DISTRIBUTED NONLINEAR CONTROL OF DIFFUSION-REACTION PROCESSES

Stevan Dubljevic¹, Panagiotis D. Christofides¹ and Ioannis G. Kevrekidis²

¹Department of Chemical Engineering University of California, Los Angeles

²Department of Chemical Engineering Princeton University

INTRODUCTION

- Spatially-distributed systems.
 - ♦ Representative examples:
 - > Transport-reaction processes.
 - ▶ Fluid dynamic systems.
 - ♦ Control problem: Stabilization and/or regulation of spatially distributed variables using a small number of spatially-distributed control actuators and measurement sensors.

♦ Highly dissipative partial differential equation (PDE) systems.

BACKGROUND ON CONTROL OF DISSIPATIVE PDES

• Standard approach:

```
(e.g., Balas, IJC, 1979; Ray, 1981, Curtain, 1982).
```

- ♦ Derivation of ODE models using eigenfunction expansions.
- ♦ Controller design using methods for ODEs.
- ♦ High-dimensionality of the controller?
- Synthesis of nonlinear low-order controllers: (Christofides, Birkhäuser, 2001).
 - ♦ Derivation of low-order ODE models using Galerkin's method and approximate inertial manifolds.
 - ♦ Nonlinear, robust and constrained control.
- Other approaches:
 - ♦ Controller design based on infinite-dimensional system (e.g., Burns and King, J. Vibr. & Contr., 1998).
 - ♦ Stabilization via Lyapunov-based boundary feedback (e.g., Liu and Krstic, NA, 2001).

DISTRIBUTED ACTUATION AND SENSING

Distributed temperature control

(Papathanasiou et. al., CPL, 2002)

(Ho and Tai, ARFM, 1998)

• Exploit large number of degrees of freedom in actuation/sensing to create complex spatio-temporal behavior in the closed-loop system.

PRESENT WORK

(Dubljevic, Christofides and Kevrekidis, IJRNC, 2003)

- Distributed nonlinear control of diffusion-reaction processes described by quasi-linear parabolic PDEs.
 - ♦ Control problem formulation:
 - ▶ Large numbers of actuators/sensors are available.
 - ▶ Desired behavior described by a "target parabolic PDE".
 - ♦ Methodology for controller design:
 - ▷ Order reduction using Galerkin's method.
 - ▶ Nonlinear state/output feedback controller design using geometric control methods.
 - ♦ Application to diffusion-reaction processes.

QUASI-LINEAR PARABOLIC PDE SYSTEMS

• System description

$$\frac{\partial \bar{x}}{\partial t} = B \frac{\partial^2 \bar{x}}{\partial z^2} + w \sum_{i=1}^m b_i(z) u_i + f(\bar{x})$$
$$y_m^{\kappa} = \int_0^{\pi} s^{\kappa}(z) \omega \bar{x}(z, t) dz \qquad \kappa = 1, \dots, p$$

• Boundary conditions:

$$\bar{x}(0,t) = 0, \ \bar{x}(\pi,t) = 0$$

- \diamond $\bar{x}(z,t)$: state variable \diamond $z \in [0,\pi]$: spatial coordinate
- $\diamond u^i(t)$: manipulated input $\diamond b^i(z)$: actuator function
- $\diamond y_m^{\kappa}(t)$: measured output $\diamond s^{\kappa}(z)$: sensor shape function
- $\diamond m$: number of actuators $\diamond f(\bar{x})$: nonlinear function

DESIRED SPATIO-TEMPORAL BEHAVIOR

• "Target parabolic PDE system":

$$\frac{\partial \bar{x}}{\partial t} = B \frac{\partial^2 \bar{x}}{\partial z^2} + \hat{f}(\bar{x}, z, t)$$

• Boundary conditions:

$$\bar{x}(0,t) = 0, \ \bar{x}(\pi,t) = 0$$

- \diamond $\bar{x}(z,t)$: state variable \diamond $\hat{f}(\bar{x},z,t)$: nonlinear function
 - "Target parabolic PDE system" can be generated for a given closed-form expression of desired $\bar{x}(z,t)$.

GALERKIN'S METHOD

- $\mathcal{H}_s = span\{\phi_1, \phi_2, \dots, \phi_m\}$, $\mathcal{H}_f = span\{\phi_{m+1}, \phi_{m+2}, \dots, \}$ P_s , P_f : orthogonal projection operators $x_s(t) = P_s x(t)$: state vector corresponding to first m eigenmodes $x_f(t) = P_f x(t)$: state vector corresponding to remaining eigenmodes
- Set of infinite ODEs:

$$\frac{dx_s}{dt} = A_s x_s + \mathcal{B}_s u + f_s(x_s, x_f)$$

$$\frac{\partial x_f}{\partial t} = A_f x_f + \mathcal{B}_f u + f_f(x_s, x_f)$$

• Neglecting the x_f -subsystem:

$$\frac{d\tilde{x}_s}{dt} = A_s\tilde{x}_s + \mathcal{B}_s u + f_s(\tilde{x}_s, 0), \quad \tilde{x}_f = 0$$

• Other spatial discretization techniques may be used.

