FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS

Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides

Department of Chemical Engineering University of California, Los Angeles

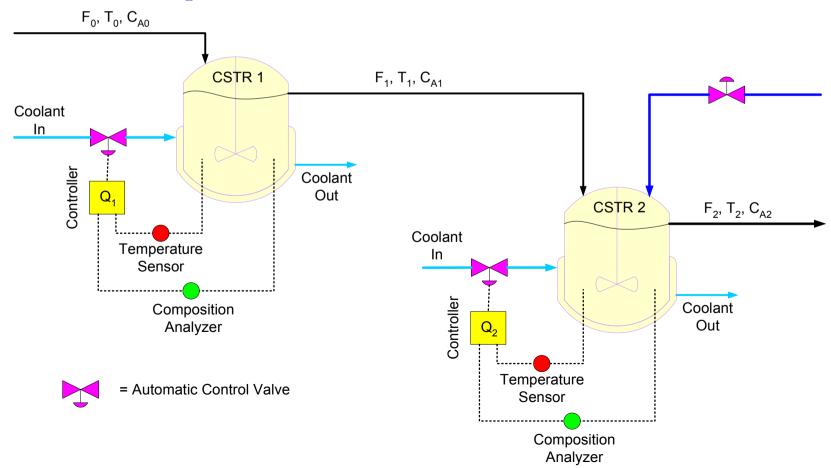
2003 AIChE Annual Meeting San Francisco, CA. November 20, 2003

INTRODUCTION

- Process control system failure:
 - ♦ Typical sources:
 - * Failure in control algorithm
 - * Faults in control actuators and/or measurement sensors
 - ♦ Induce discrete transitions in continuous dynamics
- Motivation for fault-tolerant control:
 - ⋄ Preserve process integrity & dependability
 - ♦ Minimize negative economic & environmental impact:
 - \star Raw materials waste, production losses, personnel safety, \cdots , etc.
- Dynamics of chemical processes:
 - ♦ Nonlinear behavior
 - ★ Complex reaction mechanisms ★ Arrhenius reaction rates
 - ♦ Input constraints
 - ★ Finite capacity of control actuators

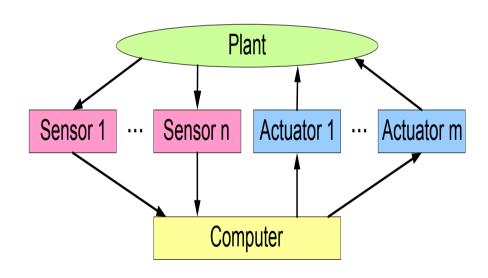
ISSUES IN FAULT-TOLERANT CONTROL OF CHEMICAL PROCESSES

- Availability of multiple control configurations:
 - ♦ Actuator/sensor redundancy
 - ♦ Different manipulated variables
- Illustrative example

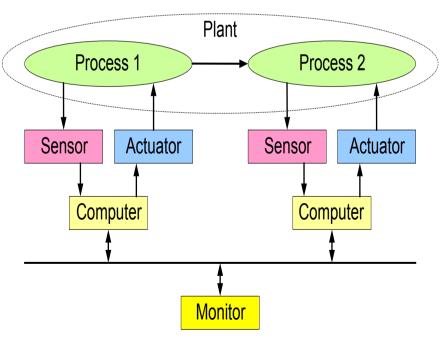


ISSUES IN FAULT-TOLERANT CONTROL OF CHEMICAL PROCESSES

- Distributed interconnected nature of process units:
 - ♦ Propagation of failure effects
 - ♦ Large numbers of distributed sensors & actuators involved
 - ♦ Efficient means of communication required
- Types of control system architecture:



