PREDICTIVE CONTROL OF NONLINEAR SYSTEMS WITH GUARANTEED STABILITY REGIONS

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides

Department of Chemical Engineering University of California, Los Angeles

6th Southern California Nonlinear Control Workshop 9-10 May, 2003

INTRODUCTION

• Input constraints:

- ♦ Finite capacity of control actuators
- \diamond Influence stabilizability of an initial condition
- Desired characteristics of an effective control policy:
 - $\diamond\,$ Synthesis of stabilizing feedback laws
 - $\diamond\,$ Explicit characterization of set of admissible initial conditions
- Direct methods for control with constraints:
 - \diamond Bounded control
 - ▷ Constraint handling via explicit characterization of stability region
 - $\diamond\,$ Model predictive control
 - ▷ Constraint handling within open-loop optimal control setting
 - ▷ Successful applications in industry

NONLINEAR SYSTEMS WITH INPUT CONSTRAINTS

• State–space description:

$$\dot{x}(t) = f(x(t)) + g(x)u(t)$$

$$u(t) \in \mathcal{U}$$

♦ $x(t) \in \mathbb{R}^n$: state vector ♦ $u(t) \in \mathcal{U} \subset \mathbb{R}^m$: control input

 $\diamond \ \mathcal{U} \subset \mathbb{R}^m: \text{ compact } \& \text{ convex } \quad \diamond \ u = 0 \ \in \text{ interior of } \ \mathcal{U}$

 \diamond (0, 0) an equilibrium point

• Stabilization of origin under constraints

MODEL PREDICTIVE CONTROL

- Control problem formulation
 - $\diamond\,$ Finite-horizon optimal control:

$$P(x,t) : \min\{J(x,t,u(\cdot)) | u(\cdot) \in U_{\Delta}\}$$

♦ Performance index:

$$J(x,t,u(\cdot)) = F(x(t+T)) + \int_{t}^{t+T} \left[\|x^{u}(s;x,t)\|_{Q}^{2} + \|u(s)\|_{R}^{2} \right] ds$$

- ▷ $\| \cdot \|_Q$: weighted norm
 ▷ T : horizon length
- \diamond Implicit feedback law

$$M(x) = u^0(t; x, t)$$

"repeated on-line optimization"

▷ Q, R > 0: penalty weights ▷ $F(\cdot)$: terminal penalty

MODEL PREDICTIVE CONTROL

- Formulations for closed-loop stability:
 - (Mayne et al, Automatica, 2000)
 - ♦ Adjusting horizon length, terminal penalty, weights, etc.
 - ♦ Imposing stability constraints on optimization:
 - \triangleright Terminal equality constraints: x(t+T) = 0
- Issues of practical implementation:
 - $\diamond\,$ Optimization problem non-convex
 - $\triangleright\,$ Possibility of multiple, local optima
 - ▷ Optimization problem hard to solve (e.g., algorithm failure)
 - \triangleright Difficult to obtain solution within "reasonable" time
 - $\diamond\,$ Lack of explicit characterization of stability region
 - ▷ Extensive closed-loop simulations
 - \triangleright Restrict implementation to small neighborhoods

BOUNDED LYAPUNOV-BASED CONTROL

• Explicit bounded nonlinear control law:

$$u = -k(x, u_{max})(L_G V)^T$$

 \diamond An example: (Lin & Sontag, 1991)

$$k(x, u_{max}) = \left(\frac{L_f V + \sqrt{(L_f V)^2 + (u_{max} \| (L_G V)^T \|)^4}}{\| (L_G V)^T \|^2 \left[1 + \sqrt{1 + (u_{max} \| (L_G V)^T \|)^2}\right]}\right)$$

- ♦ Nonlinear gain-shaping procedure:
 - ▷ Accounts explicitly for constraints & closed-loop stability
- Constrained closed-loop properties:
 - ♦ Asymptotic stability ♦ Inverse optimality

CHARACTERIZATION OF STABILITY PROPERTIES

$$D(u_{max}) = \{ x \in \mathbb{R}^n : L_f V < u_{max} | (L_G V)^T | \}$$

• Properties of inequality:

♦ Describes open unbounded region where:

$$\triangleright |u| \le u_{max} \quad \forall \ x \in D$$
$$\triangleright \ \dot{V} < 0 \quad \forall \ 0 \neq x \in D$$

