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INTRODUCTION

• Surface roughness is an important property of thin films.

¦ Abruptness of semiconductor interfaces to the electronic
properties of devices (e.g., GaAs thin films).

¦ Importance of surface roughness of thin films of high-κ
materials to the effective capacities of the gate dielectrics
(e.g., ZrO2 thin films).

• Feedback control of thin film growth.

¦ Increasingly stringent requirements on the thin film quality.

¦ Improvement of productivity.

• Multiscale distributed models for thin film growth.

¦ Coupled PDE models for gas phase dynamics and kinetic
Monte-Carlo models for surface microstructure.

• Measurements of surface roughness of thin films in atomic
resolution.

¦ Scanning tunneling microscopy or atomic force microscopy.



MOCVD GaAs FILMS / EXPERIMENTAL RESULTS
(Law, et. al., J. Appl. Phys., 2000)

• Surface roughness can be controlled by manipulating the
substrate temperature.

Scanning tunneling micrographs (2× 2µm2) of GaAs surface after
MOCVD growth at difference substrate temperatures.
Left: Surface configuration at T=825K (roughness=2.9Å).
Right: Surface configuration at T=900K (roughness=1.3Å).

  



PREVIOUS WORK ON MODELING AND CONTROL OF THIN
FILM MICROSTRUCTURE

• Rigorous derivation of kinetic Monte-Carlo algorithms (Gillespie,
J. Comput. Phys., 1976) and their applications to GaAs thin film
growth by molecular beam epitaxy (MBE) (Shitara, et. al., Phys.
Rev. B, 1992).

• Multiscale integration hybrid algorithms (Vlachos, AIChE J.,
1997).

• Control of microscopic models using coarse timesteppers (Siettos
et. al., AIChE J., 2003).

• Feedback control of thin film growth using kinetic Monte-Carlo
models (Lou & Christofides, Chem. Eng. Sci., 2003).

• Model reduction for thin film growth directly based on the
master equation (Gallivan & Murray, Proc. ACC, 2003).



PRESENT WORK

(Lou and Christofides, AIChE J., 2003; Comp. & Chem. Eng., 2004)

• Feedback control of surface roughness of GaAs thin films.

¦ MOCVD of GaAs thin films in a horizontal-flow reactor.

¦ Kinetic Monte-Carlo model for the surface roughness.

¦ Real-time roughness estimator based on a kMC simulator
using multiple small-lattice models.

¦ Estimator/controller structure.

• Multivariable feedback control of thin film growth.

¦ Thin film growth in a stagnation point geometry.

¦ Multiscale distributed model.

¦ Feedback control design using state estimator and
input/output interaction compensation.



PROCESS DESCRIPTION
(Law, et. al., J. Appl. Phys., 2000)

• A MOCVD of GaAs thin film growth process.

• Horizontal-flow reactor.

• Triisobutylgallium (TIBGa) and tertiarybutylarsine (TBAs) as
precursors and H2 as carrier gas.

• Growth rate: 0.5µm/hr.

• As-rich environment (PAs / PGa ∼100).

¦ As reaction and migration kinetics are not rate-limiting steps.

• Very fast decomposition of the MO precursors on the surface and
desorption of butyl groups.

¦ Substrate temperature: 825K ∼ 900K.

¦ Surface reactions are not rate-limiting steps.

• Adsorption and migration of Ga atoms as rate-limiting steps.



SURFACE MICROSTRUCTURE MODEL

• Surface micro-processes are assumed to be Poisson processes.

• Both the master equation and the Monte-Carlo algorithm can be
derived using the same assumption (Gillespie, J. Comput. Phys.,
1976).

• Kinetic Monte-Carlo model for rate-limiting steps.

¦ Effects of non-rate-limiting steps can be incorporated into the
model by adjusting model parameters.

• Rates of adsorption and migration of Ga atoms:

wa = F (for a fixed growth rate)
n=0

n=1
n=2n=4

n=3

----   Bottom layer

----   Top layer

wm(n) = ν0exp(−Es + nE

kT
)



SURFACE MICROSTRUCTURE MODEL

• The life time of every MC event:

τ =
− ln ξ

Wtot
; Wtot = N2wa +

4∑

i=0

Miν0 exp(−Es + iEn

kBT
)

ξ: a random number in the (0, 1) interval.

Mi: number of surface atoms that have i side-neighbors on the
surface.

• Surface roughness and surface micro-processes.

¦ Adsorption events make the surface rough.

¦ Migration events make the surface smooth.

¦ High temperature reduces surface roughness by increasing the
rate of migration.



KINETIC MONTE-CARLO SIMULATION RESULTS
• Fitting model parameters based on experimental results in (Law,

et. al. J. Appl. Phys., 2000).

ν0 = 5.8× 1013s−1 Es = 1.82eV En = 0.27eV

• Cooling down the deposited thin films to the room temperature
at 2K/s.

• Surface roughness from Monte-Carlo simulations: r825K = 2.5Å,
r900K = 1.6Å ∼ 2.0Å (Experimental results: r825K = 2.8Å,
r900K = 1.3Å).
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REAL-TIME ROUGHNESS ESTIMATOR USING KMC
SIMULATOR BASED ON MULTIPLE SMALL-LATTICES

• Methodology developed in a previous work (Lou & Christofides,
Chem. Eng. Sci., 2003).

• Kinetic Monte-Carlo simulator based on multiple small-lattice
models.

¦ Solution time comparable to the real-time evolution of the
process.

¦ Fluctuation reduction by averaging outputs from multiple
small-lattice kMC models.

• Adaptive filter for noise reduction.