★ Point-to-point connections



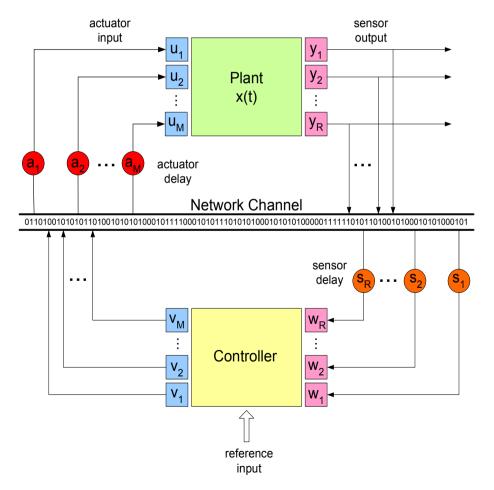
★ Distributed control system

INTEGRATING COMMUNICATION NETWORKS IN CONTROL

• Defining feature:

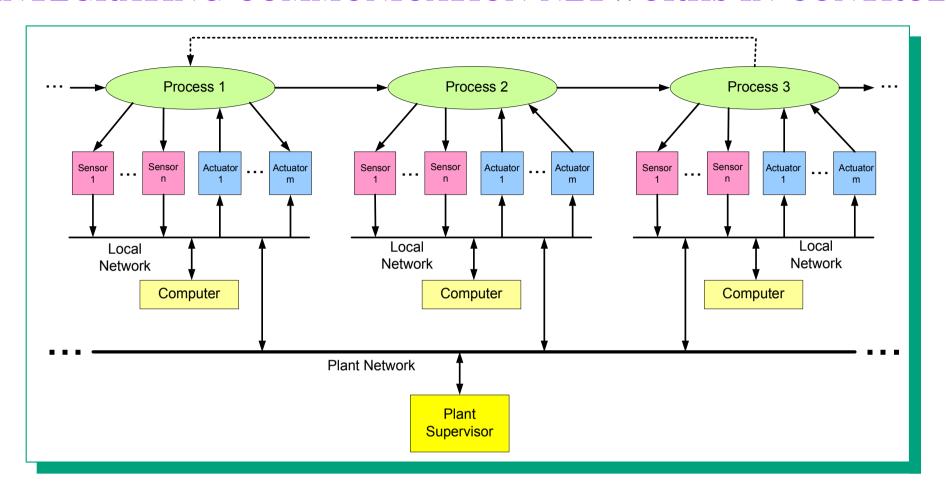
Information exchanged using a network among control system components

• Networked control structure



- ♦ Economic & operational benefits:
 - ▶ Reduced system wiring
 - ▶ Ease of diagnosis & maintenance
 - ▶ Enhanced fault-tolerance:
 - * Rerouting signals
 - * Activation of redundant components
- ♦ Implementation issues:
 - * Bandwidth limitations
 - * Network delays

INTEGRATING COMMUNICATION NETWORKS IN CONTROL



• Practical implementation considerations:

- ♦ Size and complexity of the plant
- ♦ Number of sensors & actuators
- ♦ Bandwidth limitations in data transmission
- ♦ Network scheduling and communication delays

PRESENT WORK

• Scope:

- ♦ Nonlinear process systems
 - * Input constraints

* Control system failures

• Objectives:

- ♦ Integrated approach for fault-tolerant control system design
 - ▷ Design of nonlinear feedback controllers
 - * Nonlinear dynamics

- * Input constraints
- ▷ Design of supervisory switching laws
 - * Orchestrate transition between control configurations
- ▶ Use of communication networks
- ♦ Application to two chemical reactors in series

• Approach:

♦ Lyapunov-based nonlinear control

 \diamond Hybrid systems theory

A HYBRID SYSTEMS FRAMEWORK FOR FAULT-TOLERANT PROCESS CONTROL

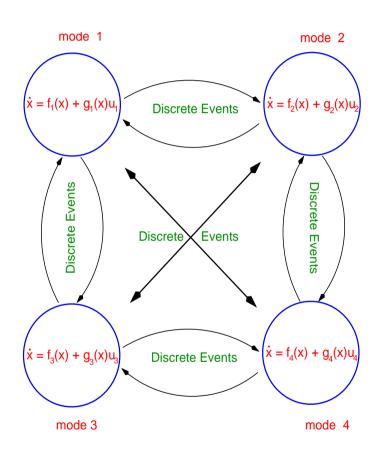
• State-space description:

$$\dot{x}(t) = f_i(x(t)) + \sum_{l=1}^m g_i^l(x(t)) u_i^l(t)$$

$$i(t) \in \mathcal{I} = \{1, 2, \dots, N < \infty\}$$

$$u_{i,min}^l \leq u_i^l(t) \leq u_{i,max}^l$$

- $\diamond x(t) \in \mathbb{R}^n$: continuous process state variables
- $\diamond u_i(t) \in \mathbb{R}^m$: manipulated inputs for *i*-th mode
- $\diamond i(t) \in \mathcal{I}$: discrete variable controlled by supervisor
- \diamond N: total number of control configurations
- $\diamond f_i(x), g_i^{(l)}(x)$: sufficiently smooth nonlinear functions
- Faults induce discrete events superimposed on continuous dynamics



FAULT-TOLERANT CONTROL PROBLEM FORMULATION

Coordinating feedback & switching over networks:

- ♦ Synthesis of a family of stabilizing feedback controllers
 - * Model for each mode of the hybrid plant: $\dot{x} = f_i(x) + G_i(x)u_i$
 - * Magnitude of input constraints: $|u_i| \leq u_{i,max}$
 - * Family of Lyapunov functions: V_i , $i = 1, \dots, N$
- ♦ Design of supervisory switching laws that orchestrate mode transitions

$$i(t) = \phi(x(t), i(t^-), t)$$

- ♦ Design of network communication logic
 - * Handling bandwidth limitations
 - * Handling transmission delays

• Objective:

♦ Maintain closed-loop stability under failure situations

FEEDBACK CONTROLLER DESIGN

• Lyapunov-based nonlinear control law:

$$u_i = -k_i(x, u_{i,max})(L_{g_i}V_i)^T$$

- ♦ Example: bounded robust controller
 (El-Farra & Christofides, Chem. Eng. Sci., 2001; 2003)
 - ▶ Controller design accounts for constraints.
- Explicit characterization of stability region:

$$\Omega_i(u_{i,max}) = \{x \in \mathbb{R}^n : V_i(x) \le c_i^{max} \& \dot{V}_i(x) < 0\}$$

- ♦ Explicit guidelines for mode switchings
- ♦ Larger estimates using a combination of several Lyapunov functions

MODEL PREDICTIVE CONTROL

• Control problem formulation

♦ Finite-horizon optimal control:

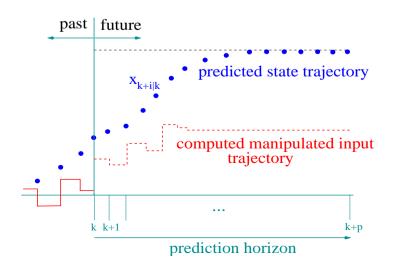
$$P(x,t) : \min\{J(x,t,u(\cdot))|\ u(\cdot) \in U_{\Delta}, V_{\sigma}(x(t+\Delta)) < V_{\sigma}(x(t))\}$$

♦ Performance index:

$$J(x,t,u(\cdot)) = F(x(t+T)) + \int_{t}^{t+T} \left[\|x^{u}(s;x,t)\|_{Q}^{2} + \|u(s)\|_{R}^{2} \right] ds$$

- $\triangleright \|\cdot\|_Q$: weighted norm.
- $\triangleright T$: horizon length.
 - \diamond Same V_{σ} as that for bounded controller design.
 - ♦ Bounded controller may provide "good" initial guess.

