ANALYSIS OF BIOLOGICAL NETWORKS USING HYBRID SYSTEMS THEORY

Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides

Department of Chemical Engineering University of California, Los Angeles

2003 AIChE Annual Meeting San Francisco, CA. November 20, 2003

INTRODUCTION

- Biochemical networks implement & control of cellular functions
 - \diamond Metabolism
 - $\diamond\,$ DNA synthesis, gene regulation
 - $\diamond\,$ Movement & information processing
- A major goal of molecular cell biologists & bioengineers:
 - $\diamond\,$ Understanding how networks are integrated & regulated
 - ♦ How network regulation can be influenced (e.g., for therapeutic purposes)

• Qualitative & quantitative tools:

- ♦ Experimental techniques (e.g., measurements of gene expression patterns)
 - \star Biochemical intuition alone insufficient due to sheer complexity
- ♦ Mathematical and computational tools:
 - $\star\,$ Qualitative and quantitative insights
 - \star Reduce trial-and-error experimentation
 - \star Lead to testable predictions of certain hypotheses

MODELING OF BIOLOGICAL NETWORKS

• Biological networks are intrinsically dynamical systems:

- $\diamond\,$ Drive adaptive responses of a cell in space & time
- ♦ Behavior determined by "biochemical kinetics" or "rate equations"
 - \star Variables: concentrations of network components (proteins, metabolites)
 - \star Dynamics describe rates of production & decay of network components
- Dynamic models of biological networks:
 - $\diamond\,$ Systems of continuous-time nonlinear ordinary differential equations

$$\frac{dx_1}{dt} = f_1(x_1, x_2, \cdots, x_n)$$

$$\vdots$$

$$\frac{dx_n}{dt} = f_n(x_1, x_2, \cdots, x_n)$$

- \star Applying analytical techniques of nonlinear dynamics
- \star Combining mathematical analysis & computational simulation

COMBINED DISCRETE-CONTINUOUS DYNAMICS IN BIOLOGICAL NETWORKS

- Discrete events superimposed on continuous dynamics:
 - $\diamond\,$ Switching between multiple qualitatively different modes of behavior
- Examples of hybrid dynamics:
 - $\diamond\,$ At the molecular level:
 - ★ Inhibitor proteins turning off gene transcription by RNA polymerase
 - \star e.g., genetic switch in $\lambda\text{-bacteriophage}$ between lysis & lysogeny modes
 - $\diamond\,$ At the cellular level:

- * Cell growth and division in a eukaryotic cell: sequence of four processes, each continuous, triggered by certain conditions or events hormonal trigger

COMBINED DISCRETE-CONTINUOUS DYNAMICS IN BIOLOGICAL NETWORKS

- Examples of hybrid dynamics (cont'd):
 - $\diamond\,$ At the inter-cellular level:
 - $\star\,$ Cell differentiation viewed as a switched system
 - ♦ Switched dynamics can be the result of external intervention:
 - \star Re-engineering the network by turning on/off certain pathways
- Defining characteristic:

Intervals of continuous dynamics interspersed by discrete transitions

- A hybrid systems approach needed for:
 - $\diamond\,$ Modeling, simulation & analysis
 - \diamond Controlling/modifying the network behavior

A HYBRID SYSTEMS FRAMEWORK FOR ANALYSIS & CONTROL OF BIOLOGICAL NETWORKS

• Mathematical models:

$$\frac{dx(t)}{dt} = f_i(x(t), p)$$
$$i(t) \in \mathcal{I} = \{1, 2, \cdots, N < \infty\}$$

- $\diamond x(t) \in \mathbb{R}^n$: vector of continuous state variables
- $\diamond i(t) \in \mathcal{I}$: discrete variable "switching signal"
- $\diamond~N$: total number of modes/subsystems
- $\diamond \ p$: model parameters "genetically controlled"
- $\diamond f_i(x)$: nonlinear rate expressions
 - \star Each mode governed by continuous dynamics
 - \star Transitions between modes governed by discrete events
 - \star Switching classifications: autonomous vs. controlled

ANALYSIS OF MODE TRANSITIONS IN BIOLOGICAL NETWORKS

• Changing network dynamics:

- ♦ Changes in model parameters
 - \star Rate constants

 $\star\,$ Total enzyme concentrations

Changing gene expression \implies changes in parameter values \implies mode switches

• Bifurcation analysis:

- ♦ Dependence of attractors of a vector field on parameter values
 - \star Single steady-state, multiple steady-states, limit cycles, etc.
- ♦ Partitioning parameter space into regions where different behaviors observed

◊ Does not account for the dynamics of switching between modes

***** Example: switching from an oscillatory to a multi-stable mode

DYNAMICAL ANALYSIS & CONTROL OF MODE TRANSITIONS IN BIOLOGICAL NETWORKS

• Objective:

Development of a hybrid dynamical systems approach:

- $\diamond\,$ Account for the transients of mode switching
- \diamond Determine when (where in state-space) mode transitions are feasible.
 - \star Supplements bifurcation analysis

