FEEDBACK CONTROL OF GROWTH RATE AND SURFACE ROUGHNESS IN THIN FILM GROWTH

Yiming Lou and Panagiotis D. Christofides

Department of Chemical Engineering University of California, Los Angeles

IEEE 2003 Conference on Decision and Control Maui, Hawaii December 9 - 12, 2003

INTRODUCTION

- Surface roughness is an important property of thin films.
 - ◊ Abruptness of semiconductor interfaces to the electronic properties of devices (e.g., GaAs thin films).
 - ♦ Importance of surface roughness of thin films of high- κ materials to the effective capacities of the gate dielectrics (e.g., ZrO_2 thin films).
- Feedback control of thin film growth.
 - ♦ Increasingly stringent requirements on the thin film quality.
 - **◊** Improvement of productivity.
- Multiscale distributed models for thin film growth.
 - ◊ Coupled PDE models for gas phase dynamics and kinetic Monte-Carlo models for surface microstructure.
- Measurements of surface roughness of thin films in atomic resolution.
 - \diamond Scanning tunneling microscopy or atomic force microscopy.

MOCVD GaAs FILMS / EXPERIMENTAL RESULTS (Law, et. al., J. Appl. Phys., 2000)

• Surface roughness can be controlled by manipulating the substrate temperature.

Scanning tunneling micrographs $(2 \times 2\mu m^2)$ of GaAs surface after MOCVD growth at difference substrate temperatures. Left: Surface configuration at T=825K (roughness=2.9Å). Right: Surface configuration at T=900K (roughness=1.3Å).

PREVIOUS WORK ON MODELING AND CONTROL OF THIN FILM MICROSTRUCTURE

- Rigorous derivation of kinetic Monte-Carlo algorithms (Gillespie, J. Comput. Phys., 1976) and their applications to GaAs thin film growth by molecular beam epitaxy (MBE) (Shitara, et. al., Phys. Rev. B, 1992).
- Multiscale integration hybrid algorithms (Vlachos, AIChE J., 1997).
- Control of microscopic models using coarse timesteppers (Siettos et. al., *AIChE J.*, 2003).
- Feedback control of thin film growth using kinetic Monte-Carlo models (Lou & Christofides, Chem. Eng. Sci., 2003).
- Model reduction for thin film growth directly based on the master equation (Gallivan & Murray, *Proc. ACC*, 2003).

PRESENT WORK

(Lou and Christofides, AIChE J., 2003; Comp. & Chem. Eng., 2004)

- Feedback control of surface roughness of *GaAs* thin films.
 - \diamond MOCVD of *GaAs* thin films in a horizontal-flow reactor.
 - ♦ Kinetic Monte-Carlo model for the surface roughness.
 - ◊ Real-time roughness estimator based on a kMC simulator using multiple small-lattice models.
 - ◊ Estimator/controller structure.
- Multivariable feedback control of thin film growth.
 - ◊ Thin film growth in a stagnation point geometry.
 - ♦ Multiscale distributed model.
 - ◊ Feedback control design using state estimator and input/output interaction compensation.

PROCESS DESCRIPTION

(Law, et. al., J. Appl. Phys., 2000)

- A MOCVD of *GaAs* thin film growth process.
- Horizontal-flow reactor.
- Triisobutylgallium (TIBGa) and tertiarybutylarsine (TBAs) as precursors and H_2 as carrier gas.
- Growth rate: $0.5 \mu m/hr$.
- As-rich environment ($P_{As} / P_{Ga} \sim 100$).
 - $\diamond~As$ reaction and migration kinetics are not rate-limiting steps.
- Very fast decomposition of the MO precursors on the surface and desorption of butyl groups.
 - ♦ Substrate temperature: $825K \sim 900K$.
 - \diamond Surface reactions are not rate-limiting steps.
- Adsorption and migration of *Ga* atoms as rate-limiting steps.

SURFACE MICROSTRUCTURE MODEL

- Surface micro-processes are assumed to be Poisson processes.
- Both the master equation and the Monte-Carlo algorithm can be derived using the same assumption (Gillespie, J. Comput. Phys., 1976).
- Kinetic Monte-Carlo model for rate-limiting steps.
 - ◊ Effects of non-rate-limiting steps can be incorporated into the model by adjusting model parameters.
- Rates of adsorption and migration of *Ga* atoms:

$$w_a = F$$
 (for a fixed growth rate)

$$w_m(n) = \nu_0 exp(-\frac{E_s + nE}{kT})$$

○ ---- Bottom layer

---- Top layer

SURFACE MICROSTRUCTURE MODEL

• The life time of every MC event:

$$\tau = \frac{-\ln \xi}{W_{tot}}; \quad W_{tot} = N^2 w_a + \sum_{i=0}^4 M_i \nu_0 \exp(-\frac{E_s + iE_n}{k_B T})$$

 ξ : a random number in the (0,1) interval.

