FAULT-TOLERANT CONTROL OF CHEMICAL PROCESS SYSTEMS USING COMMUNICATION NETWORKS Nael H. El-Farra, Adiwinata Gani & Panagiotis D. Christofides ## Department of Chemical Engineering University of California, Los Angeles 2003 AIChE Annual Meeting San Francisco, CA. November 20, 2003 #### INTRODUCTION - Process control system failure: - ♦ Typical sources: - * Failure in control algorithm - * Faults in control actuators and/or measurement sensors - ♦ Induce discrete transitions in continuous dynamics - Motivation for fault-tolerant control: - ⋄ Preserve process integrity & dependability - ♦ Minimize negative economic & environmental impact: - \star Raw materials waste, production losses, personnel safety, \cdots , etc. - Dynamics of chemical processes: - ♦ Nonlinear behavior - ★ Complex reaction mechanisms ★ Arrhenius reaction rates - ♦ Input constraints - ★ Finite capacity of control actuators ## ISSUES IN FAULT-TOLERANT CONTROL OF CHEMICAL PROCESSES - Availability of multiple control configurations: - ♦ Actuator/sensor redundancy - ♦ Different manipulated variables - Illustrative example ## ISSUES IN FAULT-TOLERANT CONTROL OF CHEMICAL PROCESSES - Distributed interconnected nature of process units: - ♦ Propagation of failure effects - ♦ Large numbers of distributed sensors & actuators involved - ♦ Efficient means of communication required - Types of control system architecture: ★ Point-to-point connections ★ Distributed control system #### INTEGRATING COMMUNICATION NETWORKS IN CONTROL ## • Defining feature: Information exchanged using a network among control system components #### • Networked control structure - ♦ Economic & operational benefits: - ▶ Reduced system wiring - ▶ Ease of diagnosis & maintenance - ▶ Enhanced fault-tolerance: - * Rerouting signals - * Activation of redundant components - ♦ Implementation issues: - * Bandwidth limitations - * Network delays ### INTEGRATING COMMUNICATION NETWORKS IN CONTROL ## • Practical implementation considerations: - ♦ Size and complexity of the plant - ♦ Number of sensors & actuators - ♦ Bandwidth limitations in data transmission - ♦ Network scheduling and communication delays #### PRESENT WORK ## • Scope: - ♦ Nonlinear process systems - * Input constraints * Control system failures ## • Objectives: - ♦ Integrated approach for fault-tolerant control system design - ▷ Design of nonlinear feedback controllers - * Nonlinear dynamics - * Input constraints - ▷ Design of supervisory switching laws - * Orchestrate transition between control configurations - ▶ Use of communication networks - ♦ Application to two chemical reactors in series ## • Approach: ♦ Lyapunov-based nonlinear control \diamond Hybrid systems theory ## A HYBRID SYSTEMS FRAMEWORK FOR FAULT-TOLERANT PROCESS CONTROL ## • State-space description: $$\dot{x}(t) = f_i(x(t)) + \sum_{l=1}^m g_i^l(x(t)) u_i^l(t)$$ $$i(t) \in \mathcal{I} = \{1, 2, \dots, N < \infty\}$$ $$u_{i,min}^l \leq u_i^l(t) \leq u_{i,max}^l$$ - $\diamond x(t) \in \mathbb{R}^n$: continuous process state variables - $\diamond u_i(t) \in \mathbb{R}^m$: manipulated inputs for *i*-th mode - $\diamond i(t) \in \mathcal{I}$: discrete variable controlled by supervisor - \diamond N: total number of control configurations - $\diamond f_i(x), g_i^{(l)}(x)$: sufficiently smooth nonlinear functions - Faults induce discrete events superimposed on continuous dynamics #### FAULT-TOLERANT CONTROL PROBLEM FORMULATION ## Coordinating feedback & switching over networks: - ♦ Synthesis of a family of stabilizing feedback controllers - * Model for each mode of the hybrid plant: $\dot{x} = f_i(x) + G_i(x)u_i$ - * Magnitude of input constraints: $|u_i| \leq u_{i,max}$ - * Family of Lyapunov functions: V_i , $i = 1, \dots, N$ - ♦ Design of supervisory switching laws that orchestrate mode transitions $$i(t) = \phi(x(t), i(t^-), t)$$ - ♦ Design of network communication logic - * Handling bandwidth limitations - * Handling transmission delays ## • Objective: ♦ Maintain closed-loop stability under failure situations #### FEEDBACK CONTROLLER DESIGN • Lyapunov-based nonlinear control law: $$u_i = -k_i(x, u_{i,max})(L_{g_i}V_i)^T$$ - ♦ Example: bounded robust controller (El-Farra & Christofides, Chem. Eng. Sci., 2001; 2003) - ▶ Controller design accounts for constraints. - Explicit characterization of stability region: $$\Omega_i(u_{i,max}) = \{x \in \mathbb{R}^n : V_i(x) \le c_i^{max} \& \dot{V}_i(x) < 0\}$$ - ♦ Explicit guidelines for mode switchings - ♦ Larger estimates using a combination of several Lyapunov functions #### MODEL PREDICTIVE CONTROL ## • Control problem formulation ♦ Finite-horizon