HYBRID CONTROL OF SPATIALLY DISTRIBUTED PROCESSES

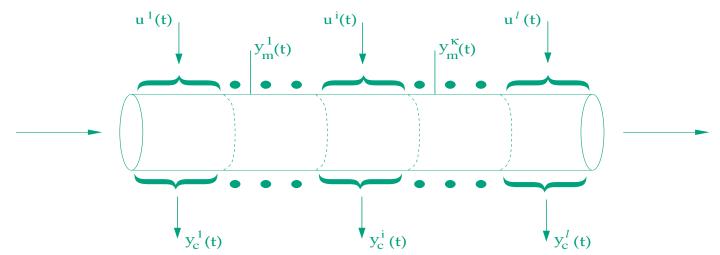
Nael H. El-Farra & Panagiotis D. Christofides

Department of Chemical Engineering University of California, Los Angeles

2002 AIChE Annual Meeting Indianapolis, IN November 6, 2002

INTRODUCTION

- Spatially Distributed Processes
 - $\diamond\,$ Representative examples:
 - ★ Transport-reaction processes
 - \star Fluid flows
 - ♦ Regulation of spatially distributed variables using:
 - \star Spatially distributed control actuators/measurement sensors
 - \star Highly dissipative partial differential equation (PDE) systems:
 - \star Infinite-dimensional systems
 - $\star\,$ Two time-scale separation of eigenspectrum



BACKGROUND ON CONTROL OF DISSIPATIVE PDEs

• Standard approach:

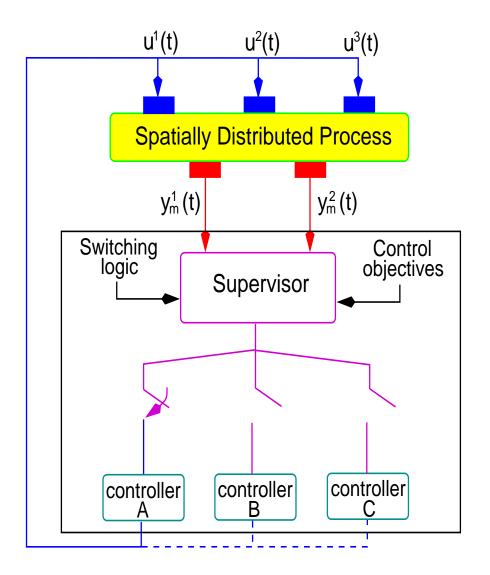
- (e.g., Balas, IJC, 1979; Ray, 1981, Curtain, 1982).
- $\diamond\,$ Derivation of ODE models using eigenfunction expansions
- $\diamond\,$ Controller design using methods for ODEs
- ♦ High-dimensionality of the controller?
- Synthesis of nonlinear low-order controllers: (Christofides, Birkhäuser, 2001)
 - Derivation of low-order ODE models using Galerkin's method and approximate inertial manifolds
 - ▷ Nonlinear and robust control
 - ▷ Control of parabolic PDEs with moving domains.

• Lyapunov-based control:

♦ Stabilization via boundary feedback (e.g. Liu and Krstic, NA, 2001)

Fixed control actuator/measurement sensor configuration

HYBRID CONTROL STRUCTURE



★ Controller combines discrete & continuous elements

- Finite family of control configurations:
 - \star Feedback controllers
 - * Actuator/sensor spatial arrangements
- Motivation for switching:
 - \star Fault-tolerant control
 - \star Optimizing performance
 - ★ Enforcing state & control constraints
 - ★ Flexibility in reconciling multiple conflicting control objectives

PRESENT WORK

(El-Farra & Christofides, Comp. & Chem. Eng., submitted, 2002)

• Scope:

 $\diamond\,$ Highly dissipative PDE systems with input constraints

• Objectives:

- $\diamond\,$ Development of an integrated approach for hybrid control
 - ▷ Feedback controller design (control algorithm)
 - \triangleright Switching between multiple actuator configurations
 - \star Ensure fault-tolerance
 - \star Ensure constraint satisfaction
 - \star Guarantee closed-loop stability
- \diamond Application to a diffusion-reaction process

