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INTRODUCTION

• Input constraints:

� Finite capacity of control actuators

� Impose fundamental limitations on initial conditions

• Main issues for an effective control policy:

� Synthesis of stabilizing feedback laws

� Explicit characterization of set of admissible initial conditions

• Direct methods for control with constraints:

� Bounded control
? Constraint handling via explicit characterization of stability region

� Model predictive control
? Constraint handling within open-loop optimal control setting
? Successful applications in industry



LINEAR SYSTEMS WITH INPUT CONSTRAINTS

• State space description:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

u(t) ∈ U

� x(t) ∈ IRn : state vector � (A,B) : controllable pair

� u(t) ∈ IRm : control input � (C,A) : observable pair

� y(t) ∈ IRk : output vector � 0 ∈ int. U : compact & convex

• Finite parameterization of controls:

� U∆ : piecewise constant functions (with period ∆ & values in U)

� u(·) ∈ U∆ characterized by sequence:�� ��{u[k]} : u(t) = u(k∆), ∀ t ∈ [k∆, (k + 1)∆]

• Stabilization of origin under constraints



MODEL PREDICTIVE CONTROL

• Control problem formulation

? Finite-horizon optimal control:�
 �	P (x, t) : min{J(x, t, u(·))| u(·) ∈ U∆}

? Performance index:

J(x, t, u(·)) = F (x(t+ T )) +
∫ t+T

t

[‖xu(s;x, t)‖2Q + ‖u(s)‖2R
]
ds

� ‖ · ‖Q : weighted norm � Q, R > 0 : penalty weights

� T : horizon length � F (·) : terminal penalty

? Implicit feedback law

M(x) = u0(t;x, t)

“repeated on-line optimization”
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futurepast
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MODEL PREDICTIVE CONTROL

• Formulations for closed-loop stability:

(Mayne et al, Automatica, 2000)

� Adjusting horizon length, terminal penalty, weights, etc.

� Imposing stability constraints on optimization:

? Terminal equality constraints:
�� ��x(t+ T ) = 0

? Terminal inequality constraints:
�� ��x(t+ T ) ∈ W

? Control Lyapunov functions:
�� ��V (x(t+ T )) < V (x(t))

• Issues of practical implementation:

� Lack of (a priori) explicit characterization of stability region

? Extensive closed-loop simulations

? Restriction to small neighborhoods around origin



BOUNDED LYAPUNOV-BASED CONTROL

• Explicit bounded nonlinear control law:

u = −k(x, umax)(LGV )T

� An example gain: (Lin & Sontag, 1991)

k(x, umax) =


 LfV +

√
(LfV )2 + (umax‖(LGV )T ‖)4

‖(LGV )T ‖2
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]



�
�

�
V = xTPx, ATP + PA− PBBTP < 0

LfV = xT (ATP + PA)x, LGV = 2xTPB

� Nonlinear gain-shaping procedure:
? Accounts explicity for constraints & closed-loop stability

• Constrained closed-loop properties:

� Asymptotic stability � Inverse optimality

J =
∫ ∞

0

(l(x) + uTR(x)u)dt, l(x) > 0, R(x) > 0, Jmin = V (x(0))



CHARACTERIZATION OF STABILITY PROPERTIES

D(umax) = {x ∈ IRn : LfV < umax|(LGV )T |}

• Properties of inequality:

� Describes open unbounded region where:
. |u| ≤ umax ∀ x ∈ D
. V̇ < 0 ∀ 0 6= x ∈ D

� Captures constraint-dependence of stability region

� D not necessarily invariant

• Region of guaranteed closed-loop stability:�
 �	Ω(umax) = {x ∈ IRn : V (x) ≤ cmax}

� Region of invariance: x(0) ∈ Ω =⇒ x(t) ∈ Ω ⊂ D ∀ t ≥ 0

� Provides larger estimate than saturated linear/nonlinear controllers



HYBRID CONTROL: UNITING BOUNDED CONTROL & MPC

(El-Farra, Mhaskar & Christofides, Automatica, 2004)

• Objectives:

� Development of a framework for uniting the two approaches:

. Reconcile tradeoffs in stability and optimality properties

? Explicit characterization of constrained stability region

? A safety net for the implementation of MPC

• Central idea:

Decoupling “optimality” & “constrained stabilizability”

� Stability region provided by bounded controller

� Optimal performance supplied by MPC controller

• Approach:

� Switching between MPC & bounded controller



OVERVIEW OF HYBRID CONTROL STRATEGY

“STATE FEEDBACK”
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• Hierarchical control structure
? Plant level ? Control level ? Supervisory level

• Any MPC formulation can be used

? Switching rules may vary

• Several switching schemes possible



CONTROLLER SWITCHING SCHEMES
“STATE FEEDBACK”

• Stability-based switching:

(e.g., Classical MPC formulations)

uσ(x(t)) =

{
M(x(t)), 0 ≤ t < T ∗

b(x(t)), t ≥ T ∗

}

T ∗ = inf{T ∗ ≥ 0 : V (xM (T ∗)) ≥ 0}
V(x)=Cmax

V(x)=C2

V(x)=C1

umaxΩ(       )

x(T  )

Bounded controller’s

Switching

x(0)