 M_i : number of surface atoms that have i side-neighbors on the surface.

- Surface roughness and surface micro-processes.
 - ♦ Adsorption events make the surface rough.
 - ♦ Migration events make the surface smooth.
 - ♦ High temperature reduces surface roughness by increasing the rate of migration.

KINETIC MONTE-CARLO SIMULATION RESULTS

• Fitting model parameters based on experimental results in (Law, et. al. J. Appl. Phys., 2000).

$$\nu_0 = 5.8 \times 10^{13} s^{-1} \quad E_s = 1.82 eV \quad E_n = 0.27 eV$$

- Cooling down the deposited thin films to the room temperature at 2K/s.
- Surface roughness from Monte-Carlo simulations: $r_{825K} = 2.5 \text{\AA}$, $r_{900K} = 1.6 \text{\AA} \sim 2.0 \text{\AA}$ (Experimental results: $r_{825K} = 2.8 \text{\AA}$, $r_{900K} = 1.3 \text{\AA}$).

REAL-TIME ROUGHNESS ESTIMATOR USING KMC SIMULATOR BASED ON MULTIPLE SMALL-LATTICES

- Methodology developed in a previous work (Lou & Christofides, Chem. Eng. Sci., 2003).
- Kinetic Monte-Carlo simulator based on multiple small-lattice models.
 - ◊ Solution time comparable to the real-time evolution of the process.
 - Fluctuation reduction by averaging outputs from multiple small-lattice kMC models.
- Adaptive filter for noise reduction.
- Measurement error compensator to reduce the error between the roughness estimates and the roughness measurements.

ADAPTIVE FILTER

• A second-order adaptive filter.

$$\begin{aligned} \frac{d\hat{y}_r}{d\tau} &= y_1 \\ \frac{dy_1}{d\tau} &= \frac{K}{\tau_I}(y_r - \hat{y}_r) - \frac{1}{\tau_I}y_1 \end{aligned}$$

• The adaptive tuning law for the filter gain.

$$K(\tau) = K_0 \frac{\left| \int_{\tau - \Delta \tau}^{\tau} y_r(t) dt - \int_{\tau - 2\Delta \tau}^{\tau - \Delta \tau} y_r(t) dt \right|}{\Delta \tau^2} + K_s$$
$$\tau_I(\tau) = \frac{0.5}{K(\tau)}$$

 K_s : Steady state gain for the adaptive filter. $\Delta \tau$: Time interval between two updates of K.

THE MEASUREMENT ERROR COMPENSATOR

• A first-order measurement error compensator.

$$\frac{de}{d\tau} = K_e(y_h(\tau_{m_i}) - \hat{y}(\tau_{m_i})); \quad \tau_{m_i} < \tau \le \tau_{m_{i+1}}; \quad i = 1, 2, \cdots$$
$$\hat{y} = \hat{y}_r + e$$

• Comparison of roughness profiles from the roughness estimator using a KMC simulator based on six 30×30 lattices (dashed line) and that based on a 150×150 lattice (solid line).

FEEDBACK CONTROL OF SURFACE ROUGHNESS OF GaAs THIN FILMS

- The estimator/controller structure.
- Available on-line roughness measurement techniques could be used to provide roughness measurement data.
- Control objective: Stabilization of the surface roughness value to a desired level with a certain tolerance ϵ .

SIMULATION RESULTS

- Initial growth at T = 800K.
- Real-time measurement of surface roughness is available every 3.0s (Curtis, et. al., Rev. Sci. Instrum., 1997).
- The desired roughness is 1.5\AA with a tolerance $\epsilon = 0.1\text{\AA}$.
- Range of the substrate temperature: $750K \le T \le 950K$.

- Problems due to the large disparity of time and length scales of phenomena occurring in gas phase and surface:
 - \diamond The assumption of continuum is not valid on the surface.
 - ◊ Computationally impossible to model the whole system from a molecular point of view.
- Solution to bridge the macroscopic and microscopic scales:
 - \diamond Model the continuous gas phase by PDEs.
 - Model the configuration of the surface by Monte-Carlo techniques.
 - ◊ Incorporate the results of MC simulation to PDEs via boundary conditions.

