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KURAMOTO-SIVASHINSKY EQUATION

e Kuramoto-Sivashinsky equation with distributed control:

U U 02U U
o = Vo o Ugs T2

. I U 01U
e Boundary conditions: — (=t = ——
y 0zJ (=m1) 027

e The stability of steady-state U(z,t) = 0 depends on v.
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INTRODUCTION

e Important systems described by the Kuramoto-Sivashinsky equation:

¢ Falling liquid films.
¢ Unstable flame fronts.

¢ Interfacial instabilities between two viscous fluids.

e Feedback control of the Kuramoto-Sivashinsky equation:

¢ Finite-dimensional output feedback controller design based on
Galerkin’s method (e.g., Armaou and Christofides, CES and Physica D,
2000).

o Global stabilization of the zero solution of the KSE (e.g., Christofides
and Armaou, SCL, 2000).

¢ Boundary control (e.g., Liu and Krstic, NA, 2001).

e Optimal actuator/sensor placement for the Kuramoto-Sivashinsky
equation?



BACKGROUND ON ACTUATOR/SENSOR PLACEMENT

e Optimal actuator placement for linear controllers and PDE models.

o Controllability measures (e.g., Arbel, 1981).

¢ Optimal controller gain/actuator location to minimize cost on system

response and control action (e.g., Rao et al, ATAA J., 1991).

e Optimal sensor placement for linear estimators and PDE models.

o Observability measures (e.g., Yu and Seinfeld, IJC. 1973; Waldraff
et al, JPC, 1998).

¢ Minimum estimation error under worst measurement noise (e.g., Kumar
and Seinfeld, IEEE TAC, 1978; Morari and O’Dowd, Automatica 1980).

Review paper: Kubrusly and Malebranche, Automatica, 1985.

e Optimal actuators/sensors placement for nonlinear dissipative PDE systems
(Antoniades and Christofides, C&CE, 2000; CES, 2001; C&CE, 2002).



PRESENT WORK
(Lou and Christofides, IEEE CST, 2002)

e Optimal actuator/sensor placement for nonlinear control of the

Kuramoto-Sivashinsky equation.

¢ Order reduction using linear /nonlinear Galerkin’s method.

¢ Computation of optimal location of actuators and sensors through
minimization of a cost that includes penalty on the closed-loop response
and the control effort.

¢ Nonlinear output feedback controller design using geometric methods.

e Illustration of theoretical results through computer simulation of the

closed-loop system using a high-order discretization of the KSE.



KURAMOTO-SIVASHINSKY EQUATION

e Kuramoto-Sivashinsky equation with distributed control:
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e Boundary conditions:

e Representation in Hilbert space:

t=Azx + Bu+ f(z), z(0) =z
ym:kx

A: linear operator.

f(x): nonlinear function.
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EIGENSPECTRUM / OPEN-LOOP DYNAMICS

e Eigenvalue problem:
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GALERKIN’S METHOD
Hs = span{ o1, ¢2, ..., dm}, Hy = span{dm+1, Gmt2,-- -, }-
Ts(t) = Psx(t), x¢(t) = Prx(t)
Pg, Ps: orthogonal projection operators.

Set of infinite ODEs.

dzs
ZE — Asxs—i_bsu—l_fs(x&xf)
dt
(%r;f
o = Arrytbput frlas, )
Finite-set of ODEs.
dT . _ .
CZ = AsTs + Bsu+ fs(Zs,0)

Order reduction using Galerkin’s method and approximate
inertial manifolds is also possible.



NONLINEAR CONTROL DESIGN
dx

dt

— Asjjs + Bsu + fs(jjsao)

Assumption: [ = m (i.e. number of manipulated inputs is equal to the

number of slow modes) and B, is invertible.

Nonlinear state feedback controller:

u = Bl ((As — Ag)Ts — fs(Ts,0))

A, is a stable matrix.

Closed-loop ODE system:

i's — Asxs

Response depends on A and z4(0), but not on actuator locations:

T, = elstay(0)



OPTIMAL POINT ACTUATOR PLACEMENT

Performance criterion (sum is over a set of m linearly independent x*(0)):

Jy = —Z/ )i 1), QsTs(z

+(0),1))

+ul' (Z4(22(0),1), zq) Ru(Zs(24(0), 1), 24))dt

However, system’s response does not depend on the actuator locations:

= —Z/ t), QsTs(z

Performance criterion reduces to:

Computation of optimal actuator locations:
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OPTIMAL LOCATION OF POINT SENSORS

dZ s _ ~
c:;f = AsTs + Bsu+ fs(%s,0)
y;n — Sis

e Assumption: p = m(i.e. the number of sensors is equal to the number of
slow modes) and S is invertible.

e Computation of estimate of T, from the measurements:
A o-1
Ts =8 "Um
Ym: Sensor measurements, T, estimate of .

e Compute point sensor locations to minimize the estimation error in the
closed-loop system:

. 1 o [ i .
Jle) = — Z/O (llzs(25(0), 1) = Zs(24(0), 2)|[2)dt
i=1
xs: slow state of infinite set of ODEs, e(t) = ||lxs — Tsl2

e Near-optimal solution for distributed system as ¢ — 0.



