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INTRODUCTION

e Input constraints:

¢ Finite capacity of control actuators

¢ Impose fundamental limitations on initial conditions
e Main issues for an effective control policy:

¢ Synthesis of stabilizing feedback laws

¢ Explicit characterization of set of admissible initial conditions

e Direct methods for control with constraints:

¢ Bounded control

* Constraint handling via explicit characterization of stability region

¢ Model predictive control
* Constraint handling within open-loop optimal control setting

* Successful applications in industry



LINEAR SYSTEMS WITH INPUT CONSTRAINTS

e State space description:

t(t) = Ax(t)+ Bu(t)

o x(t) € IR™ : state vector o (A, B) : controllable pair
o u(t) € IR™ : control input o (C, A) : observable pair
o y(t) € IR* : output vector o 0 € int. U : compact & convex
e Finite parameterization of controls:
o Up : piecewise constant functions (with period A & values in Uf)

o u(-) € Ua characterized by sequence:

([ {ulk]}: u(t) = u(kA), Vit € [kA, (k+ 1)A] )

e Stabilization of origin under constraints



MODEL PREDICTIVE CONTROL

e Control problem formulation

* Finite-horizon optimal control:
[ P(xz,t) : min{J(x,t,u(-))| u(-) € UA}]

*x Performance index:

t+T
Jetaul) = Fla+T)+ [ [l Gl + lus)}] ds
t
o || -]l : weighted norm o ), R >0 : penalty weights
o T : horizon length o F(-) : terminal penalty
* Implicit feedback law _past | future
< e p;re(;ict.ed‘st;te.tr;jeict‘ory
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“repeated on-line optimization” . _\_ trajectory
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MODEL PREDICTIVE CONTROL

e Formulations for closed-loop stability:
(Mayne et al, Automatica, 2000)

¢ Adjusting horizon length, terminal penalty, weights, etc.

¢ Imposing stability constraints on optimization:

* Terminal equality constraints: [ t+T) O]

* Terminal inequality constraints: [x(t +T) € Wj

x Control Lyapunov functions: [V(:U(t +T)) < V(x(t)) ]

e Issues of practical implementation:

o Lack of (a priori) explicit characterization of stability region

* Extensive closed-loop simulations

* Restriction to small neighborhoods around origin



BOUNDED LYAPUNOV-BASED CONTROL

e Explicit bounded nonlinear control law:

u = —k(x, Umaz)(LaV)T

o An example gain: (Lin & Sontag, 1991)

LV +/(LsV)? + (tmas || (L V)T )

k(x, Umaz) =
I(EaV)T 2 [14 T+ (mae (e V)TIV?]
V = z'Pz, A" P+PA—-PBB'P < 0
L;V = z'(A"P+PA)zx, LgV = 22 PB

¢ Nonlinear gain-shaping procedure:

* Accounts explicity for constraints & closed-loop stability
e Constrained closed-loop properties:

¢ Asymptotic stability ¢ Inverse optimality

J = / Oo(l(a:) +ul R(z)uw)dt, I(x) >0, R(x) >0, Jmin = V(z(0))



CHARACTERIZATION OF STABILITY PROPERTIES

{z € R": LV < Upaz|(LaV)T|}

e Properties of inequality:

¢ Describes open unbounded region where:
> |u| < Umazr Y € D
>V <0V 0#£xz€eD

¢ Captures constraint-dependence of stability region

¢ D not necessarily invariant

e Region of guaranteed closed-loop stability:

() = fr R V(@) < ) )

o Region of invariance: x(0) € () = x(t) c QO C DVt >0

o Provides larger estimate than saturated linear /nonlinear controllers



HYBRID CONTROL: UNITING BOUNDED CONTROL & MPC
(El-Farra, Mhaskar & Christofides, Automatica, 2004)

e Objectives:

¢ Development of a framework for uniting the two approaches:

> Reconcile tradeoffs in stability and optimality properties
* Explicit characterization of constrained stability region

* A safety net for the implementation of MPC

e Central idea:

Decoupling “optimality” & “constrained stabilizability” I

o Stability region provided by bounded controller

o Optimal performance supplied by MPC controller

e Approach:
¢ Switching between MPC & bounded controller



OVERVIEW OF HYBRID CONTROL STRATEGY
“STATE FEEDBACK”

Switching logic

X(1)

Perofrmance
objectives

l

<—Plant—>F Contol IeveI#*— Supervisory layer —

Bounded : ,N V/\ ! MPC ]
controller I . controller
"Constraints" I "Optimality”
X(t) = Ax(t) + Bu (t)
[u] <u...
e Hierarchical control structure
x Plant level x Control level * Supervisory level

e Any MPC formulation can be used

* Switching rules may vary

e Several switching schemes possible



CONTROLLER SWITCHING SCHEMES
“STATE FEEDBACK”

e Stability-based switching:

(e.g., Classical MPC formulations)

| M), 0<t < T
o (#(6)) = { b(x(t)), t> T }

T =inf{T* >0: V(z™(T*)) > 0}

e Feasibility-based switching:

(Stabilizing MPC formulations)

