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INTRODUCTION

• Biochemical networks implement & control of cellular functions

¦ Metabolism

¦ DNA synthesis, gene regulation

¦ Movement & information processing

• A major goal of molecular cell biologists & bioengineers:

¦ Understanding how networks are integrated & regulated

¦ How network regulation can be influenced (e.g., for therapeutic purposes)

• Qualitative & quantitative tools:

¦ Experimental techniques (e.g., measurements of gene expression patterns)

? Biochemical intuition alone insufficient due to sheer complexity

¦ Mathematical and computational tools:
? Qualitative and quantitative insights
? Reduce trial-and-error experimentation
? Lead to testable predictions of certain hypotheses



MODELING OF BIOLOGICAL NETWORKS

• Biological networks are intrinsically dynamical systems:

¦ Drive adaptive responses of a cell in space & time

¦ Behavior determined by “biochemical kinetics” or “rate equations”
? Variables: concentrations of network components (proteins, metabolites)
? Dynamics describe rates of production & decay of network components

• Dynamic models of biological networks:

¦ Systems of continuous-time nonlinear ordinary differential equations

dx1

dt
= f1(x1, x2, · · · , xn)
...

dxn
dt

= fn(x1, x2, · · · , xn)

? Applying analytical techniques of nonlinear dynamics
? Combining mathematical analysis & computational simulation



COMBINED DISCRETE-CONTINUOUS DYNAMICS
IN BIOLOGICAL NETWORKS

• Discrete events superimposed on continuous dynamics:

¦ Switching between multiple qualitatively different modes of behavior

• Examples of hybrid dynamics:

¦ At the molecular level:
? Inhibitor proteins turning off gene transcription

by RNA polymerase
? e.g., genetic switch in λ-bacteriophage between

lysis & lysogeny modes
¦ At the cellular level:
? Cell growth and division in a eukaryotic cell: sequence of four processes,

each continuous, triggered by certain conditions or events
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COMBINED DISCRETE-CONTINUOUS DYNAMICS
IN BIOLOGICAL NETWORKS

• Examples of hybrid dynamics (cont’d):

¦ At the inter-cellular level:

? Cell differentiation viewed as a switched system

¦ Switched dynamics can be the result of external intervention:

? Re-engineering the network by turning on/off certain pathways

• Defining characteristic:

Intervals of continuous dynamics interspersed by discrete transitions

• A hybrid systems approach needed for:

¦ Modeling, simulation & analysis

¦ Controlling/modifying the network behavior



A HYBRID SYSTEMS FRAMEWORK FOR ANALYSIS & CONTROL
OF BIOLOGICAL NETWORKS

• Mathematical models:

dx(t)
dt

= fi(x(t), p)

i(t) ∈ I = {1, 2, · · · , N <∞}

¦ x(t) ∈ IRn : vector of continuous state variables

¦ i(t) ∈ I : discrete variable “switching signal”

¦ N : total number of modes/subsystems

¦ p : model parameters “genetically controlled”

¦ fi(x) : nonlinear rate expressions

.
x = f (x)3 Discrete Events

.
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Multimodal representation
? Each mode governed by continuous dynamics

? Transitions between modes governed by discrete events

? Switching classifications: autonomous vs. controlled



ANALYSIS OF MODE TRANSITIONS IN BIOLOGICAL NETWORKS

• Changing network dynamics:

¦ Changes in model parameters
? Rate constants ? Total enzyme concentrations

Changing gene expression =⇒ changes in parameter values =⇒ mode switches

• Bifurcation analysis:

¦ Dependence of attractors of a vector field on parameter values

? Single steady-state, multiple steady-states, limit cycles, etc.

¦ Partitioning parameter space into regions where different behaviors observed

¦ Does not account for the dynamics of switching between modes

? Example: switching from an oscillatory to a multi-stable mode



DYNAMICAL ANALYSIS & CONTROL OF MODE TRANSITIONS
IN BIOLOGICAL NETWORKS

• Objective:
Development of a hybrid dynamical systems approach:

¦ Account for the transients of mode switching

¦ Determine when (where in state-space) mode transitions are feasible.
? Supplements bifurcation analysis

• Control implications:

¦ Identify limitations on our ability to manipulate network behavior

• Central idea:

¦ Orchestrating switching be-
tween stability regions of
constituent modes

Stability region 
for mode 1

x(0)

switching to mode 1
"safe"

switching to mode 2
"safe" (u )max1

Ω

Ω

Stability region 
for mode 2

max)(u
2

t2-1

t1-2

(El-Farra and Christofides, AIChE J., 2003)