DISSIPATIVE PDE SYSTEMS

• Infinite-dimensional system description:

$$\dot{x} = \mathcal{A}x + \mathcal{B}u(t) + f(x), \quad x(0) = x_0$$

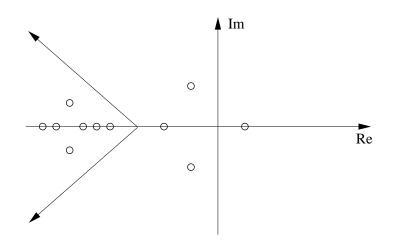
 $y_c = \mathcal{C}x, \quad y_m = \mathcal{S}x$

- * $x(t) \in \mathcal{H}$: state, $u(t) \in \mathbb{R}^m$: control input
- Eigenvalue problem for \mathcal{A} :

 $\mathcal{A}\phi_j = \lambda_j \phi_j, \ j = 1, \dots, \infty$

 λ_j : eigenvalue; ϕ_j eigenfunction

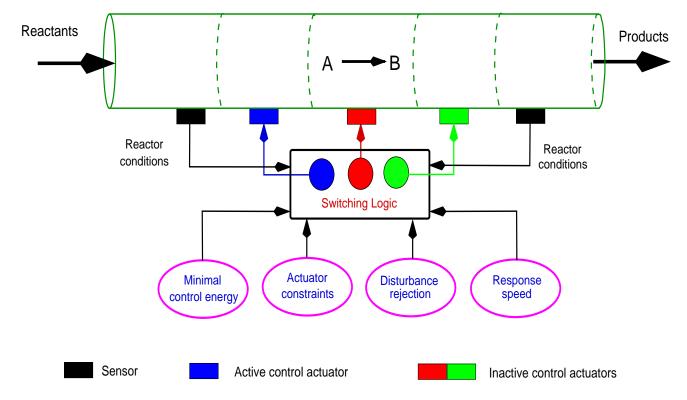
• Typical structure of eigenspectrum:



- \star \mathcal{A} : differential operator
- * \mathcal{B} : input operator: actuators location & type
- * S: measurement operator: sensors location & type
- $\star \quad Re\{\lambda_1\} \ge Re\{\lambda_2\} \ge \cdots$
- ★ { ϕ_1, ϕ_2, \ldots , } complete orthonormal set in \mathcal{H}

 A finite number of dominant modes practically determines dynamics

INTEGRATING FEEDBACK AND SWITCHING



- Problem specifications:
 - $\diamond~N$ spatially-distinct actuator configurations available
 - $\star \bar{z}_k(t)$: location vector for actuators in k-th configuration
 - $\star \ k(t) \in \{1,2,\cdots,N\}$ indexes the actuator configuration
 - ♦ Constraints on each actuator configuration $u_i^k \in [-u_{max}^k, u_{max}^k]$
 - $\diamond\,$ Only one configuration can be active at a given time
 - \star Finite switches over finite time

INTEGRATING FEEDBACK AND SWITCHING

• Methodology:

- \diamond Model reduction
 - \star Derivation of low-dimensional ODE models:
- $\diamond\,$ Feedback controller synthesis
 - \star Bounded Lyapunov-based nonlinear controller design
- $\diamond\,$ Characterizing stability regions for N actuator configurations
 - \star Set of feasible initial states for each configuration
- $\diamond\,$ Derivation of switching rules
 - \star When can each configuration can be activated
- $\diamond\,$ Analysis of switched closed-loop system
 - \star Singular perturbation theory

MODAL DECOMPOSITION/GALERKIN'S METHOD

• $\mathcal{H}_s = span\{\phi_1, \phi_2, \dots, \phi_m\}, \ \mathcal{H}_f = span\{\phi_{m+1}, \phi_{m+2}, \dots, \}$

 P_s, P_f : orthogonal projection operators

 $x_s(t) = P_s x(t)$: state vector corresponding to slow eigenmodes

 $x_f(t) = P_f x(t)$: state vector corresponding to fast eigenmodes

• Set of infinite ODEs:

$$\frac{dx_s}{dt} = A_s x_s + \mathcal{B}_s u + f_s(x_s, x_f)$$
$$\frac{\partial x_f}{\partial t} = A_f x_f + \mathcal{B}_f u + f_f(x_s, x_f)$$

• Neglecting the fast dynamics:

$$\frac{d\bar{x}_s}{dt} = A_s\bar{x}_s + \mathcal{B}_s u + f_s(\bar{x}_s, 0), \quad \bar{x}_f = 0$$

• When $u(t) \equiv 0$, $||x - \bar{x}_s||_2 = O(\epsilon)$, $\forall t \ge 0$, $\epsilon = \frac{|Re\lambda_1|}{|Re\lambda_{m+1}|}$