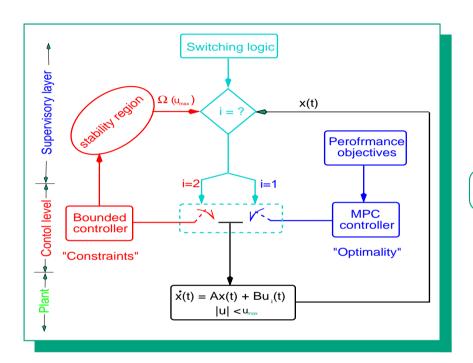
- $\triangleright Q$, R > 0: penalty weights.
- $\triangleright F(\cdot)$: terminal penalty.



HYBRID PREDICTIVE CONTROL

(El-Farra et. al., Automatica, 2004; IJRNC, 2004; AIChE J., 2004)

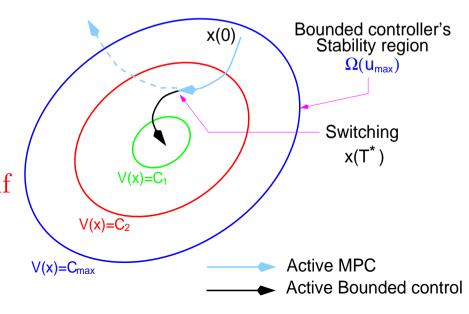
• Switching logic:



$$u_i(x(t)) = \begin{cases} M_i(x(t)), & 0 \le t < T^* \\ b_i(x(t)), & t \ge T^* \end{cases}$$

$$T^* = \inf\{T^* \ge 0 : L_{f_i}V_i(x) + L_{g_i}V_i(x)M_i(x(T^*)) \ge 0\}$$

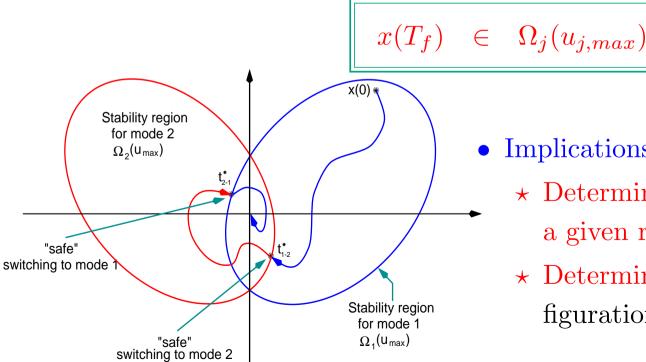
- \diamond Initially implement MPC, $x(0) \in \Omega_{\sigma}(u_{max})$
- \diamond Monitor temporal evolution of $V_{\sigma}(x^{M}(t))$
- \diamond Switch to bounded controller only is $V_{\sigma}(x^{M}(t))$ starts to increase



SUPERVISORY SWITCHING LOGIC FOR FAULT-RECOVERY

(El-Farra & Christofides, AIChE J., 2003)

- Basic mechanism for preserving closed-loop stability:
 - ♦ Switching between failed & well-functioning configurations
- Limitations imposed by input constraints
 - Stability regions of control configurations
- Switching policy: mode switching ensures fault-tolerance provided that
 - ♦ State within the stability region of fall-back configuration at time of failure

