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INTRODUCTION
e Spatially Distributed Processes

¢ Representative examples:

* Transport-reaction processes

* Fluid flows
¢ Regulation of spatially distributed variables using:

* Spatially distributed control actuators/measurement sensors
* Highly dissipative partial differential equation (PDE) systems:

* Infinite-dimensional systems

* Two time-scale separation of eigenspectrum
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BACKGROUND ON CONTROL OF DISSIPATIVE PDEs

e Standard approach:
(e.g., Balas, IJC, 1979; Ray, 1981, Curtain, 1982).

¢ Derivation of ODE models using eigenfunction expansions
¢ Controller design using methods for ODEs

¢ High-dimensionality of the controller?

e Synthesis of nonlinear low-order controllers:
(Christofides, Birkhduser, 2001)

¢ Derivation of low-order ODE models using Galerkin’s method

and approximate inertial manifolds

> Nonlinear and robust control
> Control of parabolic PDEs with moving domains.

e Lyapunov-based control:

o Stabilization via boundary feedback (e.g. Liu and Krstic, NA, 2001)

Fixed control actuator/measurement sensor configuration




HYBRID CONTROL STRUCTURE
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PRESENT WORK
(El-Farra & Christofides, Comp. & Chem. Eng., submitted, 2002)

e Scope:

¢ Highly dissipative PDE systems with input constraints

e Objectives:

¢ Development of an integrated approach for hybrid control

> Feedback controller design (control algorithm)

> Switching between multiple actuator configurations
* Emsure fault-tolerance
* Ensure constraint satisfaction

* Guarantee closed-loop stability

¢ Application to a diffusion-reaction process



DISSIPATIVE PDE SYSTEMS
e Infinite-dimensional system description:

i = Azx+ Bu(t)+ f(z), z(0) =z * A : differential operator
* B : input operator:
Ye — CZIZ', Ym — Sz p P .
actuators location & type
* x(t) € H :state, u(t) € R™ : control input * S : measurement operator:

sensors location & type

e Eigenvalue problem for A:

A¢J:A]¢ja Jg=1,...,00 * Re{)\l}ZRe{)\Q}Z
Aj @ eigenvalue; ¢; eigenfunction x {¢1,02,...,} complete or-
e Typical structure of eigenspectrum: thonormal set in H
AIm
o * A finite number of dom-
————————» inant modes practically

Re
o determines dynamics




INTEGRATING FEEDBACK AND SWITCHING
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e Problem specifications:

¢ N spatially-distinct actuator configurations available
* Zk(t): location vector for actuators in k-th configuration

*x k(t) € {1,2,---, N} indexes the actuator configuration

- - k k k
o Constraints on each actuator configuration u? € [—uy, .y Urgs)

¢ Only one configuration can be active at a given time

x Finite switches over finite time



INTEGRATING FEEDBACK AND SWITCHING
e Methodology:

¢ Model reduction

x Derivation of low-dimensional ODE models:

¢ Feedback controller synthesis

* Bounded Lyapunov-based nonlinear controller design

¢ Characterizing stability regions for N actuator configurations

* Set of feasible initial states for each configuration

¢ Derivation of switching rules

* When can each configuration can be activated

¢ Analysis of switched closed-loop system

* Singular perturbation theory



MODAL DECOMPOSITION/GALERKIN’S METHOD
HS — Span{¢17 ¢27 ceey ¢m}7 Hf — Span{¢m+17 ¢m—|—27 SRR }
P, Py: orthogonal projection operators

xs(t) = Psx(t): state vector corresponding to slow eigenmodes

z¢(t) = Prz(t): state vector corresponding to fast eigenmodes

Set of infinite ODEs:

dzs
dmt — ASCIZS+BSU—|—fS(CUS,ZEf)
0
gtf = Ajzy+ Bru+ fr(zs,xy)

Neglecting the fast dynamics:

dz g
dt

= AZs+ Bsu+ fs(Z5,0), =0

A
0, e = |Res

When u(t) =0, [z -z, = O(¢), V>0, €=
en u(t) , [z — 2], (€) |[ReX 1]



FORMULATION OF CONTROL PROBLEM
(El-Farra, Armaou & Christofides, Automatica, to appear, 2003)

e Constrained low-dimensional ODE system

dz, A -
= = J@)+ 6@,z
Yes = Ca_js

U; € U = [_Umaxauma:c]

e Control Objectives:

¢ Desired closed-loop properties:

* Exponential stability

* Reference input tracking

o Explicit characterization of the region of closed-loop stability

e Approach:

¢ Bounded Lyapunov-based control techniques



FEEDBACK CONTROLLER DESIGN

e Bounded controller synthesis:

u = —k(xsguma,xazk)(LGv)T(zki)

¢ V'@ control Lyapunov function

o k() : scalar nonlinear “gain” shaped so that:
* |u(z)| < Upmae and V <0
*x Example gain: (Sontag’s bounded law)

