI CRYSTAL GROWTH
Simulation of open-loop system

Time evolution of crystal temperature profile.

0

0.1

0.2

z (m)

0 0.01 0.03 0.05
r (m)

0
0.05

0.15

0.25

0.35

z (m)

0 0.01 0.03 0.05
r (m)

0

0.1

0.2

0.3

0.4

0.5

z (m)

0 0.01 0.03 0.05
r (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z (m)

0 0.01 0.03 0.05
r (m)



CZOCHRALSKI CRYSTAL GROWTH
Control problem specification

Heater

Crystal

Melt

Pedestal

Heat Shield

• Heater temperature is used as the manipulated input.

• Control objective: smooth temperature drop along the length of the crystal.

• Three point measurements of the crystal temperature are available.



CZOCHRALSKI CRYSTAL GROWTH
Accuracy of Galerkin/AIM: 4/4 approximation

Time evolution of maximum temperature difference.
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CZOCHRALSKI CRYSTAL GROWTH
Galerkin/AIM model-based controller: 4/4

Time evolution of crystal temperature profile - nominal case.
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CZOCHRALSKI CRYSTAL GROWTH
Galerkin/AIM model-based controller: 4/4

Crystal temperature profile at t = 45000 s.
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CONTROL OF PARTICULATE PROCESSES
(Christofides, Kluwer Academic, 2002)

• Example: continuous crystallization.

Crystals

Solute

Product

• Population balance equation:

∂n

∂t
= −∂(k1(c− cs)n)

∂r
− n

τ
+ δ(r − 0)εk2exp(− k3(

c
cs
− 1

)2 )

• Mass balance equation:

dc

dt
=

(c0 − ρ)
ετ

+
(ρ− c)

τ
+

(ρ− c)
ε

dε

dt
, ε = 1−

∫ ∞

0

n(r, t)
4
3
πr3dr

• Control objective: Produce crystals with a desired size distribution.



CONTROL OF THIN FILM MICROSTRUCTURE
(Lou and Christofides, CES, 2003; AIChE J. 2003)

Adsorption

Influent Gas Stream

Plasma

Showerhead

Effluent Gas Stream

Electrodes

Wafer

StepKink

Desorption
Migration

Surface

• Multiscale control objectives.

¦ Reduction of film spatial nonuniformity (especially for large wafer
dimensions).

¦ Achievement of desired film composition and roughness.

• Estimation and control design using multiscale (deterministic / stochastic)
distributed models.

¦ Linking the macroscale (manipulated inputs) and microscale (control
objectives).



PECVD ZrO2 FILMS / EXPERIMENTAL RESULTS
(Cho et. al, J. Appl. Phys., 2003)

• Root-mean-square (Rms) roughness decreases as the O2/Ar flow rate ratio
increases.

Atomic force microscopy of PECVD ZrO2 films obtained at 40 mTorr and
300 W for different O2/Ar flow rate ratios. The measured Rms roughnesses
are: (a) Rms=26.4 at O2/Ar=0.25, (b) Rms=22.5 at O2/Ar=0.5, (c)
Rms=1.4 at O2/Ar=1, (d) Rms=1.5 at O2/Ar=2.0.



MULTISCALE MODELING OF THIN FILM GROWTH

Desorption

Gas phase

MigrationAdsorption
Surface

• Problems due to the large disparity of time and length scales of phenomena
occurring in gas phase and surface:

¦ The assumption of continuum is not valid on the surface.

¦ Computationally impossible to model the whole system from a
molecular point of view.

• Solution to bridge the macroscopic and microscopic scales:

¦ Model the continuous gas phase by PDEs.

¦ Model the configuration of the surface by Monte-Carlo techniques.

¦ Incorporate the results of MC simulation to PDEs via boundary
conditions.



GAS PHASE MODEL

• Conservation of momentum, energy and mass in a stagnation flow
geometry (Sharma, et. al. Combust. Sci. Technol., 1969):

∂

∂τ
(
∂f

∂η
) =

∂3f

∂η3
+ f

∂2f

∂η2
+

1
2
[
ρb

ρ
− (

∂f

∂η
)2]

∂T

∂τ
=

1
Pr

∂2T

∂η2
+ f

∂T

∂η
∂yi

∂τ
=

1
Scj

∂2yi

∂η2
+ f

∂yi

∂η

• Boundary conditions:

For (η →∞): T = Tbulk,
∂f

∂η
= 1,

yj = yjb, j = 1, . . . , Ng

For (η → 0): T = Tsurface, f = 0,
∂f

∂η
= 0

∂yi

∂η
=

Scgrowing(Ra −Rd)√
2aµbρb



SURFACE MICROSTRUCTURE MODEL

• Kinetic Monte-Carlo model:

¦ First-nearest-neighbor interactions only.