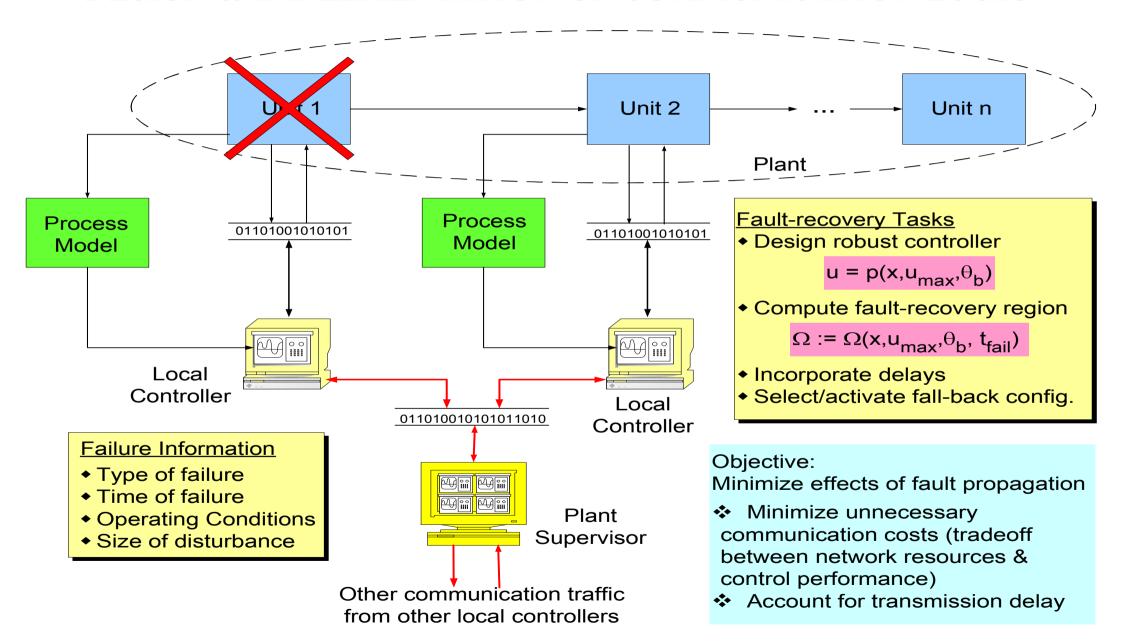


• Implications:

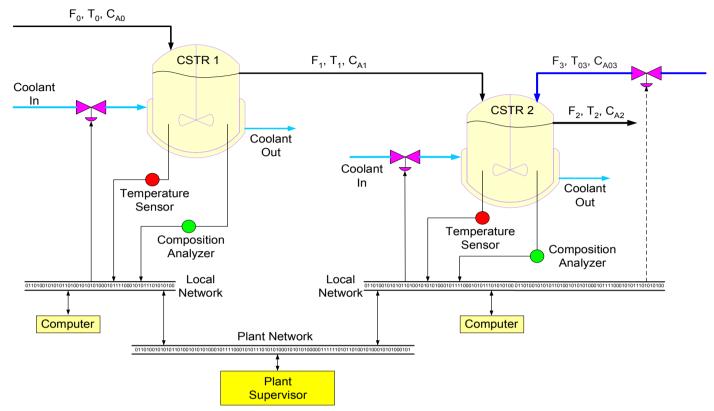
- * Determines tolerable-failure times for a given reconfiguration strategy
- * Determines selection of fall-back configuration for a given failure time

Switching between stability regions

DESIGN & IMPLEMENTATION OF COMMUNICATION LOGIC



APPLICATION TO CHEMICAL REACTORS



• Process dynamic model:

$$\frac{dC_{A_1}}{dt} = \frac{F_0}{V_1}(C_{A0} - C_{A_1}) - k_0 \exp\left(\frac{-E}{RT_1}\right) C_{A_1}
\frac{dT_1}{dt} = \frac{F_0}{V_1}(T_0 - T_1) + \frac{(-\Delta H_r)}{\rho c_p} k_0 \exp\left(\frac{-E}{RT_1}\right) C_{A_1} + \frac{Q_1(t)}{\rho c_p V_1}
\frac{dC_{A_2}}{dt} = \frac{F_1}{V_2}(C_{A_1} - C_{A_2}) - k_0 \exp\left(\frac{-E}{RT_2}\right) C_{A_2} + \frac{F_3}{V_2}(C_{A_{03}} - C_{A_2})
\frac{dT_2}{dt} = \frac{F_1}{V_2}(T_1 - T_2) + \frac{(-\Delta H_r)}{\rho c_p} k_0 \exp\left(\frac{-E}{RT_2}\right) C_{A_2} + \frac{Q_2(t)}{\rho c_p V_2} + \frac{F_3}{V_2}(T_{03} - T_2)$$