- ♦ Captures constraint-dependence of stability region
- $\diamond~D$ not necessarily invariant
- Region of guaranteed closed-loop stability:

$$\Omega(u_{max}) = \{x \in \mathbb{R}^n : V(x) \le c_{max}\}$$

- ♦ Region of invariance: $x(0) ∈ Ω \implies x(t) ∈ Ω ⊂ D ∀ t ≥ 0$
- ♦ Larger estimates using a combination of several Lyapunov functions
- \diamond Other Lyapunov–based bounded control designs can be used

UNITING BOUNDED CONTROL AND MPC

(El-Farra, Mhaskar & Christofides, Automatica, 2003; IJRNC, 2003)

• Objectives:

- ♦ Development of a framework for merging the two approaches:
 - ▷ Reconcile tradeoffs in stability and optimality properties
 - ▷ Explicit characterization of constrained stability region
 - ▷ Possibility of improved performance
 - ▷ Implement computationally inexpensive MPC formulations
- Central idea:

Decoupling "optimality" & "constrained stabilizability"

- $\diamond\,$ Stability region provided by bounded controller
- ♦ Optimal performance supplied by MPC controller

• Approach:

 $\diamond\,$ Switching between MPC & a family of bounded controllers

OVERVIEW OF HYBRID CONTROL STRATEGY

Constrained Nonlinear Plant

• Hierarchical control structure

- ♦ Plant level ♦ Control level ♦ Supervisory level
- Overall structure **independent** of specific MPC algorithm used
 - ♦ Could use linear/nonlinear MPC with or without stability constraints

STABILITY-BASED CONTROLLER SWITCHING

• Switching logic:

$$u_{\sigma}(x(t)) = \left\{ \begin{array}{ll} M(x(t)), & 0 \le t < T^* \\ b(x(t)), & t \ge T^* \end{array} \right\}$$

$$L_f V_k(x) + L_g V_k(x) M(x(T^*)) \ge 0$$

- $\text{ binitially implement MPC,} \\ x(0) \in \Omega_k(u_{max})$
- ♦ Switch to bounded controller only if $V_k(x^M(t))$ starts to increase

ENHANCING CLOSED-LOOP PERFORMANCE

- Switching policy:
- $\diamond\,$ Initialize the system in Ω_k
- \diamond Monitor $V_k(x)$ for which $x \in \Omega_k$
- \diamond Discard any V_k whose value ceases to decay

 $V_k(x(T_k))) \le c_k^{max}$

 $L_f V_k(x) + L_g V_k(x) M(x(t)) \ge 0$

- $\begin{tabular}{ll} & \mbox{Monitor all active } V_j \mbox{'s for which} \\ & x \in \Omega_j \end{tabular} \end{tabular}$
- \diamond Continue MPC if $\dot{V}_j < 0$ for some active V_j . Else switch to the appropriate bounded controller

IMPLICATIONS OF SWITCHING SCHEME

- Switched closed-loop inherits bounded controller's stability region
 - ♦ A priori guarantees for all $x(0) \in \Omega(u_{max})$
- Lyapunov stability condition checked & enforced by "supervisor"
 - $\diamond\,$ Reduce computational complexity of optimization
 - \diamond Scheme does not require stability of MPC within $\Omega(u_{max})$
 - \diamond Provides a safety net for implementing MPC
 - $\diamond\,$ Stability independent of horizon length
- Conceptual differences from other schemes:
 - $\diamond\,$ Switching does not occur locally
 - \diamond Provides stability region explicitly
 - ♦ No switching occurs if $V(x^M(t))$ decays continuously
 - \triangleright Only MPC is implemented \Longrightarrow optimal performance recovered

PREDICTIVE CONTROL IN INDUSTRIAL PRACTICE

- A "typical" predictive control design:
 - $\diamond\,$ Nonlinear process model:

$$\dot{x} = f(x) + g(x)u$$
$$u_{min}^{i} \le u_{i} \le u_{max}^{i}$$

 \diamond Linear representation:

$$\dot{x} = Ax + Bu$$
$$u_{min}^{i} \le u_{i} \le u_{max}^{i}$$

- Linearization
 (around desired steady-state)
 Model identification
 (e.g., through step tests)
- $\diamond\,$ Use of computationally efficient linear MPC (QP) algorithms
- $\diamond\,$ No closed-loop stability guarantees for nonlinear system
- Practical value of the hybrid control structure:
 - $\diamond\,$ Provides stability guarantees through fall-back controllers
 - $\diamond\,$ Entails no modifications in existing predictive controller design