FORMULATION OF CONTROL PROBLEM (El-Farra, Armaou & Christofides, Automatica, *to appear*, 2003)

• Constrained low-dimensional ODE system

$$\frac{d\bar{x}_s}{dt} = \tilde{f}(\bar{x}_s) + \tilde{G}(\bar{x}_s, \bar{z}_k)u$$
$$y_{cs} = \mathcal{C}\bar{x}_s$$

$$u_i \in U = [-u_{max}, u_{max}]$$

• Control Objectives:

- ♦ Desired closed-loop properties:
 - \star Exponential stability
 - \star Reference input tracking
- ♦ Explicit characterization of the region of closed-loop stability

• Approach:

 $\diamond\,$ Bounded Lyapunov-based control techniques

FEEDBACK CONTROLLER DESIGN

• Bounded controller synthesis:

$$u = -k(x_s, u_{max}, \overline{z}_k)(L_G V)^T(\overline{z}_k)$$

- $\diamond~V$: control Lyapunov function
- $\diamond k(\cdot)$: scalar nonlinear "gain" shaped so that:
 - $\star |u(x)| \le u_{max} \text{ and } \dot{V} < 0$
 - ★ Example gain: (Sontag's bounded law)

$$k(x_s, u_{max}, \bar{z}_k) = \left(\frac{L_f V + \sqrt{(L_f V)^2 + (u_{max} | (L_G V)^T (\bar{z}_k) |)^4}}{|(L_G V)^T (\bar{z}_k)|^2 \left[1 + \sqrt{1 + (u_{max} | (L_G V)^T (\bar{z}_k) |)^2}\right]}\right)$$

- Closed-loop properties:
 - $\diamond\,$ Asymptotic stability
 - $\diamond\,$ Reference input tracking

$$\lim_{t \to \infty} |\bar{y}_{cs_i} - v_i| = 0$$

CHARACTERIZATION OF STABILITY PROPERTIES

$$D(u_{max}, \bar{z}_k) = \{x_s \in \mathcal{H}_s : L_f V \le u_{max} | (L_G V)^T(\bar{z}_k) | \}$$

• Properties of inequality:

- $\diamond\,$ Describes an open unbounded region where:
 - $\star |u(x)| \le u_{max} \ \forall x \in D$
 - $\star \ \dot{V}(x) < 0 \ \forall \ 0 \neq x \in D$
- \diamond Parameterized by control actuator location \bar{z}_k :
 - \star Identify feasible initial conditions, for a fixed \bar{z}_k
 - \star Identify feasible actuator locations, for a fixed initial condition
- $\diamond\,$ Explicit guidelines for switching between actuator configurations

• Some design implications:

- \diamond Given the desired stability region, determine u_{max}
- $\diamond u_{max}$ determines capacity & size of control actuators
 - \star Valves, pumps, heaters, etc.

STABILIZING SWITCHING LAWS

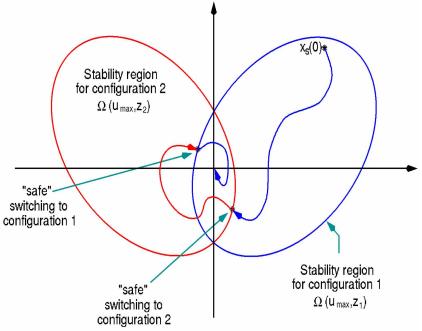
• Switched closed-loop ODE system:

$$\frac{d\bar{x}_s}{dt} = \tilde{f}(\bar{x}_s) + \tilde{G}(\bar{x}_s, \bar{z}_k)u(\bar{x}_s, \bar{z}_k)$$
$$k(t) \in \mathcal{I} = \{1, 2, \cdots, N\}$$

- $\diamond\,$ Multiple configurations represent multiple modes:
 - \star Stability of constituent modes & transitions
- Switching rule:

 $k(T^+) = j$ if $x_s(T) \in \Omega(u_{max}, \overline{z}_j)$

- $\Leftrightarrow \text{Tracks evolution of slow} \\ \text{state } (\epsilon \text{ sufficiently small})$
- ♦ Implicitly determines the switching times