LyV +/(LsV)? + (umaa| (L V)T (20)])*

k(xs; Umazx, Zk) —

(LV)T @ |1+ /TF (mar (LaV)T (2D

e Closed-loop properties:
¢ Asymptotic stability
¢ Reference input tracking

lim ’gcsi — Uz" = 0
t— 00



CHARACTERIZATION OF STABILITY PROPERTIES

D(Umaz,2k) = {2s € Hs: LV < Umae|(LaV)? (2x)|}

e Properties of inequality:
¢ Describes an open unbounded region where:

* |u(z)| < Umar Y €D
* V(z) <0V 0#£z€D

¢ Parameterized by control actuator location Zzg:

* Identify feasible initial conditions, for a fixed Zzj
* Identify feasible actuator locations, for a fixed initial condition

¢ Explicit guidelines for switching between actuator configurations

e Some design implications:
¢ Given the desired stability region, determine g4

O Umar determines capacity & size of control actuators

* Valves, pumps, heaters, etc.



STABILIZING SWITCHING LAWS

e Switched closed-loop ODE system:

dT ~ ~ L
At — f(il?s)—|—G(CES,Zk)U(CES,Zk)

k(t) ¢ IT={1,2,---,N}

¢ Multiple configurations represent multiple modes:

* Stability of constituent modes & transitions

[}
e Switching rule: <
¢ Stability region
for configuration 2
Q (UnaxZy)
) — 5 ; 5.
':safe"
o Tracks evolution of slow e P
state (e sufficiently small)
f Stabi?ty region 1
. . . Venfal igurati
o Tmplicitly determines the e o contgai
configuration 2

switching times
Switching between stability regions



COMPARING LINEAR & NONLINEAR SYSTEMS

e For linear systems: modal decomposition yields a cascade

ts = Agxs+ Bsu(xy)
tr = Apzy+ Bru(zs)

¢ Evolution of slow states independent of the fast states

¢ Fast subsystem exponentially stable with bounded, decaying input

e For nonlinear systems: modal decomposition yields an interconnection

Ty = Asx3+Bsu($s)+fs($saxf)
ty = Apry+Bru(zs) + fs(zs, vy)

¢ Evolution of slow states depends on the fast subsystem

e Implications for the stability region:
¢ Linear case: stability region of slow system is exactly preserved

o Nonlinear case: stability region is recovered asymptotically (as € — 0)



APPLICATION TO A DIFFUSION-REACTION PROCESS
CATALYTIC ROD

A AB

e Process dynamic model:

ox 0%z _1_7_ —7
E = @+5Te x_'_ﬁU(u(Z?t)_w)_BTe

e Dirichlet boundary conditions:

z(0,t) =0, z(m,t)=0




EIGENSPECTRUM/OPEN-LOOP DYNAMICS

e Eigenvalue problem:

0%
Abi = o = N
¢;(0) = 0, ¢j(r)=
e Eigenvalues: \; = —j% j=1,...,00

e Eigenfunctions: ¢, = \/gsin(jz), j=1,...,00

Structure of Eigenspectrum Open-loop temperature profile
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PROBLEM FORMULATION

Diffusion-reaction process
e Control problem:

¢ First eigenmode is dominant

T2
¢ Controlled output: y.(t) = / \/ —sin(z)x(z,t)dz
0 7

¢ Manipulated input, u(t):

> One point control actuator with b(z) = 6(z — 2.)

e Actuator switching problem:

¢ Three point actuators available:
x Configuration A (z. = 0.57, U0, = 2.5)
* Configuration B (z. = 0.237, w4, = 2.5)
* Configuration C (z. = 0.3067, 1,4, = 0.5)

¢ Actuator failure: which actuator to activate when the operating
actuator fails?



CONTROLLER SYNTHESIS/STABILITY ANALYSIS

e One-dimensional system used for controller design
|R€)\1‘

= 0.25
|R€)\2‘

e Dependence of stability region on actuator location & constraints

¢ First eigenmode is dominant, m =1, e =

* region size peaks at z = 0.57 & vanishes at 2z =0, z =«

1.5

-~ lB lC \ZA
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a1(t): amplitude of first eigenmode
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CLOSED-LOOP SIMULATION RESULTS

e Temperature & manipulated input profiles under actuator failure
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e C(losed-loop system unstable

(Configuration A fails at ¢t = 1.4 & configuration C activated)
a1(0) = 1.3, Zc = 0.367, Umas = 0.5
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CLOSED-LOOP SIMULATION RESULTS

e Temperature & manipulated input profiles under actuator failure

Configuration A fails at ¢

ai

= 1.4 & configuration B activated

= 1.3, Zo = 0.237, Uppaw = 2.5
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CLOSED-LOOP SIMULATION RESULTS
e Implementing the switching logic
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CONCLUSIONS

e Highly dissipative PDE systems with input constraints

e Methodology for integrating feedback and switching
¢ Feedback controller design

¢ Switching between multiple actuator configurations

> Ensure constraint satisfaction
> Guaranteed closed-loop stability

> Reconcile conflicting control objectives

¢ Application to fault-tolerant control of a diffusion-reaction process
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SIMULATION RESULTS: OUTPUT FEEDBACK
Yoy (£) = 7(0.33m, 1)

e Closed-loop state/manipulated input (A fails at ¢t = 1.4, C activated)
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