• Control implications:

 $\diamond\,$ Identify limitations on our ability to manipulate network behavior

• Central idea:

 ♦ Orchestrating switching between stability regions of constituent modes

(El-Farra and Christofides, AIChE J., 2003)

MATHEMATICAL CONCEPTS AND TOOLS FROM NONLINEAR DYNAMICAL SYSTEMS

$$\frac{dx}{dt} = f(x), \quad f(0) = 0$$

- Lyapunov functions: main tool for studying stability of nonlinear systems
 - ♦ Positive-definiteness: V(0) = 0, V(x) > 0 for all $x \neq 0$

♦ Negative-definite time-derivative: $\dot{V} = \frac{\partial V}{\partial x} f(x) < 0$ (asymptotic stability)

- Domain of attraction of an equilibrium state:
 - ♦ Set of points starting from where trajectories converge to equilibrium state
 - ♦ Estimates can be obtained using Lyapunov techniques

$$\Omega = \{ x \in \mathbb{R}^n : \dot{V}(x) < 0 \& V(x) \le c \}$$

♦ Larger estimates obtained using a combination of several Lyapunov functions

METHODOLOGY FOR ANALYSIS & CONTROL OF MODE SWITCHINGS IN BIOLOGICAL NETWORKS

- Identification of the different modes of the network
 - $\diamond\,$ A different set of differential equations for each mode
 - $\diamond\,$ Same equations with different parameters
- Characterization of the steady-state behavior of each mode
- Characterization of the domains of attraction of the steady-states
 - $\diamond\,$ Lyapunov techniques
 - ♦ Boundaries of stability regions represent switching surfaces
- Analysis of the overlap of the stability regions of the various modes
 - ♦ Monitoring the evolution of the state trajectory
 - $\diamond\,$ A transition is feasible if state resides within stability region

AN EXAMPLE FROM CELL-CYCLE REGULATION

- Simplified network model: (Novak & Tyson, J. Theer. Biol., 1993)
 - \diamond Reactions based on cyclin-dependent kinases and their associated proteins

$$\begin{cases} \frac{du}{dt} &= \frac{k_1'}{G} - \left(k_2' + k_2'' u^2 + k_{wee}\right) u + (k_{25}' + k_{25}'' u^2) \left(\frac{v}{G} - u\right) \\ \frac{dv}{dt} &= k_1' - (k_2' + k_2'' u^2) v \end{cases}$$

$$u = \frac{[active MPF]}{[total Cdc2]} = \frac{[M]}{[CT]}$$
$$v = \frac{[total cyclin]}{[total Cdc2]}$$
$$G = 1 + \frac{k_{INH}}{k_{CAK}}, \ k'_1 = \frac{k_1[AA]}{[CT]}$$
$$[CT] = [R] + [S] + [M] + [N] + [C]$$

- $\star~k_2^\prime,~k_2^{\prime\prime}$ rate constants for low & high-activity form of cyclin degradation
- $\star \ k_{wee} \text{ rate constant for inhibition}$ of Wee1

BIFURCATION & PHASE-PLANE ANALYSIS

• G2-arrested mode

 $(k'_2 = 0.01, k''_2 = 10, k_{wee} = 3.5)$

 $(k'_2 = 0.015, k''_2 = 0.1, k_{wee} = 3.5)$ $(k'_2 = 0.01, k''_2 = 10, k_{wee} = 2.0)$

• M-arrested mode

 $(k'_2 = 0.01, k''_2 = 0.5, k_{wee} = 2.0)$

- Construction of domains of attraction for G2- & M-arrested states:
 - ♦ Lyapunov function: $V = (u u_s)^4 + 10(v v_s)^2$
 - $\diamond\,$ Limit cycle overlaps with both stability regions

- Transition from oscillatory to bi-stable mode:
 - \diamond On segment A: \Longrightarrow M-arrested state
 - \diamond At all other points: \implies G2-arrested state

- Transition from oscillatory to bi-stable mode:
 - \diamond On segment A: \Longrightarrow M-arrested state
 - \diamond At all other points: \implies G2-arrested state

• Temporal evolution of active MPF (u) and total cyclin (v) upon switching from oscillatory mode to bi-stable mode at different times

CONCLUSIONS

- Hybrid (combined discrete/continuous) dynamics in biological networks:
 - ♦ Naturally-occurring switches
 - ♦ Manipulation of network behavior (adding/deleting pathways)
- Hybrid systems framework for analysis & control of biological networks:
 - \diamond Modeling approach:
 - $\star\,$ Finite family of continuous nonlinear dynamical subsystems
 - \star Discrete events trigger transitions
 - ♦ Analysis approach:
 - ***** Characterizing stability regions of constituent modes (Lyapunov tools)
 - \star Accounting for the dynamics of mode transitions
 - \diamond "Control" implications:
 - \star Provides predictions regarding feasibility of enforcing mode transitions

ACKNOWLEDGMENT

• Financial support from NSF, CTS-0129571, is gratefully acknowledged