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INTRODUCTION

• Spatially Distributed Processes

¦ Representative examples:

? Transport-reaction processes

? Fluid flows

¦ Regulation of spatially distributed variables using:

? Spatially distributed control actuators/measurement sensors

? Highly dissipative partial differential equation (PDE) systems:

? Infinite-dimensional systems

? Two time-scale separation of eigenspectrum
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BACKGROUND ON CONTROL OF DISSIPATIVE PDEs

• Standard approach:
(e.g., Balas, IJC, 1979; Ray, 1981, Curtain, 1982).

¦ Derivation of ODE models using eigenfunction expansions

¦ Controller design using methods for ODEs

¦ High-dimensionality of the controller?

• Synthesis of nonlinear low-order controllers:
(Christofides, Birkhäuser, 2001)

¦ Derivation of low-order ODE models using Galerkin’s method
and approximate inertial manifolds

. Nonlinear and robust control

. Control of parabolic PDEs with moving domains.

• Lyapunov-based control:

¦ Stabilization via boundary feedback (e.g. Liu and Krstic, NA, 2001)

Fixed control actuator/measurement sensor configuration



HYBRID CONTROL STRUCTURE

objectives

Spatially Distributed Process
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? Controller combines discrete &
continuous elements

• Finite family of control
configurations:

? Feedback controllers

? Actuator/sensor spatial
arrangements

• Motivation for switching:

? Fault-tolerant control

? Optimizing performance

? Enforcing state & control
constraints

? Flexibility in reconciling
multiple conflicting con-
trol objectives



PRESENT WORK
(El-Farra & Christofides, Comp. & Chem. Eng., submitted, 2002)

• Scope:

¦ Highly dissipative PDE systems with input constraints

• Objectives:

¦ Development of an integrated approach for hybrid control

. Feedback controller design (control algorithm)

. Switching between multiple actuator configurations

? Ensure fault-tolerance

? Ensure constraint satisfaction

? Guarantee closed-loop stability

¦ Application to a diffusion-reaction process



DISSIPATIVE PDE SYSTEMS
• Infinite-dimensional system description:

ẋ = Ax+ Bu(t) + f(x), x(0) = x0

yc = Cx, ym = Sx

? x(t) ∈ H : state, u(t) ∈ IRm : control input

? A : differential operator

? B : input operator:

actuators location & type

? S : measurement operator:

sensors location & type

• Eigenvalue problem for A:

Aφj = λjφj , j = 1, . . . ,∞
λj : eigenvalue; φj eigenfunction

? Re{λ1} ≥ Re{λ2} ≥ · · ·
? {φ1, φ2, . . . , } complete or-

thonormal set in H• Typical structure of eigenspectrum:

Re

Im

? A finite number of dom-

inant modes practically

determines dynamics



INTEGRATING FEEDBACK AND SWITCHING

Sensor Active control actuator Inactive control actuators

BA

Switching Logic

Reactor
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Reactor
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• Problem specifications:

¦ N spatially-distinct actuator configurations available

? z̄k(t): location vector for actuators in k-th configuration
? k(t) ∈ {1, 2, · · · , N} indexes the actuator configuration

¦ Constraints on each actuator configuration uki ∈ [−ukmax, ukmax]

¦ Only one configuration can be active at a given time
? Finite switches over finite time



INTEGRATING FEEDBACK AND SWITCHING

• Methodology:

¦ Model reduction

? Derivation of low-dimensional ODE models:

¦ Feedback controller synthesis

? Bounded Lyapunov-based nonlinear controller design

¦ Characterizing stability regions for N actuator configurations

? Set of feasible initial states for each configuration

¦ Derivation of switching rules

? When can each configuration can be activated

¦ Analysis of switched closed-loop system

? Singular perturbation theory



MODAL DECOMPOSITION/GALERKIN’S METHOD

• Hs = span{φ1, φ2, . . . , φm}, Hf = span{φm+1, φm+2, . . . , }
Ps, Pf : orthogonal projection operators

xs(t) = Psx(t): state vector corresponding to slow eigenmodes

xf (t) = Pfx(t): state vector corresponding to fast eigenmodes

• Set of infinite ODEs:

dxs
dt

= Asxs + Bsu+ fs(xs, xf )
∂xf
∂t

= Afxf + Bfu+ ff (xs, xf )

• Neglecting the fast dynamics:

dx̄s
dt

= Asx̄s + Bsu+ fs(x̄s, 0), x̄f = 0

• When u(t) ≡ 0 , ‖x− x̄s‖2 = O(ε), ∀ t ≥ 0, ε =
|Reλ1|
|Reλm+1|



FORMULATION OF CONTROL PROBLEM
(El-Farra, Armaou & Christofides, Automatica, to appear, 2003)

• Constrained low-dimensional ODE system

dx̄s
dt

= f̃(x̄s) + G̃(x̄s, z̄k)u

ycs = Cx̄s

ui ∈ U = [−umax, umax]

• Control Objectives:

¦ Desired closed-loop properties:
? Exponential stability
? Reference input tracking

¦ Explicit characterization of the region of closed-loop stability

• Approach:

¦ Bounded Lyapunov-based control techniques



FEEDBACK CONTROLLER DESIGN

• Bounded controller synthesis:

u = −k(xs, umax, z̄k)(LGV )T (z̄k)

¦ V : control Lyapunov function

¦ k(·) : scalar nonlinear “gain” shaped so that:
? |u(x)| ≤ umax and V̇ < 0
? Example gain: (Sontag’s bounded law)

k(xs, umax, z̄k) =


 LfV +

√
(LfV )2 + (umax|(LGV )T (z̄k)|)4

|(LGV )T (z̄k)|2
[
1 +

√
1 + (umax|(LGV )T (z̄k)|)2

]