GAS PHASE MODEL

• Conservation of momentum, energy and mass in a stagnation flow geometry (Sharma, et. al. Combust. Sci. Technol., 1969):

$$\begin{aligned} \frac{\partial}{\partial \tau} (\frac{\partial f}{\partial \eta}) &= \frac{\partial^3 f}{\partial \eta^3} + f \frac{\partial^2 f}{\partial \eta^2} + \frac{1}{2} \left[\frac{\rho_b}{\rho} - (\frac{\partial f}{\partial \eta})^2 \right] \\ \frac{\partial T}{\partial \tau} &= \frac{1}{P_r} \frac{\partial^2 T}{\partial \eta^2} + f \frac{\partial T}{\partial \eta} \\ \frac{\partial y_i}{\partial \tau} &= \frac{1}{Sc_j} \frac{\partial^2 y_i}{\partial \eta^2} + f \frac{\partial y_i}{\partial \eta} \end{aligned}$$

• Boundary conditions:

For
$$(\eta \to \infty)$$
:
 $T = T_{bulk}, \frac{\partial f}{\partial \eta} = 1,$
 $y_j = y_{jb}, j = 1, \dots, N_g$

For $(\eta \to 0)$: $T = T_{surface}, f = 0, \frac{\partial f}{\partial \eta} = 0$ $\frac{\partial y_i}{\partial \eta} = \frac{Sc_{growing}(R_a - R_d)}{\sqrt{2a\mu_b\rho_b}}$

SURFACE MICROSTRUCTURE MODEL

• Rates of adsorption, desorption and migration:

$$r_{a} = \frac{s_{0}P}{\sqrt{2\pi mkT}C_{tot}}$$
$$r_{d}(n) = \nu_{0} \exp\left(-\frac{E_{s} + nE}{kT}\right)$$
$$r_{m}(n) = \nu_{0}A \exp\left(-\frac{E_{s} + nE}{kT}\right)$$

• The life time of every MC event is determined by a random number and the total rate:

$$\Delta t = \frac{-\ln\xi}{r_{tot}}$$

$$r_{tot} = r_a \times N_T + \nu_0 (1+A) \sum_{m=0}^4 N_m \exp(-\frac{E_s + mE}{kT})$$

MULTIVARIABLE FEEDBACK CONTROL (Lou & Christofides, AIChE J., 2003)

- Multiple control objectives to be achieved simultaneously.
- Problem formulation: control growth rate and surface roughness simultaneously by manipulating inlet precursor concentration and substrate temperature.
- Growth rate and roughness estimator involving a kinetic MC simulator based on multiple small-lattice models, adaptive filters and measurement error compensators.
- Identification of input/output interactions.
- Multivariable control system with input/output interaction compensation.

MULTIVARIABLE FEEDBACK CONTROL SYSTEM WITH INTERACTION COMPENSATION

- Compensation for the influence of temperature to growth rate only.
- Compensation is computed from the transfer function between substrate temperature and the growth rate (G_1) and that between inlet precursor mole fraction and the growth rate (G_2) .
- Identification of G_1 and G_2 from step tests.

SIMULATION RESULTS

- Initial growth conditions: T = 800K, and $y = 2.0 \times 10^{-5}$.
- Initial roughness: 1.8 and initial growth rate: 180ML/s.
- The desired roughness: 1.5 and desired growth rate: 220ML/s.

The growth rate (left plot) and inlet precursor mole fraction (right plot) under multivariable feedback control.

SIMULATION RESULTS

• The surface roughness (left plot) and substrate temperature (right plot) under multivariable feedback control.

• Surface micro-configuration at the beginning of the closed-loop simulation run (left plot) and that at the end of the simulation run (right plot).

SUMMARY

- Feedback control of thin film growth.
- MOCVD *GaAs* thin films in a horizontal-flow reactor.
- Kinetic Monte-Carlo models for surface roughness.
 - $\diamond\,$ Fitting model parameters using experimental data.
- Estimator/controller.
 - \diamond Real-time estimator based on kMC models.
- Multiscale distributed model for thin film growth in a stagnation point geometry.
- Multivariable feedback control of thin film growth with state estimator and input/output interaction compensation.

ACKNOWLEDGMENT

• Financial support from the NSF (ITR), CTS-0325246, is gratefully acknowledged.