optimal control: $$P(x,t) : \min\{J(x,t,u(\cdot))|\ u(\cdot) \in U_{\Delta}, V_{\sigma}(x(t+\Delta)) < V_{\sigma}(x(t))\}$$ ♦ Performance index: $$J(x,t,u(\cdot)) = F(x(t+T)) + \int_{t}^{t+T} \left[\|x^{u}(s;x,t)\|_{Q}^{2} + \|u(s)\|_{R}^{2} \right] ds$$ - $\triangleright \|\cdot\|_Q$: weighted norm. - $\triangleright T$: horizon length. - \diamond Same V_{σ} as that for bounded controller design. - ♦ Bounded controller may provide "good" initial guess. - $\triangleright Q$, R > 0: penalty weights. - $\triangleright F(\cdot)$: terminal penalty. #### HYBRID PREDICTIVE CONTROL (El-Farra et. al., Automatica, 2004; IJRNC, 2004; AIChE J., 2004) ## • Switching logic: $$u_i(x(t)) = \begin{cases} M_i(x(t)), & 0 \le t < T^* \\ b_i(x(t)), & t \ge T^* \end{cases}$$ $$T^* = \inf\{T^* \ge 0 : L_{f_i}V_i(x) + L_{g_i}V_i(x)M_i(x(T^*)) \ge 0\}$$ - \diamond Initially implement MPC, $x(0) \in \Omega_{\sigma}(u_{max})$ - \diamond Monitor temporal evolution of $V_{\sigma}(x^{M}(t))$ - \diamond Switch to bounded controller only is $V_{\sigma}(x^{M}(t))$ starts to increase #### SUPERVISORY SWITCHING LOGIC FOR FAULT-RECOVERY (El-Farra & Christofides, AIChE J., 2003) - Basic mechanism for preserving closed-loop stability: - ♦ Switching between failed & well-functioning configurations - Limitations imposed by input constraints - Stability regions of control configurations - Switching policy: mode switching ensures fault-tolerance provided that - ♦ State within the stability region of fall-back configuration at time of failure • Implications: - * Determines tolerable-failure times for a given reconfiguration strategy - * Determines selection of fall-back configuration for a given failure time Switching between stability regions ### **DESIGN & IMPLEMENTATION OF COMMUNICATION LOGIC** #### APPLICATION TO CHEMICAL REACTORS ## • Process dynamic model: $$\frac{dC_{A_1}}{dt} = \frac{F_0}{V_1}(C_{A0} - C_{A_1}) - k_0 \exp\left(\frac{-E}{RT_1}\right) C_{A_1} \frac{dT_1}{dt} = \frac{F_0}{V_1}(T_0 - T_1) + \frac{(-\Delta H_r)}{\rho c_p} k_0 \exp\left(\frac{-E}{RT_1}\right) C_{A_1} + \frac{Q_1(t)}{\rho c_p V_1} \frac{dC_{A_2}}{dt} = \frac{F_1}{V_2}(C_{A_1} - C_{A_2}) - k_0 \exp\left(\frac{-E}{RT_2}\right) C_{A_2} + \frac{F_3}{V_2}(C_{A_{03}} - C_{A_2}) \frac{dT_2}{dt} = \frac{F_1}{V_2}(T_1 - T_2) + \frac{(-\Delta H_r)}{\rho c_p} k_0 \exp\left(\frac{-E}{RT_2}\right) C_{A_2} + \frac{Q_2(t)}{\rho c_p V_2} + \frac{F_3}{V_2}(T_{03} - T_2)$$ #### FAULT-TOLERANT CONTROL PROBLEM FORMULATION ## • Control objective: - ♦ Under normal operation: stabilize both reactors at unstable steady-states - ♦ Under controller failure: preserve closed-loop stability of CSTR 2 ## • Candidate control configurations: - \diamond Under normal operation: (Q_1, Q_2) : $|Q_1| \leq Q_1^{max}, |Q_2| \leq Q_2^{max}$ - \diamond Under failure conditions: (Q_2, C_{A03}) : $|Q_2| \leq Q_2^{max}$, $|C_{A03} C_{A03_s}| \leq C_{A03}^{max}$ ### **CLOSED-LOOP SIMULATION RESULTS** * Closed-loop state & input profiles under well-functioning & failed controllers (failure occurs at t = 5 min) ## **CLOSED-LOOP SIMULATION RESULTS** - ♦ Closed-loop state & input profiles for CSTR 2 when - \star (Q_1, Q_2) configuration fails at t = 5 min - \star (Q_2, C_{A03}) configuration activated (transmission of "disturbance bounds" over network no delays) ### **CLOSED-LOOP SIMULATION RESULTS** * Implementation of fault-tolerant control strategy over network with total delay (fault-detection/communication/actuator activation) of $\tau_D = 2 \text{ min } \& \tau_D = 3.3 \text{ min}$ ### EFFECT OF DELAYS ON FAULT-TOLERANCE ### ♦ Tradeoff between: - * Network design (communication logic & delays) - * Control system design (fault-recovery region, switching logic) ### EFFECT OF DELAYS ON FAULT-TOLERANCE ### ♦ Tradeoff between: - * Network design (communication logic & delays) - * Control system design (fault-recovery region, switching logic) #### CONCLUSIONS - Chemical process systems with: - \star Nonlinear dynamics \star Input constraints \star Control system failures - Integrated approach for fault-tolerant control over communication networks: - ♦ Design of constrained nonlinear feedback controllers: - ♦ Design of fault-tolerant supervisory switching laws: - * Stability regions of control configurations - ♦ Design of communication logic: - * Accounting for network resource limitations - ★ Effects of delays on fault-tolerance - Approach brings together tools from Lyapunov and hybrid systems theory - Application to two chemical reactors in series #### ACKNOWLEDGMENT • Financial support from NSF, CTS-0129571, is gratefully acknowledged