FAULT-TOLERANT CONTROL PROBLEM FORMULATION



• Control objective:

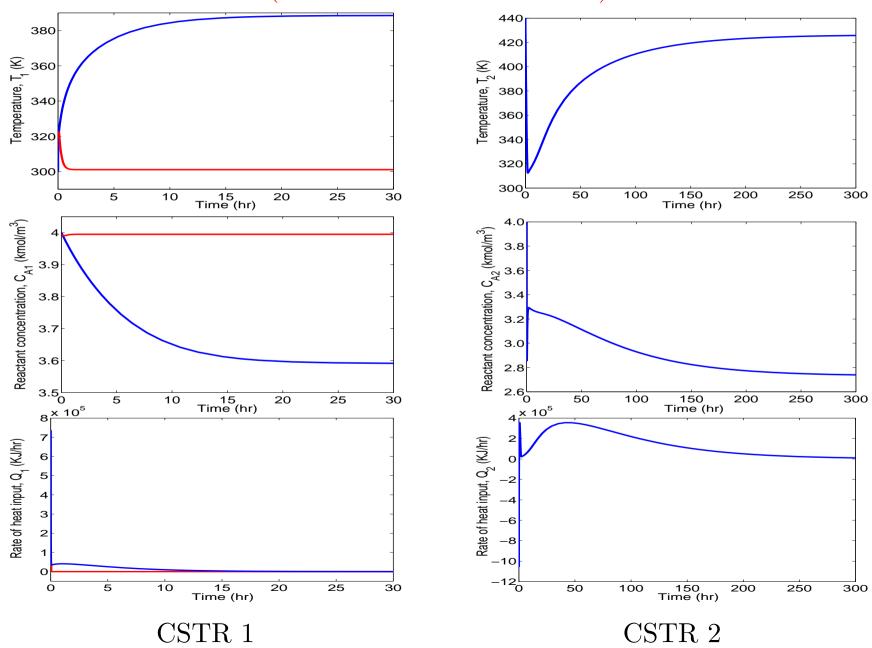
- ♦ Under normal operation: stabilize both reactors at unstable steady-states
- ♦ Under controller failure: preserve closed-loop stability of CSTR 2

• Candidate control configurations:

- \diamond Under normal operation: (Q_1, Q_2) : $|Q_1| \leq Q_1^{max}, |Q_2| \leq Q_2^{max}$
- \diamond Under failure conditions: (Q_2, C_{A03}) : $|Q_2| \leq Q_2^{max}$, $|C_{A03} C_{A03_s}| \leq C_{A03}^{max}$