NONLINEAR CONTROL DESIGN

- Approximation of PDE systems using Galerkin's method:
 - ♦ Approximation of original PDE system:

$$\frac{d\tilde{x}_s}{dt} = \mathcal{A}_s \tilde{x}_s + \mathcal{B}_s u + f_s(\tilde{x}_s, 0)$$

♦ Approximation of target PDE system:

$$\frac{d\tilde{x}_s}{dt} = \mathcal{A}_s \tilde{x}_s + \hat{f}_s(\tilde{x}_s, t)$$

- ♦ Orders of both finite-dimensional systems are the same and are determined based on the desired accuracy.
- Assumption: Number of control actuators is equal to the order of approximations, and \mathcal{B}_s is invertible.
- Nonlinear state feedback controller:

$$u = \mathcal{B}_s^{-1} \left(-f_s(\tilde{x}_s, 0) + \hat{f}_s(\tilde{x}_s, t) \right)$$

• Closed-loop finite-dimensional system:

$$\dot{\tilde{x}}_s = \mathcal{A}_s \tilde{x}_s + \hat{f}_s(\tilde{x}_s, t)$$

STATE ESTIMATION

$$\frac{dx_s}{dt} = \mathcal{A}_s x_s + \mathcal{B}_s u + f_s(x_s, x_f)$$

$$\frac{\partial x_f}{\partial t} = \mathcal{A}_f x_f + \mathcal{B}_f u + f_f(x_s, x_f)$$

$$y_m = \mathcal{S} x_s + \mathcal{S} x_f$$

- Estimate x_s from the measurements y_m .
- Assumptions:
 - $\diamond \kappa = m \ (\# \text{ of measurements} = \text{ order of the finite-dimensional systems})$
 - $\diamond \mathcal{S}^{-1}$ exists (ODE approximation observable via static output feedback)
 - * Appropriate selection of sensor locations

$$\hat{x}_s = \mathcal{S}^{-1} y_m, \, \hat{x}_s \text{ is an estimate of } x_s$$

NONLINEAR OUTPUT FEEDBACK CONTROL

- Controller structure:
 - ♦ Computation of the control action:

$$u(\hat{x}_s) = \mathcal{B}_s^{-1} \left(-f_s(\hat{x}_s, 0) + \hat{f}_s(\hat{x}_s, t) \right)$$

♦ Estimate of finite-dimensional system state:

$$\hat{x}_s = \mathcal{S}^{-1} y_m$$

• Enforcement of the "target" spatio-temporal behavior in the closed-loop system as $m \to \infty$.

LINEAR PDE SYSTEM UNDER LINEAR STATE FEEDBACK CONTROL

• Original PDE:

$$\frac{\partial \bar{x}}{\partial t} = \frac{\partial^2 \bar{x}}{\partial z^2} + (\beta_T e^{-\gamma} \gamma - \beta_U) \bar{x} + \beta_U b(z) u(t)$$

$$\bar{x}(0,t) = 0, \ \bar{x}(\pi,t) = 0$$

• Target PDE:

$$\frac{\partial \bar{x}}{\partial t} = b \frac{\partial^2 \bar{x}}{\partial z^2} - 4sin(2z)$$

$$\bar{x}(0,t) = 0, \ \bar{x}(\pi,t) = 0$$

• Computation of the sufficient number of actuators and the corresponding state feedback law to make the solution of original system "almost identical" to the solution of the target PDE.

CLOSED-LOOP SIMULATION: LINEAR PDE SYSTEM UNDER LINEAR STATE FEEDBACK CONTROL

• Large number of control actuators is needed.

Profile of the target PDE.

Closed-loop profile (10 actuators).

Closed-loop profile (5 actuators).

Closed-loop profile (2 actuators).

NONLINEAR PDE SYSTEM UNDER LINEAR STATE FEEDBACK CONTROL

• Original PDE:

$$\frac{\partial \bar{x}}{\partial t} = \frac{\partial^2 \bar{x}}{\partial z^2} + \beta_T e^{-\frac{\gamma}{1+\bar{x}}} + \beta_U (b(z)u(t) - \bar{x}) - \beta_T e^{-\gamma}$$

• Target PDE:

$$\frac{\partial \bar{x}}{\partial t} = b \frac{\partial^2 \bar{x}}{\partial z^2} - 4sin(2z)$$

- Is linear feedback control adequate to enforce target behavior with a large number of control actuators?
- Linearize the nonlinear state feedback laws around the steady-state, $\bar{x}(z,t) = 0$, to obtain linear state feedback laws.

CLOSED-LOOP SIMULATION: NONLINEAR PDE SYSTEM UNDER LINEAR STATE FEEDBACK CONTROL

• Failure to enforce the target behavior using linear feedback control with a large number of actuators:

Profile of the target PDE.