¦ Solid-on-solid approximation of a simple cubic lattice.

¦ Adsorption, desorption and migration only.

¦ Periodic boundary conditions.

• Rates of adsorption, desorption and migration:

ra =
s0P

2a
√

2πmkTCtot

rd(n) =
ν0

2a
exp(−nE

kT
)

rm(n) =
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SURFACE MICROSTRUCTURE MODEL

• The life time of every MC event is determined by a random number and
the total rate:

∆τ =
− ln ξ

rtot

rtot = ra ×NT + ν0(1 + A)
5∑

m=1

Nm exp(
−mE

kT
)

ξ: a random number in the (0, 1) interval.
NT : total number of sites.
Nm: number of surface atoms that have m neighbors on the surface.



SIMULATION OF SURFACE ROUGHNESS

• Thin film microstructure and surface microprocesses.

¦ Adsorption events roughen the surface.

¦ Migration and desorption smoothen the surface.

• Effect of substrate temperature on surface roughness.

¦ High temperature reduces surface roughness by increasing the rates of
desorption and migration.

¦ Left figure: configuration of film surface at T=600K.

¦ Right figure: configuration of film surface at T=950K.



CONTROL PROBLEM / CONTROLLER DESIGN
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• Surface configuration/roughness is computed using a kinetic MC model
that employs a large lattice.

• A feedback controller, using a roughness estimator, is used to control the
surface roughness by adjusting substrate temperature.

• Roughness measurements (infrequent) can be obtained using scanning
tunnelling microscopy and atomic force microscopy.



MULTISCALE CLOSED-LOOP SIMULATION RESULTS

• Initial growth at T = 600K.

• Initial roughness is 15.5.

• The desired roughness is 1.5.

Left figure: average surface roughness under feedback control.

Right figure: configuration of film surface under feedback control.
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REAL-TIME CARBON CONTENT CONTROL IN PECVD
(Ni, Christofides and Chang, Proc. ACC, 2003)

• PECVD ZrO2 in an electron cyclotron resonance (ECR) reactor.

• Real-time carbon content estimator based on optical emission spectroscopy
(OES) measurements.

• Feedback control of the carbon content in the ZrO2 film.
¦ Controller design based on the real-time carbon content estimates.
¦ Control the carbon content in the film by manipulating the mass flow

rate of O2.



REAL-TIME CARBON CONTENT ESTIMATION USING OES

• Real-time measurements of optical emission intensity ratio of C2 and O

from OES.

• Correlation of carbon content with optical emission intensity ratio of C2

and O obtained from XPS measurements (Cho et al., 2001).

• Real-time carbon content estimation model:

N(k) =
4.69

k − k0
γ(k) + N(k − 1)

k − k0 − 1
k − k0

k > k0



REAL-TIME CARBON CONTENT CONTROL SYSTEM
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• Carbon content was estimated from OES measurement of intensity ratio of
C2 and O in real-time.

• Control the carbon content to desired level by manipulating the O2 mass
flow rate.

• The control problem is formulated as a set-point regulation problem.

¦ Response time of the closed-loop system is significantly smaller than the
total deposition time.



EXPERIMENTAL RESULTS OF CLOSED-LOOP SYSTEM

• Film carbon content is controlled at the desired values
(verification via XPS).

• Film carbon content is significantly reduced under feedback control.



SUMMARY

• Methods for nonlinear order reduction and control
for various classes of nonlinear distributed parameter systems.

¦ Galerkin’s method - approximate inertial manifold.

¦ Control design using geometric and Lyapunov techniques.

¦ Control using MC models.

• Applications to complex distributed processes.

¦ Temperature profile / roughness / composition control in CVD.

¦ Temperature / thermal gradient control in crystal growth.

¦ Control of size distribution in crystallization.

• Research challenges (Christofides, AIChE J. (Perspective), 2001).
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