MATHEMATICAL CONCEPTS AND TOOLS FROM
NONLINEAR DYNAMICAL SYSTEMS

dx

dt
= f(x), f(0) = 0

• Lyapunov functions: main tool for studying stability of nonlinear systems

¦ Positive-definiteness: V (0) = 0, V (x) > 0 for all x 6= 0

¦ Negative-definite time-derivative: V̇ =
∂V

∂x
f(x) < 0 (asymptotic stability)

• Domain of attraction of an equilibrium state:

¦ Set of points starting from where trajectories converge to equilibrium state

¦ Estimates can be obtained using Lyapunov techniques
®

­

©

ª
Ω = {x ∈ IRn : V̇ (x) < 0 & V (x) ≤ c}

¦ Larger estimates obtained using a combination of several Lyapunov functions



METHODOLOGY FOR ANALYSIS & CONTROL OF MODE
SWITCHINGS IN BIOLOGICAL NETWORKS

• Identification of the different modes of the network

¦ A different set of differential equations for each mode

¦ Same equations with different parameters

• Characterization of the steady-state behavior of each mode

• Characterization of the domains of attraction of the steady-states

¦ Lyapunov techniques

¦ Boundaries of stability regions represent switching surfaces

• Analysis of the overlap of the stability regions of the various modes

¦ Monitoring the evolution of the state trajectory

¦ A transition is feasible if state resides within stability region



AN EXAMPLE FROM CELL-CYCLE REGULATION

• Simplified network model: (Novak & Tyson, J. Thoer. Biol., 1993)

¦ Reactions based on cyclin-dependent kinases and their associated proteinsº

¹

·

¸

du

dt
=

k′1
G
−
(
k′2 + k′′2u

2 + kwee
)
u+ (k′25 + k′′25u

2)
(
v

G
− u
)

dv

dt
= k′1 − (k′2 + k′′2u

2)v

u =
[active MPF ]

[total Cdc2]
=

[M ]

[CT ]

v =
[total cyclin]

[total Cdc2]

G = 1 +
kINH

kCAK
, k′1 =

k1[AA]

[CT ]

[CT ] = [R] + [S] + [M ] + [N ] + [C]

? k′2, k′′2 - rate constants for low &

high-activity form of cyclin degra-

dation
? kwee - rate constant for inhibition
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BIFURCATION & PHASE-PLANE ANALYSIS

• G2-arrested mode

(k′2 = 0.01, k′′2 = 10,kwee = 3.5)
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• Multiple steady-states

(k′2 = 0.015, k′′2 = 0.1, kwee = 3.5)

• M-arrested mode

(k′2 = 0.01, k′′2 = 0.5, kwee = 2.0)
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• Oscillatory mode

(k′2 = 0.01, k′′2 = 10, kwee = 2.0)



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES
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• Construction of domains of attraction for G2- & M-arrested states:

¦ Lyapunov function: V = (u− us)4 + 10(v − vs)2

¦ Limit cycle overlaps with both stability regions



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES
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• Transition from oscillatory to bi-stable mode:

¦ On segment A: =⇒ M-arrested state

¦ At all other points: =⇒ G2-arrested state



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

To
ta

l c
yc

lin
 (v

)

Active MPF(u)

Domain of attraction for G2−arrested state 

Domain of attraction for M−arrested state 

  M−arrest   
steady−state 

  G2−arrest  
steady−state 

• Transition from oscillatory to bi-stable mode:

¦ On segment A: =⇒ M-arrested state

¦ At all other points: =⇒ G2-arrested state



SWITCHING BETWEEN OSCILLATORY AND BI-STABLE MODES

• Temporal evolution of active MPF (u) and total cyclin (v) upon switching from
oscillatory mode to bi-stable mode at different times
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CONCLUSIONS

• Hybrid (combined discrete/continuous) dynamics in biological networks:

¦ Naturally-occurring switches

¦ Manipulation of network behavior (adding/deleting pathways)

• Hybrid systems framework for analysis & control of biological networks:

¦ Modeling approach:

? Finite family of continuous nonlinear dynamical subsystems
? Discrete events trigger transitions

¦ Analysis approach:

? Characterizing stability regions of constituent modes (Lyapunov tools)
? Accounting for the dynamics of mode transitions

¦ “Control” implications:
? Provides predictions regarding feasibility of enforcing mode transitions

ACKNOWLEDGMENT

• Financial support from NSF, CTS-0129571, is gratefully acknowledged