Switching between stability regions

COMPARING LINEAR & NONLINEAR SYSTEMS

• For linear systems: modal decomposition yields a cascade

$$\dot{x}_s = A_s x_s + \mathcal{B}_s u(x_s)$$

 $\dot{x}_f = A_f x_f + \mathcal{B}_f u(x_s)$

- ♦ Evolution of slow states independent of the fast states
- $\diamond\,$ Fast subsystem exponentially stable with bounded, decaying input
- For nonlinear systems: modal decomposition yields an interconnection

$$\dot{x}_s = A_s x_s + \mathcal{B}_s u(x_s) + f_s(x_s, x_f)$$

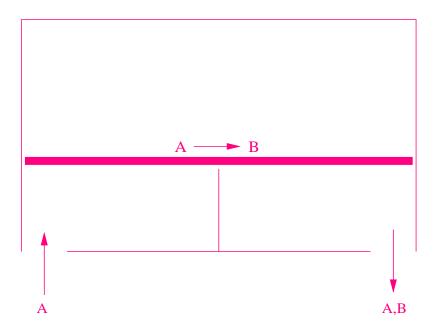
$$\dot{x}_f = A_f x_f + \mathcal{B}_f u(x_s) + f_s(x_s, x_f)$$

 \diamond Evolution of slow states depends on the fast subsystem

• Implications for the stability region:

- \diamond Linear case: stability region of slow system is exactly preserved
- ♦ Nonlinear case: stability region is recovered asymptotically (as $\epsilon \to 0$)

APPLICATION TO A DIFFUSION-REACTION PROCESS CATALYTIC ROD



• Process dynamic model:

$$\frac{\partial x}{\partial t} = \frac{\partial^2 x}{\partial z^2} + \beta_T e^{-\frac{\gamma}{1+x}} + \beta_U (u(z,t)-x) - \beta_T e^{-\gamma}$$

• Dirichlet boundary conditions:

$$x(0,t) = 0, \quad x(\pi,t) = 0$$

EIGENSPECTRUM/OPEN-LOOP DYNAMICS

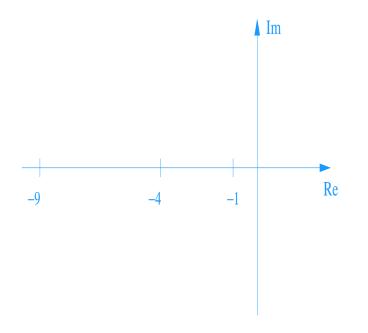
• Eigenvalue problem:

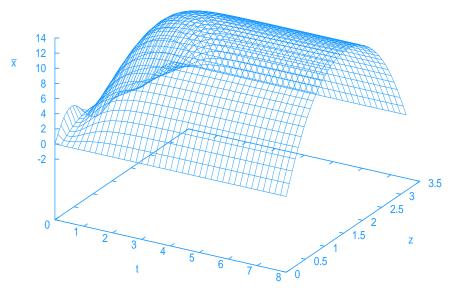
$$\begin{array}{rcl} \mathcal{A}\phi_j &=& \frac{\partial^2 \phi_j}{\partial z^2} \,=\, \lambda_j \phi_j \\ \phi_j(0) &=& 0, \quad \phi_j(\pi) = 0 \end{array}$$

- Eigenvalues: $\lambda_j = -j^2, j = 1, \dots, \infty$
- Eigenfunctions: $\phi_j = \sqrt{\frac{2}{\pi}} sin(jz), \ j = 1, \dots, \infty$

Structure of Eigenspectrum

Open-loop temperature profile





steady-state x(z,t) = 0 unstable

PROBLEM FORMULATION Diffusion-reaction process

• Control problem:

 $\diamond\,$ First eigenmode is dominant

$$\diamond$$
 Controlled output: $y_c(t) = \int_0^{\pi} \sqrt{\frac{2}{\pi}} sin(z)x(z,t)dz$

 \diamond Manipulated input, u(t):

 \triangleright One point control actuator with $b(z) = \delta(z - z_c)$

• Actuator switching problem:

- $\diamond\,$ Three point actuators available:
 - * Configuration A $(z_c = 0.5\pi, u_{max} = 2.5)$
 - * Configuration B ($z_c = 0.23\pi, u_{max} = 2.5$)
 - * Configuration C ($z_c = 0.36\pi, u_{max} = 0.5$)
- ♦ Actuator failure: which actuator to activate when the operating actuator fails?