KURAMOTO-SIVASHINSKY EQUATION

e Kuramoto-Sivashinsky equation with distributed control:
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e Boundary conditions: — (=t = ——
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e The stability of steady-state U(z,t) = 0 depends on v.
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CONTROLLER SYNTHESIS
Kuramoto-Sivashinsky equation, v = 0.2

v = 0.2 — Two unstable eigenmodes.

Order of ODE model used for controller design:2
Number of control actuators:2; Number of measurement sensors:2

Approximate two-dimensional ODE system used for controller design.

[ (55317¢1) ] _ A 0 ] [ (Zs1,01) ]
(532452) 0 A2 (Zs2, P2)

n <Z51(Za1) <Z51(Za2) ] [ U1 ]
$2(2a1)  D2(2a2) U2

N <f1<:zs,0>,¢1>]
(f2<£870)7¢2)

Zal, Za2 - location of point actuators.



CONTROLLER SYNTHESIS

e Nonlinear state feedback controller:
—1
U1 . qbl (Zal) ¢1 (Zaz)
Uz ¢2(Za1) Q52 (Za2)

J(r | v
0 —0B — A2 (Zs2, P2)

a and (3 are positive real numbers.

e The structure of the closed-loop finite-dimensional system under the
feedback control :

[ (Zs1, P1) ] _ [ —a 0 ] [ (Zs1,P1) ]
(Zs2, $2) 0 -8 (Z52, P2)

which is independent of the actuator locations.



OPTIMAL LOCATION OF ACTUATORS

e Cost for optimal location of control actuators:

J. = 22/ (@7 (54(0), 1), Qs (41(0), 1)

+ul (Z5(2%(0),t), 2za) Ru(Zs(2%(0), 1), 24))dt

Optimal actuator locations: z,; = 0.317 and z,2 = 0.697.



OPTIMAL LOCATION OF SENSORS

e Cost for optimal location of measurement sensors:
| [
50 =33 [ Ueai(0)0) = a0l
i=1 70

where z, can be obtained from the simulation of the high
order system, and Z, is calculated from the output:

[ Ts1 ] _ [ 1 O ] [ d1(zs1)  P1(2s2) ]1 [ Ym1(2s1,1) ]
T 52 0 ¢ d2(zs1)  P2(zs2) Ym2(2s2,1)

Optimal sensor locations: zg1 = 0.357 and 2z = 0.64.



SIMULATION RESULTS

e State feedback control with two actuators.

A

Case Actuator locations Js
Optimal 31w, .69 3.3705
2 307, .807 4.1536
3 407, .607 5.2238
4 207, .807 5.1089

e Closed-loop norm of ||ul|| for the optimal case (solid line), case 2
(long-dashed line), case 3 (short-dashed line), and case 4 (dotted line).

Left plot: z5(0) =] ¢; 0 ]. Right plot: z5(0) = 0 ¢5 |.
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SIMULATION RESULTS

e Output feedback control with two sensors (optimal actuator locations).

A A

Case Sensor locations J(e) Js
Optimal 357, .64 2.86e-4 | 3.8748
2 207, .80m 1.841e-3 | 3.8830
3 207, .50 5.020e-3 | 3.9273

e Closed-loop norm of the closed-loop estimation error ||e|| versus time, for

the optimal actuator/sensor locations.
Dotted line: x5(0) = ¢; 0 ]. Solid line: z5(0) =] 0 ¢9 |-




SIMULATION RESULTS

imal

0 | (left figure), and x4(0)

e Profiles of the evolution of U under output feedback control, for opt

| &1

actuator/sensor locations, for z4(0) =

| 0 ¢

right figure).
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SIMULATION RESULTS

for the optimal

Y

0 | and uncertainty in v.

e Profiles of KSE under output feedback control
actuator/sensor locations, for z5(0) = [ ¢,

1ne u-
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Manipulated input profiles - Solid line u; and dashed 1




SIMULATION RESULTS

e Profiles of KSE under output feedback control, for the optimal

actuator/sensor locations, for z5(0) = 0 ¢y ] and uncertainty in v.

Manipulated input profiles - Solid line u; and dashed line us
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CONCLUSIONS

e Optimal actuator/sensor placement for nonlinear control of the KSE.

¢ Order reduction using Galerkin’s method
¢ Nonlinear output feedback controller design using geometric methods.

o Computation of optimal actuator/sensor location through minimizing a

cost that includes penalty on the close-loop response and control effort.
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