• Measurement error compensator to reduce the error between the
roughness estimates and the roughness measurements.



ADAPTIVE FILTER

• A second-order adaptive filter.

dŷr

dτ
= y1

dy1

dτ
=

K

τI
(yr − ŷr)− 1

τI
y1

• The adaptive tuning law for the filter gain.

K(τ) = K0

|
∫ τ

τ−∆τ
yr(t)dt−

∫ τ−∆τ

τ−2∆τ
yr(t)dt|

∆τ2 + Ks

τI(τ) =
0.5

K(τ)

Ks: Steady state gain for the adaptive filter.
∆τ : Time interval between two updates of K.



THE MEASUREMENT ERROR COMPENSATOR
• A first-order measurement error compensator.

de

dτ
= Ke(yh

(τmi
)− ŷ(τmi

)); τmi
< τ ≤ τmi+1 ; i = 1, 2, · · ·

ŷ = ŷr + e

• Comparison of roughness profiles from the roughness estimator
using a KMC simulator based on six 30× 30 lattices (dashed line)
and that based on a 150× 150 lattice (solid line).
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FEEDBACK CONTROL OF SURFACE ROUGHNESS OF GaAs

THIN FILMS

Controller
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roughness

+ -
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Output

• The estimator/controller structure.

• Available on-line roughness measurement techniques could be
used to provide roughness measurement data.

• Control objective: Stabilization of the surface roughness value to
a desired level with a certain tolerance ε.



SIMULATION RESULTS

• Initial growth at T = 800K.

• Real-time measurement of surface roughness is available every
3.0s (Curtis, et. al., Rev. Sci. Instrum., 1997).

• The desired roughness is 1.5Å with a tolerance ε = 0.1Å.

• Range of the substrate temperature: 750K ≤ T ≤ 950K.
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MULTISCALE MODELING OF THIN FILM GROWTH

Desorption

Gas phase

MigrationAdsorption
Surface

• Problems due to the large disparity of time and length scales of
phenomena occurring in gas phase and surface:

¦ The assumption of continuum is not valid on the surface.

¦ Computationally impossible to model the whole system from
a molecular point of view.

• Solution to bridge the macroscopic and microscopic scales:

¦ Model the continuous gas phase by PDEs.

¦ Model the configuration of the surface by Monte-Carlo
techniques.

¦ Incorporate the results of MC simulation to PDEs via
boundary conditions.



GAS PHASE MODEL

• Conservation of momentum, energy and mass in a stagnation
flow geometry (Sharma, et. al. Combust. Sci. Technol., 1969):

∂

∂τ
(
∂f

∂η
) =

∂3f

∂η3
+ f

∂2f

∂η2
+

1
2
[
ρb

ρ
− (

∂f

∂η
)2]

∂T

∂τ
=

1
Pr

∂2T

∂η2
+ f

∂T

∂η
∂yi

∂τ
=

1
Scj

∂2yi

∂η2
+ f

∂yi

∂η

• Boundary conditions:

For (η →∞): T = Tbulk,
∂f

∂η
= 1,

yj = yjb, j = 1, . . . , Ng

For (η → 0): T = Tsurface, f = 0,
∂f

∂η
= 0

∂yi

∂η
=

Scgrowing(Ra −Rd)√
2aµbρb



SURFACE MICROSTRUCTURE MODEL

• Rates of adsorption, desorption and migration:

ra =
s0P√

2πmkTCtot

rd(n) = ν0 exp(−Es + nE

kT
)

rm(n) = ν0A exp(−Es + nE

kT
)

• The life time of every MC event is determined by a random
number and the total rate:

∆t =
− ln ξ

rtot

rtot = ra ×NT + ν0(1 + A)
4∑

m=0

Nm exp(−Es + mE

kT
)



MULTIVARIABLE FEEDBACK CONTROL
(Lou & Christofides, AIChE J., 2003)

• Multiple control objectives to be achieved simultaneously.

• Problem formulation: control growth rate and surface roughness
simultaneously by manipulating inlet precursor concentration
and substrate temperature.

• Growth rate and roughness estimator involving a kinetic MC
simulator based on multiple small-lattice models, adaptive filters
and measurement error compensators.

• Identification of input/output interactions.

• Multivariable control system with input/output interaction
compensation.



MULTIVARIABLE FEEDBACK CONTROL SYSTEM WITH
INTERACTION COMPENSATION
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• Compensation for the influence of temperature to growth rate
only.

• Compensation is computed from the transfer function between
substrate temperature and the growth rate (G1) and that
between inlet precursor mole fraction and the growth rate (G2).

• Identification of G1 and G2 from step tests.



SIMULATION RESULTS

• Initial growth conditions: T = 800K, and y = 2.0× 10−5.

• Initial roughness: 1.8 and initial growth rate: 180ML/s.

• The desired roughness: 1.5 and desired growth rate: 220ML/s.

The growth rate (left plot) and inlet precursor mole fraction
(right plot) under multivariable feedback control.
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SIMULATION RESULTS

• The surface roughness (left plot) and substrate temperature
(right plot) under multivariable feedback control.
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• Surface micro-configuration at the beginning of the closed-loop
simulation run (left plot) and that at the end of the simulation
run (right plot).



SUMMARY

• Feedback control of thin film growth.

• MOCVD GaAs thin films in a horizontal-flow reactor.

• Kinetic Monte-Carlo models for surface roughness.

¦ Fitting model parameters using experimental data.

• Estimator/controller.

¦ Real-time estimator based on kMC models.

• Multiscale distributed model for thin film growth in a stagnation
point geometry.

• Multivariable feedback control of thin film growth with state
estimator and input/output interaction compensation.
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