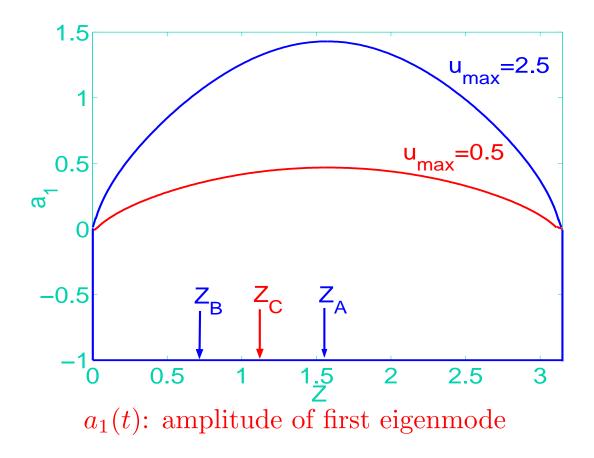
CONTROLLER SYNTHESIS/STABILITY ANALYSIS

• One-dimensional system used for controller design $|Re\lambda_1|$

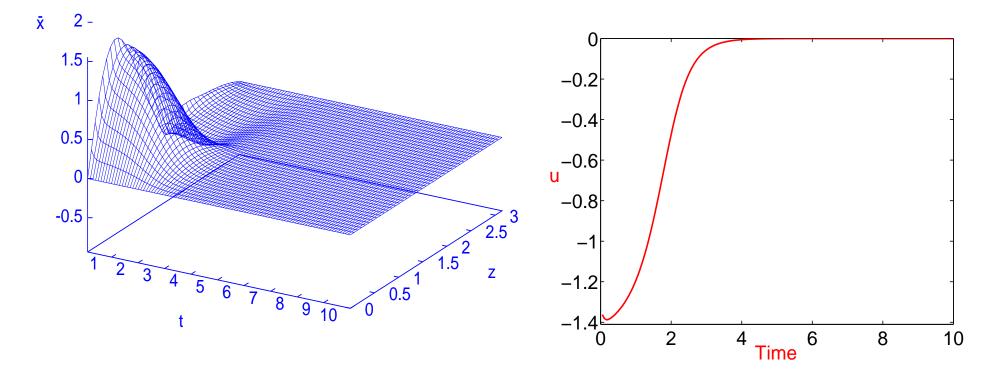
♦ First eigenmode is dominant, m = 1, $\epsilon = \frac{|Re\lambda_1|}{|Re\lambda_2|} = 0.25$

• Dependence of stability region on actuator location & constraints

 \star region size peaks at $z=0.5\pi$ & vanishes at $z=0,\,z=\pi$

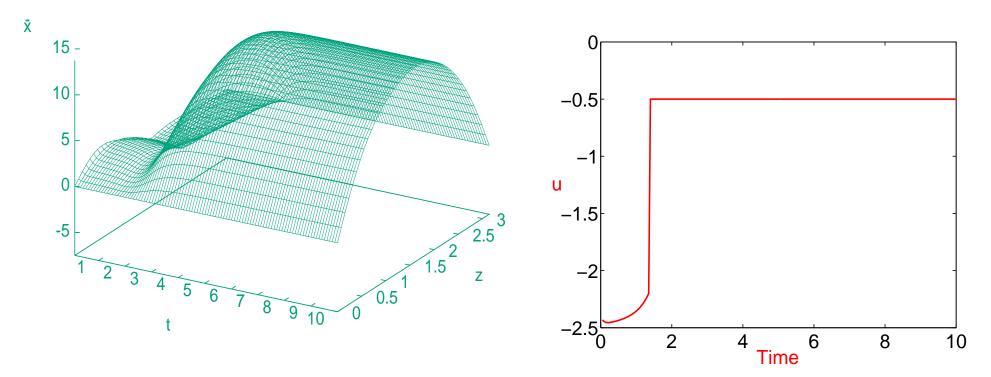


• Temperature & manipulated input profiles under no actuator failure $(a_1(0) = 1.3, \text{ only configuration A is active}, \bar{z}_A = 0.5\pi, u_{max} = 2.5)$