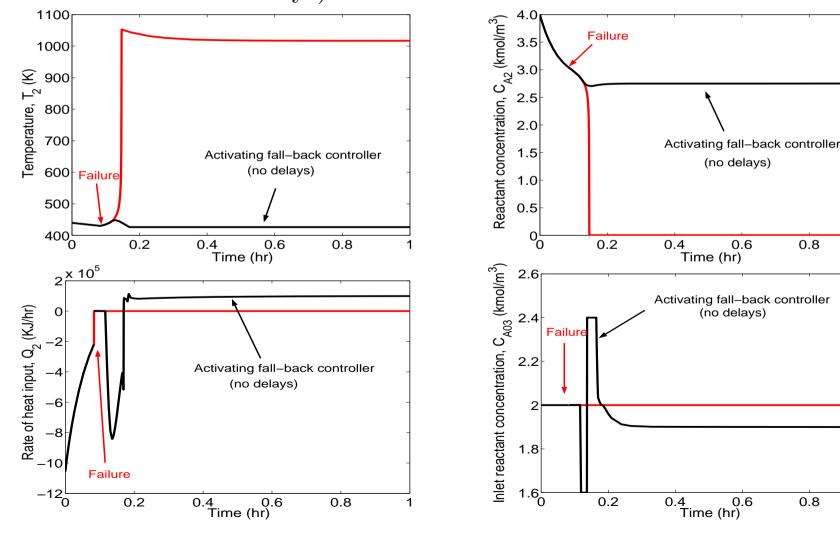
CLOSED-LOOP SIMULATION RESULTS

* Closed-loop state & input profiles under well-functioning & failed controllers (failure occurs at t = 5 min)



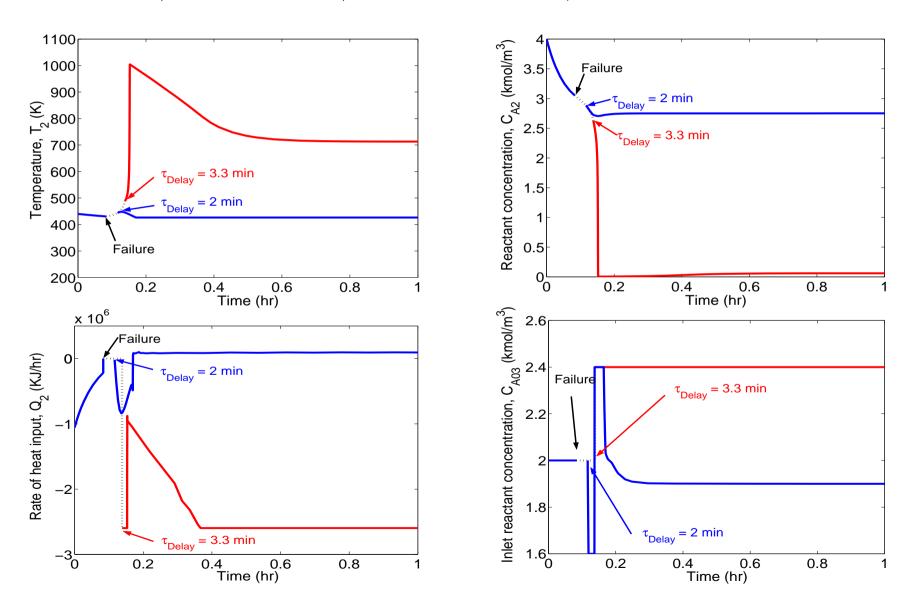
CLOSED-LOOP SIMULATION RESULTS

- ♦ Closed-loop state & input profiles for CSTR 2 when
 - \star (Q_1, Q_2) configuration fails at t = 5 min
 - \star (Q_2, C_{A03}) configuration activated (transmission of "disturbance bounds" over network no delays)