• Closed-loop properties:

¦ Asymptotic stability

¦ Reference input tracking
lim
t→∞
|ȳcsi − vi| = 0



CHARACTERIZATION OF STABILITY PROPERTIES

D(umax, z̄k) = {xs ∈ Hs : LfV ≤ umax|(LGV )T (z̄k)|}

• Properties of inequality:

¦ Describes an open unbounded region where:

? |u(x)| ≤ umax ∀ x ∈ D
? V̇ (x) < 0 ∀ 0 6= x ∈ D

¦ Parameterized by control actuator location z̄k:

? Identify feasible initial conditions, for a fixed z̄k

? Identify feasible actuator locations, for a fixed initial condition

¦ Explicit guidelines for switching between actuator configurations

• Some design implications:

¦ Given the desired stability region, determine umax

¦ umax determines capacity & size of control actuators

? Valves, pumps, heaters, etc.



STABILIZING SWITCHING LAWS

• Switched closed-loop ODE system:

dx̄s
dt

= f̃(x̄s) + G̃(x̄s, z̄k)u(x̄s, z̄k)

k(t) ∈ I = {1, 2, · · · , N}

¦ Multiple configurations represent multiple modes:
? Stability of constituent modes & transitions

• Switching rule:

k(T+) = j if xs(T ) ∈ Ω(umax, z̄j)

¦ Tracks evolution of slow
state (ε sufficiently small)

¦ Implicitly determines the
switching times

Switching between stability regions



COMPARING LINEAR & NONLINEAR SYSTEMS

• For linear systems: modal decomposition yields a cascade

ẋs = Asxs + Bsu(xs)

ẋf = Afxf + Bfu(xs)

¦ Evolution of slow states independent of the fast states

¦ Fast subsystem exponentially stable with bounded, decaying input

• For nonlinear systems: modal decomposition yields an interconnection

ẋs = Asxs + Bsu(xs) + fs(xs, xf )

ẋf = Afxf + Bfu(xs) + fs(xs, xf )

¦ Evolution of slow states depends on the fast subsystem

• Implications for the stability region:

¦ Linear case: stability region of slow system is exactly preserved

¦ Nonlinear case: stability region is recovered asymptotically (as ε→ 0)



APPLICATION TO A DIFFUSION-REACTION PROCESS
CATALYTIC ROD

B

A,BA

A

• Process dynamic model:

∂x

∂t
=

∂2x

∂z2
+ βT e

− γ

1 + x + βU (u(z, t)− x)− βT e−γ

• Dirichlet boundary conditions:

x(0, t) = 0, x(π, t) = 0



EIGENSPECTRUM/OPEN-LOOP DYNAMICS

• Eigenvalue problem:

Aφj =
∂2φj
∂z2

= λjφj

φj(0) = 0, φj(π) = 0

• Eigenvalues: λj = −j2, j = 1, . . . ,∞

• Eigenfunctions: φj =
√

2
π sin(jz), j = 1, . . . ,∞

Structure of Eigenspectrum
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PROBLEM FORMULATION
Diffusion-reaction process

• Control problem:

¦ First eigenmode is dominant

¦ Controlled output: yc(t) =
∫ π

0

√
2
π
sin(z)x(z, t)dz

¦ Manipulated input, u(t):

. One point control actuator with b(z) = δ(z − zc)

• Actuator switching problem:

¦ Three point actuators available:

? Configuration A (zc = 0.5π, umax = 2.5)

? Configuration B (zc = 0.23π, umax = 2.5)

? Configuration C (zc = 0.36π, umax = 0.5)

¦ Actuator failure: which actuator to activate when the operating
actuator fails?



CONTROLLER SYNTHESIS/STABILITY ANALYSIS

• One-dimensional system used for controller design

¦ First eigenmode is dominant, m = 1, ε =
|Reλ1|
|Reλ2| = 0.25

• Dependence of stability region on actuator location & constraints

? region size peaks at z = 0.5π & vanishes at z = 0, z = π
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CLOSED-LOOP SIMULATION RESULTS

• Temperature & manipulated input profiles under no actuator failure

(a1(0) = 1.3, only configuration A is active, z̄A = 0.5π, umax = 2.5)
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CLOSED-LOOP SIMULATION RESULTS

• Temperature & manipulated input profiles under actuator failure

(Configuration A fails at t = 1.4 & configuration C activated)
a1(0) = 1.3, z̄C = 0.36π, umax = 0.5
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CLOSED-LOOP SIMULATION RESULTS

• Temperature & manipulated input profiles under actuator failure

(Configuration A fails at t = 1.4 & configuration B activated)
a1(0) = 1.3, z̄C = 0.23π, umax = 2.5
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CLOSED-LOOP SIMULATION RESULTS

• Implementing the switching logic
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CONCLUSIONS

• Highly dissipative PDE systems with input constraints

• Methodology for integrating feedback and switching

¦ Feedback controller design

¦ Switching between multiple actuator configurations

. Ensure constraint satisfaction

. Guaranteed closed-loop stability

. Reconcile conflicting control objectives

¦ Application to fault-tolerant control of a diffusion-reaction process
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SIMULATION RESULTS: OUTPUT FEEDBACK
ym1(t) = x̄(0.33π, t)

• Closed-loop state/manipulated input (A fails at t = 1.4, C activated)
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• Closed-loop state/manipulated input (A fails at t = 1.4, B activated)
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