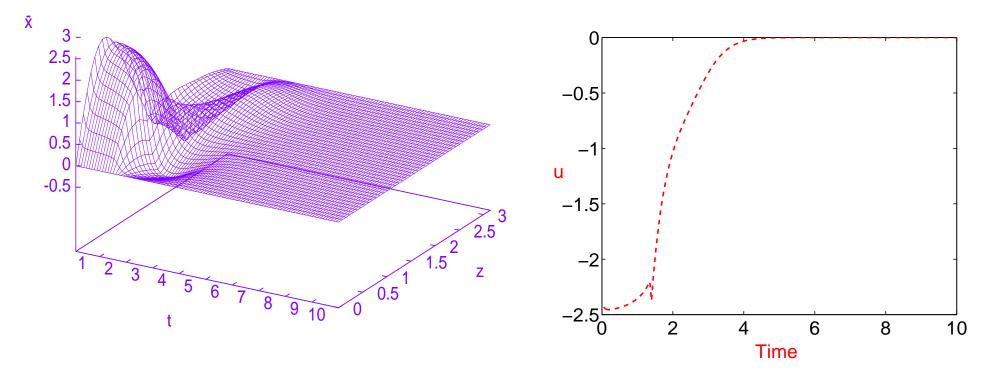
• Closed-loop system stable

• Temperature & manipulated input profiles under actuator failure (Configuration A fails at t = 1.4 & configuration C activated) $a_1(0) = 1.3, \ \bar{z}_C = 0.36\pi, \ u_{max} = 0.5$



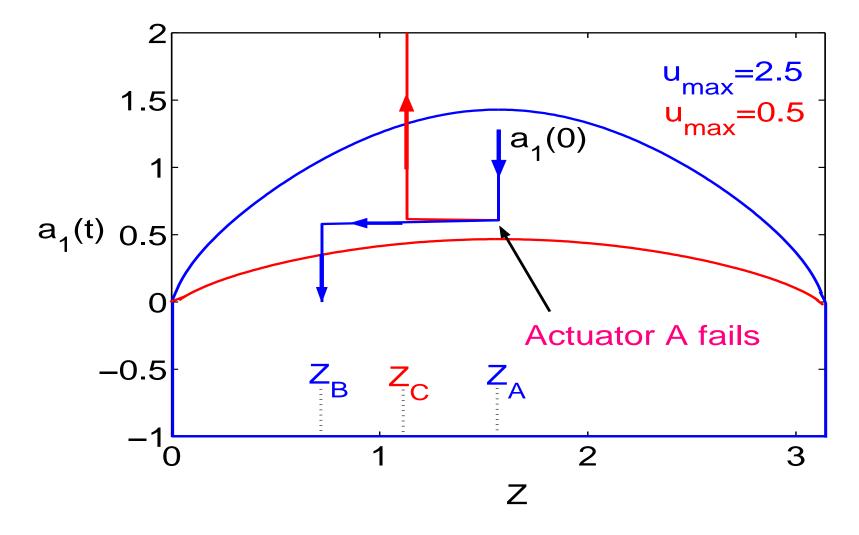
• Closed-loop system unstable

• Temperature & manipulated input profiles under actuator failure (Configuration A fails at t = 1.4 & configuration B activated) $a_1(0) = 1.3, \ \bar{z}_C = 0.23\pi, \ u_{max} = 2.5$



• Closed-loop system stable

• Implementing the switching logic



CONCLUSIONS

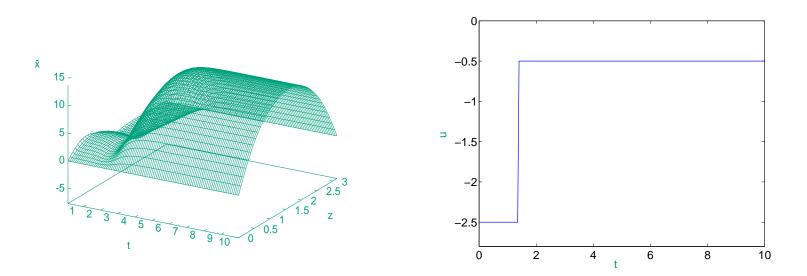
- Highly dissipative PDE systems with input constraints
- Methodology for integrating feedback and switching
 - $\diamond\,$ Feedback controller design
 - $\diamond\,$ Switching between multiple actuator configurations
 - ▷ Ensure constraint satisfaction
 - \triangleright Guaranteed closed-loop stability
 - ▷ Reconcile conflicting control objectives
 - ♦ Application to fault-tolerant control of a diffusion-reaction process

ACKNOWLEDGMENT

• Financial support from UCLA Chancellor's Fellowship (Nael H. El-Farra) is gratefully acknowledged

SIMULATION RESULTS: OUTPUT FEEDBACK $y_{m_1}(t) = \bar{x}(0.33\pi, t)$

• Closed-loop state/manipulated input (A fails at t = 1.4, C activated)



• Closed-loop state/manipulated input (A fails at t = 1.4, B activated)