APPLICATION TO A CHEMICAL REACTOR

• State–space description:

$$\dot{C}_A = \frac{F}{V}(C_{A0} - C_A) - k_0 e^{\frac{-E}{RT_R}} C_A$$

$$\dot{T}_R = \frac{F}{V}(T_{A0} - T_R) + \frac{(-\Delta H)}{\rho c_p} k_0 e^{\frac{-E}{RT_R}} C_A$$

$$+ \frac{UA}{\rho V c_p} (T_c - T_R)$$

$\diamond\,$ Multiple steady states

- ♦ Control objective: stabilization at the open-loop unstable equilibrium point, $(C_{As}, T_s) = (.52, 398)$
- ♦ Manipulated input: $u = T_c \in [250, 500]$

APPLICATION TO A CHEMICAL REACTOR

- Model predictive controller:
 - \diamond Performance index:

$$J = \int_{t}^{t+T} \left[\|x(\tau)\|_{Q}^{2} + \|u(\tau)\|_{R}^{2} + \|\dot{u}(\tau)\|_{S}^{2} \right] d\tau$$

- $\diamond \ Q=qI>0, \ R=rI>0, \ S=sI>0$
- \diamond Prediction model:

$$\dot{x} = Ax + Bu$$

 $\triangleright A, B$ obtained by linearizing the nonlinear model around (C_{As}, T_s)

♦ Terminal equality constraint: x(t+T) = 0

• Bounded controller:

 \diamond Bounded controller designed using a normal form representation

$$\diamond \text{ Use } V_k = \xi^T P_k \xi$$

CLOSED-LOOP SIMULATION RESULTS

"Stability-based switching"

♦ MPC with T = 0.25; MPC/BC switching (t = 0.125); MPC with T = 0.5♦ MPC/BC switching (t = 0.45);

CLOSED-LOOP SIMULATION RESULTS

"Performance-driven switching"

 \triangleright Scheme 2: no switching - optimal performance, $J=1.64\times 10^5$

APPLICATION TO A CRYSTALLIZER MOMENTS MODEL

• State–space description:

$$\dot{x}_{0} = -x_{0} + (1 - x_{3})Dae^{\frac{-F}{y^{2}}}$$

$$\dot{x}_{1} = -x_{1} + yx_{0}$$

$$\dot{x}_{2} = -x_{2} + yx_{1}$$

$$\dot{x}_{3} = -x_{3} + yx_{2}$$

$$\dot{y} = \frac{1 - y - (\alpha - y)yx_{2}}{1 - x_{3}} + \frac{u}{1 - x_{3}}$$

- \diamond Unstable equilibrium point surrounded by limit cycle
- ♦ Input constraints: $u \in [-1, 1]$
- Bounded controller:
 - $\diamond\,$ Normal form representation:

$$\dot{\xi} = A\xi + bl(\xi, \eta) + b\alpha(\xi, \eta)u$$

$$\dot{\eta} = \Psi(\xi, \eta)$$

CLOSED-LOOP SIMULATION RESULTS

"Stability-based switching"

 \diamond Input & state profiles

◊ x(0) = [0.053 0.03 0.02 0.01 0.67]^T ∈ Ω_{system}(u_{max})
◊ MPC with T = 0.25, switching (t = 2.1), J = 0.246

CONCLUSIONS

- Stabilization of nonlinear systems with input constraints
- $\bullet\,$ A hybrid approach uniting MPC & bounded control
 - \diamond Decoupling:
 - ▷ Optimality (model predictive control)
 - ▷ Constrained stability region (bounded control)
 - $\diamond\,$ Design & implementation of switching laws:
 - ▷ Stability, performance, etc.
 - \triangleright Accommodate any MPC formulation
 - ♦ Use of computationally inexpensive MPC implementations
 ▷ Off-line explicit characterization of stability region

ACKNOWLEDGEMENT

 $\bullet\,$ Financial support from NSF, CTS-0129571 is gratefully acknowledged