CLOSED-LOOP SIMULATION RESULTS

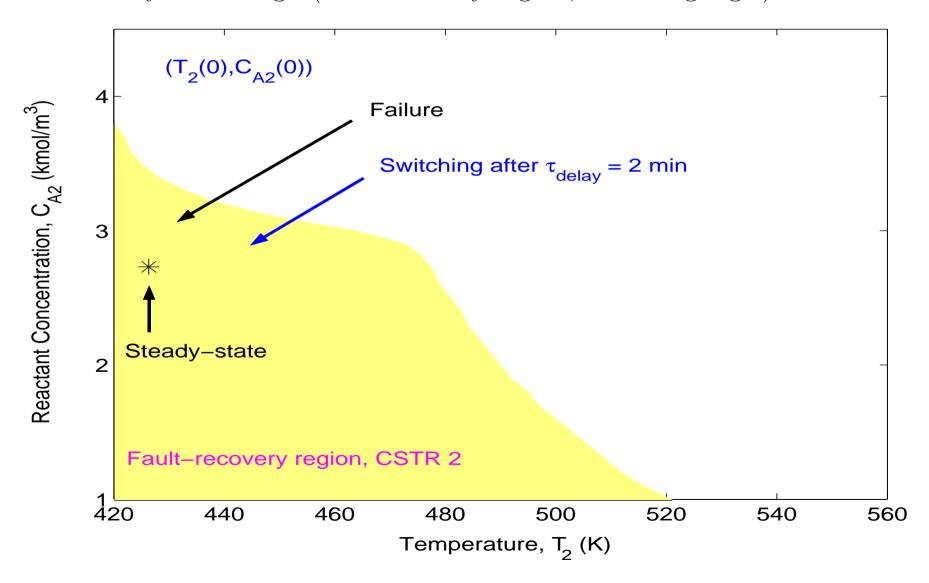
* Implementation of fault-tolerant control strategy over network with total delay (fault-detection/communication/actuator activation) of $\tau_D = 2 \text{ min } \& \tau_D = 3.3 \text{ min}$



EFFECT OF DELAYS ON FAULT-TOLERANCE

♦ Tradeoff between:

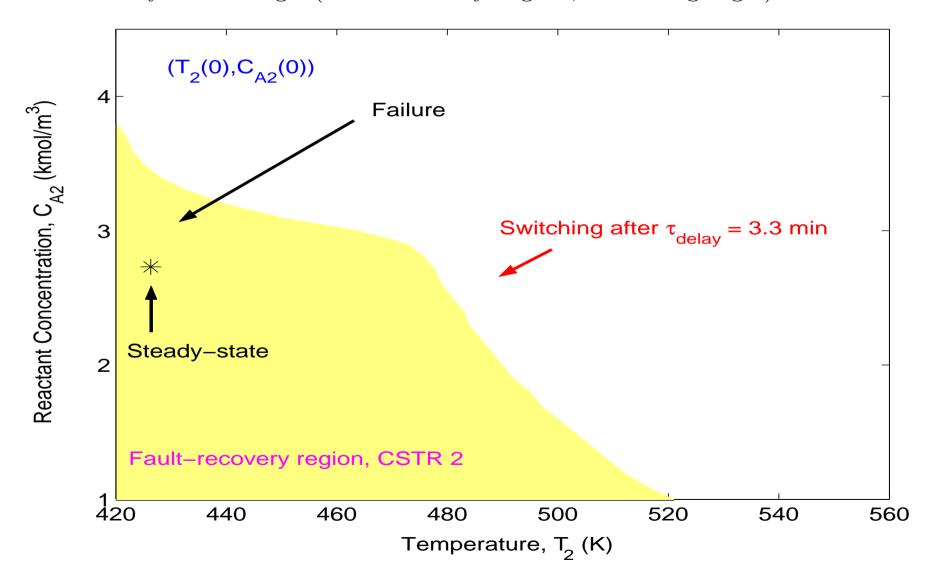
- * Network design (communication logic & delays)
- * Control system design (fault-recovery region, switching logic)



EFFECT OF DELAYS ON FAULT-TOLERANCE

♦ Tradeoff between:

- * Network design (communication logic & delays)
- * Control system design (fault-recovery region, switching logic)



CONCLUSIONS

- Chemical process systems with:
 - \star Nonlinear dynamics \star Input constraints \star Control system failures
- Integrated approach for fault-tolerant control over communication networks:
 - ♦ Design of constrained nonlinear feedback controllers:
 - ♦ Design of fault-tolerant supervisory switching laws:
 - * Stability regions of control configurations
 - ♦ Design of communication logic:
 - * Accounting for network resource limitations
 - ★ Effects of delays on fault-tolerance
- Approach brings together tools from Lyapunov and hybrid systems theory
- Application to two chemical reactors in series

ACKNOWLEDGMENT

• Financial support from NSF, CTS-0129571, is gratefully acknowledged