[ b)), 0<t< T
ottt = { M(x(t), t>T* }

* T™* . earliest time for which
MPC yields feasible solution

Bounded controller’s
Stability region
Q(Umax)

Switching
X(T")

V(X)=Crmax Active MPC
—e& Active Bounded control

Bounded controller’'s
Stability region
Q(Umax)

Check MPC feasibility
"No switching"

Check MPC feasibility
"Switch"

V(X)=Crax —— Bounded Control
— MPC



IMPLICATIONS OF SWITCHING SCHEME

e A safety net for implementing MPC:

¢ Bounded controller provides a fall-back mechanism

¢ Switched closed-loop system inherits the stability region
x A priori guarantees for all (0) € Q(Umaz)
* Stability independent of MPC properties (e.g., horizon length)
* Can reduce computational load
e Conceptual differences from other schemes:

¢ Switching does not occur locally
¢ Provides stability region explicitly

¢ No switching occurs if switching rules are satisfied

* Only MPC is implemented = optimal performance recovered



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL

e Lack of full state measurements:

¢ Inaccessibility of some process variables for measurement.

¢ Estimation of states from measured outputs necessary.

e Main objectives for output feedback controller design:

¢ To establish guaranteed stability from an explicitly characterized set of
initial conditions:
> Design technique for the state estimator.

> Devise switching rules, based on available state measurements.

¢ Controlled rate of convergence of state estimation error.

e Approach for output feedback controller design:

¢ Relies on separation principle: combination of

> State feedback controllers.

> State observers.



DESIGN OF STATE OBSERVER

e State space description of estimator:

z(t) = Ai(t)+ Bu(t) + L(y — Ci)

¢ X: state estimate. ¢ L: Observer gain matrix.

e Structural features:
¢ Observer pole placement:

> Enforce desired decay of estimation error

¢ Effect of observer peaking eliminated through:
> Input saturation (indirect), OR
> Estimate-saturation (direct)(e.g., El-Farra & Christofides, IJC, 2001).
e Closed-loop analysis:

o Fall back (bounded controller) robust to a certain allowable error.

¢ For a given choice of initial conditions:
> State estimator designed to force error under the allowable error.
> Switching laws, based on the state estimates, for “safe” MPC

implementation.



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL

e Practical implications:

¢ Any other estimation scheme, such as Moving Horizon Estimation

(MHE), can be used.

¢ Requires a transparent relationship between error decay and estimator

parameters.

¢ MPC implemented in a region where the fall back controller can step in

any time to rescue stability.

State feedback
Q (Umax)

—

Output feedback
(L) Q
L, <L

Output feedback
P(L)c Q
L, > L,



OUTPUT FEEDBACK IMPLEMENTATION OF SWITCHING
(Mhaskar, El-Farra, & Christofides, AIChE J., to appear)

e Bounded controller design
(u=—k(x)LysV, QtUmaz))-

le| <e. .
e State observer design VPG feasible Q(Una)

(given € C €2, compute L). Switch to MP

e Listimate 'safe’ region
(given € Qs = z € Q).

™
o Initialize: #(0) € Qp, u(0) = b(2(0)).

Switching surface
Qs

o After z enters ‘safe’ region, (), check
feasibility of MPC & implement if - State estimate trajector

V(z) < 0 else keep bounded controller — State trajectory

active.



SIMULATION EXAMPLE

e State-space description:

t(t) = Ax(t)+ Bu(t)

055 0.15 0.05 1 0
A=1015 040 020 |,B=]10 11|,C
| 0.10 0.15 0.45 | 1 1

*x Origin unstable (three real positive eigenvalues)
*x Input constraints: wu; € [—1,1], ¢ =1,2

* Only the first and the third states are measured




CONTROLLER DESIGN

e Bounded controller:

¢ Lyapunov function:

6.5843  4.9389 —3.8307 |
V=xl'Px, P=| 4238  3.6091 —2.6672
| —3.8307 —2.6672 2.8033

o Stability region: 2! (ATP + PA)x < || B! Pz
e Model predictive controller:

¢ Performance index:

t+7T
[J = /t Hz(DIG + llu(r)lIR +|’d(T)II§]dT]

Q=ql >0, R=r1>0,5=sI>0

e State observer: (A = 500, a = 2)



CLOSED-LOOP SIMULATION RESULTS

* State & estimate profiles

1.5

15

15

15

* Input profiles

1

15

x o = [0.75 — 0.5 1.0]* € Q,
*x To=[000]T € Q,
x BC /MPC switching
(T = 1.5, tswiteh = 5.45)
* MPC with T = 3.5

15



CLOSED-LOOP SIMULATION RESULTS
* State & estimate profiles

O 1 Zl'imeg 4 5

*x xo = [0.75 — 0.5 1.0]T € Q,

* Observer gain: A = 0.5

*x Bounded controller
(MPC infeasible, no switching)




CONCLUSIONS

e Output feedback stabilization of constrained linear systems

e A hybrid control structure uniting MPC & bounded control
¢ Decoupling:
x Optimality (model predictive control)

*x Constrained stability region (bounded control)

¢ Output feedback implementation of switching strategy:

* State feedback controller design

*x State observers

¢ A safety net for implementation of MPC
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