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INTRODUCTION

e Process control system failure:

¢ Typical sources:

* Failure in control algorithm

x Faults in control actuators and/or measurement sensors

¢ Induce discrete transitions in continuous dynamics

e Motivation for fault-tolerant control:
¢ Preserve process integrity & dependability

¢ Minimize negative economic & environmental impact:

* Raw materials waste, production losses, personnel safety, - - -, etc.

e Dynamics of chemical processes:

¢ Nonlinear behavior

* Complex reaction mechanisms x Arrhenius reaction rates

¢ Input constraints

* Finite capacity of control actuators



ISSUES IN FAULT-TOLERANT CONTROL
OF CHEMICAL PROCESSES

e Availability of multiple control configurations:

o Actuator/sensor redundancy

¢ Different manipulated variables

e Illustrative example
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e Distributed interconnected nature of process units:

ISSUES IN FAULT-TOLERANT CONTROL
OF CHEMICAL PROCESSES

¢ Propagation of failure effects

¢ Large numbers of distributed sensors & actuators involved

¢ Efficient means of communication required

e Types of control system architecture:
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INTEGRATING COMMUNICATION NETWORKS IN CONTROL

e Defining feature:

Information exchanged using a network among control system components I

e Networked control structure
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¢ Economic & operational benefits:
> Reduced system wiring
> Ease of diagnosis & maintenance

> Enhanced fault-tolerance:
* Rerouting signals

* Activation of redundant components

¢ Implementation issues:
* Bandwidth limitations

* Network delays



INTEGRATING COMMUNICATION NETWORKS IN CONTROL
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e Practical implementation considerations:
¢ Size and complexity of the plant
¢ Number of sensors & actuators
¢ Bandwidth limitations in data transmission

¢ Network scheduling and communication delays



PRESENT WORK
e Scope:

¢ Nonlinear process systems

% Input constraints * Control system failures

e Objectives:

¢ Integrated approach for fault-tolerant control system design

> Design of nonlinear feedback controllers

x Nonlinear dynamics x Input constraints

> Design of supervisory switching laws
* Orchestrate transition between control configurations

> Use of communication networks

¢ Application to two chemical reactors in series

e Approach:
¢ Lyapunov-based nonlinear control ¢ Hybrid systems theory



A HYBRID SYSTEMS FRAMEWORK FOR FAULT-TOLERANT
PROCESS CONTROL

e State-space description:

mode 1 mode 2

Discrete Events
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Discrete Events

o x(t) € IR™ : continuous process state variables

o u;(t) € IR™ : manipulated inputs for i-th mode

Discrete Events x =f,(x) + g,(x)u,

o i(t) € I : discrete variable controlled by supervisor S~

mode 3 mode 4

o N : total number of control configurations
o fi(x), g(l)(aj) . sufficiently smooth nonlinear functions

)

e Faults induce discrete events superimposed on continuous dynamics



FAULT-TOLERANT CONTROL PROBLEM FORMULATION

e Coordinating feedback & switching over networks:

¢ Synthesis of a family of stabilizing feedback controllers

x Model for each mode of the hybrid plant: & = f;(z) + G;(2)u;
*x Magnitude of input constraints:  |u;| < ;a0
x Family of Lyapunov functions: V;, ¢=1,---,N
¢ Design of supervisory switching laws that orchestrate mode transitions
i(t) = o(x(t), i(t7), t)

¢ Design of network communication logic

* Handling bandwidth limitations
* Handling transmission delays

e Objective:

¢ Maintain closed-loop stability under failure situations



FEEDBACK CONTROLLER DESIGN

e Lyapunov-based nonlinear control law:

u, = —k; (5’37 ui,max)(Lgi V@)T

¢ Example: bounded robust controller
(El-Farra & Christofides, Chem. Eng. Sci., 2001; 2003)

> Controller design accounts for constraints.

e Explicit characterization of stability region:

(i) = {x R Vi) < e e Vife) <0} |

¢ Explicit guidelines for mode switchings

¢ Larger estimates using a combination of several Lyapunov functions



MODEL PREDICTIVE CONTROL

e Control problem formulation

¢ Finite-horizon optimal control:

[ P(z,t) : min{J(x,t,u(-))| u(:) € Ua, Vy(x(t + A)) < V,(x(t))} j

¢ Performance index:

t+T
Jeta() = FarT)+ [ [la"(sm 0l + lul) k] ds
t
> || - || : weighted norm. > @, R > 0: penalty weights.
> T" : horizon length. > F'() : terminal penalty.
E future
¢ Same V, as that for bounded | e N
Xerin predl cted state trgjectory
controller design. .'
o Bounded controller may pro- 1 | computed manipulated input
R S trajectory
vide “good” initial guess. = -

prediction horizon



HYBRID PREDICTIVE CONTROL
(El-Farra et. al., Automatica, 2004; IJRNC, 2004; AIChE J., 2004)

e Switching logic:

[ Switching Iogic]
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SUPERVISORY SWITCHING LOGIC FOR FAULT-RECOVERY

(El-Farra & Christofides, AIChE J., 2003)

e Basic mechanism for preserving closed-loop stability:

¢ Switching between failed & well-functioning configurations

e Limitations imposed by input constraints

¢ Stability regions of control configurations

e Switching policy: mode switching ensures fault-tolerance provided that

¢ State within the stability region of fall-back configuration at time of failure
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e Implications:

* Determines tolerable-failure times for

a given reconfiguration strategy

* Determines selection of fall-back con-

figuration for a given failure time



DESIGN & IMPLEMENTATION OF COMMUNICATION LOGIC
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APPLICATION TO CHEMICAL REACTORS
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e Process dynamic model:
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FAULT-TOLERANT CONTROL PROBLEM FORMULATION
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e Control objective:
¢ Under normal operation: stabilize both reactors at unstable steady-states

¢ Under controller failure: preserve closed-loop stability of CSTR 2

e Candidate control configurations:
o Under normal operation: (Q1,@a): Q1] < Q9% [Qa] < Qe
o Under failure conditions: (Q2,Cao03): |Q2| < Q5 |Caos — Caos.| < CHEY



CLOSED-LOOP SIMULATION RESULTS
* Closed-loop state & input profiles under well-functioning & failed controllers
(failure occurs at t = 5 min)

440
380
420}
< 360r < 400}
— <
055 @& 380
B 340, %
=3 T 360
£ £
&2 320 = 340
\ 320
3001
L L L L L 300 L L L I
o) 5 10 15 20 25 30 o 50 100 150 200 250 300
Time (hr) Time (hr)
m’g ‘ ___ 40
g E L
£ g
O:c' 3.9r T4 3.6
= o
S 3.8 g 34
£ s
D = .
e 3.7 §
§ S 3.0f
S 36 =
S = 2.8
(37
D «
o &
3.5 ‘ ‘ ‘ ‘ >6 ‘ ‘ ‘ ‘
o 5 10 . 15 20 25 30 o 50 100 150 200 250 300
gX 10° Time (hr) ‘ % 10° Time (hr)
_ - _ 5 f\
= =
2 6 2 o
~— o~
o 5 < 2}
..5 =
g 4 2 _4
= =
8 3 2 _af
s 2 S
= L -s8f
£ 1 &
-10
o
(o) 5 10 15 20 25 30 1% 50 100 150 200 250 300
Time (hr) Time (hr)

CSTR 1 CSTR 2



CLOSED-LOOP SIMULATION RESULTS
¢ Closed-loop state & input profiles for CSTR 2 when

* (Q1,Q2) configuration fails at ¢ = 5 min

* (Q2,C403) configuration activated (transmission of “disturbance bounds”

over network — no delays)
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CLOSED-LOOP SIMULATION RESULTS

* Implementation of fault-tolerant control strategy over network with total delay

(fault-detection /communication /actuator activation) of 7p = 2 min & 7p = 3.3 min
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EFFECT OF DELAYS ON FAULT-TOLERANCE

¢ Tradeoff between:

x Network design (communication logic & delays)

x Control system design (fault-recovery region, switching logic)
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EFFECT OF DELAYS ON FAULT-TOLERANCE

¢ Tradeoff between:

x Network design (communication logic & delays)

x Control system design (fault-recovery region, switching logic)
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CONCLUSIONS

e Chemical process systems with:
* Nonlinear dynamics  x Input constraints * Control system failures

e Integrated approach for fault-tolerant control over communication networks:

¢ Design of constrained nonlinear feedback controllers:

¢ Design of fault-tolerant supervisory switching laws:

* Stability regions of control configurations

¢ Design of communication logic:

* Accounting for network resource limitations

* Effects of delays on fault-tolerance
e Approach brings together tools from Lyapunov and hybrid systems theory

e Application to two chemical reactors in series
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