*

Active Bounded control
Active MPC 

Stability region

• Feasibility-based switching:

(Stabilizing MPC formulations)

uσ(x(t)) =

{
b(x(t)), 0 ≤ t < T ∗

M(x(t)), t ≥ T ∗

}

? T ∗ : earliest time for which
MPC yields feasible solution

maxΩ(       )
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V(x)=C2
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IMPLICATIONS OF SWITCHING SCHEME

• A safety net for implementing MPC:

� Bounded controller provides a fall-back mechanism

� Switched closed-loop system inherits the stability region

? A priori guarantees for all x(0) ∈ Ω(umax)

? Stability independent of MPC properties (e.g., horizon length)

? Can reduce computational load

• Conceptual differences from other schemes:

� Switching does not occur locally

� Provides stability region explicitly

� No switching occurs if switching rules are satisfied

? Only MPC is implemented =⇒ optimal performance recovered



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL

• Lack of full state measurements:

� Inaccessibility of some process variables for measurement.

� Estimation of states from measured outputs necessary.

• Main objectives for output feedback controller design:

� To establish guaranteed stability from an explicitly characterized set of
initial conditions:
. Design technique for the state estimator.
. Devise switching rules, based on available state measurements.

� Controlled rate of convergence of state estimation error.

• Approach for output feedback controller design:

� Relies on separation principle: combination of
. State feedback controllers.
. State observers.



DESIGN OF STATE OBSERVER

• State space description of estimator:

˙̂x(t) = Ax̂(t) +Bu(t) + L(y − Cx̂)

� x̂: state estimate. � L: Observer gain matrix.

• Structural features:
� Observer pole placement:
. Enforce desired decay of estimation error

� Effect of observer peaking eliminated through:
. Input saturation (indirect), OR
. Estimate-saturation (direct)(e.g., El-Farra & Christofides, IJC, 2001).

• Closed-loop analysis:
� Fall back (bounded controller) robust to a certain allowable error.

� For a given choice of initial conditions:
. State estimator designed to force error under the allowable error.
. Switching laws, based on the state estimates, for “safe” MPC

implementation.



STATE ESTIMATION & OUTPUT FEEDBACK CONTROL
• Practical implications:

� Any other estimation scheme, such as Moving Horizon Estimation
(MHE), can be used.

� Requires a transparent relationship between error decay and estimator
parameters.

� MPC implemented in a region where the fall back controller can step in
any time to rescue stability.
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OUTPUT FEEDBACK IMPLEMENTATION OF SWITCHING
(Mhaskar, El-Farra, & Christofides, AIChE J., to appear)

• Bounded controller design
(u = −k(x)LgV, Ω(umax)).

• State observer design
(given Ωb ⊂ Ω, compute L).

• Estimate ’safe’ region
(given x̂ ∈ Ωs ⇒ x ∈ Ω).

• Initialize: x̂(0) ∈ Ωb, u(0) = b(x̂(0)).

• After x̂ enters ‘safe’ region, Ωs, check
feasibility of MPC & implement if
V̇ (x̂) < 0 else keep bounded controller
active.

x (0)

x (0)

MPC feasible

|e| < e
m

Switch to MPC

Ω(       )umax

State estimate trajectory
State trajectory

Switching surface
Ωs

Ωb



SIMULATION EXAMPLE

• State-space description:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

A =




0.55 0.15 0.05

0.15 0.40 0.20

0.10 0.15 0.45


 , B =




1 0

0 1

1 1


 , C =


 1 0 0

0 0 1




? Origin unstable (three real positive eigenvalues)

? Input constraints: ui ∈ [−1, 1], i = 1, 2

? Only the first and the third states are measured



CONTROLLER DESIGN

• Bounded controller:

� Lyapunov function:

V = xTPx, P =




6.5843 4.2389 −3.8307

4.2389 3.6091 −2.6672

−3.8307 −2.6672 2.8033




� Stability region: xT (ATP + PA)x < ‖BTPx‖
• Model predictive controller:

� Performance index:�
�

�
J =

∫ t+T

t

[‖x(τ)‖2Q + ‖u(τ)‖2R + ‖u̇(τ)‖2S
]
dτ

Q = qI > 0, R = rI > 0, S = sI > 0

• State observer: (λ = 500, a = 2)



CLOSED-LOOP SIMULATION RESULTS

? State & estimate profiles
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? Input profiles
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? x0 = [0.75 − 0.5 1.0]T ∈ Ωs

? x̂0 = [0 0 0]T ∈ Ωs

? BC /MPC switching
(T = 1.5, tswitch = 5.45)

? MPC with T = 3.5



CLOSED-LOOP SIMULATION RESULTS

? State & estimate profiles
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? x0 = [0.75 − 0.5 1.0]T ∈ Ωs

? Observer gain: λ = 0.5

? Bounded controller
(MPC infeasible, no switching)



CONCLUSIONS

• Output feedback stabilization of constrained linear systems

• A hybrid control structure uniting MPC & bounded control

� Decoupling:

? Optimality (model predictive control)

? Constrained stability region (bounded control)

� Output feedback implementation of switching strategy:

? State feedback controller design

? State observers

� A safety net for implementation of MPC
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