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INTRODUCTION

e Biochemical networks implement & control of cellular functions
¢ Metabolism
¢ DNA synthesis, gene regulation

¢ Movement & information processing

e A major goal of molecular cell biologists & bioengineers:
¢ Understanding how networks are integrated & regulated

o How network regulation can be influenced (e.g., for therapeutic purposes)

e Qualitative & quantitative tools:

o Experimental techniques (e.g., measurements of gene expression patterns)

* Biochemical intuition alone insufficient due to sheer complexity

¢ Mathematical and computational tools:
* Qualitative and quantitative insights
* Reduce trial-and-error experimentation

* Lead to testable predictions of certain hypotheses



MODELING OF BIOLOGICAL NETWORKS

e Biological networks are intrinsically dynamical systems:
¢ Drive adaptive responses of a cell in space & time

¢ Behavior determined by “biochemical kinetics” or “rate equations”

*x Variables: concentrations of network components (proteins, metabolites)

* Dynamics describe rates of production & decay of network components

¢ Dynamic models of biological networks:

¢ Systems of continuous-time nonlinear ordinary differential equations
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* Applying analytical techniques of nonlinear dynamics

* Combining mathematical analysis & computational simulation



COMBINED DISCRETE-CONTINUOUS DYNAMICS
IN BIOLOGICAL NETWORKS

e Discrete events superimposed on continuous dynamics:

¢ Switching between multiple qualitatively different modes of behavior

e Examples of hybrid dynamics:

¢ At the molecular level: Lysogeny o0
* Inhibitor proteins turning off gene transcription %JEDFW an G0 @@
by RNA polymerase @ SORCAPVA
x e.g., genetic switch in A-bacteriophage between L2l [ |‘lf|_|f””'| %@‘}
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¢ At the cellular level:
* Cell growth and division in a eukaryotic cell: sequence of four processes,

each continuous, triggered by certain conditions or events
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COMBINED DISCRETE-CONTINUOUS DYNAMICS
IN BIOLOGICAL NETWORKS

e Examples of hybrid dynamics (cont’d):

o At the inter-cellular level:

* Cell differentiation viewed as a switched system

¢ Switched dynamics can be the result of external intervention:

* Re-engineering the network by turning on/off certain pathways

e Defining characteristic:

Intervals of continuous dynamics interspersed by discrete transitions I

e A hybrid systems approach needed for:

¢ Modeling, simulation & analysis

o Controlling/modifying the network behavior



A HYBRID SYSTEMS FRAMEWORK FOR ANALYSIS & CONTROL
OF BIOLOGICAL NETWORKS

e Mathematical models:

mode 1 mode 2
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o x(t) € IR™ : vector of continuous state variables

Discrete X Events
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Discrete Events

o i(t) € T : discrete variable “switching signal”

o N : total number of modes/subsystems

Discrete Events

¢ p : model parameters “genetically controlled” -

o fi(x) : nonlinear rate expressions mode 3 mode 4

Multimodal representation
* Each mode governed by continuous dynamics

* Transitions between modes governed by discrete events

* Switching classifications: autonomous vs. controlled



ANALYSIS OF MODE TRANSITIONS IN BIOLOGICAL NETWORKS

e Changing network dynamics:

¢ Changes in model parameters

* Rate constants * Total enzyme concentrations

Changing gene expression —- changes in parameter values —> mode switches .

e Bifurcation analysis:

¢ Dependence of attractors of a vector field on parameter values

* Single steady-state, multiple steady-states, limit cycles, etc.

¢ Partitioning parameter space into regions where different behaviors observed
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¢ Does not account for the dynamics of switching between modes

* Example: switching from an oscillatory to a multi-stable mode



DYNAMICAL ANALYSIS & CONTROL OF MODE TRANSITIONS
IN BIOLOGICAL NETWORKS

e Objective:
Development of a hybrid dynamical systems approach:

¢ Account for the transients of mode switching

o Determine when (where in state-space) mode transitions are feasible.
* Supplements bifurcation analysis

e Control implications:

¢ Identify limitations on our ability to manipulate network behavior
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e Central idea:

¢ Orchestrating switching be-

tween stability regions of
constituent modes
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(El-Farra and Christofides, AIChE J., 2003)



MATHEMATICAL CONCEPTS AND TOOLS FROM
NONLINEAR DYNAMICAL SYSTEMS

dr _
dt

e Lyapunov functions: main tool for studying stability of nonlinear systems

o Positive-definiteness: V(0) =0, V(x) > 0 for all x # 0
oV
Ox

e Domain of attraction of an equilibrium state:

o Negative-definite time-derivative: V = (x) < 0 (asymptotic stability)

¢ Set of points starting from where trajectories converge to equilibrium state

¢ Estimates can be obtained using Lyapunov techniques

[Q = {zeR":V(z)<0 & V(w)gc}j

¢ Larger estimates obtained using a combination of several Lyapunov functions



METHODOLOGY FOR ANALYSIS & CONTROL OF MODE
SWITCHINGS IN BIOLOGICAL NETWORKS

Identification of the different modes of the network
¢ A different set of differential equations for each mode

¢ Same equations with different parameters
Characterization of the steady-state behavior of each mode

Characterization of the domains of attraction of the steady-states
¢ Lyapunov techniques

¢ Boundaries of stability regions represent switching surfaces

Analysis of the overlap of the stability regions of the various modes
¢ Monitoring the evolution of the state trajectory

¢ A transition is feasible if state resides within stability region



AN EXAMPLE FROM CELL-CYCLE REGULATION
e Simplified network model: (Novak & Tyson, J. Thoer. Biol., 1993)

¢ Reactions based on cyclin-dependent kinases and their associated proteins
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BIFURCATION & PHASE-PLANE ANALYSIS

o (G2-arrested mode

(kb = 0.01, kY = 10,kwee = 3.5)
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e Multiple steady-states
(ky = 0.015, kY = 0.1, kwee = 3.5)

e M-arrested mode
(ky = 0.01, kY = 0.5, kwee = 2.0)
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e Oscillatory mode

(K = 0.01, kY = 10, kwee = 2.0)



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES
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e Construction of domains of attraction for G2- & M-arrested states:
o Lyapunov function: V = (u — us)* + 10(v — vy)?

¢ Limit cycle overlaps with both stability regions



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES
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e Transition from oscillatory to bi-stable mode:
¢ On segment A: = M-arrested state

o At all other points: = G2-arrested state



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES
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e Transition from oscillatory to bi-stable mode:
¢ On segment A: = M-arrested state

o At all other points: = G2-arrested state



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES

e Temporal evolution of active MPF (u) and total cyclin (v) upon switching from

oscillatory mode to bi-stable mode at different times
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CONCLUSIONS

e Hybrid (combined discrete/continuous) dynamics in biological networks:
¢ Naturally-occurring switches

¢ Manipulation of network behavior (adding/deleting pathways)

e Hybrid systems framework for analysis & control of biological networks:

¢ Modeling approach:
* Finite family of continuous nonlinear dynamical subsystems

* Discrete events trigger transitions

¢ Analysis approach:
*x Characterizing stability regions of constituent modes (Lyapunov tools)

* Accounting for the dynamics of mode transitions

o “Control” implications:

* Provides predictions regarding feasibility of enforcing mode transitions
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