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INTRODUCTION

• Input constraints:

� Finite capacity of control actuators

� Influence stabilizability of an initial condition

• Desired characteristics of an effective control policy:

� Synthesis of stabilizing feedback laws

� Explicit characterization of set of admissible initial conditions

• Direct methods for control with constraints:

� Bounded control

. Constraint handling via explicit characterization of stability region

� Model predictive control
. Constraint handling within open-loop optimal control setting
. Successful applications in industry



NONLINEAR SYSTEMS WITH INPUT CONSTRAINTS

• State–space description:

ẋ(t) = f(x(t)) + g(x)u(t)

u(t) ∈ U

� x(t) ∈ IRn : state vector � u(t) ∈ U ⊂ IRm : control input

� U ⊂ IRm: compact & convex � u = 0 ∈ interior of U

� (0, 0) an equilibrium point

• Stabilization of origin under constraints



MODEL PREDICTIVE CONTROL

• Control problem formulation

� Finite-horizon optimal control:�
 �	P (x, t) : min{J(x, t, u(·))| u(·) ∈ U∆}

� Performance index:

J(x, t, u(·)) = F (x(t+ T )) +
∫ t+T

t

[‖xu(s;x, t)‖2Q + ‖u(s)‖2R
]
ds

. ‖ · ‖Q : weighted norm . Q, R > 0 : penalty weights

. T : horizon length . F (·) : terminal penalty

� Implicit feedback law

M(x) = u0(t;x, t)

“repeated on-line optimization”
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MODEL PREDICTIVE CONTROL

• Formulations for closed-loop stability:

(Mayne et al, Automatica, 2000)

� Adjusting horizon length, terminal penalty, weights, etc.

� Imposing stability constraints on optimization:

. Terminal equality constraints:
�� ��x(t+ T ) = 0

• Issues of practical implementation:

� Optimization problem non-convex

. Possibility of multiple, local optima

. Optimization problem hard to solve (e.g., algorithm failure)

. Difficult to obtain solution within “reasonable” time

� Lack of explicit characterization of stability region

. Extensive closed-loop simulations

. Restrict implementation to small neighborhoods



BOUNDED LYAPUNOV-BASED CONTROL

• Explicit bounded nonlinear control law:

u = −k(x, umax)(LGV )T

� An example: (Lin & Sontag, 1991)

k(x, umax) =


 LfV +

√
(LfV )2 + (umax‖(LGV )T ‖)4

‖(LGV )T ‖2
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]



� Nonlinear gain-shaping procedure:
. Accounts explicitly for constraints & closed-loop stability

• Constrained closed-loop properties:

� Asymptotic stability � Inverse optimality



CHARACTERIZATION OF STABILITY PROPERTIES

D(umax) = {x ∈ IRn : LfV < umax|(LGV )T |}

• Properties of inequality:

� Describes open unbounded region where:
. |u| ≤ umax ∀ x ∈ D
. V̇ < 0 ∀ 0 6= x ∈ D

� Captures constraint-dependence of stability region

� D not necessarily invariant

• Region of guaranteed closed-loop stability:�
 �	Ω(umax) = {x ∈ IRn : V (x) ≤ cmax}

� Region of invariance: x(0) ∈ Ω =⇒ x(t) ∈ Ω ⊂ D ∀ t ≥ 0

� Larger estimates using a combination of several Lyapunov functions

� Other Lyapunov–based bounded control designs can be used



UNITING BOUNDED CONTROL AND MPC
(El-Farra, Mhaskar & Christofides, Automatica, 2003; IJRNC, 2003)

• Objectives:

� Development of a framework for merging the two approaches:

. Reconcile tradeoffs in stability and optimality properties

. Explicit characterization of constrained stability region

. Possibility of improved performance

. Implement computationally inexpensive MPC formulations

• Central idea:

Decoupling “optimality” & “constrained stabilizability”

� Stability region provided by bounded controller

� Optimal performance supplied by MPC controller

• Approach:

� Switching between MPC & a family of bounded controllers



OVERVIEW OF HYBRID CONTROL STRATEGY
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• Hierarchical control structure
� Plant level � Control level � Supervisory level

• Overall structure independent of specific MPC algorithm used

� Could use linear/nonlinear MPC with or without stability constraints



STABILITY-BASED CONTROLLER SWITCHING

• Switching logic:

uσ(x(t)) =





M(x(t)), 0 ≤ t < T ∗

b(x(t)), t ≥ T ∗



�� ��LfVk(x) + LgVk(x)M(x(T ∗)) ≥ 0

� Initially implement MPC,
x(0) ∈ Ωk(umax)

� Monitor temporal evolution
of Vk(xM (t))

� Switch to bounded controller
only if Vk(xM (t)) starts to in-
crease
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ENHANCING CLOSED-LOOP PERFORMANCE

• Switching policy:

� Initialize the system in Ωk

� Monitor Vk(x) for which x ∈ Ωk

� Discard any Vk whose value ceases
to decay

Vk(x(Tk))) ≤ cmaxk

LfVk(x) + LgVk(x)M(x(t)) ≥ 0

� Monitor all active Vj ’s for which
x ∈ Ωj

� Continue MPC if V̇j < 0 for some
active Vj . Else switch to the appro-
priate bounded controller
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IMPLICATIONS OF SWITCHING SCHEME

• Switched closed-loop inherits bounded controller’s stability region

� A priori guarantees for all x(0) ∈ Ω(umax)

• Lyapunov stability condition checked & enforced by “supervisor”

� Reduce computational complexity of optimization

� Scheme does not require stability of MPC within Ω(umax)

� Provides a safety net for implementing MPC

� Stability independent of horizon length

• Conceptual differences from other schemes:

� Switching does not occur locally

� Provides stability region explicitly

� No switching occurs if V (xM (t)) decays continuously

. Only MPC is implemented =⇒ optimal performance recovered



PREDICTIVE CONTROL IN INDUSTRIAL PRACTICE

• A “typical” predictive control design:

� Nonlinear process model:

ẋ = f(x) + g(x)u

uimin ≤ ui ≤ uimax
� Linear representation:

ẋ = Ax+Bu

uimin ≤ ui ≤ uimax
? Linearization

(around desired steady-state)
? Model identification

(e.g., through step tests)

� Use of computationally efficient linear MPC (QP) algorithms

� No closed-loop stability guarantees for nonlinear system

• Practical value of the hybrid control structure:

� Provides stability guarantees through fall-back controllers

� Entails no modifications in existing predictive controller design



APPLICATION TO A CHEMICAL REACTOR

• State–space description:

ĊA =
F

V
(CA0 − CA)− k0e

−E
RTR CA

ṪR =
F

V
(TA0 − TR) +

(−∆H)
ρcp

k0e

−E
RTR CA

+
UA

ρV cp
(Tc − TR)

� Multiple steady states

� Control objective: stabilization at the open–loop unstable equilibrium
point, (CAs, Ts) = (.52, 398)

� Manipulated input: u = Tc ∈ [250, 500]



APPLICATION TO A CHEMICAL REACTOR

• Model predictive controller:

� Performance index:�
�

�

J =

∫ t+T

t

[‖x(τ)‖2Q + ‖u(τ)‖2R + ‖u̇(τ)‖2S
]
dτ

� Q = qI > 0, R = rI > 0, S = sI > 0

� Prediction model:

ẋ = Ax+Bu

. A, B obtained by linearizing the nonlinear model around (CAs, Ts)

� Terminal equality constraint: x(t+ T ) = 0

• Bounded controller:

� Bounded controller designed using a normal form representation

� Use Vk = ξTPkξ



CLOSED-LOOP SIMULATION RESULTS
“Stability-based switching”
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� Input & state profiles

280 300 320 340 360 380 400 420 440 460
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
R

C
A

Ω’ 

� Closed-loop trajectories

� MPC with T = 0.25; MPC/BC switching (t = 0.125); MPC with T = 0.5

� MPC/BC switching (t = 0.45);



CLOSED-LOOP SIMULATION RESULTS
“Performance-driven switching”
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� Closed-loop state trajectory

� V̇1(t = 0.95) > 0 (V̇2(t = 0.95) < 0), V̇2(t = 1.1) > 0 (V̇3(t = 1.1) < 0) =⇒
. Scheme 1: switch to bounded controller, J = 1.81× 106

. Scheme 2: no switching - optimal performance, J = 1.64× 105



APPLICATION TO A CRYSTALLIZER MOMENTS MODEL

• State–space description:

ẋ0 = −x0 + (1− x3)Dae

−F
y2

ẋ1 = −x1 + yx0

ẋ2 = −x2 + yx1

ẋ3 = −x3 + yx2

ẏ =
1− y − (α− y)yx2

1− x3
+

u

1− x3

� Unstable equilibrium point surrounded by limit cycle

� Input constraints: u ∈ [−1, 1]

• Bounded controller:

� Normal form representation:

ξ̇ = Aξ + bl(ξ, η) + bα(ξ, η)u

η̇ = Ψ(ξ, η)



CLOSED-LOOP SIMULATION RESULTS
“Stability-based switching”
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� Input & state profiles

� x(0) = [0.053 0.03 0.02 0.01 0.67 ]T ∈ Ωsystem(umax)

� MPC with T = 0.25, switching (t = 2.1), J = 0.246



CONCLUSIONS

• Stabilization of nonlinear systems with input constraints

• A hybrid approach uniting MPC & bounded control

� Decoupling:
. Optimality (model predictive control)
. Constrained stability region (bounded control)

� Design & implementation of switching laws:

. Stability, performance, etc.

. Accommodate any MPC formulation

� Use of computationally inexpensive MPC implementations

. Off-line explicit characterization of stability region
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