Closed-loop profile (20 actuators).

Closed-loop profile (5 actuators).

Closed-loop profile (2 actuators).

NONLINEAR PDE SYSTEM UNDER NONLINEAR STATE FEEDBACK CONTROL

• Original PDE:

$$\frac{\partial \bar{x}}{\partial t} = \frac{\partial^2 \bar{x}}{\partial z^2} + \beta_T e^{-\frac{\gamma}{1+\bar{x}}} + \beta_U (b(z)u(t) - \bar{x}) - \beta_T e^{-\gamma}$$

• Target PDE:

$$\frac{\partial \bar{x}}{\partial t} = b \frac{\partial^2 \bar{x}}{\partial z^2} + \alpha \bar{x} - \beta \bar{x}^3$$

• The use of 5 actuators and nonlinear state feedback controller enforces the desired closed-loop behavior: Closed-loop profiles using 2 actuators (left plot) and 5 actuators (right plot).

NONLINEAR TIME-VARYING TARGET PDE

• Original PDE:

$$\frac{\partial \bar{x}}{\partial t} = \frac{\partial^2 \bar{x}}{\partial z^2} + \beta_T e^{-\frac{\gamma}{1+\bar{x}}} + \beta_U (b(z)u(t) - \bar{x}) - \beta_T e^{-\gamma}$$

• Target PDE:

$$\frac{\partial \bar{x}}{\partial t} = b \frac{\partial^2 \bar{x}}{\partial z^2} + \alpha \bar{x} - \beta \bar{x}^3 + 2.5 \sin(0.5t) \beta_T e^{-\frac{\gamma}{1+\bar{x}}}$$

• The use of 10 actuators and nonlinear state feedback controller enforces the desired closed-loop behavior: Closed-loop profiles using 2 actuators (left plot) and 10 actuators (right plot).

CLOSED-LOOP SIMULATION: NONLINEAR PDE SYSTEM UNDER NONLINEAR OUTPUT FEEDBACK CONTROL

• Original PDE:

$$\frac{\partial \bar{x}}{\partial t} = \frac{\partial^2 \bar{x}}{\partial z^2} + \beta_T e^{-\frac{\gamma}{1+\bar{x}}} + \beta_U (b(z)u(t) - \bar{x}) - \beta_T e^{-\gamma}$$

• Target PDE:

$$\frac{\partial \bar{x}}{\partial t} = b \frac{\partial^2 \bar{x}}{\partial z^2} - 4sin(2z)$$

- State measurements are not available.
- Number of measurement sensors is equal to the number of control actuators.
- Estimation of the states of the finite-dimensional system from the measurements.

NONLINEAR PDE SYSTEM UNDER NONLINEAR OUTPUT FEEDBACK CONTROL

- Comparison of closed-loop profiles under state and output feedback control.
 - ♦ Number of control actuators and measurement sensors: 2.

Left: Closed-loop profile under output feedback control.

Right: Closed-loop profile under state feedback control.

• Discrepancy due to estimation error.

CLOSED-LOOP SIMULATION: NONLINEAR PDE SYSTEM UNDER NONLINEAR OUTPUT FEEDBACK CONTROL

• Comparison of closed-loop profile under nonlinear output feedback control with 5 control actuators and measurement sensors (right plot) to the target profile (left plot).

• Five actuators/sensors suffice to achieve the desired control objective.

CLOSED-LOOP SIMULATION: 2D NONLINEAR PDE SYSTEM UNDER NONLINEAR STATE FEEDBACK CONTROL

• 2D Nonlinear PDE system:

$$\frac{\partial \bar{x}}{\partial t} = \frac{\partial^2 \bar{x}}{\partial z^2} + \frac{\partial^2 \bar{x}}{\partial y^2} + \hat{f}(\bar{x}, t), \quad \bar{x}(z, y, t) = 0 \quad \forall \quad (z, y) \in \Gamma$$

• Original PDE:

$$\hat{f}(\bar{x},t) = 0$$

• Target PDE:

$$\hat{f}(\bar{x},t) = \alpha \bar{x} - \beta \bar{x}^3$$

- State measurements are available.
- Number of control actuators 100.

CLOSED-LOOP SIMULATION: 2D NONLINEAR PDE SYSTEM UNDER NONLINEAR STATE FEEDBACK CONTROL

CONCLUSIONS

- Distributed nonlinear control of diffusion-reaction processes described by quasi-linear parabolic PDEs.
 - ♦ Control problem formulation:
 - ▶ Large numbers of actuators/sensors are available.
 - ▶ Desired behavior described by a "target parabolic PDE".
 - ♦ Methodology for controller design:
 - ▶ Order reduction using Galerkin's method.
 - Nonlinear state/output feedback controller design using geometric control methods.
 - ♦ Application to diffusion-reaction processes.

ACKNOWLEDGMENT

• S. D. and P. D. C. gratefully acknowledge financial support from NSF, CTS-0002626. I. G. K. gratefully acknowledges financial support from AFOSR.