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INTRODUCTION

e Input constraints:

¢ Finite capacity of control actuators

¢ Influence stabilizability of an initial condition
e Desired characteristics of an effective control policy:

¢ Synthesis of stabilizing feedback laws

¢ Explicit characterization of set of admissible initial conditions
e Direct methods for control with constraints:

¢ Bounded control

> Constraint handling via explicit characterization of stability region

¢ Model predictive control

> Constraint handling within open-loop optimal control setting

> Successtul applications in industry



NONLINEAR SYSTEMS WITH INPUT CONSTRAINTS

e State—space description:

o x(t) € IR™ : state vector o u(t) €U C IR™ : control input
o U C IR™: compact & convex o ¢ = (0 € interior of U

o (0, 0) an equilibrium point

e Stabilization of origin under constraints



MODEL PREDICTIVE CONTROL

e Control problem formulation

¢ Finite-horizon optimal control:
[ P(xz,t) : min{J(x,t,u(-))| u(-) € UA}]

¢ Performance index:

t+T
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¢ Implicit feedback law _ past | future
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MODEL PREDICTIVE CONTROL

e Formulations for closed-loop stability:

(Mayne et al, Automatica, 2000)
¢ Adjusting horizon length, terminal penalty, weights, etc.

¢ Imposing stability constraints on optimization:

> Terminal equality constraints: [x(t +T) = O]

e Issues of practical implementation:

¢ Optimization problem non-convex
> Possibility of multiple, local optima
> Optimization problem hard to solve (e.g., algorithm failure)

> Difficult to obtain solution within “reasonable” time

¢ Lack of explicit characterization of stability region

> Extensive closed-loop simulations

> Restrict implementation to small neighborhoods



BOUNDED LYAPUNOV-BASED CONTROL

e Explicit bounded nonlinear control law:

u = —k(x, Umaz)(LeV)T

¢ An example: (Lin & Sontag, 1991)

LV +/(LiV)? + (tmas [ (LeV)T])*
I(LeV)*? [1 + /14 (tmaz[[(LeV)T])?

k(x, Umaz) =

¢ Nonlinear gain-shaping procedure:

> Accounts explicitly for constraints & closed-loop stability

e Constrained closed-loop properties:

¢ Asymptotic stability ¢ Inverse optimality



CHARACTERIZATION OF STABILITY PROPERTIES

D(Umaz) = {z€R": LV < Umaz|(LaV) |}

e Properties of inequality:

¢ Describes open unbounded region where:
> |u| < Umage YT €D
>V <0V O0#£zeD

¢ Captures constraint-dependence of stability region

¢ D not necessarily invariant

e Region of guaranteed closed-loop stability:

(tnae) = {2 € B V() < e} )

o Region of invariance: x(0) € O = x(t) e Q C DVt >0
¢ Larger estimates using a combination of several Lyapunov functions

¢ Other Lyapunov—based bounded control designs can be used



UNITING BOUNDED CONTROL AND MPC
(El-Farra, Mhaskar & Christofides, Automatica, 2003; IJRNC, 2003)

e Objectives:

¢ Development of a framework for merging the two approaches:

> Reconcile tradeoffs in stability and optimality properties
> Explicit characterization of constrained stability region
> Possibility of improved performance

> Implement computationally inexpensive MPC formulations

e Central idea:

Decoupling “optimality” & “constrained stabilizability”

¢ Stability region provided by bounded controller
¢ Optimal performance supplied by MPC controller

e Approach:
¢ Switching between MPC & a family of bounded controllers



OVERVIEW OF HYBRID CONTROL STRATEGY

Supervisory layer

Switching logic
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e Hierarchical control structure
¢ Plant level o Control level ¢ Supervisory level

e Overall structure independent of specific MPC algorithm used

¢ Could use linear /nonlinear MPC with or without stability constraints



STABILITY-BASED CONTROLLER SWITCHING

e Switching logic:

[ LVi(z) + LyVi(2)M (2(T*)) > oj

0 (u,..) Q(U,.)

x,(0)
¢ Initially implement MPC,

2(0) € Uk (Umaz) V4 (X(T))>0

, , "Switch”
¢ Monitor temporal evolution

of Vi (M (t))

o Switch to bounded controller
only if V(2™ (1)) starts to in-

crease

—e MPC
——e& Bounded control



ENHANCING CLOSED-LOOP PERFORMANCE
e Switching policy:

¢ Initialize the system in {2
¢ Monitor Vi (x) for which z €

¢ Discard any Vi whose value ceases V()50

|V, (x(T))<0

'

"no switching"

to decay
Vie(@(T))) < ™
L¢Vi(x)+ LyVi(2)M(x(t)) >0

¢ Monitor all active V;’s for which
€T & Qj

V (x(T))>0

¢ Continue MPC if V‘7 < 0 for some v _(xmy)s0 — e MPC
——e Bounded control

active V;. Else switch to the appro- L o “cwiten”

priate bounded controller



IMPLICATIONS OF SWITCHING SCHEME

e Switched closed-loop inherits bounded controller’s stability region

o A priori guarantees for all z(0) € Q(Umaz)

e Lyapunov stability condition checked & enforced by “supervisor”
¢ Reduce computational complexity of optimization
o Scheme does not require stability of MPC within Q(t.,q2)
¢ Provides a safety net for implementing MPC
¢ Stability independent of horizon length
e Conceptual differences from other schemes:

¢ Switching does not occur locally
¢ Provides stability region explicitly

o No switching occurs if V(2™ (t)) decays continuously

> Only MPC is implemented = optimal performance recovered



PREDICTIVE CONTROL IN INDUSTRIAL PRACTICE

e A “typical” predictive control design:
¢ Nonlinear process model:

T = f(x) +g(x)u

umin S Uj S umaa:

¢ Linear representation:

r = Ax + Bu

umin S Uj S umaa:

*x Linearization *x Model identification

(around desired steady-state) (e.g., through step tests)
¢ Use of computationally efficient linear MPC (QP) algorithms

¢ No closed-loop stability guarantees for nonlinear system
e Practical value of the hybrid control structure:

¢ Provides stability guarantees through fall-back controllers

¢ Entails no modifications in existing predictive controller design



APPLICATION TO A CHEMICAL REACTOR

e State—space description:

¢ Multiple steady states

¢ Control objective: stabilization at the open—loop unstable equilibrium
point, (Cas, Ts) = (.52, 398)

o Manipulated input: u = T, € [250, 500]



APPLICATION TO A CHEMICAL REACTOR

e Model predictive controller:

¢ Performance index:

t+T
[ J = [ [HCU(T)HEQ + HU(T)H% + HU(T)H%] dT]

6 Q=ql >0, R=rI>0,S=s]>0

¢ Prediction model:
r = Axz+ Bu I

> A, B obtained by linearizing the nonlinear model around (Cas, T%)

¢ Terminal equality constraint: z(t +7) =0

e Bounded controller:

¢ Bounded controller designed using a normal form representation

o Use Vj, = €T Pi¢



CLOSED-LOOP SIMULATION RESULTS
“Stability-based switching”
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¢ Closed-loop trajectories
¢ Input & state profiles

o MPC with T = 0.25; MPC/BC switching (¢t = 0.125); MPC with T'= 0.5
o MPC/BC switching (¢t = 0.45);



CLOSED-LOOP SIMULATION RESULTS
“Performance-driven switching”
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¢ Input & state profiles
o Vi(t=0.95) >0 (Va(t=0.95) <0), Vot =1.1)>0 (V3(t=1.1) < 0) =
> Scheme 1: switch to bounded controller, J = 1.81 x 10°

> Scheme 2: no switching - optimal performance, J = 1.64 x 10°



APPLICATION TO A CRYSTALLIZER MOMENTS MODEL

e State—space description:

j?o = —Xo + (1 — $3)DCL€ Y

rG = —x1+Yyxo

¢ Unstable equilibrium point surrounded by limit cycle
o Input constraints: u € [—1,1]
e Bounded controller:

¢ Normal form representation:

§ = ALHDbI(En) + ba(€,n)u
n = WYmn)




CLOSED-LOOP SIMULATION RESULTS
“Stability-based switching”
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¢ Input & state profiles

o z(0) = [0.053 0.03 0.02 0.01 0.67 |7 € Qsystem (Umaz)
o MPC with T = 0.25, switching (¢t = 2.1), J = 0.246



CONCLUSIONS

e Stabilization of nonlinear systems with input constraints

e A hybrid approach uniting MPC & bounded control
¢ Decoupling:
> Optimality (model predictive control)
> Constrained stability region (bounded control)

¢ Design & implementation of switching laws:

> Stability, performance, etc.

> Accommodate any MPC formulation

¢ Use of computationally inexpensive MPC implementations

> Off-line explicit characterization of stability region
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